动量定理练习题

合集下载

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。

(物理)物理动量定理练习题20篇及解析

(物理)物理动量定理练习题20篇及解析

(物理)物理动量定理练习题20篇及解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。

质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。

现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。

已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。

求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不分开,C的v-t图象如图乙所示.求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1(3)4—12s内墙壁对物块B的冲量大小I【答案】(1) 2kg (2) 27J (3) 36N s【解析】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg.(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J(3)取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·s3.一质量为m的小球,以初速度v0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即沿反方向弹回.已知反弹速度的大小是入射速度大小的34.求在碰撞过程中斜面对小球的冲量的大小.【答案】72mv0【解析】【详解】小球在碰撞斜面前做平抛运动,设刚要碰撞斜面时小球速度为v,由题意知v的方向与竖直线的夹角为30°,且水平分量仍为v0,由此得v=2v0.碰撞过程中,小球速度由v变为反向的34v,碰撞时间极短,可不计重力的冲量,由动量定理,设反弹速度的方向为正方向,则斜面对小球的冲量为I=m3()4v-m·(-v)解得I=72mv0.4.在距地面20m高处,某人以20m/s的速度水平抛出一质量为1kg的物体,不计空气阻力(g取10m/s2)。

动量定理的典型例题

动量定理的典型例题

动量定理的典型例题【例1】A、B、C三个质量相等的小球以相同的初速度v0分别竖直上抛、竖直下抛、水平抛出.若空气阻力不计,设落地时A、B、C三球的速度分别为v1、v2、v3,则[]A.经过时间t后,若小球均未落地,则三小球动量变化大小相等,方向相同B.A球从抛出到落地过程中动量变化的大小为mv1-mv0,方向竖直向下C.三个小球运动过程的动量变化率大小相等,方向相同D.三个小球从抛出到落地过程中A球所受的冲量最大【分析】A选项要判定三球的动量变化.若直接应用△p=p2-p1比较麻烦,因为动量是矢量,它们的方向并不是在同一直线上,不易求出矢量差.考虑到他们所受的合力均为重力,并都是相同的,由动量定理△p=F合t可知,A选项正确.B选项是判定A球从抛出到落地过程中动量变化.由△p=p2-p1,可得△p=mv1+mv0,方向竖直向下,故B选项是错误的.对C选项,由F合=△p/t知是正确的.因为竖直上抛的A球在空中持续时间最长,故A球受到的冲量mgt也是最大,因此D选项也是正确的.【答】ACD。

【例2】动量相等的甲、乙两车,刹车后沿两条水平路面滑行.若[]A.1:1B.1:2C.2:1D.1:4【分析】两车滑行时水平方向仅受阻力f作用,在这个力作用下使物体的动量发生变化.当规定以车行方向为正方向后,由牛顿第二定律的动量表述形式:所以两车滑行时间:当p、f相同时,滑行时间t相同.【答】A。

【说明】物体的动量反映了它克服阻力能运动多久.从这个意义上,根据p、f 相同,立即可判知t相同.若把题设条件改为“路面对两车的动摩擦因数相同”,则由f=μmg,得【例3】某消防队员从一平台上跳下,下落2m后双脚触地,接着他用双腿弯屈的方法缓冲,使自身重心又下降了0.5m.在着地过程中地面对他双脚的平均作用力估计为[]A.自身所受重力的2倍B.自身所受重力的5倍C.自身所受重力的8倍D.自身所受重力的10倍【分析】下落2m双脚刚着地时的速度触地后,速度从v降为v'=0的时间可以认为等于双腿弯屈又使重心下降△h=0.5m 所需的时间.在这段时间内,可把地面对他双脚的力简化为一个恒力,因而重心下降△h=0.5m的过程可以认为是一个匀减速过程,因此所需时间在触地过程中,设地面对双脚的平均作用力为N,取向上的方向为正方向,由动量定理【答】B.【说明】把消防队员双脚触地时双腿弯曲的过程简化为匀减速运动,即从实际现象中抽象为一个物理模型,是这道题所考察的很重要的一个能力,应予以领会.此外,本题与例4一样,必须注意应用动量定理列式时要先规定正方向,并找出合外力的冲量.【例4】质量为70kg的撑竿跳运动员,从5.60m高处落到海绵垫上,经时间1s 停下.(1)求海绵垫对运动员的平均作用力;(2)若身体与海绵垫的接触面积为0.20m2,求身体所受平均压强;(3)如不用海绵垫,落在普通沙坑中运动员以0.05m2的接触面积着地并历时0.1s 后停下,求沙坑对运动员的平均作用力和运动员所受庄强.(取g=10m/s2)【分析】以运动员为研究对象.从高h=5.6m处落至海绵或沙坑时后为始末两状态,则运动的初动量p1=mv,其方向竖直向下;末动量p2=mv'=0.在这始末两状态的过程中(即着地过程中),运动员除了受到向下的重力外,还受到竖直向上的支持力,在这两个力的合力冲量作用下,使运动员的动量发生了变化.【解】设始末两状态经历时间为△t,当规定竖直向上为正方向时,则合外力的冲量为(N—mg)△t。

