机电一体化专业英语-宋主民-6-7章

合集下载

机电一体化专业英语全套教学课件

机电一体化专业英语全套教学课件
When using a faceplate, always ensure that the work is securely clamped down and balanced by some offsetting piece of metal, if necessary. (Figure 1-7)
长春汽车工业高等专科学校
Unit 1 Passage A
Lathe Accessories
Brass Round Stock (铜质圆料) Brass is a nice material to work with, though somewhat expensive compared with aluminum or steel. It can add a nice touch of contrasting color to a project that will be displayed. The alloy most often used for home shop work is 360.
Poor quality drills are easy to find, but they are truly a waste of money. That‘s not to say that you need to buy top quality industrial drills. It’s not always easy to tell a good drill bit from a poor one just by looking and, of course, its even harder if all you have is a picture on a web site or in a catalog. Generally, though, the lowest priced drill sets are the ones to stay away from.

机电专业英语 One Mechanical Design

机电专业英语 One   Mechanical Design

progress ['prəʊɡres] n. 进 步, 发 展 continual improvement or development towards an intended or desired result interpersonal [ˌɪntə'pɜ:sənl] adj. 人 与 人 之 间 的; 人 际 关 系 的 occurring among or involving several people technical ['teknɪkl] adj. 技术的;专业的 professional major in 主修;专攻 tinker with 胡乱地修补;摆弄 be interested in 对……感兴趣 be familiar with 熟悉;通晓 apply for 申请
Words and Expressions
factor ['fæktə(r)] n. 因 素, 要 素 fact is one of thethings that affects an event, decision or situation tinker ['tɪŋkə(r)] vt. 修补;调整 try to fix or mend primarily [praɪ'merəli] adv. 主要地;首要地 mainly; chiefly award [ə'wɔ:d] n. 奖;奖品;奖金;奖状 a prize such as money, etc.for sth. that sb. has done mechanic [mə'kænik] n. 技 工, 机 修 工 worker skilled in using or repairing machines or tools

《机电专业英语》课程标准

《机电专业英语》课程标准

《机电专业英语》课程标准课程代码020******* 课程类别专业课程课程类型理论课程课程性质必修课程课程学分 1.5学分课程学时30学时修读学期第2学期适用专业机电一体化技术四年制(城市轨道交通方向)合作开发企业长春轨道交通集团执笔人唐晖、王海啸审核人张继媛1.课程定位与设计思路1.1课程定位本课程是机电一体化专业的必修课程,是学习数控机床操作、安装、调试与维修等课程的基础,所以本课程在专业课程体系中起承上启下的作用,是机电一体化专业的一门专业基础课。

本课程的作用是通过理论学习、课内外实践、小组活动等方式、采取灵活多变的教学方法,从培养高级应用型人才的目标出发,结合学生毕业后的实际工作,力求向学生提供未来岗位所需的机电一体化方面的专业英语知识和技能。

使学生掌握机电一体化专业相关词汇和基本的语法知识,形成专业阅读、翻译及口头交际的能力。

培养学生在实际工作中熟练使用数控专业英语的能力、利用专业英语知识进行技术创新的能力以及解决实际问题的能力。

前修课程为:《大学英语》、《识图与制图》、《机械结构分析与设计》等。

后续课程为:《机械制造基础》、《现场总线控制系统》、《可编程序控制器技术应用》。

1.2设计思路教学过程以学生为主、教师为辅,工学结合提高学生综合职业素养。

从实用、够用的角度出发,依据由简到难的原则,以机电一体化专业未来工作岗位所需的英语知识为主线,设立教学内容,通过教师指导与学生自主学习,实现对数控专业英语知识的了解、认识,从而完成学生职业能力要求。

2.课程目标本课程的总体目标是培养生产、管理、服务一线需要的德、智、体、美等全面发展的,具有一定专业理论知识,能够从事各类机电设备操作、安装、维护、检修、调试等工作的高等技术应用性专门人才。

2.1知识目标了解生产中常用的机械零部件的英文写法,了解常用机电设备及刀具系统的类型、各部位名称,掌握机电方面的首字母缩写词的含义,掌握数控编程有关语言、术语及编码,能够进行简单的英文产品说明书的识读与翻译,能够用英文书写个人简历及求职信。

