医学影像成像原理共38页
医学影像成像原理课件
•医学影像成像原理
•5
3.1.1 X线的特征
2. X射线与物质间的相互作用
(2)X射线的荧光作用。
X射线是肉眼看不见的,但当它照射某些物质时,如磷、铂氰化 钡、硫化锌、钨酸钙等,能够使这些物质的原子处于激发态,当它们 回到基态时就能够发出荧光,这类物质称荧光物质。
医学中透视用的荧光屏、X射线摄影用的增感屏、影像增强器中 的输入屏和输出屏都是利用荧光特性做成的。
1. X射线的波粒二象性
✓ X射线同时具有波动性和微粒性,统称为波粒二象 性。
✓ X射线在传播时,它的波动性占主导地位,具有频 率和波长,且有干涉、衍射等现象发生。
✓ X射线在与物质相互作用时,它的粒子特性占主导 地位,具有质量、能量和动量。
•医学影像成像原理
•4
3.1.1 X线的特征
2. X射线与物质间的相互作用 (1)X射线的穿透作用。
成像板的构造:
(1)表面保护层。 (2)辉尽性荧光体层。 (3)基板(支持体)。 (4)背面保护层。
•医学影像成像原理
•17
3.1.3 计算机X线摄影(CR)
2. CR 系统成像的基本过程 (1)影像信息的采集: (2)影像信息的读取: 与普通X摄影相比较,CR的优点是:① 宽容度大,摄影 条件易选择。② 可降低投照辐射量:CR可在IP获取信息 的基础上自动调节放大增益,最大幅度地减少X线曝光量 ,降低病人的辐射损伤。③ 影像清晰度较普通片高。④ 对影像可进行后处理,对曝光不足或过度的胶片可进行后 期补救。⑤ 可进行图像传输、存储。⑥由于激光扫描仪 可以对IP上的残留信号进行消影处理,IP板可重复使用23万次。
•医学影像成像原理
单束平移-旋转方式
医学影像成像原理
医学影像成像原理
成像原理主要是利用我们X线进入人体后,产生的一种电离效应,进而引起生物学特性改变。
这既是我们放射检查的基础,也是我们为什么要进行防护的原因,所以说综合来讲,x线在穿透人体后对组织器官形成一种不同的衰减作用,衰减以后形成的组织密度差,再通过荧光屏进行一种影像学的转化,变成了影像医师可以观察到的一种黑白影像,这就是X线成像原理的常规描述。
所以说,当我们在利用X线这种穿透性和生物学效应的同时,它也会对我们正常的组织和细胞产生一定的辐射损伤。
所以说我们在X线检查的时候,除了拍摄部位外,其他部位都需要用铅板做好一些相应的屏蔽和防护。
医学影像成像原理
医学影像成像原理3.2.2X-CT的扫描方式3.旋转-旋转(R/R)方式这种扫描称为第三代CT扫描,扫描装置由一个X 射线管和由250~700个检测器(或用检测器阵列)排列成一个可在扫描架内滑动的紧密圆弧形。
X射线管发出张角为30°~45°,能覆盖整个受检体的宽扇形射线束。
由于这种宽扇束扫描一次即能覆盖整个受检体,故只需X射线管和检测器作同步旋转运动。
X线管旋转采样点检测器轨道检测器扇形X线束摄影区域旋转-旋转扫描方式3.2.2X-CT的扫描方式3.旋转-旋转(R/R)方式这种扫描的缺点是:要对每个相邻检测器的接收灵敏度差异进行校正,否则由于同步旋转扫描运动会产生环形伪像。
X线管旋转采样点检测器轨道检测器扇形X线束摄影区域旋转-旋转扫描方式3.2.2X-CT的扫描方式4.静止-旋转(S/R)方式这种扫描称为第四代CT扫描方式,扫描装置由一个X射线管和600~2000个检测器所组成。
在静止-旋转扫描方式中,每个检测器得到的投影值,相当于以该检测器为焦点,由X射线管旋转扫描一个扇形面而获得。