物理动量定理题20套(带答案)含解析

物理动量定理题20套(带答案)含解析

【物理】物理动量定理题20套(带答案)含解析一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I .【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有:mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt 1-I=0,∴I=mgt 1方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。

质量m =0.1kg 的滑块甲从最高点A 由静止释放后沿轨道AB 运动,最终停在水平地面上的C 点。

现将质量m =0.3kg 的滑块乙静置于B 点,仍将滑块甲从A 点由静止释放结果甲在B 点与乙碰撞后粘合在一起,最终停在D 点。

已知B 、C 两点间的距离x =2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s ,两滑块均视为质点。

求:(1)圆弧轨道AB 的半径R;(2)甲与乙碰撞后运动到D 点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B 点运动到C 点的过程中做匀速直线运动,有:v B 2=2a 1x 1;根据牛顿第二定律可得:对甲从A 点运动到B 点的过程,根据机械能守恒:解得v B =4m/s ;R=0.8m ;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D 点,由动量定理:解得t=0.4s3.2019年 1月 3日,嫦娥四号探测器成功着陆在月球背面,并通过“鹊桥”中继卫星传回了世界上第一张近距离拍摄月球背面的图片。

最新物理动量定理题20套(带答案)

最新物理动量定理题20套(带答案)
历的时间为 t,发生的位移为 x.分析说明物体的平均速度 v 与 v0、v 满足什么条件时,F1
和 F2 是相等的. (3)质量为 m 的物块,在如图 2 所示的合力作用下,以某一初速度沿 x 轴运动,当由位置
x=0 运动至 x=A 处时,速度恰好为 0,此过程中经历的时间为 t 2
所受合力对时间 t 的平均值.
5.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下 的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在 动量定理中的平均力 F1 是指合力对时间的平均值,动能定理中的平均力 F2 是合力指对位移
的平均值. (1)质量为 1.0kg 的物块,受变力作用下由静止开始沿直线运动,在 2.0s 的时间内运动了 2.5m 的位移,速度达到了 2.0m/s.分别应用动量定理和动能定理求出平均力 F1 和 F2 的 值. (2)如图 1 所示,质量为 m 的物块,在外力作用下沿直线运动,速度由 v0 变化到 v 时,经
m/s2
5.0 1014 m/s2
(2)电子以速度 v0 进入金属板 A、B 间,在垂直于电场方向做匀速直线运动,沿电场方向
做初速度为零的匀加速直线运动,电子在电场中运动的时间为
t
L v0
0.1 2.0 107
s 5.0109 s
电子射出电场时在沿电场线方向的侧移量
代入数据
y 1 at2 2
y 1 5.01014 (5.0109)2 cm 0.63cm 2
IG=mgt 动量变化量
p mv0
由三角形定则得,绳对小球的冲量
IF mgt 2 m2 gL
(3)平抛的水平位移 x v0t ,竖直位移
H L 1 gt2 2