机电一体化中英文互译

机电一体化中英文互译

机械专业中英文对照英语词汇陶瓷ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图 view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear斜齿圆柱齿轮helical-spur gear直齿锥齿轮straight bevel gear运动简图kinematic sketch齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束passive constraint曲柄crank精品文档摇杆racker凸轮 cams共轭曲线conjugate curve范成法generation method定义域definitional domain值域 range导数微分differential coefficient求导 derivation定积分definite integral不定积分indefinite integral曲率curvature偏微分partial differential毛坯rough游标卡尺slide caliper千分尺micrometer calipers攻丝tap二阶行列式second order determinant逆矩阵inverse matrix线性方程组linear equations概率probability随机变量random variable排列组合permutation and combination气体状态方程equation of state of gas动能kinetic energy势能potential energy机械能守恒conservation of mechanical energy动量momentum桁架truss轴线axes余子式cofactor逻辑电路logic circuit触发器flip-flop脉冲波形pulse shape数模digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火hardening回火tempering调质hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheel后角 clearance angle龙门刨削planing主轴spindle主轴箱headstock卡盘chuck加工中心machining center车刀lathe tool车床lathe钻削镗削bore车削turning磨床grinder基准benchmark钳工locksmith锻 forge压模stamping焊 weld拉床broaching machine拉孔broaching装配assembling铸造found流体动力学fluid dynamics流体力学fluid mechanics加工machining液压hydraulic pressure切线tangent机电一体化mechanotronics mechanical-electrical integration 气压air pressure pneumatic pressure稳定性stability介质medium液压驱动泵fluid clutch液压泵hydraulic pump阀门valve失效invalidation强度intensity载荷load应力stress安全系数safty factor可靠性reliability螺纹thread螺旋helix键 spline精品文档滚动轴承rolling bearing滑动轴承sliding bearing弹簧 spring制动器 arrester brake十字结联轴节crosshead联轴器 coupling链 chain皮带 strap精加工 finish machining粗加工 rough machining变速箱体gearbox casing腐蚀 rust氧化 oxidation磨损 wear耐用度 durability随机信号random signal离散信号discrete signal超声传感器ultrasonic sensor集成电路integrate circuit挡板 orifice plate残余应力residual stress套筒 sleeve扭力 torsion冷加工 cold machining电动机 electromotor汽缸 cylinder过盈配合interference fit热加工 hotwork摄像头 CCD camera倒角 rounding chamfer优化设计optimal design工业造型设计industrial moulding design有限元 finite element滚齿 hobbing插齿 gear shaping伺服电机actuating motor铣床 milling machine钻床 drill machine镗床 boring machine步进电机stepper motor丝杠 screw rod导轨 lead rail组件 subassembly可编程序逻辑控制器Programmable Logic Controller PLC电火花加工electric spark machining电火花线切割加工electrical discharge wire - cutting 相图phase diagram热处理heat treatment固态相变solid state phase changes有色金属nonferrous metal陶瓷 ceramics合成纤维synthetic fibre电化学腐蚀electrochemical corrosion车架automotive chassis悬架suspension转向器redirector变速器speed changer板料冲压sheet metal parts孔加工spot facing machining车间workshop工程技术人员engineer气动夹紧pneuma lock数学模型mathematical model画法几何descriptive geometry机械制图Mechanical drawing投影projection视图view剖视图profile chart标准件standard component零件图part drawing装配图assembly drawing尺寸标注size marking技术要求technical requirements刚度rigidity内力internal force位移displacement截面section疲劳极限fatigue limit断裂fracture塑性变形plastic distortion脆性材料brittleness material刚度准则rigidity criterion垫圈washer垫片spacer直齿圆柱齿轮straight toothed spur gear斜齿圆柱齿轮helical-spur gear直齿锥齿轮straight bevel gear精品文档齿轮齿条pinion and rack蜗杆蜗轮worm and worm gear虚约束 passive constraint曲柄 crank摇杆 racker凸轮 cams共轭曲线conjugate curve范成法 generation method定义域 definitional domain值域 range导数微分differential coefficient求导 derivation定积分 definite integral不定积分indefinite integral曲率 curvature偏微分 partial differential毛坯 rough游标卡尺slide caliper千分尺 micrometer calipers攻丝 tap二阶行列式second order determinant逆矩阵 inverse matrix线性方程组linear equations概率 probability随机变量random variable排列组合permutation and combination气体状态方程equation of state of gas动能 kinetic energy势能 potential energy机械能守恒conservation of mechanical energy动量 momentum桁架 truss轴线 axes余子式 cofactor逻辑电路logic circuit触发器 flip-flop脉冲波形pulse shape数模 digital analogy液压传动机构fluid drive mechanism机械零件mechanical parts淬火冷却quench淬火 hardening回火 tempering调质 hardening and tempering磨粒abrasive grain结合剂bonding agent砂轮grinding wheelAssembly line组装线Layout 布置图Conveyer流水线物料板Rivet table拉钉机Rivet gun拉钉枪Screw driver起子Pneumatic screw driver气动起子worktable工作桌OOBA 开箱检查fit together组装在一起fasten 锁紧 ( 螺丝 )fixture 夹具 ( 治具 )pallet 栈板barcode 条码barcode scanner条码扫描器fuse together熔合fuse machine热熔机repair 修理operator 作业员QC 品管supervisor课长ME 制造工程师MT 制造生技cosmetic inspect外观检查inner parts inspect内部检查thumb screw大头螺丝lbs. inch 镑、英寸EMI gasket导电条front plate前板rear plate后板chassis 基座bezel panel面板power button电源按键reset button重置键Hi-pot test of SPS高源高压测试Voltage switch of SPS电源电压接拉键sheet metal parts冲件plastic parts塑胶件SOP 制造作业程序material check list物料检查表精品文档trolley台车carton纸箱sub-line支线left fork叉车personnel resource department人力资源部production department生产部门planning department企划部QC Section品管科stamping factory冲压厂painting factory烤漆厂molding factory成型厂common equipment常用设备uncoiler and straightener整平机punching machine冲床robot 机械手hydraulic machine油压机lathe 车床planer |plein|刨床miller 铣床grinder磨床linear cutting线切割electrical sparkle电火花welder 电焊机staker=reviting machine铆合机position职务president董事长general manager总经理special assistant manager特助factory director厂长department director部长deputy manager | =vice manager副理section supervisor课长deputy section supervisor =vice section superisor副课长group leader/supervisor组长line supervisor线长assistant manager助理to move, to carry, to handle搬运be put in storage入库pack packing包装to apply oil擦油to file burr锉毛刺final inspection终检to connect material接料to reverse material翻料wet station 沾湿台approved by / checked by / prepared by核准/ 审核 / 承办Tiana天那水PCE assembly production schedule sheet PCE组装厂生产排配表cleaning cloth抹布model机锺to load material上料work order工令to unload material卸料revision版次to return material/stock to退料remark备注scraped |\\'skr?pid|报废production control confirmation生产确认scrape ..v. 刮; 削checked by初审deficient purchase来料不良approved by核准manufacture procedure制程department部门deficient manufacturing procedure制程不良stock age analysis sheet库存货龄分析表oxidation |\\' ksi\\'dei?n|氧化on-hand inventory现有库存scratch刮伤available material良品可使用dents压痕obsolete material良品已呆滞defective upsiding down抽芽不良to be inspected or reworked待验或重工defective to staking铆合不良total 合计embedded lump镶块cause description原因说明feeding is not in place送料不到位part number/ P/N料号stamping-missing漏冲type 形态production capacity生产力item/group/class类别education and training教育与训练quality品质proposal improvement提案改善prepared by制表 notes说明spare parts=buffer备件year-end physical inventory difference analysis sheet年终盘点差异forklift叉车分析表trailer=long vehicle拖板车physical inventory盘点数量compound die合模physical count quantity帐面数量die locker 锁模器difference quantity差异量pressure plate=plate pinch压板cause analysis 原因分析bolt 螺栓raw materials原料administration/general affairs dept总务部materials 物料automatic screwdriver电动启子finished product成品thickness gauge厚薄规semi-finished product半成品gauge(or jig)治具packing materials包材power wire 电源线good product/accepted goods/ accepted parts/good parts良品buzzle蜂鸣器defective product/non-good parts不良品defective product label不良标签disposed goods处理品identifying sheet list标示单warehouse/hub仓库location 地点on way location在途仓present members出席人员oversea location海外仓subject主题spare parts physical inventory list备品盘点清单conclusion 结论spare molds location模具备品仓decision items决议事项skid/pallet栈板responsible department负责单位tox machine自铆机pre-fixed finishing date预定完成日wire EDM 线割EDM 放电机dejecting顶固模coil stock卷料demagnetization去磁; 消磁sheet stock片料high-speed transmission高速传递tolerance工差heat dissipation热传 rack上料score=groove压线degrease脱脂cam block滑块rinse 水洗pilot导正筒alkaline etch龄咬trim剪外边desmut 剥黑膜pierce 剪内边 D.I. rinse纯水次drag form压锻差Chromate铬酸处理pocket for the punch head挂钩槽Anodize阳性处理slug hole废料孔seal 封孔feature die公母模revision版次expansion dwg展开图part number/P/N料号radius 半径good products良品shim(wedge)楔子scraped products报放心品torch-flame cut火焰切割defective products不良品set screw止付螺丝finished products成品form block折刀disposed products处理品stop pin 定位销barcode条码round pierce punch=die button圆冲子flow chart流程表单shape punch=die insert异形子assembly组装stock locater block定位块stamping冲压under cut=scrap chopper清角molding成型active plate活动板spare parts=buffer备品baffle plate挡块coordinate 座标cover plate盖板dismantle the die折模male die 公模auxiliary fuction辅助功能female die母模poly-line多义线groove punch压线冲子heater band加热片air-cushion eject-rod气垫顶杆thermocouple热电偶spring-box eject-plate弹簧箱顶板sand blasting喷沙bushing block衬套grit 砂砾insert入块derusting machine除锈机club car 高尔夫球车degate打浇口capability能力dryer烘干机parameter参数induction感应factor系数induction light感应光phosphate皮膜化成response=reaction=interaction感应viscosity 涂料粘度ram 连杆alkalidipping脱脂edge finder巡边器main manifold主集流脉concave凸bezel斜视规convex 凹blanking 穿落模short射料不足nick 缺口speck 瑕 ??shine 亮班splay银纹gas mark焦痕delamination起鳞cold slug冷块blush导色gouge沟槽;凿槽satin texture段面咬花witness line证示线patent专利grit 沙砾granule=peuet=grain细粒grit maker抽粒机cushion缓冲magnalium镁铝合金magnesium镁金metal plate钣金lathe车 mill锉plane刨grind磨drill 铝boring镗blinster 气泡fillet 镶 ; 嵌边through-hole form通孔形式voller pin formality滚针形式cam driver 铡楔shank摸柄crank shaft曲柄轴augular offset角度偏差velocity 速度production tempo生产进度现状torque扭矩spline=the multiple keys花键quenching淬火tempering回火精品文档liaison联络单volatile挥发性resistance电阻ion 离子titrator滴定仪beacon警示灯coolant冷却液crusher破碎机阿基米德蜗杆Archimedes worm安全系数safety factor; factor ofsafety安全载荷safe load凹面、凹度concavity扳手wrench板簧flat leaf spring半圆键woodruff key变形deformation摆杆oscillating bar摆动从动件oscillating follower摆动从动件凸轮机构cam with oscillating follower摆动导杆机构oscillating guide-barmechanism摆线齿轮cycloidal gear摆线齿形cycloidal tooth profile摆线运动规律cycloidal motion摆线针轮cycloidal-pin wheel包角angle of contact保持架cage背对背安装back-to-backarrangement背锥back cone;normal cone背锥角back angle背锥距back cone distance比例尺scale比热容specific heat capacity闭式链closed kinematic chain闭链机构closed chain mechanism臂部arm变频器frequency converters变频调速frequency control ofmotor speed变速speed changeannealing 退火变速齿轮 change gear change wheel carbonization碳化变位齿轮 modified geartungsten high speed steel钨高速的变位系数 modification coefficient moly high speed steel钼高速的标准齿轮 standard gear.精品文档表面传热系数 surface coefficient of heat transfer齿轮变速箱 speed-changing gear boxes表面粗糙度 surface roughness齿轮齿条机构 pinion and rack并联式组合 combination in parallel齿轮插刀 pinion cutter; pinion-shaped shaper cutter并联机构 parallel mechanism齿轮滚刀 hob ,hobbing cutter并联组合机构 parallel combined mechanism齿轮机构 gear并行工程 concurrent engineering齿轮轮坯 blank并行设计 concurred design, CD齿轮传动系 pinion unit不平衡相位 phase angle of unbalance齿轮联轴器 gear coupling不平衡 imbalance (or unbalance)齿条传动 rack gear不平衡量 amount of unbalance齿数 tooth number不完全齿轮机构 intermittent gearing齿数比 gear ratio波发生器 wave generator齿条 rack波数 number of waves齿条插刀 rack cutter; rack-shaped shaper cutter补偿 compensation齿形链、无声链 silent chain参数化设计 parameterization design, PD齿形系数 form factor残余应力 residual stress齿式棘轮机构 tooth ratchet mechanism操纵及控制装置 operation control device插齿机 gear shaper槽轮 Geneva wheel重合点 coincident points槽轮机构 Geneva mechanism; Maltese cross重合度 contact ratio槽数 Geneva numerate冲床 punch槽凸轮 groove cam传动比 transmission ratio, speed ratio侧隙 backlash传动装置 gearing; transmission gear差动轮系 differential gear train传动系统 driven system差动螺旋机构 differential screw mechanism传动角 transmission angle差速器 differential传动轴 transmission shaft常用机构 conventional mechanism; mechanism in common use串联式组合 combination in series车床 lathe串联式组合机构 series combined mechanism承载量系数 bearing capacity factor串级调速 cascade speed control承载能力 bearing capacity创新 innovation creation成对安装 paired mounting创新设计 creation design尺寸系列 dimension series垂直载荷、法向载荷 normal load齿槽 tooth space唇形橡胶密封 lip rubber seal齿槽宽 spacewidth磁流体轴承 magnetic fluid bearing齿侧间隙 backlash从动带轮 driven pulley齿顶高 addendum从动件 driven link, follower齿顶圆 addendum circle从动件平底宽度 width of flat-face齿根高 dedendum从动件停歇 follower dwell齿根圆 dedendum circle从动件运动规律 follower motion齿厚 tooth thickness从动轮 driven gear齿距 circular pitch粗线 bold line齿宽 face width粗牙螺纹 coarse thread齿廓 tooth profile大齿轮 gear wheel齿廓曲线 tooth curve打包机 packer齿轮 gear打滑 slipping精品文档带传动belt driving动平衡机dynamic balancing machine带轮 belt pulley动态特性dynamic characteristics带式制动器band brake动态分析设计dynamic analysis design单列轴承single row bearing动压力dynamic reaction单向推力轴承single-direction thrust bearing动载荷dynamic load单万向联轴节single universal joint端面transverse plane单位矢量unit vector端面参数transverse parameters当量齿轮equivalent spur gear; virtual gear端面齿距transverse circular pitch当量齿数equivalent teeth number; virtual number of teeth端面齿廓transverse tooth profile当量摩擦系数equivalent coefficient of friction端面重合度transverse contact ratio当量载荷equivalent load端面模数transverse module刀具 cutter端面压力角transverse pressure angle导数 derivative锻造forge倒角 chamfer对称循环应力symmetry circulating stress导热性conduction of heat对心滚子从动件radial (or in-line ) roller follower导程 lead对心直动从动件radial (or in-line ) translating follower导程角lead angle对心移动从动件radial reciprocating follower等加等减速运动规律parabolic motion;constant acceleration and对心曲柄滑块机构in-line slider-crank (or crank-slider) mechanism deceleration motion多列轴承multi-row bearing等速运动规律uniform motion; constant velocity motion多楔带poly V-belt等径凸轮conjugate yoke radial cam多项式运动规律polynomial motion等宽凸轮constant-breadth cam多质量转子rotor with several masses等效构件equivalent link惰轮idle gear等效力equivalent force额定寿命rating life等效力矩equivalent moment of force额定载荷load rating等效量equivalent II级杆组dyad等效质量equivalent mass发生线generating line等效转动惯量equivalent moment of inertia发生面generating plane等效动力学模型dynamically equivalent model法面normal plane底座 chassis法面参数normal parameters低副 lower pair法面齿距normal circular pitch点划线chain dotted line法面模数normal module(疲劳)点蚀pitting法面压力角normal pressure angle垫圈 gasket法向齿距normal pitch垫片密封gasket seal法向齿廓normal tooth profile碟形弹簧belleville spring法向直廓蜗杆straight sided normal worm顶隙 bottom clearance法向力normal force定轴轮系ordinary gear train; gear train with fixed axes反馈式组合feedback combining动力学dynamics反向运动学inverse ( or backward) kinematics动密封kinematical seal反转法kinematic inversion动能 dynamic energy反正切Arctan动力粘度dynamic viscosity范成法generating cutting动力润滑dynamic lubrication仿形法form cutting动平衡dynamic balance方案设计、概念设计concept design, CD精品文档防振装置shockproof device工作循环图working cycle diagram飞轮 flywheel工作机构operation mechanism飞轮矩moment of flywheel工作载荷external loads非标准齿轮nonstandard gear工作空间working space非接触式密封non-contact seal工作应力working stress非周期性速度波动aperiodic speed fluctuation工作阻力effective resistance非圆齿轮non-circular gear工作阻力矩effective resistance moment粉末合金powder metallurgy公法线common normal line分度线reference line; standard pitch line公共约束general constraint分度圆reference circle; standard (cutting) pitch circle公制齿轮metric gears分度圆柱导程角lead angle at reference cylinder功率power分度圆柱螺旋角helix angle at reference cylinder功能分析设计function analyses design分母 denominator共轭齿廓conjugate profiles分子 numerator共轭凸轮conjugate cam分度圆锥reference cone; standard pitch cone构件link分析法analytical method鼓风机blower封闭差动轮系planetary differential固定构件fixed link; frame复合铰链compound hinge固体润滑剂solid lubricant复合式组合compound combining关节型操作器jointed manipulator复合轮系compound (or combined) gear train惯性力inertia force复合平带compound flat belt惯性力矩moment of inertia ,shaking moment复合应力combined stress惯性力平衡balance of shaking force复式螺旋机构Compound screw mechanism惯性力完全平衡full balance of shaking force复杂机构complex mechanism惯性力部分平衡partial balance of shaking force杆组 Assur group惯性主矩resultant moment of inertia干涉 interference惯性主失resultant vector of inertia刚度系数stiffness coefficient冠轮crown gear刚轮 rigid circular spline广义机构generation mechanism钢丝软轴wire soft shaft广义坐标generalized coordinate刚体导引机构body guidance mechanism轨迹生成path generation刚性冲击rigid impulse (shock)轨迹发生器path generator刚性转子rigid rotor滚刀hob刚性轴承rigid bearing滚道raceway刚性联轴器rigid coupling滚动体rolling element高度系列height series滚动轴承rolling bearing高速带high speed belt滚动轴承代号rolling bearing identification code高副 higher pair滚针needle roller格拉晓夫定理Grashoff`s law滚针轴承needle roller bearing根切 undercutting滚子roller公称直径nominal diameter滚子轴承roller bearing高度系列height series滚子半径radius of roller功 work滚子从动件roller follower工况系数application factor滚子链roller chain工艺设计technological design滚子链联轴器double roller chain coupling精品文档滚珠丝杆ball screw技术过程technique process滚柱式单向超越离合器roller clutch技术经济评价technical and economic evaluation过度切割undercutting技术系统technique system函数发生器function generator机械machinery函数生成function generation机械创新设计mechanical creation design, MCD含油轴承oil bearing机械系统设计mechanical system design, MSD耗油量oil consumption机械动力分析dynamic analysis of machinery耗油量系数oil consumption factor机械动力设计dynamic design of machinery赫兹公式H. Hertz equation机械动力学dynamics of machinery合成弯矩resultant bending moment机械的现代设计modern machine design合力 resultant force机械系统mechanical system合力矩resultant moment of force机械利益mechanical advantage黑箱 black box机械平衡balance of machinery横坐标abscissa机械手manipulator互换性齿轮interchangeable gears机械设计machine design; mechanical design花键 spline机械特性mechanical behavior滑键、导键feather key机械调速mechanical speed governors滑动轴承sliding bearing机械效率mechanical efficiency滑动率sliding ratio机械原理theory of machines and mechanisms滑块 slider机械运转不均匀系数coefficient of speed fluctuation环面蜗杆toroid helicoids worm机械无级变速mechanical stepless speed changes环形弹簧annular spring基础机构fundamental mechanism缓冲装置shocks; shock-absorber基本额定寿命basic rating life灰铸铁grey cast iron基于实例设计case-based design,CBD回程 return基圆base circle回转体平衡balance of rotors基圆半径radius of base circle混合轮系compound gear train基圆齿距base pitch积分 integrate基圆压力角pressure angle of base circle机电一体化系统设计mechanical-electrical integration system基圆柱base cylinderdesign基圆锥base cone机构 mechanism急回机构quick-return mechanism机构分析analysis of mechanism急回特性quick-return characteristics机构平衡balance of mechanism急回系数advance-to return-time ratio机构学mechanism急回运动quick-return motion机构运动设计kinematic design of mechanism棘轮ratchet机构运动简图kinematic sketch of mechanism棘轮机构ratchet mechanism机构综合synthesis of mechanism棘爪pawl机构组成constitution of mechanism极限位置extreme (or limiting) position机架 frame, fixed link极位夹角crank angle between extreme (or limiting) positions机架变换kinematic inversion计算机辅助设计computer aided design, CAD机器 machine计算机辅助制造computer aided manufacturing, CAM机器人robot计算机集成制造系统computer integrated manufacturing system,机器人操作器manipulator CIMS机器人学robotics计算力矩factored moment; calculation moment精品文档计算弯矩calculated bending moment结构设计structural design加权系数weighting efficient截面section加速度acceleration节点pitch point加速度分析acceleration analysis节距circular pitch; pitch of teeth加速度曲线acceleration diagram节线pitch line尖点 pointing; cusp节圆pitch circle尖底从动件knife-edge follower节圆齿厚thickness on pitch circle间隙 backlash节圆直径pitch diameter间歇运动机构intermittent motion mechanism节圆锥pitch cone减速比reduction ratio节圆锥角pitch cone angle减速齿轮、减速装置reduction gear解析设计analytical design减速器speed reducer紧边tight-side减摩性anti-friction quality紧固件fastener渐开螺旋面involute helicoid径节diametral pitch渐开线involute径向radial direction渐开线齿廓involute profile径向当量动载荷dynamic equivalent radial load渐开线齿轮involute gear径向当量静载荷static equivalent radial load渐开线发生线generating line of involute径向基本额定动载荷basic dynamic radial load rating渐开线方程involute equation径向基本额定静载荷basic static radial load tating渐开线函数involute function径向接触轴承radial contact bearing渐开线蜗杆involute worm径向平面radial plane渐开线压力角pressure angle of involute径向游隙radial internal clearance渐开线花键involute spline径向载荷radial load简谐运动simple harmonic motion径向载荷系数radial load factor键 key径向间隙clearance键槽 keyway静力static force交变应力repeated stress静平衡static balance交变载荷repeated fluctuating load静载荷static load交叉带传动cross-belt drive静密封static seal交错轴斜齿轮crossed helical gears局部自由度passive degree of freedom胶合 scoring矩阵matrix角加速度angular acceleration矩形螺纹square threaded form角速度angular velocity锯齿形螺纹buttress thread form角速比angular velocity ratio矩形牙嵌式离合器square-jaw positive-contact clutch角接触球轴承angular contact ball bearing绝对尺寸系数absolute dimensional factor角接触推力轴承angular contact thrust bearing绝对运动absolute motion角接触向心轴承angular contact radial bearing绝对速度absolute velocity角接触轴承angular contact bearing均衡装置load balancing mechanism铰链、枢纽hinge抗压强度compression strength校正平面correcting plane开口传动open-belt drive接触应力contact stress开式链open kinematic chain接触式密封contact seal开链机构open chain mechanism阶梯轴multi-diameter shaft可靠度degree of reliability结构 structure可靠性reliability精品文档可靠性设计reliability design, RD螺钉screws空气弹簧air spring螺栓bolts空间机构spatial mechanism螺纹导程lead空间连杆机构spatial linkage螺纹效率screw efficiency空间凸轮机构spatial cam螺旋传动power screw空间运动副spatial kinematic pair螺旋密封spiral seal空间运动链spatial kinematic chain螺纹thread (of a screw)空转 idle螺旋副helical pair宽度系列width series螺旋机构screw mechanism框图 block diagram螺旋角helix angle雷诺方程Reynolds‘s equ ation螺旋线helix ,helical line离心力centrifugal force绿色设计green design design for environment离心应力centrifugal stress马耳他机构Geneva wheel Geneva gear离合器clutch马耳他十字Maltese cross离心密封centrifugal seal脉动无级变速pulsating stepless speed changes理论廓线pitch curve脉动循环应力fluctuating circulating stress理论啮合线theoretical line of action脉动载荷fluctuating load隶属度membership铆钉rivet力 force迷宫密封labyrinth seal力多边形force polygon密封seal力封闭型凸轮机构force-drive (or force-closed) cam mechanism密封带seal belt力矩 moment密封胶seal gum力平衡equilibrium密封元件potted component力偶 couple密封装置sealing arrangement力偶矩moment of couple面对面安装face-to-face arrangement连杆 connecting rod, coupler面向产品生命周期设计design for product`s life cycle, DPLC连杆机构linkage名义应力、公称应力nominal stress连杆曲线coupler-curve模块化设计modular design, MD连心线line of centers模块式传动系统modular system链 chain模幅箱morphology box链传动装置chain gearing模糊集fuzzy set链轮 sprocket sprocket-wheel sprocket gear chain wheel模糊评价fuzzy evaluation联组 V 带 tight-up V belt模数module联轴器coupling shaft coupling摩擦friction两维凸轮two-dimensional cam摩擦角friction angle临界转速critical speed摩擦力friction force六杆机构six-bar linkage摩擦学设计tribology design, TD龙门刨床double Haas planer摩擦阻力frictional resistance轮坯 blank摩擦力矩friction moment轮系 gear train摩擦系数coefficient of friction螺杆 screw摩擦圆friction circle螺距 thread pitch磨损abrasion wear; scratching螺母 screw nut末端执行器end-effector螺旋锥齿轮helical bevel gear目标函数objective function精品文档耐腐蚀性corrosion resistance平底从动件flat-face follower耐磨性wear resistance平底宽度face width挠性机构mechanism with flexible elements平分线bisector挠性转子flexible rotor平均应力average stress内齿轮internal gear平均中径mean screw diameter内齿圈ring gear平均速度average velocity内力 internal force平衡balance内圈 inner ring平衡机balancing machine能量 energy平衡品质balancing quality能量指示图viscosity平衡平面correcting plane逆时针counterclockwise (or anticlockwise)平衡质量balancing mass啮出 engaging-out平衡重counterweight啮合 engagement, mesh, gearing平衡转速balancing speed啮合点contact points平面副planar pair , flat pair啮合角working pressure angle平面机构planar mechanism啮合线line of action平面运动副planar kinematic pair啮合线长度length of line of action平面连杆机构planar linkage啮入 engaging-in平面凸轮planar cam牛头刨床shaper平面凸轮机构planar cam mechanism凝固点freezing point; solidifying point平面轴斜齿轮parallel helical gears扭转应力torsion stress普通平键parallel key扭矩 moment of torque其他常用机构other mechanism in common use扭簧 helical torsion spring起动阶段starting period诺模图Nomogram启动力矩starting torqueO 形密封圈密封O ring seal气动机构pneumatic mechanism盘形凸轮disk cam奇异位置singular position盘形转子disk-like rotor起始啮合点initial contact , beginning of contact抛物线运动parabolic motion气体轴承gas bearing疲劳极限fatigue limit千斤顶jack疲劳强度fatigue strength嵌入键sunk key偏置式offset强迫振动forced vibration偏 (心)距offset distance切齿深度depth of cut偏心率eccentricity ratio曲柄crank偏心质量eccentric mass曲柄存在条件Grashoff`s law偏距圆offset circle曲柄导杆机构crank shaper (guide-bar) mechanism偏心盘eccentric曲柄滑块机构slider-crank (or crank-slider) mechanism偏置滚子从动件offset roller follower曲柄摇杆机构crank-rocker mechanism偏置尖底从动件offset knife-edge follower曲齿锥齿轮spiral bevel gear偏置曲柄滑块机构offset slider-crank mechanism曲率curvature拼接 matching曲率半径radius of curvature评价与决策evaluation and decision曲面从动件curved-shoe follower频率 frequency曲线拼接curve matching平带 flat belt曲线运动curvilinear motion平带传动flat belt driving曲轴crank shaft精品文档驱动力driving force输出力矩output torque驱动力矩driving moment (torque)输出轴output shaft全齿高whole depth输入构件input link权重集weight sets数学模型mathematic model球 ball实际啮合线actual line of action球面滚子convex roller双滑块机构double-slider mechanism, ellipsograph球轴承ball bearing双曲柄机构double crank mechanism球面副spheric pair双曲面齿轮hyperboloid gear球面渐开线spherical involute双头螺柱studs球面运动spherical motion双万向联轴节constant-velocity (or double) universal joint球销副sphere-pin pair双摇杆机构double rocker mechanism球坐标操作器polar coordinate manipulator双转块机构Oldham coupling燃点 spontaneous ignition双列轴承double row bearing热平衡heat balance; thermal equilibrium双向推力轴承double-direction thrust bearing人字齿轮herringbone gear松边slack-side冗余自由度redundant degree of freedom顺时针clockwise柔轮 flexspline瞬心instantaneous center柔性冲击flexible impulse; soft shock死点dead point柔性制造系统flexible manufacturing system; FMS四杆机构four-bar linkage柔性自动化flexible automation速度velocity润滑油膜lubricant film速度不均匀( 波动) 系数 coefficient of speed fluctuation润滑装置lubrication device速度波动speed fluctuation润滑 lubrication速度曲线velocity diagram润滑剂lubricant速度瞬心instantaneous center of velocity三角形花键serration spline塔轮step pulley三角形螺纹V thread screw踏板pedal三维凸轮three-dimensional cam台钳、虎钳vice三心定理Kennedy`s theorem太阳轮sun gear砂轮越程槽grinding wheel groove弹性滑动elasticity sliding motion砂漏 hour-glass弹性联轴器elastic coupling flexible coupling少齿差行星传动planetary drive with small teeth difference弹性套柱销联轴器rubber-cushioned sleeve bearing coupling设计方法学design methodology套筒sleeve设计变量design variable梯形螺纹acme thread form设计约束design constraints特殊运动链special kinematic chain深沟球轴承deep groove ball bearing特性characteristics生产阻力productive resistance替代机构equivalent mechanism升程 rise调节modulation, regulation升距 lift调心滚子轴承self-aligning roller bearing实际廓线cam profile调心球轴承self-aligning ball bearing十字滑块联轴器double slider coupling; Oldham‘s coupling调心轴承self-aligning bearing矢量 vector调速speed governing输出功output work调速电动机adjustable speed motors输出构件output link调速系统speed control system输出机构output mechanism调压调速variable voltage control。

