最新人教版高中数学必修2第一章《空间几何体的结构》教案(第2课时)

合集下载

人教版高中必修2第一章空间几何体课程设计

人教版高中必修2第一章空间几何体课程设计

人教版高中必修2第一章空间几何体课程设计一、背景介绍人教版高中数学教材中,空间几何体是必修2的第一章内容,通过本章的学习,可以帮助学生建立三维空间的思维模型,进一步提高他们的数学学习能力。

本课程设计旨在通过有趣的教学方法和补充教材,提高学生对空间几何体的理解和掌握。

二、学习目标1.了解空间几何体的基本概念;2.掌握空间几何体的相关参数计算方法;3.能够进行空间几何体的分类和比较;4.能够在现实问题中应用空间几何体的相关知识。

三、教学内容1. 立体图形与空间几何体•立体图形的特点;•空间几何体的基本概念;•空间几何体的种类及特点。

2. 空间几何体的参数计算•空间几何体的体积计算;•空间几何体的表面积计算;•空间几何体的其他参数计算。

3. 空间几何体的分类•空间几何体的分类;•不同空间几何体的比较;•在实际问题中应用空间几何体的分类知识。

四、教学方法1. PBL教学法本课程采用问题驱动学习(PBL)教学法,通过引入实际问题,激发学生的学习兴趣,提高学生的自主学习能力和解决问题的能力。

2. 案例教学法在教学中引入具体案例,让学生在解决问题时更能理解和掌握所学知识。

同时,在案例解决过程中,要求学生能够进行创新和自主思考,培养他们的实际应用能力。

3. 交互式教学法教师与学生通过互动、讨论、合作等形式,共同探究问题,激发学生的学习兴趣,提高其学习效果。

五、教学流程第一部分:引入教学•介绍本章学习目标;•引入立体图形和空间几何体的概念;•通过图片、视频等形式展现空间几何体的特点和应用场景。

第二部分:教学过程•在课堂上呈现具体的例子,让学生更好地理解空间几何体的概念和应用;•引入问题来激发学生的学习兴趣,同时培养学生的自主思考和解决问题的能力;•给予学生足够的时间,让他们自主探索和发现,鼓励他们进行创新和思考。

第三部分:总结归纳•进行知识点的总结,强化学生对空间几何体的理解和掌握;•借助案例,让学生更深入地理解和掌握空间几何体的相关知识。

高中数学必修2《空间几何体》教案

高中数学必修2《空间几何体》教案

高中数学必修2《空间几何体》教案高中数学必修2《空间几何体》教案第一章空间几何体一、知识点归纳(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。

3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。

平行投影分为正投影和斜投影。

2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。

4.斜二测法:在坐标系中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。

(三)空间几何体的表面积与体积1、空间几何体的表面积①棱柱、棱锥的表面积:各个面面积之和②圆柱的表面积③圆锥的表面积④圆台的表面积⑤球的表面积⑥扇形的面积公式 (其中表示弧长,表示半径)2、空间几何体的体积①柱体的体积②锥体的体积③台体的体积④球体的体积二、练习与巩固(1)空间几何体的结构特征及其三视图1.下列对棱柱说法正确的是( )A.只有两个面互相平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,且各侧棱也平行2.一个等腰三角形绕它的底边所在的直线旋转360。

数学必修2立体几何第一章全部教案

数学必修2立体几何第一章全部教案

数学必修2立体几何第一章全部教案第一章:空间几何体1.1.1柱、锥、台、球的结构特征(一)一、教学目标1 ?学问与技能(1)通过实物操作,增加同学的直观感知。

(2)能按照几何结构特征对空间物体举行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2. 过程与办法(1)让同学通过直观感触空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让同学观看、研究、归纳、概括所学的学问。

3. 情感态度与价值观(1)使同学感触空间几何体存在于现实生活周围,增加同学学习的乐观性,同时提高同学的观看能力。

(2)培养同学的空间想象能力和抽象括能力。

二、教学重点、难点重点:让同学感触大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观看、思量、沟通、研究、概括。

(2)实物模型、投影仪四、教学过程:一、创设情景,揭示课题1. 研究:经典的建造给人以美的享受,其中神秘为何?世间万物,为何千姿百态?2. 提问:学校与初中在平面上讨论过哪些几何图形?在空间范围上讨论过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深化讨论一些空间几何图形,即学习立体几何,注重学习办法:直观感知、操作确认、思维辩证、度量计算二、讲授新课:1. 教学棱柱、棱锥的结构特征:②提问:举例生活中有哪些实例给我们以两个面平行的形象?②研究:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有D哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?②定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体叫棱柱→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽)结合图形熟悉:底面、侧面、侧棱、顶点、高、对角面、对角线?②分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等表示:棱柱ABCDE-A 'B'C'D''②研究:埃及金字塔具有什么几何特征?②定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形熟悉:底面、侧面、侧棱、顶点、高?→研究:棱锥如何分类及表示?②研究:棱柱、棱锥分离具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方?2. 教学圆柱、圆锥的结构特征:②研究:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥?→列举生活中的棱柱实例→结合图形熟悉:底面、轴、侧面、母线、高.→表示办法②研究:棱柱与圆柱、棱柱与棱锥的共同特征?→ 柱体、锥体.②观看书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体.3. 质疑答辩,排难解惑,进展思维,老师提出问题,让同学思量。

