(完整版)模拟电子技术基础_知识点总结

合集下载

模拟电子技术基础完整版

模拟电子技术基础完整版
反向几十K-几M 正反向电阻相差越大 单向导电性越好 二极管交直流电阻都与工作点有关 且同一点的交、直流电阻也不相同 可见 二极管的交、直流电阻是两个不同 的概念,且等效电阻与电压、电流 之间的关系是非线性的 3.最大整流电流IF 允许流过的最大正向平均电流 应用时不能超过此值
rD 正向约为几-几十
第一章
半导体器件
半导体物理基础知识
电子—空穴对 当T 或光线照射下,少数价电子因热激发而获得 足够的能量挣脱共价键的束缚 ,成为自由电子. 同时在原来的共价键中留下一个空位称 空穴 在本征半导体中电子和空穴是成对出现的 本征半导体在热或光照射作用下, 产生电子空穴对-----本征激发 T↑光照↑→电子-空穴对↑→导电能力↑ 所以 半导体的导电能力 与 T,光照 有关
§1.1 PN结及二极管
二 PN结的特征——单向导电性 1.正向特征—又称PN结正向偏置 外电场作用下多子 推向耗尽层,使耗尽 层变窄,内电场削弱 扩散 > 漂移 从而在外电路中出现 了一个较大的电流 称 正向电流
Vb
V
§1.1 PN结及二极管
在正常工作范围内,PN结上外加电压 只要有变化,就能引起电流的显著变化。 ∴ I 随 V 急剧上升,PN结为一个很 小的电阻(正向电阻小) 在外电场的作用下,PN结的平衡状态 被打破,使P区中的空穴和N区中的电子 都向PN结移动,使耗尽层变窄
单向导电 性
§1.1 PN结及二极管
3.PN结伏安特性表示式
Is —— 反向饱和电流
决定于PN结的材料,制造工艺、温度 UT =kT/q ---- 温度的电压当量或热电压 当 T=300K时, UT = 26mV K—波耳兹曼常数 T—绝对温度 q—电子电荷 u—外加电压 U 为反向时,且

模电第一章期末知识点总结

模电第一章期末知识点总结

模拟电子技术基础复习要点一、常用半导体器件1.半导体二极管(1)掌握二极管具有单向导电的特性。

用电位的方法来判断二极管是否导通,即,哪个二极管的阳极电位最高,或哪个二极管的阴极电位最低,哪个二极管就优先导通。

(2)注意:理想二极管导通之后相当短路,截止后相当开路。

(3)掌握二极管的动态电阻小,静态电阻大的概念(直流通路恒压源,交流通路小电阻)。

交流的时候把二极管当成一个交流的小电阻,用静态工作点和公式求二极管的电阻值(4)熟悉二极管的应用(开关、钳位、隔离、保护、整流、限幅)作业:1.32. 半导体稳压管(1)掌握稳压管工作在反向击穿区的特点只要不超过稳压管的最大功率,电流越大越好(2)掌握稳压管与一电阻串联时,在电路中起的稳压作用。

(3)掌握稳压管的动态电阻小,静态电阻大的概念。

(3)熟悉稳压管的应用(稳压、限幅)作业:1.5 , 1.63. 晶体三极管(1)熟悉晶体管的电流放大原理(重点掌握Ic=βIb )(2)掌握NPN 型三极管的输出特性曲线。

晶体管有三个级,必然就有BE 间的输入,CE 间的输出,所以有两组特性曲线。

iB 和Ube 之间的关系,但是保证Uce 是一个恒定值iC 和Uce 之间的关系,保证Ib 是一个恒定值关于NPN 型管子:管子处于何种状态要根据电压之间的关系来确定。