机电一体化专业英语 教案

机电一体化专业英语 教案

《机电一体化专业英语》(English for Mechatronics)授课教案T eaching PlanMajor (专业):机电一体化XXXX专业(相关专业)Lecturer(任课教师):__________________________Mechatronics SectionChangchun Automobile Industry Institute2022.3《机电一体化专业英语》授课计划_ _______ 学院___ 专业班20 -20 学年第学期授课时间:第周The following is the machine tool structures.Explanations of the Machine Tool TermsNo. Name Explanation1 Spindle speed selector 主轴速度转换开关2 Headstock assembly 主轴箱3 Spindle with chuck 附有夹具主轴4 Tool post 刀架5 Compound rest 复式刀架6 Cross slide 横向拖板7 Carriage 滑鞍,滑座8 Ways 导轨9 Dead center 死顶尖10 Tailstock quill 尾架顶尖套筒11 Tailstock assembly 尾架12 Hand-wheel 手轮13 Bed 底座,床身14 Lead screw 丝杠15 Feed rod 进刀杠,光杠16 Clutch 离合器17 Longitudinal & transverse feed control 纵向和横向进给控制18 Split-nut control 开合螺母控制19 Apron 溜板箱,进给箱20 Chip pan 承屑盘21 Feed selector 进给选择开关The following is the conventional machine tool. You are required to choose the suitablewords or phrases given below.Common Lathe (普通车床)1. ________ (双刀塔车床)2. ________(自动车床)3. ________ ( 立式车床)4. ________(专用车床)5. ________(卧式车床)6. ________ (管子螺纹车床)Special Purpose Lathe Pipe Screw-cutting Lathe Vertical LatheExplanations of TermsNo. Name Explanation1 Anvil 固定爪2 Spindle 伸缩爪(轴)3 Lock ring 防松环4 Vernier 游标尺5 Spindle nut 轴螺母6 Adjusting nut 调节螺母7 Scale 刻度8 Thimble 外套管9 Ratchet knob 棘轮旋钮1. Step measuring face A. 紧固螺丝2. Inside measuring face B. 校准贴纸3. LCD Display Screen C. 内径测量面4. inch/mm key D. 尺身5. Locking screw E. 阶梯测量面6. Battery cover F. 开/关键7. Body G. 公英制转换键8. Calibration sticker H. 液晶显示屏9. Depth bar I. 外径测量面10. Zero-setting key J. 滑尺(实践部分)The micrometer screw gaugeThe micrometer screw gauge is used to measure even smaller dimensions than the vernier caliper. The micrometer screw gauge also uses an auxiliary scale (measuring hundredths of a millimeter) which is marked on a rotary thimble. Basically it is a screw with an accurately constant pitch. The micrometers in our laboratory have a pitch of 0.50 mm. The rotating thimble is subdivided into 50 equal divisions. The thimble passes through a frame that carries a millimetre scale graduated to 0.5 mm. The jaws can be adjusted by rotating the thimble using the small ratchet knob. The thimble must be rotated through two revolutions to open the jaws by 1 mm. Here is a useful applet to learn how to use the micrometer screw gauge (Figure 1-19).Figure 1-19 The micrometer screw gaugeIn order to measure an object, the object is placed between the jaws and the thimble is rotated using the ratchet until the object is secured. Note that the ratchet knob must be used to secure the object firmly between the jaws, otherwise the instrument could be damaged or give an inconsistent reading.Note that an additional half scale division (0.5 mm) must be included if the mark below the main scale is visible between the thimble and the main scale division on the sleeve. The remaining two significant figures (hundredths of a millimeter) are taken directly from the thimble opposite the main scale.In Figure 1-20 the last graduation visible to the left of the thimble is 7 mm and the thimble lines up with the main scale at 38 hundredths of a millimeter (0.38 mm); therefore the reading is 7.38 mm.In Figure 1-21 the last graduation visible to the left of the thimble is 7.5 mm; therefore the reading is 7.5 mm plus the thimble reading of 0.22 mm, giving 7.72 mm.Figure 1-20 The reading is 7.38mm Figure 1-21 The reading is 7.27mmIn Figure 1-22 the main scale reading is 3 mm while the reading on the drum is 0.46 mm; therefore, the reading is 3.46 mm.In Figure 1-23 the 0.5 mm division is visible below the main scale; therefore the reading is 3.5 mm + 0.06 mm = 3.56 mm.Figure 1-22 The reading is 3.46mm Figure 1-23 The reading is 3.56mm Try the following bg yourselfFigure 1-24 Figure 1-25 Figure 1-26 A: Do exercise 1, 2, 3, 4 and 7.《机电一体化专业英语》授课计划_ _______ 学院___ 专业班20 -20 学年第学期授课时间:第周The following is the vice jaw structures.Explanations of the Vice Jaw TermsNo. Name Explanation1 Fixed jaw 固定钳口2 Hardened and ground 已硬化和磨光3 Special angle-lock system 特制的角锁紧系统4 Vice body 虎钳体5 Adjusting stop ring 调整止动环6 Clamping force 夹紧力Milling Machine (铣床)1. ________ (升降台铣床)2. ________(龙门铣床)3. ________ (单臂铣床 )4. ________(仪表铣床)5. ________(工具铣床)6. ________ (单柱铣床)Single-column Milling Machine Plano-milling Machine Tool Milling MachineSample 1(实践部分)Explanations of TermsName ExplanationOuter frame 外框Scale mark plate 刻度盘Spring 弹簧Arm 测量臂A B1. Dial window A. 限制器2. Long hand B. 短指针3. Top point C. 刻度盘4. Limiter D. 刻度盘5. Clump E. 长指针6. Outer frame F. 底座7. Short hand G. 顶针8. Base H. 螺丝紧固座9. Scale mark plate I. 紧固件10. Screw fastening base J. 测头11.Gauge head K. 外框Beginning the Facing CutUse the compound handwheel to advance the tip of the tool until it just touches the end of the work-piece. Use the cross feed crank to back off the tool until it is beyond the diameter of the work-piece. Turn the lathe on and adjust the speed to a few hundred RPM — setting of the speed control knob. Now slowly advance the crossfeed hand-wheel to move the tool towards thework-piece. When the tool touches the work-piece itshould start to remove metal from the end (Figure 2-18). Continue advancing the tool until it reaches the center of the work-piece and then crank the tool back in the opposite direction (towards you) until it is back past the edge of the work-piece (Figure 2-19).Figure 2-18 Figure 2-19Since we started with the tool just touching the end of the work-piece, you probably removed very little metal on this pass. This is a good idea until you get used to how aggressively you can remove metal without stalling the lathe. The Roughing CutUse the compound crank to advance the tool towards the chuck about 0.010". If the compound is set at a 90 degrees to the cross slide (which is how I usually set mine) then each division you turn the crank will advance the tool 0.001 (one-thousandth of an inch) toward the chuck.If the compound is set at some other angle, say 30 degrees, to the cross slide, then it will advance the tool less than 0.001 for each division. The exact amount is determined by the trigonometric sine of the angle. Here’s a picture of the firs t pass of a facing operation (Figure 2-20).Cutting on the Return PassIf you crank the tool back towards you after itreaches the center of the work-piece you will notice that it removes a small amount of metal on the return pass. This is because the surface is not perfectly smooth and it is removing metal from the high spots. If you need to remove a lot of metal, to reduce the work-piece to a specific length, for example, you can take advantage of this return cut to remove more metal on each pass by advancing the tool a small ways into the work-piece on the return pass. Since the tool must plunge into the face of the work-piece, this works best with a fairlyFigure 2-17Figure 2-20sharp pointed tool.The Finishing CutDepending on how rough the end of the work-piece was to begin with and how large the diameter is, you may need to make three or more passes to get a nice smooth finish across the face. These initial passes are called roughing passes and remove a relatively large amount of metal.When you get the face pretty smooth you can make a final finishing cut to remove just 0.001 to 0.003" of metal and get a nice smooth surface. Figure 2-21 shows removing about 0.002" of metal at around 1 000 RPM. Figure 2-22 shows the finished face of the work-piece.Figure 2-21 Figure 2-22Figure 2-23 shows what happens if the tip of your cutting tool is below the center line of the lathe —a little nub is left at the center of the work-piece. The same thing happens if the tool is too high but the nub will have more of a cone shape in that case. If the tool is too low, place a suitable thickness of shim stock underneath the tool in the tool holder. If it’s too high, grind the top down a few thous.Filing the EdgeFacing operations leave a rather sharp edge on the end of the work-piece. It’s a good idea to smooth this edge down with a file to give it a nice chamfer and to avoid cutting yourself on it. With the lathe running at fairly low speed, bring a smooth cut file up to the end of the work-piece at a 45 degree angle and apply a little pressure to the file. Figure 2-24: Right —left hand holding tang end of file. Figure 2-25: Wrong —left hand reaching over spinning chuck!Figure 2-23 Figure 2-24Figure 2-26 shows the finished surface and beveled edge. This is what a good facing cut should look like: smooth even surface with no raised bump in the y an accurate straight edge across the surface of the face and you should not be able to see anylight under the edge. If you detect a slight convex shape, the carriage may be moving back away from the headstock during the cut.Figure 2-25 Figure 2-26A: Do exercise 1, 2, 3, 4 and 7.《机电一体化专业英语》授课计划_ _______ 学院___ 专业班20 -20 学年第学期授课时间:第周The following is the machine tool structure.No. Name Explanation1 Forward/Reverse 正转/反转2 Start/Stop 启动/停止3 Longitudinal Hand-wheel 纵向手轮4 Vertical Feed Hand-crank 垂直进给手柄5 Cross-Feed Hand-wheel 横向进给手轮6 Power Feed 电动进给7 Table 工作台Boring Machine (镗床)1. ________ (卧式铣镗床)2. ________(立式金刚镗床)3. ________ (双坐标镗床)4. ________(深孔镗床)5. ________(数控龙门镗铣床)Double Boring Machine Vertical Diamond Fine Boring Machine Boring MachineTypical parts programNo. Name Explanation1 twist bits 麻花钻2 tang 扁尾3 taper shank 锥柄4 point angle 顶尖角5 tang drive 扁尾驱动6 flutes 韧带7 helic angle 螺旋角8 lip-relief angle 刃倾角9 edge angle 横刀倾角10 drill diameter 钻头直径11 body diameter clearance 刀体直径间隙12 clearance diameter 间隙直径13 straight shank 直柄14 neck 颈部15 shank diameter 刀柄直径16 shank length 刀柄长度17 flute length 韧带长度18 body 刀体19 overall length 总长20 margin 刃边21 lip 刀刃22 web 钻心23 chisel edge 横刃A B1. Wrench size A. 中间插件2. Screw B. 外部插件3. Carbide guide pad C. 扳手大小(实践部分)Turning OperationsTurning is the removal of metal from the outer diameter of a rotating cylindrical work-piece. Turning is used to reduce the diameter of the work-piece, usually to a specified dimension, and to produce a smooth finish on the metal.Chucking the Work-pieceWe will be working with a piece of 3/4" diameter 6061 aluminum about 2 inches long. We can safely turn it in the three jaw chuck without supporting the free end of the work.Insert the work-piece in the three-jaw chuck and tighten down the jaws until they just start to grip the work-piece. Rotate the work-piece to ensure that it is seated evenly and to dislodge any chips. You want the work-piece to be as parallel as possible with the center line of the lathe. Imagine an exaggerated example where the work-piece is skewed at an angle in the chuck and you can easily visualize why this is important. Tighten the chuck using each of the three chuck key positions to ensure a tight and even grip (Figure 3-13).Adjusting the Tool BitChoose a tool bit with a slightly rounded tip. This type of tool should produce a nice smooth finish. Adjust the angle of the tool-holder so the tool is approximately perpendicular to the side of the work-piece. Because the front edge of the tool is ground at an angle, the left side of the tip should engage the work, but not the entire front edge of the tool. The angle of the compound is not critical. I usually keep mine at 90 degrees so that the compound dial advances the work (Figure 3-14).Figure 3-13Figure 3-14Cutting SpeedsYou must consider the rotational speed of the work-piece and the movement of the tool relative to the work-piece. Working with the 7×10 for hobby purposes, you will quickly develop a feel for how fast you should go.Until you get a feel for the proper speeds, start with relatively low speeds and work up to faster speed. Most cutting operations on the 7×10 will be done at speeds of a few hundred RPM —with the speed control set below the 12 o'clock position and with the HI/LO gear in the LO range.Turning with Hand FeedAs always, wear safety glasses and keep your face well away from the work since this operation will throw off hot chips and/or sharp spirals of metal.Now advance the cross slide crank about 10 divisions or 0.010". Turn the carriage hand-wheel counterclockwise to slowly move the carriage towards the headstock. As the tool starts to cut into the metal, maintain a steady cranking motion to get a nice even cut. It’s difficult to get a smooth and even cut turning by hand (Figure 3-15).Continue advancing the tool towards the headstock until it is about 1/4" away from the chuck jaws. Obviously you want to be careful not to let the tool touch the chuck jaws (Figure 3-16)!Figure 3-15 Figure 3-16Turning with Power FeedOne of the great features of the 7×10 is that it has a power lead-screw driven by an adjustable gear train. The lead-screw can be engaged to move the carriage under power for turning and threading operations.To change the lever setting, you must pull back on the knurled sleeve with considerable force. With the sleeve pulled back you can move the lever up and down to engage its locking pin in one of three positions. In the upper position the lead-screw rotates to move the carriage towards the headstock and in the lower position the lead-screw moves the carriage away from the headstock (Figure 3-17).In the down position, the half-nut lever engages two halves of a split nut around the lead-screw. Make sure the half-nut lever is in the disengaged (up) position. Turn the motor on. The lead-screw should now be rotating counterclockwise (Figure 3-18). When the lead-screw is engaged the gear train makes kind of an annoying noise, but you’ll get used to it. Lubricating the gear train with white lithium grease will cut down some on the noise.Figure 3-17 Figure 3-18Just as in facing, you normally will make one or more relatively deep (0.010~0.030) roughing cuts followed by one or more shallow (0.001~0.002) finishing cuts. Of course you have to plan these cuts so that the final finishing cut brings the work-piece to exactly the desired diameter (Figure 3-19).When cutting under power, you must be very careful not to run the tool into the chuck.Measuring the DiameterIt is important to recognize that, in a turning operation, each cutting pass removes twice the amount of metal indicated by the cross slide feed divisions. Therefore, when advancing the cross slide by 0.010", the diameter is reduced by 0.020".The diameter of the work-piece is determined by a caliper or micrometer. Micrometers are more accurate, but less versatile. You will need a machinist's caliper capable of measuring down to 0.001". Vernier calipers do not have a dial and require you to interpolate on an engraved scale (Figure 3-20).Figure 3-19 Figure 3-20Turning a ShoulderA shoulder is a point at which the diameter of the work-piece changes with no taper from one diameter to the other.We will make a shoulder on our work-piece by reducing the diameter of the end of the work-piece for a distance of about 1/2" (Figure 3-21). Advance the cross slide about 0.020 and use power feed to turn down about a 1/2" length on the end of the work-piece. Repeat this a few more times until you have reduced the diameter of the end section to about 1/2" (Figure 3-22).Since the tip of the tool is rounded, the inner edge of the shoulder takes on a rounded profile.Now we will use this pointed tool to make a square finishing cut into the corner of the shoulder. Since this is such a short distance, we will use hand feed, not power feed. You can use hand feed with the lead-screw turning —just don’t engage the half-nut (Figure 3-23).To get a nice square face on the shoulder you will need to make a facing cut. This works best if you have made a carriage lock on your lathe. Lock the carriage and clean up the face of the shoulder until it is square. If you use the sharp pointed tool you will need to use fairly high RPM, say 1500, and advance the tool slowly or you will get little grooves from the pointed tip instead of a nice smooth finish.Finally, you may want to use a file as described in the facing section to make a nice beveled edge on outside edge of the shoulder and on the end of the work-piece (Figure 3-24).Figure 3-21 Figure 3-22Figure 3-23 Figure 3-24A: Do exercise 1, 2, 3, 4 and 7.《机电一体化专业英语》授课计划_ _______ 学院___ 专业班20 -20 学年第学期授课时间:第周The following is the structure of a regenerative hydraulic control.Explanations of the Mechatronics Terms No. Name Explanation1 Regenerative Hydraulic Control 回馈式液压控制2 Kidney Loop Filtration System 肾形环过滤系统3 Oversized Guide & Bushings 大型导杆和导套4 Ram Speeds to Spec. 专业滑块5 Stroke, Shut Height to Spec 上滑块的最大行程6 Daylight to Spec 规格孔距7 Ram Guide Bellows 波纹式防护罩8 Bolsters Machined to Spec 标准定位板1. 2. 3. 4.5. 6. 7. 8.9. 10.Flywheel Clutch and Brake Eccentric Shaft Connection Press Bed Slide (Ram) Shut Height Adjustment Bolster Counterbalance Cylinder Saddle Bushing Opposed Helical Gears at Each Side of Press(实践部分)The following is a lathe accessory, and you can understand the name of Bench Grinder.Explanations of TermsNo. Name Explanation1 Adjustable Tongue Guard 可调整的舌形护罩Match the words or phrases on the left with their meanings on the right.Bench Grinder1. Inner Wheel Guard A. 阻火器2. Flexible Work Light B. 砂轮3. Spark Arrestor C. 内砂轮罩4. Eye Shield D. 通/断开关5. Grinding Wheel E. 灵活工作灯6. Tool Rest F. 变速旋钮7. On/Off Switch G. 护眼罩8. Quench Tray H. 可调节的刀架支撑器9. Variable Speed Knob I. 刀架10. Adjustable Tool Rest Support J. 淬火盘VariantsImpression Die Forging—also called closed-die forging, presses metal between two dies that contain a precut profile of the desired part.Cold Forging—includes bending, cold drawing, cold heading, coining, extrusions and more, to yield a diverse range of part shapes. The temperature of metals being cold forged may range from room temperature to several hundred degrees.Open-die Forging is performed between flat dies with no precut profiles in the dies. Movement of the work-piece is the key to this method. Larger parts over 20 tones and 10 meters in length can be hammered or pressed into shape in this way.Seamless Rolled Ring Forging is typically performed by punching a hole in a thick, round piece of metal (creating a donut shape), and then rolling and squeezing (or in some cases, pounding) the donut into a thin ring. Ring diameters can be anywhere from a few inches to 30 feet.Process detailsClosed-die forgingA heated blank is placed between two halves of a die (Figure 4-15).A single compressive stroke squeezes the blank into the die to form the part. In hammer or drop forging this happens by dropping the top of the mould from a height. An alternative is to squeeze the moulds together using hydraulic pressure (Figure 4-16).Figure 4-15 Figure 4-16Once the die halves have separated, the part can be ejected immediately using an ejector pin (Figure 4-17).The waste material, flash, is removed later (Figure 4-18).《机电一体化专业英语》授课计划_ _______ 学院___ 专业班20 -20 学年第学期授课时间:第周The following is the common internal grinding machine.Explanations of the TermsNo. Name Explanation1 work head 头架2 cooling pipe 冷却管3 work table 工作台4 bed 床身5 oil pointer 油标6 feed handle 进给手柄7 longitudinal hand wheel 纵向手轮8 manipulating panel 操纵盘9 cross hand wheel 横向手轮10 slide saddle 滑鞍11 grinding carriage 砂轮架12 grinding wheel 砂轮13 bedside lamp 床头灯14 fixture device 夹具The following are some Functions on Mechatronics Terms.Grinding Machine(磨床)1. ________(内圆磨床)2. ________(平面磨床)3. ________(导轨磨床)4. ________(无心磨床)5. ________(工具磨床)6. ________(坐标磨床)Surface- Grinding Machine Centerless Grinding Machine Internal rinding Machine Jig Grinding Machine Slideway Grinding Machine Too Grinding Machine试试身手(实践部分)Period 2 Have a TryThe following is panel of a CNC machine, and you can understand the functions of its buttons.Explanations of the CNC PanelNo Name Explanation1 Alphabetic keyboard for enteringtexts and file names, as well as forprogramming in ISO format字母键盘用于输入文本及文件名称,也可按ISO格式进行编程2 ●File management●Pocket calculator (not TNC410)●MOD functions●HELP functions●文件管理●便携式计算器(并不是TNC 410型)●模式功能●辅助功能3 Programming modes 编程模式4 Machine operating modes 机床操作模式5 Initiation of programming dialog 可进行对话编程6 Arrow keys and GOTO jumpcommand箭头键和跳转指令7 Numerical input and axisselection数字输入和轴选择Match the words or phrases on the left with their meanings on the right.Automatic Tool Magazine(实践部分)Kow to Produce New Firebox Door PatternsThese are two of the old foundry patterns for our firebox doors. They are epoxy castings mounted in a plywood plate (Figure 5-20). The foundry switched to a new high pressure sand molding process, and the patterns broke (Figure 5-21). We needed higher strength aluminum patterns.Figure 5-20 Old foundry patterns Figure 5-21 New door to be designedBecause the old patterns were cast from a hand-made master, there were also problems such as dimensional inconsistencies, etc. The first step in building new patterns was to have a new vertical CNC milling machine (Figure 5-22).Figure 5-22 CNC Milling MachineNext, the doors were modeled in a Rhino, a new 3-D modeller. Here’s a screenshot of the Rhino model (Figure 5-23).Figure 5-23 3D modelHere’s a close-up of the parting line around the bottom hinge lug (Figure 5-24).Here’s a new feature in Rhino 1.1 Beta (Aug 20): Draft Angle Analysis (Figure 5-25).Figure 5-24 Figure 5-25Next, the 3-D Rhino model was imported into Visual Mill, a new CAM package that generates the cutter paths for the milling machine directly from Rhino NURBS models. Here is a screen shot of Visual Mill simulating the cutting of an aluminum block (Figure 5-26).Here’s another screen shot showing the tool-paths for a 1/8" ball shaped cutter as it goes into the corners around the hinges to clean up the leftovers from the previous larger cutter (Figure 5-27).Tool-paths were loaded onto a floppy disk and transferred to the mill’s controller. First, they were tested on a block of wax (Figure 5-28).Next, they were cut from a 2 1/4" thick block of aluminum. It takes about 12 hours of machine time to cut each side of a two-sided pattern.Here’s a photo of the finished patterns and their mounting plates (Figure 5-29).Figure 5-26 Figure 5-27Figure 5-28 Figure 5-29Figure 5-30A: Do exercise 1, 2, 3, 4 and 7.《机电一体化专业英语》授课计划_ _______ 学院___ 专业班20 -20 学年第学期授课时间:第周机床构造Section II Glance at MachineTool StructuresPeriod 1 The following is the structure of the CNC machining center.Explanations of the TermsNo. Name Explanation1 DC servo motor 直流伺服电机2 manipulators for tool changing 换刀机械手3 control cabinet 控制柜4 plate-type tool changer 盘式刀库5 spindle carrier 主轴箱6 control panel 控制面板7 electrical cabinet 驱动电源柜8 table 工作台9 slide saddle 滑座10 bed 床身The following are some Functions on Mechatronics Terms.1. ________(数控车床)。