人教版高中数学必修二第一章 空间几何体全章教案

人教版高中数学必修二第一章 空间几何体全章教案

人教版高中数学必修二第一章空间几何体全章教案高一数学必修二教案科目:数学课题:空间几何体的结构特征教学目标:1.让学生通过观察实物、图片,理解并归纳出柱、锥、台、球的结构特征。

2.培养学生善于通过观察实物形状到归纳其性质的能力。

教学过程:一、自主研究观察自己书桌上和课本上的图片,思考以下问题:1.这些图片中的物体具有怎样的形状?2.日常生活中,我们把这些物体的形状叫做什么?如何描述它们的形状?3.组成这些几何体的每个面有什么特点?面与面之间有什么关系?思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分。

如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体。

请列举一些空间几何体的实例。

二、质疑提问1.在平面几何中,我们认识了三角形、正方形、矩形、菱形、梯形、圆、扇形等平面图形。

那么对空间中各种各样的几何体,我们如何认识它们的结构特征?2.对空间中不同形状、大小的几何体,我们如何理解它们的联系和区别?思考2:观察下列图片,你知道这些图片在几何中分别叫什么名称吗?三、问题探究思考3:如果将这些几何体进行适当分类,你认为可以分成哪几种类型?思考4:图(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)有何共同特点?这些几何体可以统一叫什么名称?思考5:图(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)有何共同特点?这些几何体可以统一叫什么名称?思考6:一般地,怎样定义多面体?围成多面体的各个多边形,相邻两个多边形的公共边,以及这些公共边的公共顶点分别叫什么名称?思考7:一般地,怎样定义旋转体?由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。

思考1:我们把下面的多面体取名为棱柱,你能说一说棱柱的结构有哪些特征吗?据此你能给棱柱下一个定义吗?思考2:下列多面体都是棱柱吗?如何在名称上区分这些棱柱?如何用符号表示?体的结构特征解决实际问题.1.通过观察实物、图片,使学生理解并能归纳出组合体的结构特征;2.让学生自己观察,通过直观感加强理解;3.培养学生善于通过观察实物形状到归纳其性质的能力.教学内容1.什么是简单组合体?它由哪些基本几何体组成?2.如何通过基本几何体的结构特征来识别简单组合体?3.如何计算简单组合体的表面积和体积?备注思考1:如何计算一个简单组合体的表面积和体积?思考2:如何通过简单组合体的结构特征来识别它?思考3:现实生活中有哪些物体是简单组合体?三、问题探究四、课堂检测1.下列几何体中是简单组合体的是()五、小结评价本节课我们主要是通过观察实例,探究发现了由柱、锥、台、球组成的简单组合体的结构特征,研究了如何通过基本几何体的结构特征来识别简单组合体,以及如何计算简单组合体的表面积和体积,要能灵活运用这些知识解决实际问题.教材版本:必修二教学内容:实际模型的结构特征教学目标:1.了解实际模型的结构特征。

2019-2020年高中数学 1.1《空间几何体的结构》教案 新人教必修2

2019-2020年高中数学 1.1《空间几何体的结构》教案 新人教必修2

2019-2020年高中数学 1.1《空间几何体的结构》教案新人教必修2一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法[(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。

教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

人教版高中数学必修2《空间几何体的结构》教学设计

人教版高中数学必修2《空间几何体的结构》教学设计

人教版高中数学必修2《空间几何体的结构》教学设计《人教版高中数学必修2《空间几何体的结构》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!1.1空间几何体的结构第一章:空间几何体第一课时§1.1.柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,课件展示,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、棱台、(圆柱、圆锥、圆台、球)的结构特征.(4)会表示有关于几何体以及柱、锥、台的分类.2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出棱柱、棱锥、棱台、的几何结构特征.来源:学科网](2)让学生观察、讨论、归纳、概括所学的知识.3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象括能力.二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括.三、教学用具(1)学法:观察、思考、交流、讨论、概括.[来源:Z。