主要是饱和区和截止区之间的区别(3)掌握三极管的放大、饱和与截止条件。

(4)理解CEO CBO I I 和的定义及其对晶体管集电极电流的影响。

作业:1.9,1.12 ,共射交流放大倍数β,共基交流放大倍数α≈14. 场效应管(1)能够从转移特性曲线和输出特性曲线识别场效应管类型。

(2)掌握结型场效应管(N沟道)的转移特性和输出特性的意义。

(3)掌握绝缘栅N沟道增强型MOS的转移特性和输出特性的意义。

(4)掌握电流方程,1.4.4 式和1.4.5式作业:1.14结型场效应MOS。

模拟电子技术重要知识点整理

模拟电子技术重要知识点整理

模拟电⼦技术重要知识点整理模拟电⼦技术重要知识点整理第⼀章绪论1.掌握放⼤电路的主要性能指标都包括哪些。

2.根据增益,放⼤电路有哪些分类。

并且会根据输出输⼊关系判断是哪类放⼤电路,会求增益。

第⼆章运算放⼤器1.集成运放适⽤于放⼤何种信号?2.会判断理想集成运放两个输⼊端的虚短、虚断关系。

如:在运算电路中,集成运放的反相输⼊端是否均为虚地。

3.运放组成的运算电路⼀般均引⼊负反馈。

4.当集成运放⼯作在⾮线性区时,输出电压不是⾼电平,就是低电平。

5.在运算电路中,集成运放的反相输⼊端不是均为虚地。

6.理解同相放⼤电路、反相放⼤电路、求和放⼤电路等,会根据⼀个输出输⼊关系表达式判断何种电路能够实现这⼀功能。

7.会根据虚短、虚断分析含有理想运放的放⼤电路。

第三章⼆极管及其基本电路1.按导电性能的优劣可将物质分为导体、半导体、绝缘体三类,导电性能良好的⼀类物质称为导体,⼏乎不导电的物质称为绝缘体,导电性能介于中间的称为半导体。

2.在纯净的单晶硅或单晶锗中,掺⼊微量的五价或三价元素所得的掺杂半导体是什么,其多数载流⼦和少数载流⼦是是什么,⼜称为什么半导体。

3.半导体⼆极管由⼀个PN结做成,管⼼两侧各接上电极引线,并以管壳封装加固⽽成。

4.半导体⼆极管可分为哪两种类型,其适⽤范围是什么。

5.⼆极管最主要的特性是什么。

6.PN结加电压时,空间电荷区的变化情况。

7.杂质半导体中少数载流⼦浓度只与温度有关。

8.掺杂半导体中多数载流⼦主要来源于掺杂。

9.结构完整完全纯净的半导体晶体称为本征半导体。

10.当掺⼊三价元素的密度⼤于五价元素的密度时,可将N型转型为P型;当掺⼊五价元素的密度⼤于三价元素的密度时,可将P型转型为N型。

11.温度升⾼后,⼆极管的反向电流将增⼤。

12.在常温下,硅⼆极管的开启电压约为0.3V,锗⼆极管的开启电压约为0.1V。

13.硅⼆极管的正向压降和锗管的正向压降分别是多少。

14.PN结的电容效应是哪两种电容的综合反映。

(完整版)模拟电子技术(模电)部分概念和公式总结

(完整版)模拟电子技术(模电)部分概念和公式总结

1、半导体:导电性能介于导体和绝缘体之间的物质。

特性:热敏性、光敏性、掺杂性。

2、本征半导体:完全纯净的具有晶体结构完整的半导体。

3、在纯净半导体中掺入三价杂质元素,形成P型半导体,空穴为多子,电子为少子。

4、在纯净半导体中掺入五价杂质元素,形成N型半导体,电子为多子、空穴为少子。

5、二极管的正向电流是由多数载流子的扩散运动形成的,而反向电流则是由少子的漂移运动形成的。

6、硅管Uo n和Ube:0.5V和0.7V ;锗管约为0.1V和0.3V。

7、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。

(压降为0.7V,)②加反向电压时截止,相当断开。

③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。

8、二极管主要用途:开关、整流、稳压、限幅、继流、检波、隔离(门电路)等。

9、三极管的三个区:放大区、截止区、饱和区。

三种状态:工作状态、截止状态、饱和状态,放大时在放大状态,开关时在截止、饱和状态。

三个极:基极B、发射极E和集电极C。

二个结:即发射结和集电结。

饱和时:两个结都正偏;截止时:两个结都反偏;放大时:发射结正偏,集电结反偏。

三极管具有电流电压放大作用.其电流放大倍数β=I C / I B (或I C=β I B)和开关作用.10、当输入信号I i很微弱时,三极管可用H参数模型代替(也叫微变电路等效电路)。