机电一体化专业英语

机电一体化专业英语

科目:机电一体化专业英语使用班级:使用班级:单选题单选题1 、10xx means that it is a plain carbon steel 1,10XX意味着它是一个普通的碳素钢 C the second digit indicates that there is no modification in the alloys. 第二个数字表明,有没有修改的合金。

A 、which A,这B 、when B,当C 、where C,其中D 、that ,,2 、These steels 2,这些钢材 B high strength and also high strength to weight ratio, good c orrosion resistance. 高强度和高强度重量比,好的C orrosion电阻。

A 、exhibits 一,展品B 、exhibit ,表现出C 、exhibited C,展出D 、are exhibiting D ,展示3 、This property, also called 3,此属性,也被称为C , is related to the resistance of the steel to the softening effect of heat. ,是有关钢材的耐热软化效应。

A 、cold-hardness 一,冷硬度B 、cold-shortness B,冷,气短C 、hot-hardness 热硬度,D 、brittle condition D ,脆条件4 、These metals 4,这些金属 A in a soft condition, heat-treated to gain hardness, and then finish machined with a grinding or lapping process that can handle the hardness. 在软条件下,热后获得的硬度,然后完成加工与磨削或研磨的过程中,可以处理的硬度。

机电一体化专业英语-全文中文翻译2A-宋主民主编

机电一体化专业英语-全文中文翻译2A-宋主民主编

7
插补计算机
x
控制计算机
x
D/A
xa
伺服电动机 位移传感器
图 6.11 数字增量式插补器方块图 数字增量式插补器的输出不再是单个脉冲,而是一个表示许多脉冲当量的数值,亦称指 令位移增量,并在 X 和 Y 轴上记以X 和Y。所以X 和Y 是一段轮廓曲线(直线或园弧) 的两个增量如图 6.12 和 6,13 所示。因此,数字增量插补器是执行用直线段来逼近被插补曲 线的一个过程。
( 6-3 )
关于控制计算机如何根据X 和Y 控制伺服系统以完成运动控制,将在第 8 章中讨论。 6.3 信号分析系统 信号分析系统是另一种数据处理软件系统,它接受从传感器和数据获取系统传送过来的 输入数据,然后处理这些数据而得到一些参数作为系统分析、设计和诊断的基础。有两种方 法处理离散采样数据: 一种是在时域和频域内直接分析这些数据以得到一些说明系统特性的 参数作为系统分析和诊断的基础; 另一种是先用采样数据建立系统的统计模型, 即所谓的系 统建模或系统识别,在数学上该模型是一差分方程。然后用得到的系统参数,包括系统阶数 和系数,做建模后分析,包括系统稳定性分析、模态分析、谱分析和系统预报等。建模后分 析的结果用于系统分析、设计、诊断和预报控制。
图 6。3 园弧插补的进给脉冲 对于跨越相邻象限的园弧段,当动点越过坐标轴时,插补程序应更换为另一个。显然,这需 要在发出每一个进给脉冲后作过象限判断。所以在插补过程中,应重复地作两个判断,即终 点判断和过象限判断。 图 6.4 是在第一象限内直线插补的程序框图,其中 0i, 0Fi 是程序的初始化。插补时 钟是用以控制插补速度,Fi 是一个控制字,它的赋值(大于或小于 0)被赋于确定动点位置 何在和下一步该是什么脉冲。N 是一个计数器用以存储直线段 AB 在 X 和 Y 方向上的进给 脉冲之和。疑问框 i = ?用于终点判断。

专业英语(机电)

专业英语(机电)

专业英语(机电)课程名称:《专业英语(机电)》课程名称:(英文)Specialized English课程编号:S0*******课程组长:曾宏达副教授课程性质:专业基础课学分:2总学时数:40适用专业:机械设计及理论;车辆工程;供热、供燃气、通风及空调工程课程教材:李庆芬《机电工程专业英语Fundamental and New Concept for Mechanical and Electrical Engineering》哈尔滨工程大学出版社2000参考书目:1.贺自强《机械工程专业英语English in Mechanical Engineering》北京理工大学出版社19892.教育部《机电英语》教材编写组《机电英语English for Mechanical & Electrical Engineering》高等教育出版社20013.朱超甫《机电一体化概论英文文选Introduction to Mechatronics English Reading》北京理工大学出版社1996教学方式:本课程以课堂讲授为主,拟课堂讨论等方式教学。

考核方式:考试,出勤率占10%,随堂考察占40%,期末考试成绩占50%。

先修课程:硕士第一外国语(英语)编写日期:2006年11月课程目的与要求:通过学习本课程,学生将掌握本专业领域使用频率较高的专业词汇和表达方法,进而掌握一些快速、精确阅读理解专业文献的方法,理解传统的机械设计制造和先进设计制造技术思想和实现方法,提高国际交流能力并了解国际机械设计理论与方法领域的最新前沿动态。

课程内容与学时分配:第一章机械制造基本知识(Fundamentals of Manufacturing Techniques) 4学时第二章设计基础(Design Fundamental)4学时第三章自动化(Automation)6学时第四章现代设计与制造(Modern Design and Manufacture)12学时第五章电气工程(Electrical Engineering) 4学时第六章自动化(Automation) 4学时第七章数控(Numerical Control) 6学时现代机械设计理论与方法课程名称:《现代机械设计理论与方法》课程名称:(英文)Modern Theory and Method in Mechanical Design课程编号:S0*******课程组长:缪毅副教授303总学时数:40适用专业:机械设计及理论课程教材:钟志华《现代设计方法》武汉理工大学出版社2001参考书目:1.孙靖民主编《现代机械设计方法》哈尔滨工业大学出版社20022.任中全著《现代机械设计理论与方法》煤炭工业出版社2006教学方式:本课程以课堂讲授为主,拟使用课堂讨论、网上讨论等方式教学。

机电一体化专业英语复习

机电一体化专业英语复习

词汇mechatronic 机电一体化(技术)sensor传感器actuator执行元件,执行结构Feedback反馈deviation偏差hydraulic液压的machine tool机床geometric modeling 几何建模job-lot amount单批量maintenance维护pallet随行夹具robot机器人drill钻床,钻头Lathe车床mill 铣床shaper牛头刨床planer龙门刨床grinder磨床tap攻丝pulley滑轮shaft轴bore 镗削screw螺杆tolerance公差torque转矩nut螺母spring弹簧key键bearing轴承coupling联结器clutch离合器diode二极管transistor三极管transistors 晶体管integrated circuit 集成电路chip 芯片capacitor 电容器resistor 电阻digital 数字(式)的lever杠杆Servomechanism伺服机构closed-loop闭环actuator 传动装置following device随动装置troubleshoot故障排除solenoid电磁线圈different +form简称CIMS 计算机集成制造系统Computer integrated manufacturing systemCIM 计算机集成制造Computer integrated manufacturingCAM 计算机辅助制造Computer-assisted manufactureCAD 计算机辅助设计Computer-assisted designCAE 计算机辅助工程Computer-assisted engineerNC 数字控制Numerical controlCNC 计算机数控Computer Numerical controlCAPP 计算机辅助工艺设计Computer-aided process planingFMS 柔性制造系统Flexible manufacturing systemGeometric modeling 几何建模英译汉1.CIM is an attempt to(+v。

宋主民-机电一体化专业英语1-2

宋主民-机电一体化专业英语1-2

主轴转速 切削深度 进给速度
车床和车削 过程
图 2.2 车削过程的输入、输出变量 2.传感器 传感器是用于测量输出变量并将它由机械信号转换为电量的一种仪表。例 如,热电偶用于将温度转换为电压;应变计将应变转换为电阻的变化,以及加速度计将 加速度信号转换为电荷的变化等。 3. 测量仪器 传感器通常被称为是一次仪表,它所产生的信号被传送到被称之为二次 仪表的测量仪器中,在那里信号经信号处理电路处理以适合于在刻度表、LCD(液晶显 示)或 CRT(阴极射线管)上显示。这种测量仪器能定量地记录被测的机器和过程的输 出信号,在某种意义上来说,它是一种用于监视机器和过程的状况的机电一体化产品, 并可归类为第一类机电一体化产品。 4.数据获取 除了被传送到测量仪器供显示外,传感器输出的电信号还通过数据获取 系统传送到微机作进一步处理。数据获取系统包括调制解调器(MODEM) 、滤波、采样、 A/D(模/数)转换和 PIO(外部输入和输出)接口电路。MODEM 简单地说就是一种电 路,用以将微弱和缓变的非周期信号通过调制和解调进行传送。滤波器是用于消除或减 弱混杂在信号中的干扰和噪声,它也是一种能允许或阻止具有一定带宽的信号通过的装 置。采样电路是一个将连续输出信号按一定的时间间隔切割成离散脉冲的电路。A/D 转 换器是一个标记为 ADC 的电路。它将离散的模拟量转换为数字量,使之能被传送至计算 机并被其接受。最后,PIO 接口是一种电路,它能提供信号输入/出计算机的通道。 5. 信号分析 在计算机机内所作的信号分析也称为数据处理。 信号分析中有各种各样 的工作,从获得最简单的统计值如均值、方差或均方根值到复杂的分析如相关分析、系 统稳定性分析和谱分析等。有两种方法进行信号分析:一种是直接用输入数据进行信号 分析;另一种是先用数据建立系统的数学模型,然后再根据所得到的模型参数进一步作 建模后分析,它包括相关分析、系统稳定性分析、模态分析、谱分析和模式识别等。所 有这些信号分析的结果被用于系统设计、分析、诊断和控制。 信号分析可以在线或离线方式进行。在线分析是指可在机器工作时进行,而离线分 析是指要将信号先记录在媒体内,然后将它传送到计算机内作分析。这种装备有在线数

习题答案-机电一体化专业英语(第4版)(附视频和音频).docx[7页]

习题答案-机电一体化专业英语(第4版)(附视频和音频).docx[7页]