xx。

](2)课件四、教学过程(一)课题导入1.展示世界经典建筑,教师提出问题:经典的建筑给人以美的享受,你知道其中的奥秘吗?引出几何学,空间几何体的概念.2.所举的建筑物由哪些几何体组合而成?(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察,根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容.(二)新知探研(1)多面体、旋转体:1.引导学生总结多面体及多面体的面、棱、顶点的定义;旋转体及旋转体的轴的定义. 给出实物图片让学生按多面体、旋转体给几何体分类,老师评价.(2)棱柱 :概念:2. 观察课件展示出的棱柱的图片,回答以下问题:A B C E E′ D′ C′ B′ A′C A B一、(1)中面ABC与面的位置关系如何?在(2)和(3)中能找到具有同样位置关系的两个面吗?找出它们.二、(1)中其余各面是几边形?(2)和(3)中其余各面是几边形?三、(1)中其余各面的公共边位置关系如何?(2)、(3)中也有同样的特征吗?3.由学生自由讨论,选出一名同学发表意见,根据情况可选1-2名学生补充.在此基础上得出棱柱的主要结构特征:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱的有关概念:(出示下图模型,边对照模型边介绍)棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.分类及表示:4.如果按底面多边形边数给棱柱分类,下面三个棱柱应该分别叫做什么?答:三棱柱、四棱柱、五棱柱.表示:用底面各顶点的字母表示,如课本上图1.1-4所示的六棱柱表示为:棱柱ABCDEF-A'B'C'D'E'F'对定义的理解:引导启发,让学生完成以下三个练习,加深对棱柱概念的理解:①棱柱两个互相平行的面以外的面都是平行四边形吗?②长方体按如图截去一角后所得的两部分还是棱柱吗?③下面的几何体中,哪些是棱柱?(3)棱锥:让学生观察拿破仑广场的玻璃金字塔、埃及金字塔的图片,指出它们结构上的共同点.仿照棱柱的定义给出棱锥的定义1)定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.2)棱锥的有关概念:(出示下图模型,边对照模型边介绍)棱锥中,这多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边棱锥的侧棱 .3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥等.三棱锥又叫四面体图中所示四棱锥表示为:棱锥S-ABCD(4)棱台:观察两个具有棱台结构的实物,并对比以下两个多面体,思考:II中多面体与I中四棱锥有何关系?I II(1) 棱台的概念:棱锥被平行于棱锥底面的平面所截后,截面和底面之间的部分叫做棱台.(2) 棱台的有关概念:(出示模型,边对照模型边介绍)棱台的上底面、下底面、侧面、棱、侧棱、顶点;(3) 棱台的分类:三棱台、四棱台、五棱台、六棱台;(4) 棱台的表示方法:棱台ABCD-A'B'C'D'(5 ) 棱台的特点:两个底面是相似多边形,侧面都是梯形;侧棱延长后交于一点.引导学生完成课堂练习.(5).圆柱的结构特征:出示圆柱的几何体,和学生一起,观察总结出圆柱的定义及其相关概念.(1) 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转形成的面所围成的旋转体叫圆柱.(2)圆柱的有关概念:在圆柱中,旋转的轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.(3) 圆柱的表示方法:圆柱用表示它的轴的字母表示,例如P5 图1.1-7中的圆柱表示为圆柱OO',圆柱和棱柱统称为柱体.(6)圆锥的结构特征:出示圆锥的几何体,和学生一起,观察总结出圆锥的定义及其相关概念(1) 定义:以直角三角形的一条直角边所在的直线为轴旋转,其余两边旋转形成的面所围成的旋转体叫圆锥.(2) 圆柱的有关概念:在圆锥中,旋转的轴叫做圆锥的轴,垂直于轴的边旋转而成的圆面叫做圆锥的底面,斜边旋转而成的曲面叫做圆锥的侧面,无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线.(3) 圆锥的表示方法:圆锥用表示它的轴的字母表示,例如P5 图1.1-8中的圆锥表示为圆锥SO.(7)圆台的结构特征:出示圆台的几何体,和学生一起,观察总结出圆台的定义及其相关概念(1) 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.想一想:圆台能否用旋转的方法得到?若能,请指出用什么图形?怎样旋转?(2) 圆台的有关概念:结合图形认识圆台的上、下底面、侧面、母线、轴.要求在课本P5图1.1-9中标出它们.(3) 圆台的表示方法:圆台用表示它的轴的字母表示,例如P5 图1.1-9中的圆台表示为圆台OO',圆台和棱台统称为台体.7.球的结构特征:(1) 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体,叫球体,简称球.列举生活中的实例,并找出图1.1-1中哪些物体是球体?(2)结合课本图1.1-10认识:球心、半径、直径.在球中,半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.探究:棱柱、棱锥、棱台之间有什么关系?当底面发生变化时它们能否互相转化?圆柱、圆锥、圆台之间呢?让学生观察课件上的柱、锥、台的图像,引导他们从动态的角度寻求柱、锥、台的关系,老师评价总结.(3) 球的表示:球常用表示球心的字母表示,例如图1.1-10中的球表示为球O.(4) 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)(三)小结:柱体锥体台体球简单几何体的结构特征圆柱棱柱棱锥圆锥棱台圆台(四)作业:人教版高中数学必修2《空间几何体的结构》教学设计这篇文章共8299字。