静止-旋转扫描方式的优点是:每一个检测器上获得多个方向的投影数据,能很好地克服宽扇形束的旋转-旋转扫描方式中由于检测器之间差异所带来的环形伪影,扫描速度与静止-旋转方式相比也有所提高。
检测器X线管轨迹X线管静止-旋转扫描方式3.2.2X-CT的扫描方式5.电子束扫描方式电子束扫描又称为第五代CT,扫描装置由一个特殊制造的大型X射线管和静止排列的检测器环组成。
这种机构在50~100ms内能完成216°的局部扫描。
真空泵靶环扫描床电子枪电子束聚焦线圈偏转线圈X线束电子束扫描方式3.2.3螺旋CT工作原理螺旋扫描是指在扫描期间,X线管连续旋转并产生X线束,同时扫描床在纵轴方向连续移动,这样,扫描区域X线束进行的轨迹相对被检查者而言呈螺旋运动,扫描轨迹为螺旋形曲线,这样可以一次收集到扫描范围内全部容积的数据,所以也称为螺旋容积扫描。
医学影像成像原理
医学影像成像原理1895年,德国菲试堡物理研究所所长兼物理学教授威廉·孔拉德·伦琴把新发现的电磁波命名为X光,这个"X"是无法了解的意思。
世人为了表示对发明者的敬意,亦称之为"琴伦线"。
X光是一种有能量的电磁波或辐射。
当高速移动的电子撞击任何形态的物质时,X光便有可能发生。
X光具有穿透性,对不同密度的物质有不同的穿透能力。
在医学上X光用来投射人体器官及骨骼形成影象,用来辅助诊断。
1894年,实验物理学家勒纳德在放电管的玻璃壁上开了一个薄铝窗,成功地使阴极射线射出管外。
1895年,物理学家伦琴在探索阴极射线本性的研究中,意外发现了X光。
X光的发现,不仅揭开了物理学革命的序幕,也给医疗保健事业带来了新的希望。
伦琴因此成为第一个诺贝尔物理学奖得主。
x光是穿透性很强的射线,一种高能量光波粒子,所以一般物体都挡不住,射线要被阻挡,关键由射线强度、频率、阻挡物质与射线作用程度、阻挡物质厚度、阻挡物质大小共同决定。
一般情况下,常见的X光(医院用)大约3~5cm的铅块就可以阻挡了。
但是也会在背景屏上会显示阻挡物的阴影形状,就好像日食,虽挡住了太阳光,却留下了阴影。
核磁共振(MRI)又叫核磁共振成像技术。
是继CT后医学影像学的又一重大进步。
自80年代应用以来,它以极快的速度得到发展。
其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。
在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。
核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。
为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。
MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。
医学影像成像原理
X射线与人体的相互作用
直接透射
光电效应
康普顿散射
四、影响X线的衰减的因素
μm=
3 4 Kλ
(一)、原子序数的影响
光电效应:衰减系数与Z4成正比 康普顿效应:衰减系数与Z成正比
原子序数越高,吸收X线越多
(二)、X射线能量的影响
??
X线能量越大,穿透力越强。衰减系数越小
半价层大小反应的是物质还是X线的性质? 跟什么因素有关?
二、X射线在质中的衰减
+
吸收 反射 折射
光电效应 康普顿效应
康普顿效应、相干散射
(一)单能窄束X线的衰减规律
1、什么是单能窄束X射线?