练习答案第一单元Exercise 11. B2. D3. C4. AExercise 21.中心钻2. packing grease3.加工性能4. carbon steel5. 铸铁6. feeler gage7.固定支架8. follower restExercise 31. C2. E3. A4. H5. D6. F7. B8. GExercise 41. 交流电2. 自动检测读出设备3. 绝对误差4. 自动化工程设计5. 自动—手动6. 自动比率控制7. 基本汇编程序8. 斜齿轮Exercise 51. Double Turret Lathe2. Automatic Lathe3. Vertical Lathe4. Special Purpose Lathe5. Horizontal Lathe6. Pipe Screw-cutting LatheExercise 61. E2. C3. H4. G5. A6. K7. D8. B9. M 10. L 11.F 12. J 13. IExercise 71. Facing2. Taper turning3. Contour turning4. Form turning5. Chamfering6. Cutoff7. Threading8. Boring9. Drilling 10. Knurling第二单元Exercise 11. C2. D3. A4. BExercise 21. 耐腐蚀性2. Medium Carbon Steels3. 丝杆4. wear resistance5. 导电性6. aluminum alloys7. 压铸件8. printed circuit boardsExercise 31. D2. A3. E4. B5. H6. C7. G8. FExercise 41. 缓冲件2. 反压力3. 计算机辅助设计4. 计算机辅助制造5. 电路断续器6. 铸铁7. 合金铸铁8. 中心轴线Exercise 51. Knee-and-Column Milling Machine2. Plano-milling Machine3. Single-arm Milling Machine4. Instrument Milling Machine5. Tool Milling Machine6. Single-column Milling MachineExercise 61. C2. E3. G4. A5. I6. K7. B8. F9. D 10. H 11. JExercise 71. Peripheral milling2. Face milling3. Slab milling4. Slotting5. Straddle milling6. End milling7. Profile milling8. Pocket milling第三单元Exercise 11. B2. C3. D4. AExercise 21. 常规加工2. milling machines3. 数控4. electrical discharge machining5. 化学腐蚀6. engineering drawings7. 表面纹理8. feed motionExercise 31. C2. F3. A4. D5. H6. E7. B8. GExercise 41. 计算机管理指令2. 冷轧钢3. 全自动防护4. 铜镍合金5. 直流电6. 直流电继电器7. 测距设备8. 电位差Exercise 51. Horizontal Milling and Boring Machine2. Vertical Diamond Fine Boring Machine3. Double Boring Machine4. Deep Hole Boring Machine5. CNC Gantry-Boring and Milling Machine6. Jig Boring MachineExercise 61.C2. E3. G4. A5. F6. B7. DExercise 7(1) Boring a hole (2) Boring coaxial bore (3) Boring a big hole(4) Milling flat (5) Turning inner ring groove (6) Turning end face第四单元Exercise 11. D2. B3. C4. AExercise 21. 液压机械2. power transmission3. 并联装置4. charge pump5. 换向阀6. hydraulic pump7. 密封垫8. power densityExercise 31. C2. E3. A4. F5. D6. H7. G8. BExercise 41. 差动继电器2. 电子仪器3. 气油比4. 大功率5. 热处理6. 高速钢7. 渐开线齿轮8. 输入/输出Exercise 51. Two Uprights Drawing Presses2. Four Column Hydraulic Deep Drawing Press3. Servo-hydraulic Press4. Hydraulic Cutting Presses5. High Performance Large Presses6. Cold Forging PressExercise 61. C2. E3. A4. G5. B6. I7.D8. J9.F 10.HExercise 71. Upsetting operation2. Forging operation3. Bending operation4. Rolling operation5. Extrusion operation6. Swaging operation7. Punching operation8. Drawing operation第五单元Exercise 11. B2. D3. A4. CExercise 21. 计算机数字控制2. conventional machine3. 步进电机4. positional accuracy5. 加工中心机6. spindle speed7. 直接联轴器8. automatic tool changerExercise 31. C2. D3. H4. A5. B6. G7. E8. FExercise 41. 界面压力2. 局部电池3. 测漏器4. 动能5. 总长6. 可锻铁7. 手工操作8. 维修部门Exercise 51. Internal Grinding Machine2. Surface-Grinding Machine3. Slideway Grinding Machine4. Centerless Grinding Machine5. Tool Grinding Machine6. Jig Grinding MachineExercise 61. D2. F3. A4.G5. B6. C7. H8. EExercise 71. Horizontal surface grinding2. Internal grinding3. Honing4. Vertical surface grinding5. Centerless grinding6. Cylindrical grinding第六单元Exercise 11. B2. C3. A4. DExercise 21. 视图投影2. engineering drawing3.剖视图4. descriptive geometry5. 专利图6. three-dimensional model7. 分解图8. visual appearanceExercise 31. D2. F3. A4. G5. C6. H7. E8. BExercise 41. 机械工程师2. 可变轴距3. 主控振荡器4. 结构钢5. 安全系数6. 测量设备7. 中性轴8. 操作系统Exercise 51. Digital Controlled Lathe2. Digital Controlled Drill3. CNC Grinding Machine4. CNC Milling Machine5. CNC Boring Machine6. CNC Combined Punch PressExercise 51. D2. F3. A4. G5. B6. H7. C8. I9. EExercise 71. CNC machine tool body2. Column3. Control panel4. Motor assembly for Z axis5. Linear guide rail6. Automatic tool changer7. Working table8. Column base第七单元Exercise 11. D2. B3. A4. CExercise 21. 电子元件2. metallic pads3. 单向闸4. electrical current5. 电流脉冲6. semiconductor device7. 双稳开关8. light-emitting diodeExercise 31. D2. F3. A4. H5. B6. J7. C8. I9. E 10. GExercise 41. 脉码编制2. 位差3. 压力元件4. 功率方向继电器5. 功率因数6. 管路7. 功率输出8. 电压互感器Exercise 51. Gear Shaving Machine2. Gear Shaper3. Gear Grinding Machine4. Slotting Machine5. Gear Milling Machine6. Wheel Gear Milling MachineExercise 61. D2. F3. A4. G5. B6. H7. C8. EExercise 71. Slotting with a straight-tooth side-milling cutter2. Slotting with a concave slitting saw3. Plain milling4. Angle milling5. Profile milling with an end mill6. Form milling7. Straddle milling8. Concave milling第八单元Exercise 11. C2. D3. A4. BExercise 21.快闪存储器2.Single Chip Microprocessor3.地址总线4.Radom Access Memory5.发光二极管6. clock generator7. 通用串行总线8. analog-to-digital converterExercise 31. C2. E3. A4. B5. H6. D7. F8. GExercise 41. 质量控制2. 滚动轴承3. 电抗耦合4. 基本误差5. 轴马力6. 钢板7. 表面/质量比8. 平方律Exercise 51. V ertical D riller2. Radial Drilling Machine3. G un D rilling M achine4. Multiple Spindle Drilling Machine5. Horizontal Drilling Machine6. Milling and Drilling MachineExercise 61. C2. E3. B4. A5. H6. D7. I8. F9. GExercise 71. Reaming2. Tapping3. Counterboring4. Countersinking5. Center drilling6. Spot facing7. Drilling8. Redrilling9. Step drilling 10. Tapered drilling 11. Deep hole drilling 12. Trepanning第九单元Exercise 11. B2. D3. A4. CExercise 21. 磁通2.electromagnetic force3. 永久磁铁4.right-handed screw rule5.磁场6.line of magnetic force7.松紧带8. straight lineExercise 31. B2. E3. D4. A5. C6. G7. F8. HExercise 41. 标准压2. 斜距3. 不锈钢4. 主轴转速5. 半钢铸件6. 标准温度7. 钢铸件8. 结构钢Exercise 51. Shaping Machine2. CNC Gantry Milling Machine3. CNC Gantry Milling & Boring Machine4. Double Housing Planer5. Open-side Planing Machine6. Vertical Slotting MachineExercise 61. D2. F3. A4. I5. B6. H7. C8.E9. GExercise 71. Machining horizontal surface2. Machining vertical surface3. Machining inclined surface4. Slot cutting5. Keyway cutting6. Irregular machining第十单元Exercise 11. C2. D3. A4. BExercise 21. 时滞继电器2.switching device3.功能模块4.program blocks5.限位开关6. data block7.梯图er programExercise 31. C2. E3. A4. D5. B6. F7. I8. G9. HExercise 41. 安全阀2. T型弯头3. 技术条令4. 每英寸齿数5. 技术规程6. 工具钢7. 甚高频8. 轴距Exercise 51. Vertical External Broaching Machine2. Side B roaching Machine3. Horizontal Broaching Machine4. Gear Broaching Machine5. Hydraulic Spline Broaching Machine6. CNC Broaching MachineExercise 61. H2. E3. K4. F5. J6. B7. A8. I9. G 10. D 11. CExercise 71. Linear broach2. Push broach3. Pot broach4. Spline broach5. Straddle broach6. Rotary braoch7. Fir tree slot broach8. Dove tail broach。

机电一体化专业英语 Unit 6

机电一体化专业英语 Unit 6
பைடு நூலகம்
Exploded view drawing
An exploded view drawing is a technical drawing of an object that shows the relationship or order of assembly of the various parts. It shows the components of an object slightly separated by distance, or suspended in surrounding space in the case of a three-dimensional exploded diagram. An object is represented as if there had been a small controlled explosion emanating from the middle of the object, causing the object's parts to be separated an equal distance away from their original locations
An exploded view drawing can show the intended assembly of mechanical or other parts. In mechanical systems usually the component closest to the center is assembled first, or is the main part in which the other parts get assembled. This drawing can also help to represent disassembly of parts, where the parts on the outside normally get removed first

机电英语翻译

机电英语翻译

河南工程学院《机电英语》考查课专业论文设计制造盐溶液电阻分压器模型学生姓名:张众林学院:机械工程学院专业班级:机械制造及其自动化1321专业课程:机电英语任课教师:邬昌峰2014 年6 月16 日目录设计制造盐溶液电阻分压器模型 (3)简介 (3)一、盐水电阻分压器 (4)二、测量系统的设计和施工 (4)三、实验性测试 (6)(一)单位阶跃响应测试 (6)(二)耐压冲击试验 (7)(三)比例因子和线性度测试 (8)(四)短期稳定性试 (10)四、结论 (11)致谢 (11)参考文献 (11)设计制造盐溶液电阻分压器模型摘要:论文提出建设一个原型盐溶液的电阻电压测量系统要有分压器和电阻衰减器两部分构成。