最新人教版高中数学必修2第一章《构成空间几何体的基本元素》教案

最新人教版高中数学必修2第一章《构成空间几何体的基本元素》教案

示范教案整体设计教学分析本节教材通过长方体体会空间中的点、线、面、体之间的关系,体会它们如何构成了空间图形•对空间中线、面平行及垂直的了解,是认识几何体结构特征所必需的,因此有必要在此进行讨论和研究. 在教学中要引导学生在直观感知的基础上展开讨论和交流,对正确观点要及时肯定,并说明在后面的学习中深入研究;对不正确的观点也要肯定学生探索的积极性,并指导他们通过实例举出反例.三维目标1•了解空间中的点、线、面、体之间的关系,体会它们是怎样构成的空间图形,培养学生的空间想象能力.2 •认识空间点、线、面之间的位置关系,培养学生的探索能力和抽象思维能力.重点难点教学重点:从运动的观点初步认识点、线、面、体之间的生成关系和位置关系.教学难点:通过几何体的直观图观察其基本元素间的关系以及异面直线的概念.课时安排1课时教学过程导入新课设计1•在小学和初中,我们已经学习了长方体、球、圆柱等一些简单的几何体,在日常生活中,我们看到的很多建筑物大都是这些几何体组成的,从本节开始,我们学习常见几何体的结构特征,教师点出课题.设计2•我们知道点是构成线的基本元素,那么构成几何体的元素是什么呢?教师点出课题.推进新课新知探究提出问题⑴什么样的物体叫几何体?(2) 粉笔盒是什么几何体?⑶如下图所示的长方体,有几个面?几条棱?几个顶点?(4) 想一想几何体是由什么构成的?(5) 你知道工程人员怎样检验一个物体的表面是不是平的?(6) 我们每个人都有个名字,那么如何表示平面呢?⑺流星划过夜空,给我们一种“点动成线”的视觉感受•你能用运动的观点来说明点、线、面、体之间的关系吗?讨论结果:(1)只考虑一个物体占有空间部分的形状和大小,而不考虑其他因素,则这个空间部分叫做一个几何体.(2)长方体.⑶长方体有6个面,12条棱,8个顶点.(4) 几何体是由点、线、面构成的•点、线、面是构成几何体的基本元素.(5) 通常把直尺放在物体表面的各个方向上,看看直尺的边缘与物体表面是否有缝隙,如果都不出现缝隙,说明这个物体表面是平的•线有直线(段)和曲线(段)之分,面有平面(部分)和曲面(部分)之分•由此可见,平面是处处平直的面,而曲面就不是处处是平的.(6) 表示法一:用一个希腊字母 a 3 Y,,,来命名;表示法二:用四边形的对角顶点的字母表示;表示法三:用四边形的四个顶点的字母表示.如下图所示,平面a平面3平面AC,平面ABCD.(7) 如果点运动的方向始终不变,那么它的轨迹是一条直线或线段,如果点运动的方向时刻在变化,则运动的轨迹是一条曲线或曲线的一段. 同样,一条线段运动的轨迹可以是个面,面运动的轨迹(经过的空间部分)可以形成一个几何体,如下图所示.直线平行运动,可以形成平面或曲面•固定射线的端点,让其绕着一个圆弧转动,可以形成锥面,如下图所示.提出问题观察如下图所示的长方体,设想长方体的棱可以延伸为直线,面可延伸为平面,回答下列问题.(1)根据长方体的棱所在直线的位置关系,猜想空间两条直线的位置关系?(2)根据长方体的棱所在直线与各面所在平面的位置关系,猜想空间直线与平面的位置关系?3直线AA '与平面AC相交,还有什么特点吗?4平面AC与平面A ' C '有公共点吗?5平面AC与平面AB '有公共点吗?6根据长方体的面所在平面的位置关系,猜想空间两平面的位置关系?7我们知道直线AA '丄平面AC,直线AA '在平面AB '内,平面AC与平面AB ' 相交,这两个平面还有其他特点吗?讨论结果:⑴与直线AA '平行的直线有BB ', CC', DD';与直线AA '相交的直线有AB , AD , A' B ',A ' D';与直线AA '既不平行又不相交的直线有CB , CD ,C ' B ',C ' D' 由此可见,空间中的两条直线的位置关系有三种:平行、相交、既不平行又不相交.(2) 直线AA '与平面BC '平行,记作AA ' //平面BC ';直线AA '在平面AB '内; 直线AA '与平面AC相交•由此可见,空间直线与平面的位置关系有:平行、相交、在平面内.(3) 直线AA '与平面AC不仅相交,而且垂直,记作AA '丄平面AC,即直线与平面垂直是直线与平面相交的特殊情况.此时直线AA '称为平面AC的垂线,平面AC称为直线AA '的垂面.线段AA '为点A '到平面AC内的所有连线段中最短的一条. 线段AA ' 的长称为点A '至U 平面AC的距离.(4) 平面AC与平面A' C'没有公共点,则说平面AC与平面A ' C '平行.如果两个平面没有公共点,那么就说这两个面平行.(5) 平面AC与平面AB '有公共点,并且它们相交于直线AB,则说平面AC与平面AB ' 相交.(6) 空间两个平面的位置关系有:平行、相交.(7) 由于平面AB '经过平面AC的垂线AA ',则说平面AC与平面AB '垂直.一个平面经过另一个平面的垂线,这两个平面就给我们互相垂直的形象,这时,我们说这两个平面垂直.应用示例思路1例1如下图所示的三棱锥中,(1) 分别写出与直线AB平行、相交、既不平行又不相交的直线;⑵分别写出与平面ABC平行、相交的平面.解:(1)没有与直线AB平行的直线;与直线AB相交的直线有:AC、AD、BC、BD ;与直线AB既不平行又不相交的直线有:CD.(2) 没有与平面ABC平行的平面;与平面ABC相交的平面有:平面ABD,平面ACD,平面BCD. 变式训练如下图所示的长方体中,知能训练1 •下面关于空间的说法中正确的是 ()A .一个点运动形成直线B •直线平行移动形成平面或曲面C .矩形上各点沿同一方向移动形成长方体D •一个三角形及其内部的点沿相同方向移动形成三棱柱答案:D2.三个平面最多可将空间分成几个部分( ) C . 7解析: D • 8 两两相交的三个平面将空间分成 7部分.答案: C 3•用 解析: 6根长度相同的火柴搭正三角形,最多可以搭成个正三角形.搭成三棱锥时,所得的正三角形最多.答案: 4 A •4 B • 6 (1)与直线AB 既不平行又不相交的直线是 ___________ •⑵与直线AB 平行的平面是 ____________ ;与直线AB 垂直的平面是 _____________ •⑶与平面 AD i 平行的平面是 ____________ •与平面 AD i 垂直的平面是 ____________答案:(1)C i C , C 1B1,D 1A 1, D i D⑵平面A 1C 1和平面CD 1 平面BC 1和平面AD 1⑶平面BC 1 平面AC 、平面A 1C 1、平面AB 1和平面DC 1.思路2例2根据如左下图所示的平面图形,沿虚线折叠成一个几何模型,并画出空间图形.解:折叠成的几何模型是三棱锥,如右上图所示.变式训练根据如下图所示的平面图形,沿折线折叠成一个几何模型,并画出空间图形.解:折叠成的几何模型是长方体,如下图所示.G4.空间中构成几何体的基本元素是 _______________________________________________答案:点、线、面拓展提升如下图是一个正方体的表面展开图,正方体的棱长为2,则封闭折线ABCDAnBC/则封闭折线 ABCDA 的长为 AB + BC + CD + DA = 2(AB + CD) = 2(.2 + 一 5). 答案:2( .2+ 5) 课堂小结本节课学习了:1.构成空间几何体的基本元素及其关系;2•认识了空间的位置关系.作业本节练习A 1,2,3题.设计感想本节课通过让学生观察长方体、 教室中的点、线、面提炼出构成几何体的基本元素和空间图形中的点、线、面之间的位置关系•能让学生动手动脑、积极思维、自主学习、合作探 究•遵循“提出问题 一一学生讨论一一答疑解惑一一提炼知识一一归纳方法一一例题示范练习巩固一一总结升华”模式,充分发挥了学生的主观能动性. 备课资料1 . 1.1构成空间几何体的基本元素简学案(一 )基础知识1 .几何体: _______________ ;2 .长方体: _______________ ;3 .长方体的面: ________________ ;4 .长方体的棱: ________________ ;5 .长方体的顶点: ________________ ;6.构成几何体的基本元素: __________________ ;7•你能说出构成几何体的几个基本元素之间的关系吗?(二)能力拓展1.如果点做连续运动,运动出来的轨迹可能是 _________________________ ,因此点是立体几何 A 、B 、C 均为所在棱的中点,D 为正方体的顶点.若 的长为 ________________ .解析:中的最基本的元素,如果点运动的方向不变,则运动的轨迹是__________________________ ,如果点运动的轨迹改变,则运动的轨迹是_____________________ ,试举几个日常生活中点运动成线的例子2.在空间中你认为直线有几种运动方式__________________________________________ 分别形成_______________________ .你能举几个日常生活中的例子吗?3.你知道直线和线段的区别吗?如果是线段做上述运动,结果如何?现在你能总结出平面和面的区别吗?(三)探索与研究1.构成几何体的基本元素是____________ , ________ ,________ .2.点和线能有几种位置关系是___________________________ .你能画图说明吗?3.点和平面能有几种位置关系是___________________________ .你能画图说明吗?4.直线和直线能有几种位置关系是___________________________ .你能画图说明吗?5.直线和平面能有几种位置关系是___________________________ .你能画图说明吗?6.平面和平面位置关系是__________________________ .你能画图说明吗?。