11、失真有三种情况:⑴截止失真原因I B、I C太小,Q点过低,使输出波形正半周失真。

调小R B,以增大I B、I C,使Q点上移。

⑵饱和失真原因I B、I C太大,Q点过高,使输出波形负半周失真。

调大R B,以减小I B、I C,使Q点下移。

⑶信号源U S过大而引起输出的正负波形都失真,消除办法是调小信号源。

1、放大电路有共射、共集、共基三种基本组态。

(固定偏置电路、分压式偏置电路的输入输出公共端是发射极,故称共发射极电路)。

共射电路的输出电压U0与输入电压U I反相,所以又称反相器。

完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。

2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。

3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。

三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。

2.共集电极放大电路---具有电压跟随和电流跟随的作用。

3.共基极放大电路---具有电压放大的作用,输入电阻较低。

4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。

四.三极管的应用1.放大器---将弱信号放大为较强的信号。

2.开关---控制大电流的通断。

3.振荡器---产生高频信号。

4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。

模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。

2.半导体具有光敏、热敏和掺杂特性。

3.本征半导体是纯净的具有单晶体结构的半导体。

4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。

5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。

根据掺杂元素的不同,可分为P型半导体和N型半导体。

6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。

7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。

8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。

二.半导体二极管半导体二极管是由PN结组成的单向导电器件。

1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。

2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。

3.分析半导体二极管的方法包括图解分析法和等效电路法等。

三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。

模拟电子技术基础-总复习最终版

模拟电子技术基础-总复习最终版

其中 RP R1 // R2 // R3 // R4
另外,uN
R R Rf
uo,uN
uP
ui1 R1 ui2i1 R2 ui3i2R3
P+ + u
o
R4 i4
uo
RP 1
Rf R
ui1 R1
ui 2 R2
ui3 R3
i3
4、 电路如图所示,各引入那种组态的负反馈?设集成运放 输出电压的最大幅值为±14V,填表。
11
14
5、求解图示电路的运算关系式。
同相求和电路 电压串联负反馈
6、求解图示电路的运算关系式。
R2
R1 ui R3
_
R4
+A1+ uo1
R5
_ +A2+
uo
7、求解图示电路的运算关系式。
电压并联负反馈。 电压放大倍数为:-R2/R1。
(3)交流负反馈是指 。 A.阻容耦合放大电路中所引入的负反馈 B.只有放大交流信号时才有的负反馈 C.在交流通路中存在的负反馈
解:(1)D (2)B (3)C
4、选择合适答案填入空内。
A.电压 B.电流 C.串联 D.并联
(1)为了稳定放大电路的输出电压,应引入 负反馈;
(2)为了稳定放大电路的输出电流,应引入 负反馈;
解:将电容开路、变压器线圈短路即为直流通路,图略。 各电路的交流通路如解图P2.2所示。
5.在图示电路中,已知晶体管β,rbe,RB,RC=RL,VCC。
(1)估算电路的静态工作点、电压放大倍数、输入电阻和输出电阻。
(2)当考虑信号源内阻为RS时,Aus的数值。
6. 电路如图所示,晶体管的=100,=100Ω。