成熟的分频器的结构被设计成同轴圆筒。

该系统具有300 kV 电压等级。

开发的测量系统已经测试通过了对单位阶跃响应试验组成的IEC标准,尺度因子试验,耐压试验,短期稳定性试验。

该实验的响应时间开发的电压测量系统和无屏蔽环分别约为50 ns和25 ns。

这成就将会有利于增加高压实验和研究的能力进而影响泰国的快速瞬变电压的传输和配电系统。

关键词:瞬态、雷电冲击电压电阻分压器、生理盐水、阶跃响应简介在电力系统造成过电压的主要原因之一是闪电。

雷电引起的过电压来自直接雷击或诱导系统的闪电电流。

它们经常造成设备损坏和安全事故,并使电力系统中断。

因此,高压设备在安装到工作系统之前必须根据相关标准进行测试。

已经有许多关于在几个纳秒的范围内测量高压脉冲的上升时间的研究在进行。

一个例子是在空气中一个绝缘体的击穿试验[1]。

该试验波形的上升时间是在一个几十纳秒的范围内,因此高压脉冲必须缩放级别,使其可以显示在示波器上。

一般来说,一个电压分压器是用来降低信号,使其降低的量与被测量的量大致成比例。

现在已经开发了不同的分压器,包括电阻分压器,电容器,电阻–电容分压器。

电阻分压器应用因长期响应的功率损耗率而受到了限制,但是它却可以达到亚纳秒范围内脉冲上升时间的响应。

Mechatronik-机电一体化

Mechatronik-机电一体化

Richtlinien und Lehrpläne zur Erprobung Fachschule für TechnikFachrichtungMechatronikHerausgegeben vom Ministerium für Schule,Jugend und Kinder des Landes Nordrhein-WestfalenVölklinger Straße49,40221Düsseldorf...../2004Auszug aus dem Amtsblattdes Ministeriums für Schule,Jugend und Kinderdes Landes Nordrhein-WestfalenNr.19165Sekundarstufe II-Berufskolleg;Bildungsgänge der Fachschulen;Lehrpläne zur ErprobungRd.Erl.d.Ministeriums für Schule,Jugend und Kinder v.2.9.2004-431.6.08.01.01Für den Unterricht in den verschiedenen Bildungsgängen der Fachschulen wurden unter verantwortlicher Leitung des Landesinstituts für Schule sowie unter Mitwir-kung erfahrener Lehrkräfte für die in der Anlage1aufgeführten Bildungsgänge Lehrpläne zur Erprobung erarbeitet.Die Lehrpläne zur Erprobung werden zum Schuljahr2005/2006für drei Durchgän-ge in Kraft gesetzt.Die Erprobung der Lehrpläne bereits zum Schuljahr2004/2005 wird den Berufskollegs frei gestellt.Den Berufskollegs,die die jeweiligen Bildungsgänge führen,gehen die Lehrpläne mit je einem Exemplar in Papierform unmittelbar zu.Die Lehrpläne werden außer-dem im Internet im Bildungsportal des Ministeriums veröffentlicht.Eine Bestellung über den Verlag ist nicht möglich.Rückfragen sind an das Landesinstitut für Schule zu richten.Die Lehrpläne sind allen an der didaktischen Jahresplanung für den Bildungsgang Beteiligten zur Verfügung zu stellen und zusätzlich in der Schulbibliothek u.a.für die Mitwirkungsberechtigten zur Einsichtnahme bzw.der Ausleihe verfügbar zu hal-ten.Die zur Erprobung in Kraft gesetzten Lehrpläne sind in Lernfeldern strukturiert.Die Bildungsgangkonferenzen sind aufgerufen,eine intensive didaktische Diskussion der Lehrpläne unter Einbeziehung des vom Landesinstitut für Schule entwickelten Kriterienkataloges zu führen.Um eine kontinuierliche Evaluation sicherstellen zu können,wird um Vorlage eines Erfahrungsberichtes nach jedem Schuljahr bis zum30.Oktober an das Landesin-stitut für Schule gebeten.Hierzu wird das Landesinstitut für Schule einen Evaluie-rungsbogen erstellen undüber learn-line bereitstellen.Nach Einarbeitung der Er-fahrungsberichte ist beabsichtigt,die erforderliche Verbändebeteiligung gemäߧ16SchMG(BASS1-3)für die Festsetzung der Richtlinien und Lehrpläne einzulei-ten.Mit Ablauf des31.7.2005treten die bisherigen Lehrpläne auslaufend außer Kraft.Anlage1 Heft Neue Lehrpläne,die zum1.8.2005in Kraft treten:7001Lehrplan für den fachrichtungsübergreifenden Lernbereich7101Fachschule für Agrarwirtschaft,Fachrichtung Gartenbau,Schwerpunkt Dienstleistungsgartenbau7102Fachschule für Agrarwirtschaft,Fachrichtung Gartenbau,Schwerpunkt Produktion und Vermarktung7103Fachschule für Agrarwirtschaft,Fachrichtung Landwirtschaft7401Fachschule für Technik,Fachrichtung Elektrotechnik7402Fachschule für Technik,Fachrichtung Informatik7403Fachschule für Technik,Fachrichtung Mechatronik7501Fachschule für Wirtschaft,Fachrichtung Betriebswirtschaft,Schwerpunkte Absatz,Personal,Produktion,Rechnungswesen,Wirtschaftsinformatik7502Fachschule für Wirtschaft,Fachrichtung Betriebswirtschaft,Schwerpunkt Finanzwirtschaft7503Fachschule für Wirtschaft,Fachrichtung Betriebswirtschaft,Schwerpunkt Steuern7504Fachschule für Wirtschaft,Fachrichtung InformatikAnlage2 Folgende Lehrpläne treten ab dem31.7.2005auslaufend außer Kraft: Fachrichtungsübergreifender Lernbereich,RdErl.vom20.6.1996(BASS15-61) Fachschule für Technik,Fachrichtung Elektrotechnik,RdErl.vom20.6.1996(BASS 15-61)Fachschule für Wirtschaft,Fachrichtung Betriebswirtschaft,RdErl.vom20.6.1996 (BASS15-61)Fachschule für Agrarwirtschaft,Fachrichtung Gartenbau(einjährig),RdErl.vom 20.6.1996(BASS15-61)Fachschule für Agrarwirtschaft,Fachrichtung Gartenbau(zweijährig),RdErl.vom 20.6.1996(BASS15-61)Fachschule für Agrarwirtschaft,Fachrichtung Landwirtschaft(Stufe I),RdErl.vom 20.6.1996(BASS15-61)Fachschule für Agrarwirtschaft,Fachrichtung Landwirtschaft(Stufe II),RdErl.vom 20.6.1996(BASS15-61)InhaltSeite 1Bildungsgänge der Fachschule71.1Intention der Bildungsgänge7 1.2Organisatorische Struktur8 1.3Didaktische Konzeption9 1.4Hinweise zum Erwerb der bundesweiten Fachhochschulreife132Fachschule für Technik,Fachrichtung Mechatronik182.1Berufsbild und Ausbildungsziel18 2.2Stundentafel20 2.3Fachrichtungsübergreifender Lernbereich21 2.4Differenzierungsbereich21 2.5Lernfelder22 2.5.1Übersicht der Lernfelder22 2.5.2Beschreibung der Lernfelder23Quelle:www.learn-line.nrw.de/angebote/fs/Stand:05.08.2004Seite5von39Seite6von39Stand:05.08.2004Quelle:www.learn-line.nrw.de/angebote/fs/1Bildungsgänge der Fachschule1.1Intention der BildungsgängeFachschulen sind Einrichtungen der beruflichen WeiterbildungFachschulen bauen auf der beruflichen Erstausbildung und Berufserfahrungen (postsekundare Ausbildung)auf:Sie bieten in Vollzeit-oder Teilzeitform(berufsbe-gleitend)eine berufliche Weiterbildung mit einem staatlich zertifizierten Berufsab-schluss.Fachschulen entwickeln sich entsprechend den wachsenden Qualifikati-onsanforderungen weiter.Sie vertiefen und erweitern die Fach-und Allgemeinbil-dung auf wissenschaftspropädeutischer Grundlage und ermöglichen damit den Erwerb allgemein bildender Abschlüsse.Fachschulen qualifizieren zurÜbernahme erweiterter Verantwortung und FührungstätigkeitFachschulen vermitteln erweiterte berufliche Fähigkeiten und Kenntnisse für Fach-kräfte in der beruflichen Praxis.Studierende qualifizieren sich fürübergreifende oder spezielle Aufgaben koordinie-render,gestaltender,anleitender oder pädagogischer Art.Gelernt wird,komplexe Arbeiten selbstständig zu bewältigen,Entscheidungen zu treffen,ihre Umsetzung zu planen,sie durchzuführen und zu reflektieren,verantwortlich in aufgaben-und projektbezogenen Teams tätig zu werden,Führungsaufgaben in definierten Funk-tionsbereichen zuübernehmen.Die erweiterte berufliche Handlungskompetenz,die an Fachschulen erworben wird, entfaltet sich in den Dimensionen Fachkompetenz,Human-und Sozialkompetenz sowie Methoden-und Lernkompetenz.∙Durch Fachkompetenz werden die Studierenden befähigt,berufliche Aufgaben selbstständig,sachgerecht und methodengeleitet zu bearbeiten und die Ergeb-nisse zu beurteilen.∙Human-und Sozialkompetenz zeigt sich in der Fähigkeit,in gesellschaftlichen wie beruflichen Situationen verantwortungsvoll zu handeln.Insbesondere im Hinblick auf Teamarbeit bedeutet dies im beruflichen Kontext die Fähigkeit zur Gestaltung von Kommunikationsprozessen.∙Die Methodenkompetenz ermöglicht zielgerichtetes,planmäßiges Vorgehen bei der Bearbeitung komplexer Aufgaben.Planungsverfahren,Arbeitstechniken und Lösungsstrategien sollen zur Bewältigung von Aufgaben und Problemen selbst-ständig ausgewählt,angewandt und weiterentwickelt werden.∙Lernkompetenz ist die Grundlage,um aktiv und eigenständig an den gesell-schaftlichen und beruflichen Veränderungen teilnehmen zu können.Zur Lern-kompetenz gehört insbesondere auch die Fähigkeit und Bereitschaft,im Beruf undüber den Beruf hinaus Lerntechniken und Lernstrategien zu entwickeln.Quelle:www.learn-line.nrw.de/angebote/fs/Stand:05.08.2004Seite7von39Zu einer umfassenden Handlungskompetenz gehört auch die Sensibilisierung für die Wirkungen tradierter männlicher und weiblicher Rollenprägungen und die Ent-wicklung alternativer Verhaltensweisen zur Förderung der Gleichstellung von Frau-en und Männern(Gender Mainstreaming).Fachschulen orientieren sich an den aktuellen Qualifikationsanforderungen der ArbeitsweltUnsere Arbeitswelt ist von Wandlungen und Umbrüchen in den Produktions-,Ver-waltungs-und Dienstleistungsbereichen geprägt.Berufliche Anforderungen und Berufsbilderändern sich entsprechend.Fachschulen müssen rasch und flexibel auf neue Qualifikationsanforderungen reagieren können.Das wird durch curricula-re Grundlagen ermöglicht,die den Unterricht an der Bearbeitung beruflicher Auf-gaben orientieren.Sie bieten darüber hinaus Zusatzqualifikationen in Aufbaubil-dungsgängen an.Fachschulen vermitteln StudierfähigkeitDer Abschluss eines mindestens zweijährigen Fachschulbildungsgangs ermöglicht den zusätzlichen Erwerb einer durch Vereinbarung der Kultusministerkonferenz bundesweit anerkannten Fachhochschulreife.Damit werden gute Grundlagen für ein erfolgreiches Fachhochschulstudium gelegt.Fachschulen qualifizieren zur beruflichen SelbständigkeitDer Abschluss der Fachschule befähigt zur beruflichen Selbstständigkeit und ist z.B.anerkannt als Voraussetzung für die Eintragung in die Handwerksrolle.(B e s c h l u s s d e s…B u n d-Länder-A u s s c h u s s e s H a n d w e r k s r e c h t“z um Vollzug der Handwerksordnung vom21.November2000und derÄnderung der Verordnung über die Anerkennung von Prüfungen bei der Eintragung in die Handwerksrolle und bei der Meisterprüfung im Handwerk vom2.November1982,§1)1.2Organisatorische StrukturDie Fachschulen sind in Fachrichtungen und Schwerpunkte gegliedert.Der Pflicht-unterricht für die Studierenden beträgt in einjährigen1200,in zweijährigen2400 und in dreijährigen Bildungsgängen3600Unterrichtsstunden.Die Stundentafel ist nach Lernbereichen und Fächern gegliedert.Sie umfasst den fachrichtungsüber-greifenden,den fachrichtungsbezogenen Lernbereich mit der Projektarbeit und den Differenzierungsbereich.Diese sind aufeinander abzustimmen.Für Absolventinnen und Absolventen der Fachschule können Aufbaubildungsgän-ge eingerichtet werden,die in der Regel600Unterrichtsstunden umfassen.Seite8von39Stand:05.08.2004Quelle:www.learn-line.nrw.de/angebote/fs/1.3Didaktische KonzeptionHandlungsorientierungDie Entwicklung einer umfassenden Handlungskompetenz erfordert die Orientie-rung des Unterrichts an der Bearbeitung beruflicher Aufgaben.In diesem Zusam-menhang wird mit Handlungsorientierung das didaktische und lernorganisatorische Konzept für die Gestaltung des Unterrichts bezeichnet.Der Unterricht soll die Stu-dierenden zunehmend in die Lage versetzen,die Verantwortung für ihren Lern-und Entwicklungsprozess zuübernehmen.Handlungsorientierte Lernprozesse sind durch folgende Merkmale gekennzeichnet:∙Den Ausgangspunkt des Lernens bildet eine berufliche Aufgabe,die zum Han-deln auffordert.∙Die Handlung knüpft an die Erfahrungen der Lernenden an.∙Die Handlung wird von den Lernenden selbstständig geplant,durchgeführt,kor-rigiert und ausgewertet.∙Die Lernprozesse werden von sozialen und kooperativen Kommunikationspro-zessen begleitet.∙Die Ergebnisse der Lernprozesse müssen hinsichtlich ihres Nutzens reflektiert werden.HandlungsfelderHandlungsfelder sind zusammengehörige Aufgabenkomplexe mit beruflichen so-wie lebens-und gesellschaftsbedeutsamen Handlungssituationen,zu deren Bewäl-tigung befähigt werden soll.Handlungsfelder sind mehrdimensional,indem sie be-rufliche,gesellschaftliche und individuelle Problemstellungen miteinander verknüp-fen.Die Gewichtung der einzelnen Dimensionen kann dabei variieren.LernfelderLernfelder sind didaktisch begründete,schulisch aufbereitete Handlungsfelder.Sie fassen komplexe Aufgabenstellungen zusammen,deren unterrichtliche Bearbei-tung in handlungsorientierten Lernsituationen erfolgt.Lernfelder sind durch Ziel-formulierungen im Sinne von Kompetenzbeschreibungen und durch Inhalte ausge-legt.Die Konkretisierung der Lernfelder durch Lernsituationen wird in Bildungs-gangkonferenzen geleistet.Lernfelder sind mit Zeitrichtwerten versehen.LernsituationenDas Lernen in Lernfeldern wirdüber Lernsituationen organisiert und strukturiert. Lernsituationen sind didaktisch ausgewählte praxisrelevante Aufgaben.Sie werden durch die Bildungsgangkonferenz entwickelt und festgelegt.Die Bildungsgangkon-Quelle:www.learn-line.nrw.de/angebote/fs/Stand:05.08.2004Seite9von39ferenz muss sicherstellen,dass durch die Gesamtheit der Lernsituationen die In-tentionen des Lernfeldes insgesamt erfasst werden.Lernen in Lernsituationen ist handlungsorientiertes Lernen.FächerFächer sind landeseinheitlich inhaltlich-organisatorische Einheiten,die auf den Zeugnissen ausgewiesen und benotet werden.Sie sind mit zugeordneten Jahres-stunden in den Stundentafeln für die Fachschulen festgelegt.Inhalte,die aufgrund von KMK-Vereinbarungen ausgewiesen werden müssen,sind den Lernfeldern zugeordnet.SelbstlernphasenVon den Unterrichtsstunden des fachrichtungsübergreifenden und des fachrich-tungsbezogenen Lernbereichs können nach Maßgabe der Richtlinien und Lehrplä-ne bis zu20v.H.,jedoch nicht mehr als480Unterrichtsstunden,als betreute und durch Lehrkräfte vor-und nachbereitete andere Lernformen(Selbstlernphasen)or-ganisiert werden.(APO-BK Anlage E)Selbstlernphasen fordern in besonderer Weise dazu auf,Verantwortung für Lern-prozess und Kompetenzentwicklung zuübernehmen.Dies geschieht dadurch, dass die Lehrenden schrittweise die Verantwortung für die Organisation des Ler-nens an die Studierenden abgeben.Die Studierenden werden zunehmend in die Lage versetzt,das eigene Lernverhalten zu reflektieren,zu steuern,zu kontrollie-ren und zu entwickeln.Damit verändert sich auch die Rolle der Lehrenden:Individuelle Lernprozesse sind zu beraten,zu begleiten und zu unterstützen.Kommunikationsstrukturen zwischen Lehrenden und Studierenden,die individuelle Lernzeiten,individuelle Lerntempi und das Lernen an anderen Orten in Einzel-,Partner-oder Gruppenarbeit berück-sichtigen,sind zu entwickeln.Eine besondere Herausforderung für die Lehrenden ist die sinnvolle Verknüpfung von Präsenz-und Selbstlernphasen.Die organisatorischen Regelungen zu den Selbstlernphasen trifft die Bildungs-gangkonferenz.Sie stimmt die Selbstlernphasen mit der didaktischen Jahrespla-nung ab und entwickelt Kriterien zur Leistungsbewertung.Die Inhalte der Selbstlernphasen werden aus dem Lehrplan abgeleitet und sind in Lernsituationen eingebettet.Dabei können sie mit zunehmendem Kompetenzge-winn umfangreicher und komplexer werden.Dies kann von der unterrichtsvorberei-tenden Erarbeitung von Aufgabenüber die Bearbeitung eines linear aufgebauten Lernprogramms bis zur völlig selbständigen Erarbeitung einer Lernsituation rei-chen.Methodisch sind hierbei Fallstudie oder Studienbrief ebenso möglich wie die Nutzung von E-Learning-Verfahren.Letztere tragen durch die Nutzung elektroni-Seite10von39Stand:05.08.2004Quelle:www.learn-line.nrw.de/angebote/fs/scher Kommunikationsmittel zur zusätzlichen Kompetenzerweiterung im methodi-schen Bereich und bei der Lernorganisation in Einzel-oder Gruppenarbeit bei.Der Lernerfolg fließt in die Leistungsbewertung ein.Dabei trägt die Form der Leis-tungsüberprüfung der Dauer,dem Umfang und der Komplexität der Selbstlernpha-se Rechnung.Die Benotung der Arbeitsergebnisse einer Selbstlernphase wird bei der Bewertung der Fächer berücksichtigt,denen das jeweilige Lernfeld zugeordnet ist.Bei einer Gruppenarbeit ist darauf zu achten,dass die Arbeitsergebnisse den einzelnen Studierenden zugeordnet werden können.ProjektarbeitDie Projektarbeit hat aufgrund ihres Stellenwertes in der Stundentafel den Status eines Faches und wird auf dem Zeugnis unter Angabe des Themas bzw.der The-men mit einer Note ausgewiesen.Die unterrichtliche Umsetzung erfolgt in der zweiten Hälfte des Bildungsgangs in der Regel zeitlich zusammenhängend(ge-blockt).Während der Projektarbeit findet kein weiterer Unterricht statt.Die Projektarbeit liefert den lernorganisatorischen Rahmen,in dem,losgelöst von Zuordnungen zu anderen Fächern oder Lernfeldern,erworbene Kompetenzen bei der Durchführung eines umfassenden berufsrelevanten Projektes angewandt und weiterentwickelt werden können.Dies gilt in besonderem Maße für die im Rahmen von Selbstlernphasen erworbenen Kompetenzen.Für die Projektarbeit werden keine inhaltlichen Vorgaben gemacht.Die Themen der Projekte können durch die Arbeitsgruppen selbst gewählt werden.Dabei ste-hen die Lehrenden beratend zur Seite,um zu gewährleisten,dass die Projekte so-wohl realisierbar sind als auch dem der Kompetenzentwicklung entsprechenden Anforderungsniveau gerecht werden.Die Projekte werden in Arbeitsgruppen team-orientiert durchgeführt.Die Gestaltung und der Verlauf des Arbeitsprozesses sind neben der Erstellung und Präsentation eines Arbeitsproduktes als Ergebnis der Projektarbeit anzusehen.Die Lehrenden haben während der Umsetzung des Projektes die Aufgabe,durch ihre moderierende und beratende Unterstützung adäquate Rahmenbedingungen zu schaffen.In der Projektarbeit werden die Leistungen der einzelnen Studierenden bewertet. Dabei sind sowohl prozess-als auch situationsorientierte Formen der Lernerfolgs-überprüfung vorzusehen.BildungsgangarbeitDie zentrale didaktische Arbeit wird in den Bildungsgangkonferenzen geleistet;hier finden die nach APO-BK notwendigen Festlegungen und Absprachen sowie die wesentlichen pädagogischen Beratungen und Abstimmungen zur Leistungsbewer-tung statt.Die Umsetzung der in den vorherigen Abschnitten beschriebenen didak-tischen Konzeption erfolgt in einer didaktischen Jahresplanung durch die Bildungs-gangkonferenz.Die Bildungsgangkonferenz hat im Rahmen der Umsetzung des Lehrplans folgen-de Aufgaben:∙Konkretisierung der Lernfelder durch Lernsituationen,wobei zu beachten ist, dass die im Lehrplan enthaltenen Kompetenzbeschreibungen,Inhaltsangaben und Zeitrichtwerte verbindlich sind.∙ggf.weitere Festlegung/Änderung der Zuordnung von FHR-Standards.Die FHR-Standards sind Bestandteil des Lehrplans.∙Planung der Lernorganisation;ggf.unter Berücksichtigung von Selbstlernpha-sen.∙Planung der Projektarbeit.∙Leistungsbewertung.∙Planung des Fachschulexamens.∙Evaluation.Die genannten Aufgaben sind in der didaktischen Jahresplanung zu dokumentieren. KMK-FHR-StandardsDie im Beschluss der Kultusministerkonferenz festgelegten Standards(siehe1.4) s i n d i m K a p i t e l…L e r n f e l d e r“u nter"Beschreibung der Lernfelder"den Fächern bzw. den Inhalten zugeordnet,soweit diese nichtüber die Fächer des fachrichtungs-übergreifenden Lernbereichs abgedeckt werden.Für eine vereinfachte Darstellung der Zuordnung sind dort nur die Ziffern der Nummerierungen aufgenommen,die im folgenden Kapitel unter…I V S t a n d a r d s“f e s t g e l e g t w u r d e n.1.4Hinweise zum Erwerb der bundesweiten Fachhochschulreife Vereinbarungüber den Erwerb der Fachhochschulreife in beruflichen Bil-dungsgängen(Beschluss der Kultusministerkonferenz vom05.06.1998i.d.F.vom09.03.2001)I.VorbemerkungenDie Vereinbarungüber den Erwerb der Fachhochschulreife in beruflichen Bil-dungsgängen geht davon aus,dass berufliche Bildungsgänge in Abhängigkeit von den jeweiligen Bildungszielen,-inhalten sowie ihrer Dauer Studierfähigkeit bewir-ken können.Berufliche Bildungsgänge fördern fachpraktische und fachtheoretische Kenntnisse sowie Leistungsbereitschaft,Selbstständigkeit,Kooperationsfähigkeit,Verantwor-tungsbewusstsein und kreatives Problemlöseverhalten.Dabei werden auch die für ein Fachhochschulstudium erforderlichen Lern-und Arbeitstechniken vermittelt. II.Voraussetzungen für den Erwerb der Fachhochschulreife nach dieser VereinbarungDie Fachhochschulreife nach dieser Vereinbarung kann erworben werden in Ver-bindung mit dem[...]Abschluss einer Fachschule/FachakademieDer Erwerb der Fachhochschulreifeüber einen beruflichen Bildungsgang setzt in diesem Bildungsgang den mittleren Bildungsabschluss voraus.Der Nachweis des mittleren Bildungsabschlusses muss vor dem Eintritt in die Abschlussprüfung er-bracht werden.Die Fachhochschulreife wird ausgesprochen,wenn in den einzelnen originären be-ruflichen Bildungsgängen die zeitlichen und inhaltlichen Rahmenvorgaben ein-gehalten werden.Außerdem muss die Erfüllung der in dieser Vereinbarung festge-legten inhaltlichen Standardsüber eine Prüfung(vgl.Ziff.V)nachgewiesen wer-den.Diese kann entweder in die originäre Abschlussprüfung integriert oder eine Zusatzprüfung sein.[...]III.RahmenvorgabenFolgende zeitliche Rahmenvorgaben müssen erfüllt werden:1.Sprachlicher Bereich240StundenDavon müssen jeweils mindestens80Stunden auf Mutter-sprachliche Kommunikation/Deutsch und auf eine Fremd-sprache entfallen.2.Mathematisch-naturwissenschaftlich-technischer Bereich240Stunden3.Gesellschaftswissenschaftlicher Bereich mindestens80Stunden(einschließlich wirtschaftswissenschaftlicher Inhalte)Diese Stunden können jeweils auch im berufsbezogenen Bereich erfüllt werden, wenn es sich um entsprechende Unterrichtsangebote handelt,die in den Lehrplä-nen ausgewiesen sind.Die Schulaufsichtsbehörde legt für jeden Bildungsgang fest,wo die für die einzelnen Bereiche geforderten Leistungen zu erbringen sind. IV.Standards1.Muttersprachliche Kommunikation/DeutschD e r L e r n b e r e i c h…Mün d l i c h e r S p r a c h g e b r a u c h“v e r m i t t e l t u n d f e s t i g t w e s e n t l i c h e Techniken situationsgerechten,erfolgreichen Kommunizierens in Alltag,Studium und Beruf.Die Schülerinnen und Schüler sollen die Fähigkeiten erwerben,1.1unterschiedliche Rede-und Gesprächsformen zu analysieren,sachgerechteund manipulierende Elemente der Rhetorik zu erkennen,1.2den eigenen Standpunkt in verschiedenen mündlichen Kommunikationssituati-onen zu vertreten,1.3Referate zu halten,dabei Techniken der Präsentation anzuwenden und sicheiner anschließenden Diskussion zu stellen.I m L e r n b e r e i c h…S c h r i f t l i c h e r S p r a c h g e b r a u c h“s t e h e n v o r a l l e m d i e T e c h n iken der präzisen Informationswiedergabe und der schlüssigen Argumentation–auch im Zusammenhang mit beruflichen Erfordernissen und Anforderungen des Studiums–im Mittelpunkt.Die Schülerinnen und Schüler sollen die Fähigkeit erwerben,1.4komplexe Sachtexteüber politische,kulturelle,wirtschaftliche,soziale und be-rufsbezogene Themen zu analysieren(geraffte Wiedergabe des Inhalts,Analy-se der Struktur und wesentlicher sprachlicher Mittel,Erkennen und Bewertung der Wirkungsabsicht,Erläuterung von Einzelaussagen,Stellungnahme)und1.5Kommentare,Interpretationen,Stellungnahmen oder Problemerörterungen–ausgehend von Texten oder vorgegebenen Situationen–zu verfassen(sach-lich richtige und schlüssige Argumentation,folgerichtiger Aufbau,sprachliche Angemessenheit,Adressaten-und Situationsbezug)oder1.6literarische Texte mit eingegrenzter Aufgabenstellung zu interpretieren(Analy-se von inhaltlichen Motiven und Aspekten der Thematik,der Raum-und Zeit-struktur,ggf.der Erzählsituation,wichtiger sprachlicher und ggf.weiterer Ges-taltungselemente).2.FremdspracheDas Hauptziel des Unterrichts in der fortgeführten Fremdsprache ist eine im Ver-gleich zum Mittleren Schulabschluss gehobene Kommunikationsfähigkeit in der Fremdsprache für Alltag,Studium und Beruf.Dazu ist es erforderlich,den allge-meinsprachlichen Wortschatz zu festigen und zu erweitern,einen spezifischen Fachwortschatz zu erwerben sowie komplexe grammatikalische Strukturen gebrau-chen zu lernen.Verstehen(Rezeption)Die Schülerinnen und Schüler sollen die Fähigkeit erwerben,2.1anspruchsvollere allgemeinsprachliche und fachsprachlicheÄußerungen undunterschiedliche Textsorten(insbesondere Gebrauchs-und Sachtexte)–ggf.unter Verwendung von fremdsprachigen Hilfsmitteln–im Ganzen zu verstehen und im Einzelnen auszuwerten.Sprechen und Schreiben(Produktion)Die Schülerinnen und Schüler sollen die Fähigkeit erwerben,2.2Gesprächssituationen des Alltags sowie in berufsbezogenen Zusammenhän-gen in der Fremdsprache sicher zu bewältigen und dabei auch die Gesprächs-initiative zu ergreifen,2.3auf schriftliche Mitteilungen komplexer Art situationsgerecht und mit angemes-senem Ausdrucksvermögen in der Fremdsprache zu reagieren,2.4komplexe fremdsprachige Sachverhalte und Problemstellungen unter Verwen-dung von Hilfsmitteln auf Deutsch wiederzugeben und entsprechende in Deutsch dargestellte Inhalte in der Fremdsprache zu umschreiben.3.Mathematisch-naturwissenschaftlich-technischer BereichDie Schülerinnen und Schüler sollen ausgehend von fachrichtungsbezogenen Problemstellungen grundlegende Fach-und Methodenkompetenzen in der Ma-thematik und in Naturwissenschaften bzw.Technik erwerben.Dazu sollen sie3.1Einblick in grundlegende Arbeits-und Denkweisen der Mathematik und min-destens einer Naturwissenschaft bzw.Technik gewinnen,3.2erkennen,dass die Entwicklung klarer Begriffe,eine folgerichtige Gedanken-führung und systematisches,induktives und deduktives,gelegentlich auch heu-ristisches Vorgehen Kennzeichen mathematisch-naturwissenschaftlich-techni-schen Arbeitens sind,3.3Vertrautheit mit der mathematischen und naturwissenschaftlich-technischenFachsprache und Symbolik erwerben und erkennen,dass Eindeutigkeit,Wi-derspruchsfreiheit und Vollständigkeit beim Verbalisieren von mathematischen bzw.naturwissenschaftlich-technischen Sachverhalten vor allem in Anwen-dungsbereichen für deren gedankliche Durchdringung unerlässlich sind,3.4befähigt werden,fachrichtungsbezogene bzw.naturwissenschaftlich-techni-sche Aufgaben mit Hilfe geeigneter Methoden zu lösen,3.5mathematische Methoden anwenden können sowie Kenntnisse und Fähigkei-ten zur Auswahl geeigneter Verfahren und Methoden mindestens aus einem der weiteren Bereiche besitzen:3.5.1Analysis(Differential-und Integralrechnung),3.5.2Beschreibung und Berechnung von Zufallsexperiment,einfacher Wahr-scheinlichkeit,Häufigkeitsverteilung sowie einfache Anwendungen ausder beurteilenden Statistik,3.5.3Lineare Gleichungssysteme und Matrizenrechnung,3.6reale Sachverhalte modellieren können(Realität–Modell–Lösung–Realität), 3.7grundlegende physikalische,chemische,biologische oder technische Gesetz-mäßigkeiten kennen,auf fachrichtungsspezifische Aufgabenfelderübertragen und zur Problemlösung anwenden können,3.8selbstständig einfache naturwissenschaftliche bzw.technische Experimentenach vorgegebener Aufgabenstellung planen und durchführen,3.9Ergebnisse ihrer Tätigkeit begründen,präsentieren,interpretieren und bewer-ten können.V.Prüfung1.Allgemeine GrundsätzeFür die Zuerkennung der Fachhochschulreife ist jeweils eine schriftliche Prüfung in den drei Bereichen–muttersprachliche Kommunikation/Deutsch,Fremdsprache, mathematisch-naturwissenschaftlich-technischer Bereich–abzulegen,in der die in dieser Vereinbarung festgelegten Standards nachzuweisen sind.Für die Zuerken-nung der Fachhochschulreife für Absolventinnen und Absolventen der mindestens zweijährigen Fachschulen kann der Nachweis der geforderten Standards in zwei der drei Bereiche auch durch kontinuierliche Leistungsnachweise erbracht werden. Soweit die zeitlichen und inhaltlichen Rahmenvorgaben dieser Vereinbarung durch die Stundentafeln und Lehrpläne der genannten beruflichen Bildungsgänge abge-deckt und durch die Abschlussprüfung des jeweiligen Bildungsgangs oder eine Zu-satzprüfung nachgewiesen werden,gelten die Bedingungen dieser Rahmenver-einbarung als erfüllt.Die Prüfung ist bestanden,wenn mindestens ausreichende Leistungen in allen Fä-chern erreicht sind(§16,Abs.4der Anlage E zur APO-BK).Die schriftliche Prüfung kann in einem Bereich durch eine schriftliche Facharbeit mit anschließender Präsentation der Ergebnisse im Rahmen eines Kolloquiums un-ter prüfungsgemäßen Bedingungen ersetzt werden.。