高中数学1.1 空间几何体的结构 教案1人教版必修2

高中数学1.1 空间几何体的结构 教案1人教版必修2

1.1空间几何体的结构§1.1.1 柱、锥、台、球的结构特征(1)一教学目标1.通过观察实物、图片,使学生理解并能归纳出柱、锥、台、球的结构特征;2.让学生自己观察,通过直观感加强理解;3.培养学生善于通过观察实物形状到归纳其性质的能力。

二教学重、难点1.教学重点:让学生通过观察实物及图片概括出棱柱、棱锥、棱台的结构特征;2.教学难点:棱柱、棱锥、棱台的结构特征的概括。

三教学过程(一)创设情境引入新课在我们周围存在着各种各样的物体,它们都占据着空间的一部分,如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。

本节课我们主要从结构特征方面认识几种最基本的空间几何体。

观察自己书桌上和课本上的图片思考下面的问题:1.这些图片中的物体具有怎样的形状?2.日常生活中,我们把这些物体的形状叫做什么?如何描述它们的形状?3.组成这些几何体的每个面有什么特点?面与面之间有什么关系?(二)讲授新课1.两类几何体通过观察可以发现,(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)具有同样的特点:组成几何体的每个面都是平面图形,并且都是平面多边形;(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)具有同样的特点:组成它们的面不全是平面图形(学生总结)。

一般地,我们把有若干个平面多边形围成的几何体叫做多面体(图1)。

围成多面体的各个多边形叫做多面体的面,如面ABCD,面//B BCC ;相邻两个面的公共边叫做多边形的棱,如棱AB ,棱/AA ;棱与棱的公共点叫做多面体的顶点,如顶点/,D A 。

如(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)这些物体都具有多面体的形状。

我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体(图2)。

这条定直线叫做旋转体的轴。

(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)这些物体都具有旋转体的形状。

高中数学第一章空间几何体全部教案人教版必修2

高中数学第一章空间几何体全部教案人教版必修2

§1.1.1 棱柱、棱锥、棱台的结构特征学习目标1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 理解多面体与旋转体的有关概念;4. 会用语言概述棱柱、棱锥、棱台的结构特征.一、课前准备(预习教材 P2~ P4,找出疑惑之处)二、新课导学※探索新知探究 1:多面体的相关概念问题:观察下面的物体,注意它们每个面的特点,以及面与面之间的关系.你能说出它们相同点吗?新知1:多面体多面体的面多面体的棱多面体的顶点探究 2:旋转体的相关概念新知2:旋转体旋转体的轴探究 3:棱柱的结构特征新知3:棱柱新知4:棱柱的分类新知5:棱柱的表示探究 4:棱锥的结构特征新知6:棱锥探究 5:棱台的结构特征新知7:棱台反思:根据结构特征,从变化的角度想一想,棱柱、棱台、棱锥三者之间有什么关系?※典型例题例由棱柱的定义你能得到棱柱下列的几何性质吗?三、总结提升※学习小结※知识拓展1.平行六面体:2.正棱柱:3.正棱锥4.正棱台学习评价※自我评价你完成本节导学案的情况为().A.很好B. 较好C. 一般D. 较差※当堂检测1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成().A.棱锥 B.棱柱 C.平面 D.长方体2. 棱台不具有的性质是().A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点D.它们之间不都存在包含关系3. 长方体三条棱长分别是AA′=1 AB =2,AD = 4 ,则从A 点出发,沿长方体的表面到C′的最短矩离是_____________.布置作业课本P8 练习题1.1 B组第1题。