(完整版)模拟电子技术基础_知识点总结

(完整版)模拟电子技术基础_知识点总结

模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2.特性---光敏、热敏和掺杂特性。

3.本征半导体----纯净的具有单晶体结构的半导体。

4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。

体现的是半导体的掺杂特性。

*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。

*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。

6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。

*体电阻---通常把杂质半导体自身的电阻称为体电阻。

*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。

7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。

* PN结的单向导电性---正偏导通,反偏截止。

8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。

*二极管伏安特性----同PN结。

*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。

*死区电压------硅管0.5V,锗管0.1V。

3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。

1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。

2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。

*三种模型➢微变等效电路法三. 稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

模电知识点总结专升本

模电知识点总结专升本

模电知识点总结专升本一、基本概念与原理模拟电子技术定义:模拟电子技术是指用电子器件制作的用来处理、传输、采集模拟信号的技术。

模拟信号与数字信号:模拟信号是连续变化的信号,可以用连续的函数来表示;数字信号是非连续的信号,只能取有限个值,用数值来表示。

信号的幅频特性:信号的幅频特性是指信号在传输过程中的幅度与频率的关系。

二、基本器件与电路二极管:具有非线性特性的电子器件,主要用于整流、放大、开关等电路中。

晶体管:可以放大电信号的器件,种类有NPN型和PNP 型两种,广泛应用于放大、开关、振荡电路中。

电容器:储存电荷的器件,主要用于滤波、耦合、定时等电路中。

变压器:变换交流电压的器件,主要用于功率增益、隔离等电路中。

三、半导体基础知识本征半导体:完全纯净的,没有杂质的半导体,具有较弱的导电能力且易受温度影响。

n型半导体与p型半导体:在本征半导体中插入不同元素形成的半导体类型,具有不同的载流子特性。

PN结:将p型半导体与n型半导体制作在同一片硅片上形成的结构,是半导体二极管的基础。

四、放大电路与反馈放大器基本原理:放大器用于放大信号的幅度,是模拟电子技术中的重要器件。

反馈电路概念及应用:反馈是将放大电路中的输出量(电流或电压)的一部分或全部通过一定方式作用到输入回路以影响放大电路输入量的过程。

反馈的类型包括电压串联负反馈、电流串联负反馈、电压并联负反馈和电流并联负反馈,用于减小非线性失真和噪声。

五、滤波器有源滤波器与无源滤波器的区别:有源滤波器由集成运放和R、C 组成,具有不用电感、体积小、重量轻等优点;而无源滤波器则主要由无源元件R、L和C组成。

六、其他重要概念与定理戴维南定理:一个含独立源、线性电阻和受控源的二端电路,对其两个端子来说都可等效为一个理想电压源串联内阻的模型。

这些知识点是模电专升本考试中的重要内容,理解和掌握这些知识点对于成功应对考试和深入学习模拟电子技术都至关重要。

同时,也要注意结合实际应用和实践经验,加深对知识点的理解和应用能力。

电子技术基础(模拟电子电路)精选全文完整版

电子技术基础(模拟电子电路)精选全文完整版

Ω
1.86

ri RB // rbe (1 β )RE Ii
8 .03 kΩ
+
ro RC 6 kΩ
Au
rbe
βRL (1 β
) RE
RS
E
+ S-
U i
B Ib
Ic C
IRB
β Ib rbe
RB
E RC RL
RE Ie
8.69
-
+ U o -
微变等效电路
射极输出器
RB C1 +
RB1 C1
RC
+C2
+
+
+
ui RB2 RE1
RL uo

RE2
+ CE

解: (1)由直流通路求静态工作点。
VB
RB2 RB1 RB2
UCC
20 12V 60 20
3V
IC
IE
VB
UBE RE
3 0.6 3
mA
0.8 mA
RB1 VB
RC IB
+UCC IC +
UCE
IB
IC β
0.8 μ A 50
2. 放大电路的微变等效电路
将交流通路中的晶 体管用晶体管微变等 效电路代替即可得放 大电路的微变等效电 路。
ii B ib
+
RS+ eS -
ui RB -
ic C
+
RC RL uO -
E
ii B ib
ic C
+
RS
ib
+ ui RB rbe