高考物理动量定理专项训练100(附答案)及解析

高考物理动量定理专项训练100(附答案)及解析

高考物理动量定理专项训练100(附答案)及解析一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。

求:①A与B撞击结束时的速度大小v;②在整个过程中,弹簧对A、B系统的冲量大小I。

【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。

2.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1 = 36 km/h正面撞击固定试验台,经时间t1 = 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2 =0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I0 = 1.6×104 N·s ,1.6×105 N;(2)见解析【解析】【详解】(1)v1 = 36 km/h = 10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1 ①将已知数据代入①式得I0 = 1.6×104 N·s ②由冲量定义有I0 = F0t1 ③将已知数据代入③式得F0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m1v1+ m2v2 = (m1+ m2)v⑤对试验车,由动量定理有-Ft2 = m1v-m1v1 ⑥将已知数据代入⑤⑥式得F= 2.5×104 N ⑦可见F<F0,故试验车的安全气囊不会爆开⑧3.如图所示,质量M=1.0kg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。

物理动量定理练习题20篇

物理动量定理练习题20篇

物理动量定理练习题20篇一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t + (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。

现将细绳拉至与水平方向成30︒,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。

若忽略空气阻力,重力加速度为g 。

(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。

请通过计算,说明你的观点。

【答案】(1)F =2mg ;(2)()22F I mgt m gL =+;(3)当2HL =时小球抛的最远 【解析】 【分析】 【详解】(1)小球从释放到最低点的过程中,由动能定理得201sin 302mgL mv ︒=小球在最低点时,由牛顿第二定律和向心力公式得20mv F mg L-= 解得:F =2mg(2)小球从释放到最低点的过程中,重力的冲量I G =mgt动量变化量0p mv ∆=由三角形定则得,绳对小球的冲量()22F I mgt m gL =+(3)平抛的水平位移0x v t =,竖直位移212H L gt -=解得2()x L H L -当2HL =时小球抛的最远3.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m 【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.4.如图,A 、B 、C 三个木块的质量均为m ,置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端分别与木块B 、C 相连,弹簧处于原长状态.现A 以初速v 0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起,碰撞时间极短、大小为t .(1)A 、B 碰撞过程中,求A 对B 的平均作用力大小F . (2)在以后的运动过程中,求弹簧具有的最大弹性势能E p . 【答案】(1)02mv F t = (2)2P 0112E mv =【解析】 【详解】(1)设A 、B 碰撞后瞬间的速度为1v ,碰撞过程A 、B 系统动量守恒,取向右为正方向,由动量守恒定律有:012mv mv = 解得1012v v =设A 、B 碰撞时的平均作用力大小为F ,对B 有10Ft mv =- 解得02mv F t=(2)当A 、B 、C 具有共同速度v 时,弹簧具有最大弹性势能,设弹簧的最大弹性势能为p E ,碰后至A 、B 、C 速度相同的过程中,系统动量守恒,有03mv mv =根据碰后系统的机械能守恒得221p 112322mv mv E ⋅=⋅+ 解得:2p 0112E mv =5.如图所示,质量的小车A 静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。

在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。

【物理】物理动量定理题20套(带答案)

【物理】物理动量定理题20套(带答案)

【答案】(1)a.
b. v 2gH c. I mgt 2m 2gH (2)上升高度与
质量 m 有关,质量大的上升高度小 【解析】 【分析】 (1)a、根据胡克定律求出劲度系数,抓住弹力与形变量成正比,作出弹力 F 随 x 变化的 示意图. b、根据机械能守恒求出小孩刚接触蹦床时的速度大小; c、根据动量定理求出蹦床对该小孩的冲量大小.
(1)碰撞后 A 小球的速度大小。 (2)碰撞过程两小球间的平均作用力大小。 【答案】(1)2m/s (2)1000N 【解析】
【详解】
(1)B
小球刚好能运动到圆形轨道的最高点:
m2 g
m2
v2 R