最新人教版高中数学必修2第一章《空间几何体的结构》教学设计

最新人教版高中数学必修2第一章《空间几何体的结构》教学设计

最新人教版高中数学必修2第一章《空间几何体的结构》教学设计空间几何体的结构是新课程立体几何的重要组成部分之一。

该课程的设计思想是以培养学生的几何直观能力、抽象概括能力、合情推理能力和空间想象能力为指导思想,运用建构主义教学原理,通过观察实物抽象出空间图形、用文字描述空间图形和用数学语言定义空间图形的三部曲来构建课堂主框架。

整个设计旨在增强学生参与数学研究的意愿,提高学生自主研究、分析问题和解决问题的能力,培养学生合作研究的意识。

空间几何体是在土木建筑、机械设计、航海测绘等实际问题中广泛应用的基础内容。

与传统的立体几何体系相比,人教A版对立体几何的体系结构作了重大改革。

新课程从对空间几何体的整体观察入手,再研究组成空间几何体的点、直线和平面。

这种安排降低了立体几何研究入门难的门槛,强调几何直观,淡化几何论证,可以激发学生研究立体几何的兴趣。

本节课的教学方法主要为观察、比较、分析、抽象概括、讨论和实践操作。

教学手段包括图片、实物模型、板书、PPT等多种形式。

在教学过程中,教师应该注重引导学生观察、思考、提问和交流,鼓励学生自主探究,培养学生的创新意识和思考能力。

本节课《空间几何体的结构》选自普通高中课程标准实验教科书《数学》人教A版必修2第一章的第一节。

课标要求学生认识柱、锥、台、球及其简单组合体的结构特征,并能应用这些特征描述现实生活中简单物体的结构,发展几何直观能力。

教材首先让学生观察现实世界中的实物图片,引导学生将观察到的实物进行归纳、分类、抽象、概括,得出柱体、锥体、台体的结构特征,在此基础上给出由它们组合而成的简单几何体的结构特征。

《省学科教学指导意见》将这一节内容安排为两课时,笔者的设计的是第一课时。

本节内容在义务教育数学课程“空间与图形”已有所涉及,但要求不同,素材更为丰富,即区别在于研究的深度和概括程度。

笔者认为教学时,不能认为这部分的要求是降低了,讲课时一带而过,要领会新课标的意图,加强几何直观的训练,在引导学生直观感受空间几何体结构特征的同时,学会类比,学会推理,学会说理。

数学必修2立体几何第一章全部教案

数学必修2立体几何第一章全部教案

第一章:空间几何体1。

1.1柱、锥、台、球的结构特征(一)一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力.二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征.难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学过程:一、创设情景,揭示课题1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2。

提问:小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算。

二、讲授新课:1。

教学棱柱、棱锥的结构特征:①提问:举例生活中有哪些实例给我们以两个面平行的形象?②讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?③定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.④分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.表示:棱柱ABCDE—A’B'C'D’E'⑤讨论:埃及金字塔具有什么几何特征?⑥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高。