2、衰减规律
-△I=μI0 △X
-△I:强度衰减 I0 :源辐射强度 △X :厚度 μ:吸收系数
管电压(kV) 40 50 60 70 80 90 100 110 120 130 140 150 脂肪(×102) 0.3393 0.2653 0.2196 0.2009 0.1905 0.1832 0.1801 0.1774 0.1755 0.1742 0.1732 0.1724 肌肉(×102) 0.4012 0.2933 0.2455 0.2213 0.2076 0.1994 0.1942 0.1906 0.1882 0.1864 0.1852 0.1842 骨骼(×102) 2.4434 1.4179 0.9677 0.7342 0.6047 0.5408 0.4865 0.4530 0.4298 0.4132 0.4010 0.3918
人体吸收X线最多的是门牙,吸收最少的是肺
(四)、克电子数、立方米电子数
电子数目越多,电子越密集,x线发生作用 的几率越大。 人体内除空气外,几乎所有组织电子数特性相 差不大 KV增加时,康普顿占优,影响主要因素为电子 数。增加散射,影响图像对比。
医学成像原理
医学成像原理
医学成像原理是一种用于获取人体内部结构和功能信息的技术,能够为医生进行诊断和治疗提供重要的参考依据。
在医学成像中,常用的几种原理包括:射线穿透、声波传播、磁场作用和放射性核素发射。
射线穿透是医学成像中最常见的原理之一,主要指的是通过用射线通过人体,然后通过射线的强度变化来获取图像。
这种成像方式在X射线摄影和计算机断层成像(CT)中应用广泛。
在X射线摄影中,射线穿透人体后被感光介质接收,形成黑
白对比的影像。
而在CT中,通过旋转式射线和X射线探测器的组合,可以获得更多层次的图像。
声波传播在超声波成像中起到重要作用。
超声波成像利用声波在人体组织中传播的特性,通过声波的反射和散射来获得图像信息。
超声波成像通常用于检查肝脏、乳房、心脏等器官,具有无辐射、非侵入性、实时性等优点。
磁场作用是核磁共振成像(MRI)的基础原理。
核磁共振成像利用人体组织中的原子核在磁场作用下产生的特定信号来生成图像。
MRI能够提供很高的空间分辨率和对软组织的良好对
比度,广泛应用于检查脑部、关节、脊椎等部位。
放射性核素发射是核医学成像的工作原理。
核医学成像是通过给患者体内注射放射性核素,利用核素发射的射线性质获取图像。
核素发射的射线可用于检查肝脏、骨骼、心脏等器官,对疾病的早期诊断和治疗监测有很大帮助。
综上所述,医学成像的原理多种多样,其中射线穿透、声波传播、磁场作用和放射性核素发射是常用的几种原理。
这些原理各具特点,适用于不同的临床需求,共同为医学诊断和治疗提供了重要的技术支持。
医学影像成像原理培训课件
X线成像技术与应用
X线成像技术
X线成像技术包括普通X线摄影、特殊X线摄影(如点片、体层摄影等)以及数 字X线摄影等。
X线成像应用
X线成像在医学诊断中应用广泛,如骨折、关节病变、肺部疾病、腹部疾病等, 同时也可用于治疗和手术导航。
03
CT成像原理及技术
CT成像原理及过程
X线与物质相互作用
计算机重建图像
功能成像技术:如fMRI、ASL等,用于 研究脑功能和血流动力学。
分子成像技术:利用特定分子探针,对 特定分子或生物标志物进行成像,用于 疾病早期诊断和预后评估。
05
超声成像原理及技术
超声波产生与性质
超声波的产生
通过高频电信号激励压电晶体或磁致 伸缩材料,使其产生振动并向外辐射 超声波。
超声波的性质
信息。
疾病治疗
医学影像成像技术还可以用于疾病 治疗,如放射治疗和介入治疗等。
医学教育和科研
医学影像成像技术还可以用于医学 教育和科研,帮助医学生和科研人 员更好地了解人体结构和疾病特征 。
02
X线成像原理及技术
X线产生与性质
X线产生