B
球碰后速度为
v2
,由机械能守恒可知:
1 2
m2v22
2m2 gR
1 2
m2v2
A、B 碰撞过程系统动量守恒: m1v0 m1v1 m2v2
【解析】
【分析】
【详解】
(1)小球与地面碰撞前的动量为:p1=m(-v1)=0.2×(-6) kg·m/s=-1.2 kg·m/s 小球与地面碰撞后的动量为 p2=mv2=0.2×4 kg·m/s=0.8 kg·m/s 小球与地面碰撞前后动量的变化量为 Δp=p2-p1=2 kg·m/s (2)由动量定理得(F-mg)Δt=Δp
其中 v 2gH
可得蹦床对小孩的冲量大小为: I mgt 2m 2gH
(2)设蹦床的压缩量为 x,小孩离开蹦床后上升了 H.从最低点处到最高点,重力做功
mg x
H
,根据
F-x
图象的面积可求出弹力做功:W弹
kx2 2
从最低点处到最高点,根据动能定理: mg H x kx2 0

(完整版)动量定理精选习题+答案

(完整版)动量定理精选习题+答案

动量定理精选习题一、单选题(本大题共7小题,共28.0分)1.如图所示,质量相等的五个物块在光滑水平面上,间隔一定距离排成一条直线.具有初动能E0的物块1向其它4个静止的物块运动,依次发生碰撞,每次碰撞后不再分开.最后5个物块粘成一个整体.这个整体的动能等于()A. E0B. 45E0 C. 15E0 D. 125E02.如图所示,小车静止在光滑水平面上,AB是小车内半圆弧轨道的水平直径,现将一小球从距A点正上方h高处由静止释放,小球由A点沿切线方向经半圆轨道后从B点冲出,在空中能上升的最大高度为0.8ℎ,不计空气阻力.下列说法正确的是()A. 在相互作用过程中,小球和小车组成的系统动量守恒B. 小球离开小车后做竖直上抛运动C. 小球离开小车后做斜上抛运动D. 小球第二次冲出轨道后在空中能上升的最大高度为0.6ℎ3.如图所示,半径为R、质量为M的14光滑圆槽置于光滑的水平地面上,一个质量为m的小木块从槽的顶端由静止滑下.则木块从槽口滑出时的速度大小为()A. √2gRB. √2gRMM+mC. √2gRmM+mD. √2gR(M−m)M4.如图所示,甲、乙两人各站在静止小车的左右两端,当他俩同时相向行走时,发现小车向右运动.下列说法不正确的是(车与地面之间无摩擦)()A. 乙的速度必定大于甲的速度B. 乙对小车的冲量必定大于甲对小车的冲量C. 乙的动量必定大于甲的动量D. 甲、乙动量总和必定不为零5.质量为m的物体,沿半径为R的轨道以速率v做匀速圆周运动,如图所示,取v B方向为正方向,求物体由A至B过程所受的合外力在半周期内的冲量()A. 2mvB. −2mvC. mvD. −mv6.两球A、B在光滑水平面上沿同一直线,同一方向运动,m A=1kg,m B=2kg,v A=6m/s,v B=2m/s.当A追上B并发生碰撞后,两球A、B速度的可能值是()A. v A′=5m/s,v B′=2m/sB. v A′=2m/s,v B′=4m/sC. v A′=−4m/s,v B′=7m/sD. v A′=7m/s,v B′=1.5m/s7.有一条捕鱼小船停靠在湖边码头,小船又窄又长,甲同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,另外一位同学用卷尺测出船后退的距离d,然后用卷尺测出船长L.已知甲同学的质量为m,则渔船的质量为( )A. m(L+d)d B. m(L−d)dC. mLdD. m(L+d)L二、多选题(本大题共3小题,共12.0分)8.如图所示,在质量为M(含支架)的小车中用轻绳悬挂一小球,小球的质量为m0,小车和小球以恒定速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发生的?()A. 在此过程中小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=Mv1+mv2+m0v3B. 在此碰撞过程中,小球的速度不变,小车和木块的速度分别为v1和v2,满足(M+m0)v=Mv1+mv2C. 在此碰撞过程中,小球的速度不变,小车和木块的速度都变成u,满足Mv=(M+m)uD. 碰撞后小球摆到最高点时速度变为为v1,木块的速度变为v2,满足(M+m0)v=(M+m0)v1+mv29.一静止的铝原子原子核 1327Al俘获一速度为1.0×107m/s的质子p后,变为处于激发状态的硅原子核 1428Si,下列说法正确的是()A. 核反应方程为p+ 1327Al→ 1428SiB. 核反应方程过程中系统动量守恒C. 核反应过程中系统能量不守恒D. 核反应前后核子数相等,所以生成物的质量等于反应物的质量之和E. 硅原子核速度的数量级105m/s,方向与质子初速度方向一致10.如图所示,质量M=3kg的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动.质量m=2kg的小球(视为质点)通过长L=0.75m的轻杆与滑块上的光特轴O连接,开始时滑块静止、轻杆处于水平状态.现给小球一个v0=3m/s的竖直向下的初速度,取g=10m/s2则()A. 小球m从初始位置到第一次到达最低点的过程中,滑块M在水平轨道上向右移动了0.3mB. 