人教版高中必修2第一章空间几何体教学设计

人教版高中必修2第一章空间几何体教学设计

人教版高中必修2第一章空间几何体教学设计背景高中数学教育是培育高素质人才的重要环节,数学是学习其他学科的基础和前提。

而数学中的空间几何体作为其中的重点内容之一,对于提高学生的三维想象能力,增强学生对空间的认知与把握,具有重要的意义。

本教学设计主要针对人教版高中必修2的第一章空间几何体。

教学目标•理解空间几何体的基本概念和特征。

•掌握计算空间几何体的体积、表面积以及相关的量的计算方法。

•培养学生对三维空间物体的认知和分析能力。

•提高学生的数学思维和解决实际问题的能力。

教学内容•立体角、球面角的概念及其计算。

•空间几何体的基本概念和特征。

•空间几何体的体积和表面积的计算。

教学过程第一课时1.自主探究1.让学生自行搜索空间几何体及其相关概念的定义和相关知识。

2.分组讨论,展示自己的探究结果,并综合讨论有关空间几何体的基本概念和体积等计算公式。

2.讲授1.讲解立体角、球面角的概念和计算方法。

2.介绍空间几何体的概念及其特征,包括长方体、正方体、圆柱体、锥体、球等等。

3.练习1.让学生独立完成教材上相关练习题,并试图举出实际问题运用空间几何体中的概念和计算方法。

第二课时1.讲授1.讲解空间几何体的体积和表面积的计算公式。

2.示例解析基本几何体的体积公式的推导及应用。

3.给出三维图形中的实际问题,要求学生运用相关知识进行计算。

2.练习1.让学生独立完成课本中有关空间几何体的计算题目。

2.引导学生设计和解决一些实际问题,鼓励学生进行数学模型的建立。

第三课时1.应用1.给出若干实际问题,引导学生通过运用所学的空间几何体知识来解决问题,加深对相关知识的理解和应用能力。

#### 2.总结2.对本章节的知识内容进行简要的总结和归纳。

教学评估1.在课堂上进行现场答题、小组讨论和个人口头评价,评估学生的掌握情况。

2.分配公共作业和个人作业,要求学生进行反思和自评。

教学反思空间几何体是数学中的重要概念之一,对于提高学生的数学思维能力和实践能力有很大的帮助。

人教A版高中数学必修2《一章 空间几何体 1.1 空间几何体的结构 1.1.2 简单组合体的结构特征》优质课教案_2

人教A版高中数学必修2《一章 空间几何体  1.1 空间几何体的结构 1.1.2 简单组合体的结构特征》优质课教案_2

1.1.2 简单组合体的结构特征(一)教学目标1、理解由柱、锥、台、球组成的简单组合体的结构特征.2、能运用简单组合体的结构特征描述现实生活中的实际模型.(二)重点、难点重点与难点都是认识简单组体体的结构特征.(三)教学方法概念形成过程中,学生观察、思考、讨论、交流与教师引导相结合,然后通过对一些具体问题的讨论,加深对简单组合体的结构特征的理解.教学环节教学内容师生互动设计意图创设情境观察教材下列各图,说出这些几何体是由哪些简单几何体构成的.学生回答,然后师生共同讨论他们的联系与区别.通过问题解决,学生复习了上课时所学知识,同学又为学习新知识作准备概念形成1.简单组合体概念,由柱体锥体,台体和球体等简单几何体组合而成的几何体.2.简单组合体为构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.学生归纳,总结后教师予以适当修饰,补充.培养学生总结概括,表述的能力,加强对概念的理解.应用举例例1 已知球的外切圆台教师出示简单组合通过上、下底面的半径分别为r ,R ,求球的半径.【解析】圆台轴截面为等腰梯形,与球的大圆相切,由此得梯形腰长为R + r ,梯形的高即球的直径为22)()(r R R r --+=2rR ,所以,球的半径为rR .圆锥底面半径为1cm ,高为2cm ,其中有一个内接正方体,求这个内接正方体的棱长.【解析】锥的轴截面SEF ,正方体对角面CDD 1C 1,如图所示.设正方体棱长x ,则CC 1 = x ,C 1D 1 =2x.作SO ⊥EF 于O ,则SO =2,OE = 1,∵△ECC 1~△EOS ,∴SOCC 1=EOEC 1,即2x =1)2/2(1x-. 体,学生说出简单组合体的结构特征,然后探索各有关量的联系方法,找到适当的轴截面,求解,教师板书. 直观、观察加强学生对简单组合体结构特征的认识,培养学生空间想象能力和逻辑推理能力.EC 1 OD 1=1FDCS∴x=22(cm ),即内接正方体棱长为22cm. 归纳总结一、知识点(1)简单组合体定义(2)简单组合体构成形式 二、注意事项轴截面在旋转体与多面体组合而成的几何体中的应用.师生共同总结——交流——完善巩固、加深对概念的理解、培养思维严谨性.课后作业 学生独立完成 巩固深化,提高学生解决问题的能力.备选例题例1 左下图是由右下图中的哪个平面图旋转得到的【解析】 因为简单组合体为一个圆台和一个圆锥,因此平面图应由一个直角三角形和一个直角梯形构成,可排除B 、D ,再由圆台上、下底的大小比例关系可排除C. 【点评】组合体通过分拆,可转化为几个简单几何体,从而研究其结构特征.图4—1—9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章第一节空间几何体的结构第二课时
整体设计
教学分析
立体几何是研究现实世界中物体的形状、大小与位置关系的学科,只有把我们周围的物体形状正确迅速分解开,才能清醒地认识几何学,为后续学习打下坚实的基础.简单几何体(柱体、锥体、台体和球)是构成简单组合体的基本元素.本节教材主要是为了让学生在学习了柱、锥、台、球的基础上,运用它们的结构特征来描述简单组合体的结构特征.三维目标
1.掌握简单组合体的概念,学会观察、分析图形,提高空间想象能力和几何直观能力.2.能够描述现实生活中简单物体的结构,学会通过建立几何模型来研究空间图形,培养学生的数学建模思想.
重点难点
描述简单组合体的结构特征.
课时安排
1课时
教学过程
导入新课
思路1.在我们的生活中,酒瓶的形状是圆柱吗?我们的教学楼的形状是柱体吗?钢笔、圆珠笔呢?这些物体都不是简单几何体,那么如何描述它们的结构特征呢?教师指出课题:简单组合体的结构特征.
思路2.现实世界中的物体表示的几何体,除柱体、锥体、台体和球体等简单几何体外,还有大量的几何体是由简单几何体组合而成的,这些几何体叫做简单组合体,这节课学习的课题是:简单组合体的结构特征.
推进新课
新知探究
提出问题
①请指出下列几何体是由哪些简单几何体组合而成的.
图1
②观察图1,结合生活实际经验,简单组合体有几种组合形式?
③请你总结长方体与球体能组合成几种不同的组合体,它们之间具有怎样的关系?
活动:让学生仔细观察图1,教师适当时候再提示.