X线是由高速电子撞击物质时产生的 电磁波,波长范围为0.01-10nm。
动态容积CT
通过连续扫描和重建,获 得动态容积数据,用于评 估器官功能和血流情况。
特殊技术应用
如CT血管造影、CT灌注 成像等,可对特定部位进 行高分辨率成像,用于诊 断和治疗。
04
MRI成像原理及技术
MRI成像原理及过程
核磁共振原理
利用原子核在磁场中的自旋和能级跃迁,通过外加磁场和射频脉冲,实现核磁共 振信号的检测和成像。
X线与人体组织相互作用,产生散射 和吸收,不同组织对X线的吸收程度 不同,从而形成图像。
医学影像成像原理
医学图像处理的意义
图象是人们从客观世界获取信息的重要来源 视觉信息占60%-70%。
图像信息处理是人类视觉延续的重要手段 人的眼睛只能看到可见光部分,但能够成像的并 不仅仅是可见光。可成像的射线有: γ射线 X射线 紫外线 红外线 微波
利用图像处理技术把这些不可见射线转换成可见 图像,大大延伸了医生视觉器官的功能,扩大了 诊断范围。
2.图象存储 磁带、磁盘或光盘。为解决海量存储问题,主要 研究数据压缩、图像格式和图像数据库技术等。
3 .图像传输 内部传送多采用DMA(Direct Memory Access)技术 外部远距离传送主要解决占用带宽
4.图像处理 几何处理、算术处理、图象增强、图像复 原、图象重建、图像编码、图像识别和图 象理解
彩色三要素 亮度:是指彩色光作用于人眼引起的明暗
程度的感觉。 色调:指彩色光的颜色类别。 饱和度:是指颜色的深浅程度。
三基色原理
绿
黄
青
红
蓝
品红
自然界中一切彩色都可以分解成红、绿、蓝三种 独立色。
用红、绿、蓝可以按不同比例配成自然界中不同 的颜色。
像素
组成图像的细小(基本)单元称为像素
5. 图像的输出与显示
硬拷贝:照相、激光拷贝、彩色喷墨打印等 软拷贝: CRT显示器、液晶显示器(LCD)、场致发
光显示器(FED)
医学图象处理及研究内容
一、超声图象 分为回波法和多普勒法两大类 回波法是利用超声波在两种声阻抗不同的物质界
面处的反射来检测脏器的构造及其运动的。
界面:两个介质的分界面
2.变换域法 首先对图像进行正交变换,得到变换域系数阵列, 然后在施行各种处理,处理后再反变换到空间域, 得到处理结果。包括:滤波、数据压缩、特征提 取等处理。
医学影像成像原理
医学影像成像原理医学影像成像原理是一种通过使用不同的技术和设备来生成医学图像的过程。
这些图像可以用于帮助医生诊断和治疗各种疾病和病症。
常用的医学影像技术包括X射线成像、计算机断层扫描(CT扫描)、核磁共振成像(MRI)、超声波成像和正电子发射断层扫描(PET扫描)。
以下将对这些医学影像技术的成像原理进行详细介绍。
1.X射线成像X射线成像是通过使用X射线穿透被检查物体来生成图像。
当X射线穿过物体时,它们会被不同组织的密度和原子序数所吸收。
这样,通过在物体和感光介质之间放置探测器,可以测量吸收的射线量。
探测器上的数据被传送到计算机中,并转换为图像。
不同的组织可以根据吸收的射线量的差异显示为不同的灰度。
2.计算机断层扫描(CT扫描)CT扫描是通过使用大量的X射线照射患者身体的不同角度来生成断层图像。
这些X射线图像计算机会进行重建,并且从不同的角度组合成三维图像。
CT扫描的成像原理类似于X射线成像,但在这种情况下,使用许多不同的角度来获取多个切片,从而提供更多的解剖信息。
3.核磁共振成像(MRI)MRI成像通过利用核磁共振原理来生成图像。
在MRI扫描过程中,患者被放置在一个强大的磁场中,然后通过向患者身体内注入一种放射性物质(如甘露醇)来产生磁共振信号。
这些信号通过生物传感器接收,并传送到计算机中进行分析和图像重建。
MRI成像可以提供非常详细的结构图像,因为它可以对不同类型的组织进行区分。
4.超声波成像超声波成像使用声波的回波来生成图像。