机电一体化 英文

机电一体化 英文

Mechatronics——机电一体化1 A blend of mechanics and electronics, mechatronics has come to mean the synergistic use of precision engineering, control theory, computer science, and sensor and actuator technology to design improved products and processes.2 The standard clothes dryer is typically controlled by a mechanical timer. The user adjusts the timer according to the size and dampness of the load. If the timing device is not set properly, the drying cycle may be too short and the laundry may come out wet, or the machine could run long and waste energy.3 A clothes dryer, however, might be fitted with a sensor-based feedback system that lets the machine measure the moisture content of the fabrics or the exhaust air, and turn itself off when the load is dry. Operating performance is enhanced and energy use is lowered as a result. The redesigned dryer might even be cheaper to buy, depending mainly on the cost of the components that comprise the electromechanical control system.4 The computer disk drive, such as Cheetah from Seagate Technology, is one of the best examples of mechatronic design because it exhibits quick response, precision, and robustness.5 Many U.S.-trained design engineers would say that the improved dryer is the result ofup-to-date but conventional design practices. A reliable yet relatively inaccurate mechanical device was replaced by a "smarter" electronic control. In much of the rest of the world, however, design engineers would say that the dryer redesign followed the principles of mechatronics.6 Mechatronics is nothing new; it is simply the application of the latest techniques in precision mechanical engineering, controls theory, computer science, and electronics to the design process to create more functional and adaptable products. This, of course, is something many forward-thinking designers and engineers have been doing for years.7 The vaguely awkward word was first coined in Japan some 30 years ago. Since then, mechatronics has come to denote a synergistic blend of mechanics and electronics. The word's meaning is somewhat broader than the traditional term electromechanics, which to many connotes the use of electrostatic or electromagnetic devices. It is also an amorphous, heterogeneous, and continually evolving concept with 1,001 definitions, many of which are so broad or so narrow to be of seemingly marginal use.8 Mechatronics is more than semantics, however. It's a significant design trend that has a marked influence on the product-development process, international competition in manufactured goods, the nature of mechanical engineering education in coming years, and quite probably the success mechanical engineers will have in becoming team leaders or engineering managers.Defining Mechatronics9 For Takashi Yamaguchi, who works at Hitachi Ltd.'s Mechanical Engineering Laboratory in Ibaraki, Japan, mechatronics is "a methodology for designing products that exhibit fast, precise per网formance. These characteristics can be achieved by considering not only the mechanical design but also the use of servo controls, sensors, and electronics." He added that it is also very important to make the design robust. Computer disk drives, for example, are a prime example of the successful application of mechatronics: "Disk drives are required to provide very fast access, precise positioning, as well as robustness against various disturbances," he said.10 For Giorgio Rizzoni, associate professor of mechanical engineering at Ohio State University in Columbus, mechatronics is "the confluence of traditional design methods with sensors and instrumentation technology, drive and actuator technology, embedded real-time microprocessor systems, and real-time software." Mechatronic (electromechanical) products, he said, exhibit certain distinguishing features, including the replacement of many mechanical functions with electronic ones, which results in much greater flexibility and easy redesign or reprogramming; the ability to implement distributed control in complex systems; and the ability to conduct automated data collection and reporting. The diagram at left illustrates that mechatronics is where mechanics, electronics, computers, and controls intersect11 "Mechatronics is really nothing but good design practice," said Masayoshi Tomizuka, professor of mechanical engineering at the University of California, Berkeley. "The basic idea is to apply new controls to extract new levels of performance from a mechanical device." It means using modern, cost-effective technology to improve product and process performance and flexibility. In many cases, the application of computer and controls technology yields a design solution that is more elegant than the purely mechanical approach. By having a good idea of what can be done using other than mechanical means, design freedom increases and results improve, according to Tomizuka, who is also editor-in-chief of the quarterly IEEE/ASME Transactions on Mechatronics jointly published by the Institute for Electrical and Electronics Engineers and ASME.12 The journal, first published in March 1996, is another indication that the importance of this interdisciplinary area is being recognized. Transactions covers a range of related technical areas, including modeling and design, system integration, actuators and sensors, intelligent control, robotics, manufacturing, motion control, vibration and noise control, microdevices and optoelectronic systems, and automotive systems.The Roots of Mechatronics13 Mechatronics was first used in terms of the computer control of electric motors by an engineer at Japan's Yaskawa Electric Co. in the late 1960s. The word has remained popular in Japan, and has been in general use in Europe for many years. Although mechatronics has been slow to gain industrial and academic acceptance as a field of study and practice in Great Britain and the United States, its increasingly prominent place worldwide is shown by the growing number of undergraduate and postgraduate mechatronics courses now being offered.14 Many engineers would contend that mechatronics grew out of robotics. Early robotic arms, then unable to coordinate their movements and without sensory feedback, benefited greatly from advances in kinematics, dynamics, controls, sensor technology, and high-level programming. The same battery of modern technologies that made robots more flexible and thus more useful was then brought to bear on the design of new generations of high-performance, adaptable machinery of all kinds.15 In the 1970s, mechatronics was concerned mostly with servo technology used in products such as automatic door openers, vending machines, and autofocus cameras. Simple in implementation, the approach encompassed the early use of advanced control methods, according to Transactions editors.16 In the 1980s, as information technology was introduced, engineers began to embed microprocessors in mechanical systems to improve their performance. Numerically controlled machines and robots became more compact, while automotive applications such as electronic engine controls and antilock-braking systems became widespread.17 By the 1990s, communications technology was added to the mix, yielding products that could be connected in large networks. This development made functions such as the remote operation of robotic manipulator arms possible. At the same time, new, smaller--even microscale--sensor and actuator technologies are being used increasingly in new products.Microelectromechanical systems, such as the tiny silicon accelerometers that trigger automotive air bags, are examples of the latter use.18 As significant as these developments may seem, a good deal of skepticism remains about the idea of codifying them in an engineering field called mechatronics. "It's certainly a catchy word," said controls expert Ernest O. Doebelin, professor emeritus at Ohio State and an ASME Fellow, "but it's an evolutionary, rather than revolutionary, development. Now that computers are small and relatively cheap, it just makes sense for designers to build them into products. Mechatronics is really the familiarity with all the other technologies--computers, software, advanced controls, sensors, actuators, and so forth--that make the advanced products possible."19 Similar sentiments were expressed by Davor Hrovat, senior staff technical specialist at the Ford Research Laboratory in Dearborn, Mich.: "The word singles out an area that perhaps is not a single area. Mechatronics is mixture of technologies and techniques that together help in designing better products."20 However mechatronics is defined, it means "we now have viable technology for computer control of mechanical systems at all levels, from toasters to autos," said David M. Auslander, professor of mechanical engineering at Berkeley. "Today we have mechanical systems for which performanceis defined by what's in a computer, whether it's software algorithms, neural networks, or fuzzy logic. That alone makes it different from anything you could do 25 years ago."21 Auslander takes a very generalized view of the topic. "Any system in which you control or modulate power is a candidate for computer control. For any mechanical component you can ask the question: What is its purpose? Does it transmit power? Or is its purpose control and coordination? Computers, software, and electronics can generally do this second function more efficiently--simpler, cheaper, with much more flexibility." This approach, he emphasized, constitutes a totally different view of how mechanical systems work compared with previous conceptions. "This is a machine viewed from the controls outward.22 Following mechatronic principles, General Electric's Profile Super 32 clothes washer features a sensor-based feedback control that maintains correct water temperature no matter the load size "23 Consider the standard multicolor printing press this magazine used to be printed on," Auslander added. "Until recently, web presses had line-shaft controls in which a long shaft coordinates operations from station to station. Now it's done all by computer control, which makes it much easier to change the machine over to a new setup."24 The view of Belgian robotics researcher Hendrik M. J. Van Brussel, published in Transactions (June 1996), follows a similar fundamental theme but with a different emphasis. "In the past, machine and product design has, almost exclusively, been the preoccupation of mechanical engineers," he wrote. Solutions to control and programming problems were added by control and software engineers, after the machine had been designed by mechanical engineers.25 This sequential-engineering approach usually resulted in suboptimal designs. "Recently, machine design has been profoundly influenced by the evolution of microelectronics, control engineering, and computer science," Van Brussel wrote. "What is needed, as a solid basis for designing high-performance machines, is a synergistic cross-fertilization between the different engineering disciplines. This is exactly what mechatronics is aiming at; it is aconcurrent-engineering view of machine design." He then offered his working definition of the term: "Mechatronics encompasses the knowledge base and the technologies required for the flexible generation of controlled motion."26 An essential feature in the behavior of a machine, Van Brussel continued, is the occurrence of controlled and/or coordinated motion of one or more machine elements. "The generation and coordination of the required motions, such that the increasingly growing performance and accuracy requirements are satisfied, is the raison d'etre of mechatronics."27 Van Brussel pointed out that traditional mechanisms are limited in their flexibility in generating a wide variety of motions. Also restricted is their potential for creating complex functional relationships between the motion of the actuator and that of the driven element. Yet another limitation of purely mechanical drive systems is their inherent lack of accuracy, caused by friction, backlash, wind-up errors, resonances, dimensional errors, and so forth.28 "These restrictions can be alleviated by eliminating or simplifying the 'forced-motion' mechanism between actuator and driven elements," he wrote. Instead, each driven element is provided with a drive motor and a position sensor. A motion controller generates the required relationships between the motions of the different driven elements. "The motion synchronization function is shifted from the error-prone hardware mechanism to the flexible software controller.By applying the mechatronics approach, a large number of motions can be synchronized, even at long distances away from each other."29 Under external forces, a range of secondary effects such as vibration and noise can adversely affect the functional behavior of machine elements and instruments, according to Van Brussel. Passive damping treatments are available, but they have limited applicability. "The mechatronic approach can provide more effective solutions. Based on the state information about vibration and noise levels, captured by appropriate sensors, the vibrations are counteracted by actuators distributed over the structure. The machine elements become active (smart structures)." The term adaptive structures can be used "when the behavior of the structure can be changed at will, without mechanical modifications."Institutional Implications30 Beyond design theory, Auslander said, "mechatronics is also saying something about industrial structure." In the new paradigm, "the focal point is not traditional machine design, which is what industry and therefore universities are presently geared to teach. In the future, the focal point will be the mechatronics specialist."31 "It's always a bit embarrassing to talk about mechatronics," said Kevin Craig, associate professor of mechanical engineering at Rensselaer Polytechnic Institute in Troy, N.Y. "As far as engineering practice goes, there really isn't anything new here, except evolutionary advances in computers, sensors, actuators, and the rest. What is new from the educational viewpoint is that we're teaching mechanical engineers how to use electronics, how to program computers to do real-time control, how to do control design, and then to integrate all this into the design process.32 "It's an interdisciplinary approach," he added. "Do the integration right from the beginning; don't just add a control system at the end. Controls used to be left to specialists--mostly electrical engineers. That's not true anymore." Besides teaching a three-day short course on mechatronics as part of an ASME Professional Development program, Craig has also worked on two videotape series on the topic.33 "Mechatronics does not change the design process," Craig said. "It gives the engineer greater knowledge, so the concepts that are developed are better, and communications with other engineering disciplines is improved. The result is a highly balanced design."34 "One thing that is not at all not clear is how all this additional material should be delivered to the student," observed Ed Carryer, consulting associate professor at Stanford University in Palo Alto, Calif. "Most mechanical engineering curricula are already stuffed to the gunnels," he said. "It's either overload the undergrads or make it the focus of a certificate program at the master's level."35 Few academics expect mechatronics to attain the level of a formally accepted engineering discipline. "Our academic system tends to resist the forming of new disciplines," Auslander said. "For example, controls has been a well-recognized and important discipline since the Second World War. However, there are few control departments in the United States. It's mostly taught in mechanical engineering, electrical engineering, and some chemical engineering departments. Yet we graduate lots of people who do the controls function." He concluded that mechatronics' place in the academic hierarchy is really an organizational and bureaucratic issue.36 In the short courses he teaches, "besides students you get the occasional professor who wants to learn what the universities are doing in mechatronics, so they can set up their own programs. The rest are practicing mechanical engineers who basically want to know 'What's this mechatronics stuff we keep hearing about?'37 The practicing engineers Craig meets still tend to rely on results of experiments--build and test methods. Surprisingly, "they don't do much modeling or analysis. We're saying that they won't be able do that much longer, because you can't get products to market quickly enough in today's markets. You need to model and predict, build a prototype, then validate your predictions."38 Ford's Hrovat also stressed the need for mechanical engineers to learn advanced modeling and simulation methods. He cited particularly the use of bond graphs--transfer-function block diagrams that denote power flows and information flows--to depict "means shifting," the process of finding alternative means to accomplish a design goal. For example, if there is no suitable electrical means of providing some desired actuation, the designer could go to a pneumatic or hydraulic system--the means to an end are shifted to a substitute technology. "From what I see, the use of bond graphs is definitely the trend," Hovrat said.Career Paths in Mechatronics39 "Mechanical engineers are often at a loss to communicate and understand the issues electrical engineers and the software specialists bring up" at meetings of interdisciplinary product teams, said Carryer. "The idea is to get rid of the uncertainties associated with electronics and computers. We want to develop people who are comfortable making the necessary trade-offs among a wide range of approaches based on the given design constraints."40 "Maybe the mechanical engineer is not going to do the detail work in any specialty," Craig said, "but they could do it, and they certainly could lead a team doing it. That's what we're trying to train mechanical engineers to do."41 With a focus on these kinds of skills, mechatronics is seen as a prime career path for mechanical engineers of the future. "I believe that mechanical engineers with a mechatronics background will have a better chance of becoming managers," said Thomas S. Moore, general manager for liberty and technical affairs at Chrysler Corp. in Madison Heights, Mich. "We see mechatronics as the career of the future for mechanical engineers."42 "Classically trained mechanical engineers will run the risk of being left out of the interesting work" carried on by multidisciplinary product design teams, according to John F. Elter, vice president of strategic programs at Xerox Corp. in Webster, N.Y. "At Xerox, we need designers who understand the control theory well enough to synthesize a better design. These people will have much more of a chance to lead." Elter added that "the mechanical engineers who know some computer science are far more valuable than the computer scientists who know some mechanical engineering. The mechanical engineers have a better feel for the overall system and do a better job of making the crucial trade-offs. One possibility is that the mechatronics practitioner will prototype the whole design, then the specialists in the various disciplines will take over the detail design."。

机电一体化专业英语 (7)

机电一体化专业英语 (7)

Diodes
Diodes are basically a one-way valve for electrical current. They let it flow in one direction (from positive to negative) and not in the other direction. Most diodes are similar in appearance to a resistor and will have a painted line on one end showing the direction or flow (white side is negative). If the negative side is on the negative end of the circuit, current will flow. If the negative is on the positive side of the circuit, no current will flow.
Transistors
There are two types of standard transistors, NPN and PNP, with different circuit symbols. The transistor is possibly the most important invention of this decade. It performs two basic functions. 1) It acts as a switch turning current on and off. 2) It acts as an amplifier. This makes an output signal that is a magnified version of the input signal.