模电章节知识点总结

模电章节知识点总结

模电章节知识点总结模拟电子技术的核心知识点包括模拟信号的表示与处理、模拟电路的基本元件与分析方法、放大电路、滤波电路、混频电路、调制与解调电路等。

本文将对这些知识点进行总结,以帮助读者更好地理解和掌握模拟电子技术。

一、模拟信号的表示与处理1. 模拟信号的表示模拟信号是连续变化的信号,一般可以表示为关于时间的函数。

常见的模拟信号包括正弦信号、三角波信号、方波信号等,它们可以用数学函数进行表示。

2. 模拟信号的处理模拟信号的处理包括模拟信号的采集、放大、滤波、混频、调制等过程。

其中,模拟信号的采集是将连续的模拟信号转换为离散的数字信号,而放大、滤波、混频、调制等过程则是对模拟信号进行增强、筛选、整合以及变换的过程。

二、模拟电路的基本元件与分析方法1. 电阻、电容、电感电阻、电容、电感是模拟电路中最基本的元件,它们分别用于限制电流、储存电荷和储存能量。

在模拟电路分析中,常常需要对这些元件进行分析,计算其电压、电流和功率等参数。

2. 理想电路元件的模型在实际的模拟电路中,可以将电阻、电容、电感等元件看作是理想的元件,从而简化模拟电路的分析。

这些理想的元件模型可以大大简化模拟电路的分析。

3. 基本的电路分析方法基本的电路分析方法包括基尔霍夫定律、叠加定理、戴维南定理等。

这些方法可以帮助工程师准确、快速地分析模拟电路中的电压、电流和功率等参数。

三、放大电路1. 放大器的基本原理放大器是模拟电路中最常见的电路之一,它可以将输入的弱信号放大到一定的程度。

放大器的基本原理是利用管子的放大作用,从而使得输入信号经过电压、电流的放大后,输出信号获得放大。

2. 常见的放大电路常见的放大电路包括共集极放大电路、共基极放大电路、共射极放大电路等,它们分别适用于不同的放大应用场景。

这些放大电路可以通过适当的电路设计和参数调整,来实现对不同信号类型的放大。

四、滤波电路1. 滤波器的分类滤波器是模拟电路中的重要组成部分,它可以对信号进行频率筛选。

清华模电知识点总结

清华模电知识点总结

清华模电知识点总结一、模电基础知识1. 模电的基本概念模拟电子技术(模电)是研究模拟信号的获取、处理和传输的一门学科,其主要研究对象是模拟电路。

模电课程主要从放大器、滤波器、运算放大器等方面展开理论教学和实验研究,使学生能够了解模拟电路的基本原理和设计方法。

2. 模电的基本原理模电的基本原理包括模电电路中的放大器、运算放大器、滤波器等部分的原理和设计方法。

学生需要掌握这些基本原理,才能够进行模电电路的分析与设计。

3. 模电电路的分析与设计模电电路的分析与设计是模电课程的重点内容,学生需要学习如何分析和设计各种模电电路,包括放大器、滤波器、运算放大器等。

通过理论学习和实验实践,使学生能够掌握如何分析和设计模电电路。

二、模电课程的教学内容1. 放大器放大器是模电课程的核心内容之一,学生需要学习放大器的基本原理、分类、设计方法以及实际应用。

清华大学的模电课程会重点讲解放大器的基本原理和设计方法,使学生能够掌握放大器的分析与设计技术。

2. 运算放大器运算放大器是模电电路中的重要组成部分,也是模电课程的重要内容。

学生需要学习运算放大器的基本原理、特点、应用以及在模电电路中的设计方法。

清华大学的模电课程会给予学生相应的理论与实践教学,使学生能够全面了解并掌握运算放大器的相关知识和技术。

3. 滤波器滤波器是模电电路中的另一个重要组成部分,也是模电课程的一大学习内容。

学生需要学习滤波器的基本原理、分类、设计方法以及在模电电路中的应用。

清华大学的模电课程会重点讲解滤波器的相关知识和技术,使学生能够掌握滤波器的分析与设计技术。

4. 模电实验模电实验是模电课程的重要组成部分,学生需要通过实验操作来加深对模电电路原理的理解和掌握相应的实验技术。

清华大学的模电课程注重实验的设计和操作,使学生能够在实践中掌握模电技术并培养动手实践能力。

三、模电课程的教学特点1. 理论与实践相结合清华大学的模电课程注重理论与实践相结合,旨在培养学生的动手实践能力和创新精神。

电子技术模拟电路知识点总结

电子技术模拟电路知识点总结

电子技术模拟电路知识点总结一、模拟电路基础概念模拟电路处理的是连续变化的信号,与数字电路处理的离散信号不同。

在模拟电路中,电压和电流可以在一定范围内取任意值。

这是理解模拟电路的关键起点。

二、半导体器件1、二极管二极管是最简单的半导体器件之一,具有单向导电性。

当正向偏置时,电流容易通过;反向偏置时,电流极小。

二极管常用于整流电路,将交流转换为直流。

2、三极管三极管分为 NPN 型和 PNP 型。

它具有放大电流的作用,通过控制基极电流,可以实现对集电极电流的控制。

三极管在放大电路中应用广泛。

3、场效应管场效应管分为结型和绝缘栅型。

它是电压控制型器件,输入电阻高,噪声小,常用于集成电路中。

三、基本放大电路1、共射放大电路共射放大电路具有较大的电压放大倍数和电流放大倍数,但输入电阻较小,输出电阻较大。

2、共集放大电路共集放大电路又称射极跟随器,电压放大倍数接近 1,但输入电阻高,输出电阻小,具有良好的跟随特性。

3、共基放大电路共基放大电路具有较高的频率响应和较好的高频特性。

四、集成运算放大器集成运算放大器是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。

1、理想运算放大器特性具有“虚短”和“虚断”的特点。

“虚短”指两输入端电位近似相等,“虚断”指两输入端电流近似为零。

2、运算放大器的应用包括比例运算电路、加法运算电路、减法运算电路、积分运算电路和微分运算电路等。

五、反馈电路反馈可以改善放大器的性能。

1、正反馈和负反馈正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会用到。

负反馈能稳定放大倍数、改善频率特性等。

2、四种反馈组态电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈,它们对电路性能的影响各不相同。

六、功率放大电路功率放大电路的主要任务是向负载提供足够大的功率。

1、甲类、乙类和甲乙类功率放大电路甲类功放效率低,但失真小;乙类功放效率高,但存在交越失真;甲乙类功放则是介于两者之间。

模拟电子技术基础知识点总结.