在超声波成像过程中,一个特定频率的声波被发射到患者的体内。
当声波撞击组织或器官时,它们会反射回来,并通过传感器接收。
通过分析声波的强度和速度,计算机可以重建图像。
超声波成像可以用于检查心脏、脏器和肌肉等内部结构。
5.正电子发射断层扫描(PET扫描)PET扫描利用放射性示踪剂来检测和测量组织或器官内特定代谢过程的分布。
在PET扫描过程中,患者通过口服或静脉注射放射性示踪剂,这些示踪剂会发射出正电子。
医学影像学的成像原理
医学影像学的成像原理医学影像学是一门应用物理学和生物医学工程学知识的学科,主要用于观察和诊断人体内部结构和功能异常。
医学影像学的成像原理涉及多种技术和方法,其中包括放射学技术、超声技术、核医学技术和磁共振成像技术等。
本文将重点介绍这些技术的成像原理。
一、放射学技术成像原理放射学技术是医学影像学中最常用的成像方法之一,包括X射线、CT扫描和血管造影等。
它的成像原理是利用X射线的穿透性质,通过被测物体的吸收和散射来获得显像。
放射学技术成像原理的基础是人体组织对X射线的吸收程度不同,形成亮度差异,从而构成影像。
二、超声技术成像原理超声技术是一种利用超声波进行成像的医学影像学方法。
它的成像原理是通过超声波在人体组织之间的传播和反射来生成影像。
超声波被发送到患者体内后,会穿过组织并与组织内不同结构边界反射,通过接收和分析反射信号来得到图像。
超声技术成像原理的优势在于它不使用辐射,对人体无损伤。
三、核医学技术成像原理核医学技术是通过放射性同位素的放射性衰变过程来进行成像的一种方法。
它的成像原理是将放射性同位素注射到患者体内,放射性同位素会在体内特定的位置发出γ射线,通过探测器接收γ射线来生成图像。
核医学技术成像原理的特点是可以观察到各种生理和代谢过程,对某些疾病的诊断有重要意义。
四、磁共振成像技术成像原理磁共振成像技术是一种基于核磁共振的成像方法。
它的成像原理是利用患者体内的原子核在强磁场和高频脉冲作用下发出信号,通过对这些信号的接收和处理来生成图像。
磁共振成像技术成像原理的优点在于它无辐射、具有较高的空间分辨率和对软组织的良好对比度。
总结:医学影像学的成像原理涉及放射学技术、超声技术、核医学技术和磁共振成像技术等多种方法。
每种方法都有自己独特的成像原理和特点,可以用于观察和诊断不同类型的疾病。
医学影像学的发展为临床医学提供了重要的诊断工具,为疾病的早期发现和治疗提供了有效手段。
未来,随着技术的不断创新和进步,医学影像学必将发展出更加先进和可靠的成像方法,为人类健康事业做出更大贡献。
医学影像成像原理
医学影像成像原理医学影像是通过各种成像技术获取人体内部结构和病变信息的一种重要手段,而医学影像成像原理则是支撑这些成像技术的基础。
在医学影像领域,常见的成像技术包括X射线、CT、MRI、超声等,它们各自有着不同的成像原理和适用范围。
本文将就医学影像成像原理进行简要介绍,以便读者对医学影像有一个初步的了解。
X射线成像是最早被应用于医学影像的技术之一。
X射线成像原理是利用X射线在人体组织中的吸收和散射特性来获取影像信息。
X射线穿透人体组织后,被不同组织吸收的程度不同,这就形成了X射线透过人体后的不同程度的衰减,从而在感光底片或数字探测器上形成不同浓度的影像。
X射线成像具有成像速度快、分辨率高等优点,但由于X射线对人体组织有一定的辐射损伤,因此在临床应用中需要控制剂量,避免对患者造成不必要的伤害。
CT(计算机断层扫描)是一种通过X射线成像原理进行断层成像的技术。
CT成像原理是通过X射线在不同角度下对人体进行扫描,然后利用计算机对这些数据进行处理,最终重建出人体内部的断层影像。
CT成像具有成像速度快、分辨率高、对软组织成像效果好等优点,广泛应用于临床诊断和疾病监测。
MRI(磁共振成像)是利用核磁共振现象进行成像的一种技术。