小球m从初始位置到第一次到达最低点的过程中,滑块对在水平轨道上向右移动了0.5mC. 小球m相对于初始位置可以上升的最大高度为0.27mD. 小球m从初始位置到第一次到达最大高度的过程中,滑块M在水平轨道上向右移动了0.54m三、计算题(本大题共10小题,共100.0分)11.如图所示,质量为5kg的木板B静止于光滑水平面上,物块A质量为5kg,停在B的左端.质量为1kg的小球用长为0.45m的轻绳悬挂在固定点O上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A发生碰撞后反弹,反弹所能达到的最大高度为0.2m,物块与小球可视为质点,不计空气阻力.已知A、B间的动摩擦因数为0.1,为使A、B达到共同速度前A不滑离木板,重力加速度g=10m/s2,求:(1)碰撞后瞬间物块A的速度大小为多少;(2)木板B至少多长;(3)从小球释放到A、B达到共同速度的过程中,小球及A、B组成的系统损失的机械能.12.如图所示,宽为L=0.1m的MN、PQ两平行光滑水平导轨分别与半径r=0.5m的相同竖直半圆导轨在N、Q端平滑连接,M、P端连接定值电阻R,质量M=2kg的cd绝缘杆垂直静止在水平导轨上,在其右侧至N、Q端的区域内充满竖直向上的匀强磁场,B=1T.现有质量m=1kg的ab金属杆,电阻为R o,R o=R=1Ω,它以初速度v0=12m/s水平向右与cd绝缘杆发生正碰后,进入磁场并最终未滑出,cd 绝缘杆则恰好能通过半圆导轨最高点,不计其它电阻和摩擦,ab金属杆始终与导轨垂直且接触良好,取g=10m/s2,求:(1)碰后瞬间cd绝缘杆的速度大小v2与ab金属杆速度大小v1;(2)碰后ab金属杆进入磁场瞬间受到的安培力大小F ab;(3)ab金属杆进入磁场运动全过程中,电路产生的焦耳热Q.13.如图所示,在光滑的水平面上有一带半圆形光滑弧面的小车,质量为M,圆弧半径为R,从距车上表面高为H处静止释放一质量为m的小球,它刚好沿圆弧切线从A点落入小车,求(1)小球到达车底B点时小车的速度和此过程中小车的位移;(2)小球到达小车右边缘C点处,小球的速度.14.如图所示,质量为3m的木块静止放置在光滑水平面上,质量为m的子弹(可视为质点)以初速度v0水平v0,试求:向右射入木块,穿出木块时速度变为25①子弹穿出木块后,木块的速度大小;②子弹穿透木块的过程中产生的热量.15.在光滑水平面上静止有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,滑块CD上表面是光圆弧,他们紧靠在一起,如图所示.一个可视为质点的物块P,质量也为m,它从木板AB的右端滑的14以初速度v0滑上木板,过B点时速度为v0,然后又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高2点C处.若物体P与木板AB间的动摩擦因数为μ,求:(1)物块滑到B处时木板AB的速度v1的大小;(2)木板AB的长度L;(3)滑块CD最终速度v2的大小.16.质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m 的小球(大小不计).今将小球拉至悬线与竖直位置成60∘角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块到达最低点与Q碰撞之前瞬间的速度是多大?(2)小物块Q离开平板车时平板车的速度为多大?(3)平板车P的长度为多少?(4)小物块Q落地时距小球的水平距离为多少?17.如图所示,水平地面上竖直固定一个光滑的、半径R=0.45m的1圆弧轨道,A、B分别是圆弧的端点,4圆弧B点右侧是光滑的水平地面,地面上放着一块足够长的木板,木板的上表面与圆弧轨道的最低点B 等高,可视为质点的小滑块P1和P2的质量均为m=0.20kg,木板的质量M=4m,P1和P2与木板上表面的动摩擦因数分别为μ1=0.20和μ2=0.50,最大静摩擦力近似等于滑动摩擦力;开始时木板的左端紧靠着B,P2静止在木板的左端,P1以v0=4.0m/s的初速度从A点沿圆弧轨道自由滑下,与P2发生弹性碰撞后,P1处在木板的左端,取g=10m/s2.求:(1)P1通过圆弧轨道的最低点B时对轨道的压力;(2)P2在木板上滑动时,木板的加速度为多大?(3)已知木板长L=2m,请通过计算说明P2会从木板上掉下吗?如能掉下,求时间?如不能,求共速?18.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60∘角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?(3)小物块Q落地时距小球的水平距离为多少?19.如甲图所示,光滑导体轨道PMN和是两个完全一样轨道,是由半径为r的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M和点相切,两轨道并列平行放置,MN和位于同一水平面上,两轨道之间的距离为L,之间有一个阻值为R的电阻,开关K是一个感应开关(开始时开关是断开的),是一个矩形区域内有竖直向上的磁感应强度为B的匀强磁场,水平轨道MN离水平地面的高度为h,其截面图如乙所示。