模拟电子技术基础知识点总结.

模拟电子技术复习资料总结第一章半导体二极管一。

半导体的基础知识1.半导体——-导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2。

特性—-—光敏、热敏和掺杂特性。

3.本征半导体————纯净的具有单晶体结构的半导体。

4。

两种载流子-—--带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体——-—在本征半导体中掺入微量杂质形成的半导体。

体现的是半导体的掺杂特性。

*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。

*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴).6.杂质半导体的特性*载流子的浓度—-—多子浓度决定于杂质浓度,少子浓度与温度有关.*体电阻——-通常把杂质半导体自身的电阻称为体电阻。

*转型—-—通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。

7.PN结*PN结的接触电位差——-硅材料约为0。

6~0。

8V,锗材料约为0。

2~0.3V.*PN结的单向导电性---正偏导通,反偏截止.8。

PN结的伏安特性二。

半导体二极管*单向导电性—---—-正向导通,反向截止。

*二极管伏安特性-——-同PN结。

*正向导通压降——--——硅管0.6~0.7V,锗管0.2~0.3V。

*死区电压--—-—-硅管0。

5V,锗管0。

1V。

3.分析方法--—-—-将二极管断开,分析二极管两端电位的高低:若V阳>V阴(正偏),二极管导通(短路);若V阳<V阴(反偏),二极管截止(开路)。

1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。

2)等效电路法➢直流等效电路法*总的解题手段-———将二极管断开,分析二极管两端电位的高低:若V阳〉V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。

*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性—--正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

模电知识点总结

模电知识点总结

模电知识点总结模拟电子技术(模电)是电子工程中的重要学科之一,它涉及到电子系统的设计、分析和应用等方面。

在学习模电的过程中,有一些重要的知识点需要掌握,并加以总结和理解。

本文将对几个常见的模电知识点进行梳理和总结,以便于读者更好地学习和应用模电相关知识。

一、放大器放大器是模电中非常重要的一部分,它用于增强电信号的幅度。

常见的放大器有晶体管放大器和运算放大器等。

晶体管放大器是利用晶体管的特性来放大信号,可以将微弱的电信号放大为更大的电信号。

而运算放大器是一种专门用于具有高电压增益和大动态范围的信号放大器。

掌握放大器的工作原理和应用场景,对于模电的学习和实际应用是非常重要的。

二、滤波器滤波器是一种将不同频率的信号进行分离或滤除的电路。

在模电中,滤波器的应用非常广泛,常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

低通滤波器可以通过将高频信号滤除,保留低频信号,常用于去除噪声和保护电路。

而高通滤波器则可以滤除低频信号,保留高频信号。

通过掌握滤波器的基本原理和特性,可以更好地分析和设计电子系统中的滤波器电路。

三、振荡器振荡器是一种能够产生连续或间歇的周期性波形的电路。

在模电中,振荡器被广泛应用于时钟信号的产生、载波信号的生成等方面。

常见的振荡器有正弦波振荡器、方波振荡器和脉冲振荡器等。

正弦波振荡器可以产生正弦波信号,其基本元件为电感和电容等。

方波振荡器则可以产生方波信号,广泛应用于数字电路中。

了解振荡器的工作原理和设计方法,有助于读者理解和应用振荡器电路。

四、功率放大器功率放大器是一种能够放大电信号功率的电路。

在实际应用中,功率放大器被广泛应用于音频放大、射频放大等方面。

常见的功率放大器有A类放大器、B类放大器和C类放大器等。

A类放大器是一种效率较低但线性度较好的放大器。

而B类放大器具有较高的效率,但会产生失真。

C类放大器则具有更高的效率,但也会引入更多的失真。

掌握功率放大器的特性和设计方法,对于音频和射频电路的设计非常重要。

模拟电子技术基础-知识点总结-(最新版-已修订)