①略.
②图1中的三个组合体分别代表了三种不同的形式.
③学生可以分组讨论,教师可以制作有关模型展示.
讨论结果:①由简单几何体组合而成的几何体叫做简单组合体.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成.图1(1)是一个四棱锥和一个长方体拼接成的,这是多面体与多面体的组合体;图1(2)是一个圆台挖去一个圆锥构成的,这是旋转体与旋转体的组合体;图1(3)是一个球和一个长方体拼接成的,这是旋转体与多面体的组合体.
②常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合.其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体,如图1(1)和(3)所示的组合体;另一种是由简单几何体截去或挖去一部分而成的简单组合体,如图1(2)所示的组合体.
③常见的球与长方体构成的简单组合体及其结构特征:1°长方体的八个顶点在同一个球面上,此时长方体称为球的内接长方体,球是长方体的外接球,并且长方体的体对角线是球
的直径;2°一球与正方体的所有棱相切,则正方体每个面上的对角线长等于球的直径;3°一球与正方体的所有面相切,则正方体的棱长等于球的直径.
应用示例
思路1
1请描述如图2所示的组合体的结构特征.
图2
活动:回顾简单几何体的结构特征,再将各个组合体分解为简单几何体.依据柱、锥、台、球的结构特征依次作出判断.
解:图2(1)是由一个圆锥和一个圆台拼接而成的组合体;
图2(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;
图2(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.
点评:
图3
一个大球内部挖去一个同球心且半径较小的球
2所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.
活动:先画出正方体,然后取各个面的中心,并依次连成线观察即可.连接相应点后,得出图形如图4(1),再作出判断.
(1)(2)
图4
解:如图4(1),正方体ABCD-A1B1C1D1,O1、O2、O3、O4、O5、O6分别是各表面的中心.由点O1、O2、O3、O4、O5、O6组成了一个八面体,而且该八面体共有6个顶点,12条棱.该多面体的图形如图4(2)所示.
点评:本题中的八面体,事实上是正八面体——八个面都是全等的正三角形,并且以每个顶点为其一端,都有相同数目的棱.由图还可见,该八面体可看成是由两个全等的四棱锥经重合底面后而得到的,而且中间一个四边形O2O3O4O5还是正方形,当然其他的如O1O2O6O4等也是正方形.为了增强立体效果,正方体应画得“正”些,而八面体的放置应稍许“倾斜”些,并且“后面的”线,即被前面平面所遮住的线,如图中的O1O5、O6O5、O5O2、O5O4应画成虚线.
1已知如图5所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕BC所在直
线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.
图5图6
活动:让学生思考AB、AD、DC与旋转轴BC是否垂直,以此确定所得几何体的结构特征.
解:如图6所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体.
点评:
图7 图8
所示,旋转所得的几何体是一个圆柱挖去
两个圆锥后剩余部分而成的组合体.
2如图9(1)所示的两个组合体有什么区别?
图9
活动:让学生分组讨论和思考,教师及时点拨和评价学生.
解:图9(1)所示的组合体是一个长方体上面又放置了一个圆柱,也就是一个长方体和一个圆柱拼接成的组合体;而图9(2)所示的组合体是一个长方体中挖去了一个圆柱剩余部分构成的组合体.
点评:
图10
10(1)中的几何体可以看作是由一个
圆柱和一个圆锥拼接而成;图10(2)
知能训练
1.若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是()
A.64 B.66 C.68 D.70
分析:由2、3、5的最小公倍数为30,由2、3、5组成的棱长为30的正方体的一条对角线穿过的长方体为整数个,所以由2、3、5组成棱长为90的正方体的一条对角线穿过的小长方体的个数应为3的倍数.
答案:B
2.图11是一个奖杯,可以近似地看作由哪几种几何体组成?
图11
答案:奖杯的底座是一个正棱台,底座的上面是一个正四棱柱,奖杯的最上部,在正棱柱上底面的中心放着一个球.
拓展提升
1.请想一想正方体的截面可能是什么形状的图形?
活动:静止是相对的,运动是绝对的,点动成线,线动成面.用运动的观点看几何问题的形成,容易建立空间想象力,这样对于分割和组合图形是有好处的.
明确棱柱、棱锥、棱台等多面体的定义及圆柱、圆锥、圆台的生成过程,以及柱、锥、台的相互关系,对于我们正确的割补图形也是有好处的.
对于正方体的分割,可通过实物模型,实际切割实验,还可借助于多媒体手段进行切割实验.对于切割所得的平面图形可根据它的定义进行证明,从而判断出各个截面的形状.探究:本题考查立体几何的空间想象能力,通过尝试、归纳,可以有如下各种肯定或否定性的答案:
(1)截面可以是三角形:等边三角形、等腰三角形、一般三角形.
(2)截面三角形是锐角三角形,截面三角形不能是直角三角形、钝角三角形.
(3)截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形至少有一组对边平行.
(4)截面不能是直角梯形.
(5)截面可以是五边形:截面五边形必须有两组分别平行的边,同时有两个角相等;截面五边形不可能是正五边形.
(6)截面可以是六边形:截面六边形必须有分别平行的边,同时有两个角相等.
(7)截面六边形可以是等角(均为120°)的六边形,即正六边形.
截面图形如图12中各图所示:
图12
课堂小结
本节课学习了简单组合体的概念和结构特征.
作业
习题1.1B组第2题.
设计感想
本节教学设计依据课程标准的要求:利用实物模型、计算机软件观察大量立体图形,认识简单组合体的结构特征,并能运用这些特征描绘现实生活中简单物体的结构.在教学时,尽量多给学生一些图片,以便学生形成直观感知,初步获得感性认识.
备课资料
备用习题
试描述图13轴承所示的承架的结构特征.
图13
答案:底板:其外部结构是一个长方体;半圆头竖板:其下部是一个长方体,上部是半个圆柱,中间挖了一圆柱孔.。

相关文档
最新文档