动量动量定理练习题

动量动量定理练习题

动量定理练习题一、单选题1.如图所示,一恒力F与水平方向夹角为θ,作用在置于光滑水平面上,质量为m的物体上,作用时间为t,则力F的冲量为()A.Ft B.mgt C.F cosθt D.(mg-F sinθ)t2.质量为m的质点以速度υ绕半径R的圆周轨道做匀速圆周运动,在半个周期内动量的改变量大小为()A.0 B.mυC.2mυD.条件不足,无法确定3.如图所示质量为m的物块沿倾角为θ的斜面由底端向上滑去,经过时间t1速度为零后又下滑,经过时间t2回到斜面底端,在整个运动过程中,重力对物块的总冲量为()A.0 B.mg sinθ(t1+ t2) C.mg sinθ(t1- t2) D.mg(t1+ t2)4.水平抛出的物体,不计空气阻力,则()A.在相等时间内,动量的变化相同B.在任何时间内,动量的变化方向都在竖直方向C.在任何时间内,动量对时间的变化率相同D.在刚抛出的瞬间,动量对时间的变化率为零5.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中。

若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过程称为Ⅱ,则()A.过程Ⅰ中钢珠动量的改变量等于重力的冲量B.过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小D.过程Ⅱ中钢珠的动量改变量等于阻力的冲量6.把一个乒乓球竖直向上抛出,若空气阻力大小不变,则乒乓球上升到最高点和从最高点返回到抛出点的过程相比较()A.重力在上升过程的冲量大B.合外力在上升过程的冲量大C.重力冲量在两过程中的方向相反D.空气阻力冲量在两过程中的方向相反7.动量相等的甲、乙两车,刹车后沿两条水平路面滑行.若两车质量之比m1:m2=1:2,路面对两车的阻力相同,则两车滑行时间之比为()A.1:1 B.1:2 C.2:1 D.1:48.A、B、C三个质量相等的小球以相同的初速度v0分别竖直上抛、竖直下抛、水平抛出.若空气阻力不计,设落地时A、B、C三球的速度分别为v1、v2、v3,则()A.经过时间t后,若小球均未落地,则三小球动量变化大小相等,方向相同B.A球从抛出到落地过程中动量变化的大小为mv1-mv0,方向竖直向下C.三个小球运动过程的动量变化率大小相等,方向相同D.三个小球从抛出到落地过程中A球所受的冲量最大二、计算题1、用0.5kg的铁锤把钉子钉进木头里,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s,求铁锤钉钉子的平均作用力是多大?(g 取10m/s2)2、一个质量为0.18kg的垒球,以25m/s的水平速度飞向球棒,被球棒打击后反向水平飞回,速度大小变为45m/s,设球棒与垒球的作用时间为0.01s.求:(1)球棒对垒球的平均作用力大小(2)球棒对垒球做的功3、质量为m=0.2kg的橡皮球自高处落下,以速率v0=5m/s碰地,竖直向上弹回,碰撞时间为t=0.1s,离地时速率为v=3m/s,求:(1)在碰撞过程中地面对橡皮球的平均作用力(2)若把橡皮球改为钢球,碰撞时间为0.01s,则碰撞时的平均作用力是多少?4、质量为1 kg的小球从距地面高0.45 m处自由下落到地面上,反弹后上升的最大高度为0.20 m,小球与地面接触的时间为0.05 s,不计空气阻力,g取10 m/s2。