MRI成像原理是通过对人体组织中的氢原子进行激发,然后测量其放射出的信号来获取影像信息。
由于不同组织中的氢原子含量和运动状态不同,因此它们在MRI图像上呈现出不同的信号强度和对比度。
MRI成像具有对软组织成像效果好、无辐射损伤等优点,但也存在成像时间长、成本高等缺点。
超声成像是利用超声波在人体组织中传播和反射的特性进行成像的一种技术。
超声成像原理是通过超声波在组织界面上的反射来获取影像信息,根据不同组织的声阻抗差异来呈现出不同的灰度图像。
超声成像具有成本低、无辐射损伤等优点,但对于骨组织和肺部组织成像效果较差。
综上所述,不同的医学影像成像技术有着不同的成像原理和适用范围,它们各自有着优缺点。
《医学影像成像原理》课件
光学成像
用于皮肤、乳腺和 眼科疾病的诊断和 监测。
02
X射线成像原理
X射线的产生与性质
X射线是由高能电子撞击靶物 质(如铜、钴、铁等)时,电 子突然减速而释放出的一种电
磁辐射。
X射线具有穿透性、荧光性和 摄影效应等性质,能够穿透 一定厚度的物质,并在穿透
过程中被吸收或散射。
X射线的波长范围在0.01-10纳 米之间,其能量范围在1241.24 keV之间。
核医学成像可以用于研究脑功能和神经递 质活动,有助于神经科学研究和临床神经 疾病的诊断。
THANKS
感谢观看
核医学成像的物理基础
放射性衰变
放射性示踪剂在体内经历放射性 衰变,释放出射线。不同类型的 示踪剂具有不同的衰变特性,适 用于不同的医学应用。
射线检测
特殊的检测设备用于捕获放射性 信号,这些设备通常包括闪烁晶 体和光电倍增管,可以将射线转 换为电信号。
信号处理
捕获的信号经过放大、滤波等处 理后,再转换为图像数据。信号 处理技术有助于提高图像的分辨 率和对比度。
X射线成像的物理基础
当X射线穿透人体组织时,不同 组织对X射线的吸收程度不同, 导致X射线强度衰减程度不同,
形成人体内部结构的影像。
X射线成像的物理基础包括吸收 、散射和干涉等物理现象,这些 现象决定了X射线在人体内的传
播方式和成像效果。
X射线成像技术通过测量穿透人 体后的X射线强度,经过计算机 处理后形成二维或三维的医学影
超声波成像的临床应用
腹部超声
用于检查肝、胆、胰、脾等腹部器官的形态和结 构。
心脏超声
用于评估心脏的结构和功能,诊断心脏疾病。
妇产科超声
用于妇科和产科的检查,如胎儿发育、子宫和卵 巢疾病的诊断。
医学影像学的成像原理
医学影像学的成像原理医学影像学是通过使用成像设备,如X射线、超声波、核磁共振等技术手段,对人体进行非侵入性的诊断和观察的学科。
在医学影像学中,各种成像原理发挥着重要的作用,帮助医生准确地观察和判断疾病的情况。
本文将介绍医学影像学中常用的成像原理,并详细解释其工作原理和应用。
一、X射线成像原理X射线成像是医学影像学中最常见和最早使用的成像原理之一。
它利用X射线穿透物体的特性,通过接收器捕捉到不同组织结构对X射线的吸收程度,形成影像。
X射线成像具有穿透力强、分辨率高、成本低等优势,在骨骼和肺部疾病的诊断中广泛应用。
二、超声波成像原理超声波成像是利用超声波在组织内传播和反射的原理,形成影像。
在超声波成像中,超声波由探头发射进入人体,然后经过组织的传播和反射,最后由接收器接收回来。
通过分析接收到的超声波信号,可以获得组织的形态、结构和血流信息。
超声波成像具有无辐射、无创伤等优势,常用于妇产科、心脏病等领域的诊断。
三、核磁共振成像原理核磁共振成像利用人体内氢原子核的自旋特性,通过对氢原子核的激发和放松过程进行检测,形成影像。
核磁共振成像的原理复杂,但具有很高的分辨率和对软组织的优势。
核磁共振成像广泛应用于脑部、胸部和腹部等器官的检测和诊断。
四、计算机断层扫描成像原理计算机断层扫描成像是一种通过旋转X射线源和探测器等设备,对患者进行横断层的扫描,并通过计算机进行图像重建的技术。