机电一体化专业英语

机电一体化专业英语

Closed-loop: Motor-return is connected directly to the pump-inlet. To keep up pressure on the low pressure side, the circuits have a charge pump that supplies cooled and filtered oil to the low pressure side. Closed-loop circuits are generally used for hydrostatic transmissions in mobile applications.
Байду номын сангаасydraulic pump
Hydraulic pumps supply fluid to the components in the system. Pressure in the system develops in reaction to (以应
对)(反应, 影响,反对,对抗, 起化学反应,对食物不良 反应,过敏 )the load. Hence, a pump rated
Advantages: No directional valve (换向 阀)and better response(反应), the circuit can work with higher pressure. The pump swivel (旋转,转动 )angle covers both positive and negative flow direction. Disadvantages: The pump cannot be utilized for any other hydraulic function in an easy way and cooling can be a problem due to (由于)limited exchange of oil flow.

机电英语(教育部07版专业英语)Unit 6 Electrical Engineering

机电英语(教育部07版专业英语)Unit 6 Electrical Engineering

当不只是一种交流电动机可供挑选使用时, 当不只是一种交流电动机可供挑选使用时, 成本便成了很重要的考虑因素。 成本便成了很重要的考虑因素。
Paragraph 5
鼠笼式电动机
The squirrel-cage motor is the least expensive ac motor of the three types considered and requires very little control equipment.
Paragraph 5
当非常大功率的机器被涉及时
When very large machines are involved, as, for example, 1000 hp or
成本图画(情况) 成本图画(情况) 像 比如 1000HP或者更高 或者更高
over, the cost picture may change considerably and should be checked
然而,对于那些需要调速或速控范围较广的机床或其他机器而言,安装直流电动机, 然而,对于那些需要调速或速控范围较广的机床或其他机器而言,安装直流电动机, 并通过电动机-发电机组或者电子整流器从交流点系统向其提供电能是较为理想的做法 发电机组或者电子整流器从交流点系统向其提供电能是较为理想的做法。 并通过电动机 发电机组或者电子整流器从交流点系统向其提供电能是较为理想的做法。 它是较为理想的(做法 它是较为理想的 做法) 做法 但是, 但是,如果有机床或其他电器
The various types of single-phase ac motors and universal motors are used very little in industrial

Unit 1What Is Mechatronics什么是机电一体化

Unit 1What Is Mechatronics什么是机电一体化

Unit 1What Is MechatronicsSection I Words and Phrasesmechatronics [,mekə'trɔniks]n.机电一体化originate [ə'ridʒəneit] vi.起源,发生precision [pri'siʒən] n.精确,精密discipline ['disiplin] n.学科expertise [,ekspə:'ti:z] n.专门技术weapon ['wepən] n.武器microprocessor [,maikrəu'prəusesə, -'prɔ-] n.[计]微处理器incorporation [in,kɔ:pə'reiʃən] n. 结合,合并boundary ['baundəri]n.边界,分界线encompass [in'kʌmpəs] v.包围,环绕,包含或包括某事物merge [mə:dʒ] v.合并,结合,融合legitimacy [li'dʒitiməsi]n.合法(性),正统(性),正确(性),合理(性academic [,ækə'demik] adj.学院的,理论的journal ['dʒə:nəl] n. 定期刊物,杂志transaction [træn'zækʃən, -'sæk-, trɑ:n-] n. 会报,学报definition [,defi'niʃən]n. 定义,解说synergistic [,sinə'dʒistik] adj.增效的,协作的,互相作用(促进)的integration [,inti'greiʃən] n.综合actuator ['æktjueitə] n.执行器,执行机构robotics [rəu'bɔtiks] n.机器人技术,机器人学vibration [vai'breiʃən] n.振动optoelectronic [,ɔptəui,lek'trɔnik] adj. 光电子的automotive [,ɔ:təu'məutiv] adj. 汽车的,自动推进的microcontroller [,maikrəukən'trəulə] n. 微控制器implement ['implimənt, 'impliment] vt.贯彻,实现,执行feedback ['fi:dbæk] n.反馈algorithm ['ælgəriðəm] n.[数]运算法则SectionⅡText. Mechatronics in Japan originated in the university departments of precision mechanics, a discipline that has been emphasized in Japan since World WarⅡ1 .After the war, building on the expertise in mechanisms developed for weapon research, they began to specialize in precision engineering and, later, in manufacturing engineering. With the invention of the microprocessor and its incorporation into precision mechanics, the techniques and machinery they developed were assumed under the Japanese effort called “mechatronics".In the mid-1980s,mechatronics came to mechanical engineering that is the boundary between mechanics and electronics.Today,the term encompassed a large array of technologies,many of which have become well-known in their own right.Each technology still has the basic element of the merging of mechanics and electronics but now may also involve much more,particularly software and information technology2. The relationship of mechatronics among thedisciplines is illustrated in Figure 1-1.Figure 1-1 The Relationship of Mechatronics Among the DisplinesFor example, many early robots resulted from mechatronics development. As robot systems become smarter, software development, in addition to the mechanical and electrical system, became central to mechatronics.Mechatronics gained legitimacy in academic circles in 1996 with the publication of the first referred journal: IEEE/ASME3 Transactions on Mechatronics. In the premier issue, the authors worked to define mechatronics. After acknowledging that many definitions have circulated, they selected the following for articles to be included in transactions: “the synergistic integration of mechanical engineering with electronics and intelligent computer in the design and manufacturing of industrial produc ts and processes. ”The authors suggested 11 topics that should fall, at least in part under the general category of mechatronics ;1.Modeling and design2.System integration3.Actuators and sensors4.Intelligent control5.Robotics6.Manufacturing7.Motion control8.Vibration and noise control9.Micro-device and optoelectronic systems10.automotive systems11.other applicationA mechatronics design is a control system.One or more inputs are fed to a microcontroller.These inputs may have to undergo some signal conditioning before being read by the microcontroller.The microcontroller then implements a control algorithm that interprets the various inputs into the appropriate output or outputs4.Again,signal conditioning may be necessary on the output side of the system before driving an actuator or display.In a closed loop system,feedback is received so that the microcontroller is able to monitor and adjust the output as necessary.Providing power to the microcontroller is the last piece of the mechatronic system.In summary,the components of a mechatronic system are input,output,a control algorithm,signal conditioning(if necessary),and power·。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


功率谱分析
系统诊断
系统分析和设计
图 6.15 基于建模和建模后分析的信号分析系统方块图 下面是有关的计算公式 6.3.1 自相关函数
N
Rx ( ) x( k )x ( k )
K 1
( 6-4 )
式中 是相关步数 6.3.2 相关函数
N
Rxy ( ) x( k ) y (k )
图 6.1 直线段的插补路径 个进给脉冲由插补器生成并发出后, 接着下一步的工作就是所谓的终点判断, 也就是确定动 点是否越过了终点 A,即检查已发出的进给脉冲之和是否等于直线 OA 在 X 和 Y 方向上的 进给脉冲之和, 而这个数是由直线 OA 在 X 和 Y 方向上的投影长度之和 (原文中在 projection 之前应加上 sum of the)除以脉冲当量。脉冲当量的定义是每个脉冲的进给量,例如 0。01 毫米/脉冲。如图 6.2 所示,对于在不同象限内的直线段,下一步应发出的进给脉冲是不一样 的。例如,在插补第一象限内的直线(动点由 A 至 B)时,当动点在直线上方时,下一步 应发出+X 脉冲;在下方时则应发出+Y 脉冲。但是,对于插补在第二象限内的直线,其结 果则与第一象限的不同。 这样, 插补器应由分别对四个象限的直线进行插补的四个程序来构 成。
7
插补计算机
x
控制计算机
x
D/A
xa
伺服电动机 位移传感器
图 6.11 数字增量式插补器方块图 数字增量式插补器的输出不再是单个脉冲,而是一个表示许多脉冲当量的数值,亦称指 令位移增量,并在 X 和 Y 轴上记以X 和Y。所以X 和Y 是一段轮廓曲线(直线或园弧) 的两个增量如图 6.12 和 6,13 所示。因此,数字增量插补器是执行用直线段来逼近被插补曲 线的一个过程。
图 6。3 园弧插补的进给脉冲 对于跨越相邻象限的园弧段,当动点越过坐标轴时,插补程序应更换为另一个。显然,这需 要在发出每一个进给脉冲后作过象限判断。所以在插补过程中,应重复地作两个判断,即终 点判断和过象限判断。 图 6.4 是在第一象限内直线插补的程序框图,其中 0i, 0Fi 是程序的初始化。插补时 钟是用以控制插补速度,Fi 是一个控制字,它的赋值(大于或小于 0)被赋于确定动点位置 何在和下一步该是什么脉冲。N 是一个计数器用以存储直线段 AB 在 X 和 Y 方向上的进给 脉冲之和。疑问框 i = ?用于终点判断。
1
c
B
y A
图 6.2 对不同象限直线的不同插补准则 关于园弧段的插补,图 6.3 表示了一个在第一象限内的顺时针园弧,由于在一个象限内有顺 时针园弧, 也有逆时针园弧, 所以四个象限总共有八种园弧段。 每种园弧段均有其插补准则, 例如,对于在第一象限内的顺时针园弧段,当动点 P1 在园弧外时,下一步的进给脉冲应为 -Y,但当它进入园弧里边时,下一步则应为+X。这样就需要设计 8 个程序来实现全部园弧 段的插补。
( 6-3 )
关于控制计算机如何根据X 和Y 控制伺服系统以完成运动控制,将在第 8 章中讨论。 6.3 信号分析系统 信号分析系统是另一种数据处理软件系统,它接受从传感器和数据获取系统传送过来的 输入数据,然后处理这些数据而得到一些参数作为系统分析、设计和诊断的基础。有两种方 法处理离散采样数据: 一种是在时域和频域内直接分析这些数据以得到一些说明系统特性的 参数作为系统分析和诊断的基础; 另一种是先用采样数据建立系统的统计模型, 即所谓的系 统建模或系统识别,在数学上该模型是一差分方程。然后用得到的系统参数,包括系统阶数 和系数,做建模后分析,包括系统稳定性分析、模态分析、谱分析和系统预报等。建模后分 析的结果用于系统分析、设计、诊断和预报控制。
9
传感器 transduce 数
失效诊断
快速离散付里 叶变换 DFT
幅频和相频图及离 散化
功率密度谱分析 DFT
系统分析
失效诊断
图 6.14 直接用离散采样数据的信号分析系统方块图
传感器 transducer
数据获取系统
建模
建模后分析
系 统 预 forecasting 模态分析
10
2 2 X Re ( X ) I m X 2

arctg
I m X Re X
( 6-7 )
取 X 或 为纵坐标, 为横坐标来作频谱图,称其为信号的幅频谱和相频谱。将
X 离散化并对 {x } 作离散傅里叶变换(DFT) ,就得到信号的离散功率谱,即
K
S H X
X K
e j k
( 6-8 )
6.3.5 相干函数
它的定义是
S xy f
2 2 (0 rxy 1)
2 rxy
f
S x f S y f
( 6-9 )
2 2 当 rxy f 0 时,输出信号 Y(t)与 X(t)无关;当 rxy f 1 时,表示 Y(t)与 X(t)完全
( 6-1 )
这里 FX 和 FY 称为积分函数。(6.1)式表明 SX 或 SY 是刀具位移的 q 倍,对 q 的选择应使得积 分函数为一常数或一单值函数,从而简化插补计算。插补的过程是,首先确定积分函数,例 如, 最简单的积分函数对于直线段为 FX =Ya 和 FY =Xa, Xa 和 Ya 是直线终点的两个坐标值 (图 6.7) ;而对园弧段则为 FX=Ya 和 Fy=Xa, Xa 和 Ya 是在园弧上动点的坐标值(图 6.8) 。在插补 时, 按(6.2)式进行积分。 如果积分 SX 或 SY 大于 q, 这表明在 X 或 Y 轴上所计算到的位移X 或 Y 已大于一个脉冲当量,则刀具应在 X 或 Y 坐标上走一步。对直线插补,q 必须满足 q>=max(Xa,Ya).对园弧插补,q 必须满足 q(Xa,Ya,Xb,Yb).这个过程能保证刀具沿被加工曲线 运动。图 6.9 和图 6.10 分别为直线和园弧插补的程序框图。
2
插补时钟脉 冲 interpolating
等待
进给方向 diection:+x
进给方向 diection:+y
结束
图 6.4 第一象限直线插补的程序框图 图 6.5 所示为第一象限顺时针园弧插补的程序框图。其中疑问框 Fi>=0?和 i = N?分别表 示动点的位置和终点判断。然而这个框图内尚缺少过象限判断,这个工作留给学生去完成。
3
插补时钟脉 冲 interpolating
等待
进给方向+X diection:+x
进给方向+Y diection:+y
结束
图 6.5 第一象限顺时针园弧插补程序框图 2。数字积分法脉冲插补器(DDA 插补器) 这种插补器采用在一个插补间隔内的数字速 度积分来确定在每轴上的刀具位移,从而引导刀具沿着要求的曲线运动。如图 6.6 所示,在 加工时刀具必须保持其运动方向在任何点处都切于该曲线。设在点 P 处的切线与 X 轴的夹 角为 ,刀具速度为 V,则 V 在 X 和 Y 轴上的速度分量为
X
x y
这里t 是积分(时间)间隔。为方便计算,将X 和 Y 皆乘以一比例系数 q,并分别用 SX 和 SY 来表示,即 Sx =Xq =Vtq cos Sy =Yq =Vtq sin 令 该式可简化为、 Sx = Fx Sy =Fy (6-2) Fx = Vtq cos Fy = Vtq sin
X l cos and Y l sin
对于直线,l 是长度为 l 的直线的均匀分段长度, 是该直线与 X 轴的夹角。对于园弧, 则有
x X 2 X 1 1 cos X 1 sin Y1
Y Y2 Y1 sin X 1 1 cos Y1
8
此处Xi 是第 ith 个采样间隔的位移增量, 而 Xa 是第 i 个采样点的绝对位移。 然后, Xe 由 ADC 电路转换为指令电压并传送至伺服电路以控制伺服电动机的转速, 所以电动机的转速正比于 位移差值 Xe.这样,可以通过连续地调节两个伺服电动机的转速来消除 Xe 和 Ye,从而控制刀 具沿要求的曲线精确地运动。如此,插补计算机产生所要求的位移指令为
Vx V cos
V y V sin
刀具在 X 轴上的位移为对 VXdt 和 VYdt 的积分,即
图 6.6 DDA 插补原理
4
Y V dt V sin dt
y
X Vx dt V cos dt
该式也可用数字求和来表示,即
V t V cos t Y V t V sin t
y B
A
y x
x
图 6.12 用数字增量插补器插补直线
图 6.13 用数字增量插补器插补园弧
控制计算机一方面接受第 i 个采样间隔的指令位移增量 Xi (Yi ) ,,另一方面还接受由位移 传感器反馈回来的实际位移 Xa,Ya,所以位移差 Xe 和 Ye 由下式表示,即
X e X i X a , Ye Yi Ya
图 6.7 用 DDA 法插补直线
5
图 6.8 用 DDA 法插补园弧
插补时钟脉 冲 interpolating
等待
进给方向 diection:+x
进给方向 diection:+y
结束
图 6.9 用 DDA 法插补直线的程序框图
6
插补时钟脉 冲
等待
进给方向x
进给方向y
结束
图 6.10 用 DDA 法插补园弧的程序框图 数字积分法脉冲插补器能广泛地用于各种平面或空间曲线,只要曲线的切线易于获得。 数字积分插补器的另一名称是 DDA(数字微分分析器) ,这似乎与实际的积分相反而难于理 解。 6.2.2 用于闭环控制系统的数字增量式脉冲插补器 数字增量式脉冲插补器亦称数字采样插补器,图 6.11 所示为其方块图。闭环进给控制系 统采用两个微机:前面一个称为插补计算机,用以完成插补;后面一个称为控制计算机,用 以完成系统的闭环控制。
相关文档
最新文档