模拟电子技术基础-知识点总结-(最新版-已修订)

模拟电子技术基础-知识点总结-(最新版-已修订)
模拟电子技术基础知识是指使用有限的模拟电信号表征的知识,用于建立模拟电子系
统的原理和基本技术。

基础理论是研究模拟电子系统的基础,有助于专业工作者更好地理解、设计和应用这类系统。

模拟电子技术基础以电子技术作为核心,具备以下特点:
1、以信号源、电路、仪器学等做出反应为基础,注重反应的物理特性,探讨信号可
以如何传播、处理和控制,以及电子元件的功能与作用;
2、侧重探究电子系统的工作原理,掌握其组成的基本元件及其工作原理,熟悉其参
数的确定及其表达方法与测量;
3、认识和掌握电子设备调节原理和方法,懂得如何修改电子设备以及采用综合技术
来改善其性能;
4、参数优化:根据电路设计要求,选择合适的电路结构,确定部件参数,优化系统
性能,提供充分的有关信息;
5、系统设计与模拟:根据客户要求,将电子系统的不同部件结构组合起来,通过模
拟设计、调节和优化,使其性能达到最优;
6、工具硬件和软件调试:根据电子原理图和程序,熟悉工具硬件和软件的调试技术,熟练掌握编程技术和系统调试技术。

模拟电子技术可以很好地提高系统的性能,并为用户带来更多便利。

然而,要达到理
想的效果,必须熟悉模拟电子技术基础知识,才能根据具体实践需要和环境,通过相关技
术合理应用,使模拟电子技术发挥出最大威力。

模拟电子技术基础知识点总结

模拟电子技术基础知识点总结

模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2.特性---光敏、热敏和掺杂特性。

3.本征半导体----纯净的具有单晶体结构的半导体。

4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。

体现的是半导体的掺杂特性。

*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。

*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。

6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。

*体电阻---通常把杂质半导体自身的电阻称为体电阻。

*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。

7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。

* PN结的单向导电性---正偏导通,反偏截止。

8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。

*二极管伏安特性----同PN结。

*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。

*死区电压------硅管0.5V,锗管0.1V。

3.分析方法------将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。

1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。

2) 等效电路法直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。

*三种模型微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

模拟电子技术基础-清华大学-全套完整版

模拟电子技术基础-清华大学-全套完整版
结电容: Cj Cb Cd
结电容不是常量!若PN结外加电压频率高到一定程 度,则失去单向导电性!
清华大学 华成英
华成英
问题
• 为什么将自然界导电性能中等的半导体材料制 成本征半导体,导电性能极差,又将其掺杂, 改善导电性能?
• 为什么半导体器件的温度稳定性差?是多子还 是少子是影响温度稳定性的主要因素?
第一个集成电路及其发明者 ( Jack Kilby from TI )
1958年9月12日,在德州仪器公司 的实验室里,实现了把电子器件集成 在一块半导体材料上的构想。42年以 后, 2000年获诺贝尔物理学奖。 “为现代信息技术奠定了基础”。
华成英
二、模拟信号与模拟电路
1. 电子电路中信号的分类
➢ 实际工程需要证明其可行性。强调定性分析。
➢ 实际工程在满足基本性能指标的前提下总是容许存 在一定的误差范围的。 定量分析为“估算”。
➢ 近似分析要“合理”。 抓主要矛盾和矛盾的主要方面。 ➢ 电子电路归根结底是电路。不同条件下构造不同模型。
2. 实践性
➢ 常用电子仪器的使用方法 ➢ 电子电路的测试方法 ➢ 故障的判断与排除方法 ➢ EDA软件的应用方法
有利于漂移运动,形成漂移电 流。由于电流很小,故可近似 认为其截止。
华成英
四、PN 结的电容效应
1. 势垒电容
PN结外加电压变化时,空间电荷区的宽度将发生变 化,有电荷的积累和释放的过程,与电容的充放电相 同,其等效电容称为势垒电容Cb。
2. 扩散电容
PN结外加的正向电压变化时,在扩散路程中载流子 的浓度及其梯度均有变化,也有电荷的积累和释放的 过程,其等效电容称为扩散电容Cd。
• 如何判断二极管的工作状态? • 什么情况下应选用二极管的什么等效电路?