计算机断层扫描成像原理基于不同组织对X射线的吸收程度不同,通过多次扫描和计算重建,可以得到人体各个层面的断层图像。
该技术能够提供高分辨率的图像,广泛应用于各个领域的诊断和手术规划。
五、放射性同位素成像原理放射性同位素成像是利用放射性同位素的特性,通过摄入或注射具有放射性同位素的药物,然后通过检测其衰变过程产生的射线,形成影像。
放射性同位素成像在肿瘤诊断和治疗、心血管疾病等方面有着重要的应用价值。
综上所述,医学影像学的成像原理多种多样,每种成像原理都有其独特的工作原理和应用场景。
医学影像设备和成像原理
医学影像设备和成像原理
近代医学影像技术是一种以应用电磁波、粒子束、辐射的各种物理学
原理和技术手段来获取和分析人体的内部结构和功能信息的技术。
根据需
要检测的特征和检测方法,可以将医学影像技术分为X射线、放射性核素
成像、核磁共振成像(MRI)、超声成像(US)和光学成像等,常被用来
诊断各种疾病。
X射线成像是目前最被广泛应用的医学影像技术之一、当X射线从X
射线源发出到检测物体时,X射线能量由高能X射线降至低能X射线,X
射线的能量变化与检测物体的厚度和密度有关,X射线穿过检测物体后,
会产生图像,这种技术可以显示检测物体内部的器官情况,这样就可以发
现疾病和异常有一定的分辨率。
放射性核素成像技术是利用放射性同位素发出的α、β、γ射线来
检测植入物体内的器官,或利用放射性同位素所聚集的物质以发现疾病的
一种技术。
以常见的放射性核素成像法--核素扫描法为例,检查者可以将
放射性同位素注射到病人身上,利用电子管进行放射性成像,获得更多关
于器官的信息。
核磁共振成像技术(MRI)是一种采用核磁共振原理的医学影像技术。
第3章 医学影像成像原理分析
处理,对曝光不足或过度的胶片可进行后期补救。⑤ 可进行
图像传输、存储。⑥由于激光扫描仪可以对 IP 上的残留信号 进行消影处理,IP板可重复使用2-3万次。
上海艾乐影像材料有限公司
3.1.4 直接数字化X线摄影系统(DR)
直接数字化 X 射线摄影 (Digital Radiography , DR) 是在具有
图像处理功能的计算机控制下,采用一维或二维的X射线探测
器直接把X射线信息影像转化为数字图像信息的技术。 当前 DR 设备主要采用二维平板 X 射线探测器( flat panel detector,FPD),包括: (1)非晶态硅平板探测器 先经闪烁发光晶体转换成可见光再转换为数字信号 (2)非晶态硒平板探测器 将X线直接转换成数字信号
图3.3 人体不同密度组织(厚度相同)与X线成像的关系
上海艾乐影像材料有限公司
② 人体不同厚度组织与X线成像的关系
人体组织结构和器官形态不同,厚度也不一致,在组织密度相同的 情况下,厚的部分,吸收X线多,透过的X线少,薄的部分则相反。
密度和厚度的差别是产生影像对比的基础,是 X线成像的基本条件
上海艾乐影像材料有限公司
上海艾乐影像材料有限公司
3.1.3 计算机X线摄影(CR)
计算机 X 线摄影( Computed Radiography , CR )是
将 X 线 透 过 人 体 后 的 信 息 记 录 在 成 像 板 ( Image
Plate , IP )上,经读取装置读取后,由计算机以
数字化图像信息的形式储存,再经过数字/模拟
使用X射线对人体进行照射,并对透过人体的X射线信息进行 采集、转换,并使之成为可见的影像,即为X射线人体成像。
(1)X射线影像的形成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
医学影像成像原理
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
Байду номын сангаас