模电知识点总结专升本

模电知识点总结专升本

模电知识点总结专升本一、模拟电子技术的基本概念1. 模拟电子技术的定义模拟电子技术是指用电子器件制作的用来处理、传输、采集模拟信号的技术。

2. 模拟信号与数字信号模拟信号是连续变化的信号,可以用连续的函数来表示;数字信号是非连续的信号,只能取有限个值,用数值来表示。

3. 模拟电子技术的应用领域模拟电子技术广泛应用于通信、广播、电视、医疗、工业自动化等领域,是现代电子科技的重要组成部分。

二、模电电路的基本器件1. 二极管二极管是一种具有非线性特性的电子器件,主要用于整流、放大、开关等电路中。

2. 晶体管晶体管是一种可以放大电信号的器件,种类有NPN型和PNP型两种,广泛应用于放大、开关、振荡电路中。

3. 电容器电容器是一种储存电荷的器件,主要用于滤波、耦合、定时等电路中。

4. 电感电感是一种储存磁场能量的器件,主要用于滤波、谐振、耦合等电路中。

5. 变压器变压器是一种用来变换交流电压的器件,主要用于功率增益、隔离等电路中。

三、常用模拟电子电路1. 放大电路放大电路是模拟电子技术中最基本的电路之一,包括共射放大、共集放大、共基放大等不同类型的放大电路。

滤波电路主要用于对信号的频率进行选择性的衰减或增强,包括低通滤波、高通滤波、带通滤波、带阻滤波等不同类型的滤波电路。

3. 振荡电路振荡电路是能够产生周期性信号的电路,包括正弦波振荡器、方波振荡器、三角波振荡器等不同类型的振荡电路。

4. 整流电路整流电路是用来将交流信号转换为直流信号的电路,包括单相整流电路、三相整流电路等类型的整流电路。

5. 调制电路调制电路是用来将基带信号调制到载波上的电路,包括调幅、调频、调相等不同类型的调制电路。

四、基本运算放大器1. 运算放大器的基本概念运算放大器是一种高增益、差分输入、单端输出的集成电路器件,主要用来实现模拟信号的放大、滤波、积分、微分等基本运算。

2. 运算放大器的基本参数运算放大器的基本参数包括增益、输入阻抗、输出阻抗、共模抑制比、带宽等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结的伏安(曲线)方程:
a
n l l t h i n g
s i
n t h e
i r b e i n g a 该式与伏安特性曲线的交点叫静态工作点直流等效电路法(低频大信号模型)
微变等效电路法(低频小信号模型)
交流动态电阻:
二极管反偏电压增大到一定值时,反向电流突然增大的现象称为反向击穿。

n g a r e g o o d 晶体三极管及基本放大电路
温度对晶体管特性及参数的影响:
温度升高,输入特性曲线向左移动。

I CBO 、 I CEO 、 I C 以及β均增加。

a t
i m e a
n d
A
i n t h e i r b n g a r e g
晶体管的主要参数
◆电流放大倍数:交流和直流
◆极限参数:最大集电极耗散功率、最大集电极电流、极间反向击穿电压
放大电路的组成原则
晶体管放大电路的原则
放大电路的基本分析方法
理解个元件的作用;直流通路与静态分析:
直流通路:电容视为开路;图解法与解析法


a
l t h i n g s i n t h e 电路参数对静态工作点的影响;
直流负载线:由V CC =I C R C +U CE 确定的直线。

改变R b :Q 点将沿直流负载线上下移动。

截止失真
产生原因---Q 点设置过低
A
l l t
h i n g
i
n t
h e
i r b
e i n
放大倍数
输入电阻
输出电阻
分压式稳定工作点共射电路
a

n
d
A
l
l
h
i
n
g
s
i
n
t
h
e
i
r
b
a
e a
n d A l l t h i n g s i n t h e i r b e i n g a r e g o o 负反馈技术
放大器的输出电压(或电流)经反馈网络在放大器输入端产生反馈信号,该反馈信号与放大器原来输入信号共同控制放大器的输入,即构成反馈放大器。

a
r
e
g 集成运放的电压传输特性
h e
i r b e i n g 之间,运放工作在线性区域 :
理想集成运放的参数
→∞;R 2 =R 1//R f
同相比例运算电路
R 2=R 1//R f
反相求和运算电路
e a
n g s i n t h e i r b e i n g a 同相求和运算电路
1//R 2//R 3//R 4=R f //R 5
加减运算电路
12f 345
积分运算
微分运算
m
e。

相关文档
最新文档