【物理】物理动量定理题20套(带答案)含解析

【物理】物理动量定理题20套(带答案)含解析

【物理】物理动量定理题20套(带答案)含解析一、高考物理精讲专题动量定理1.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.2.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F . 【答案】(1)0.32μ= (2)F =130N 【解析】试题分析:(1)对A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv , 代入数据解得:F=130N .3.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。

高中物理动量定理基础题(含答案)

高中物理动量定理基础题(含答案)

高中物理动量定理基础题(含答案)一、单选题1.如图所示,质量为m 的小滑块沿倾角为θ的粗糙斜面向上滑动,经过时间1t 速度为零然后下滑,经过时间2t 回到斜面底端,滑块在运动过程中受到的摩擦力大小始终恒定。

在整个过程中,重力对滑块的总冲量为( )A .()12sin mg t t θ+B .()12sin mg t t θ-C .()12mg t t +D .()12cos mg t t θ+2.人从高处跳到地面,为了安全,一般都是让脚尖先着地,接着让整个脚底着地,并让人下蹲,这样做是为了( )A .减小人受到的冲量B .增大人受到的冲量C .延长与地面的作用时间,从而减小人受到的作用力D .延长与地面的作用时间,从而减小人动量的变化3.“守株持兔"是众所周知的寓言故事.假设兔子质量为3kg ,以10m /s 的速度奔跑,撞树后几乎不反弹、作用时间约为0.02s ,则兔子受到的平均撞击力大小为( ) A .1.5N B .15N C .150N D .1500N 4.如图,质量2kg m =的木块放在水平地面上,与地面间的动摩擦因数0.2μ=,木块在5N F =的水平恒力作用下由静止开始向右运动了10s ,210m/s =g ,在这10s 内,下列说法正确的是( )A .重力的冲量为0B .摩擦力的冲量为40N s -⋅C .物体动量的变化为20kg m/s ⋅D .合外力的冲量为50N·s5.如图,一物体静止在水平地面上,受到与水平方向成θ角的恒定拉力F 作用时间t 后,物体仍保持静止。

以下说法中正确的是( )A .物体的动量变化量为FtB .物体所受重力的冲量大小为0C .物体所受摩擦力的冲量大小为cos Ft θD .物体所受拉力F 的冲量大小是cos Ft θ二、多选题6.质量为1kg 的物块在水平力F 的作用下由静止开始在水平地面上做直线运动,F 与时间t 的关系如图所示。

动量定理精选习题+答案

动量定理精选习题+答案

动量定理精选习题一、单选题(本大题共7小题,共28.0分)1.如图所示,质量相等的五个物块在光滑水平面上,间隔一定距离排成一条直线.具有初动能E0的物块1向其它4个静止的物块运动,依次发生碰撞,每次碰撞后不再分开.最后5个物块粘成一个整体.这个整体的动能等于()A. E0B. 45E0 C. 15E0 D. 125E02.如图所示,小车静止在光滑水平面上,AB是小车内半圆弧轨道的水平直径,现将一小球从距A点正上方h高处由静止释放,小球由A点沿切线方向经半圆轨道后从B点冲出,在空中能上升的最大高度为0.8ℎ,不计空气阻力.下列说法正确的是()A. 在相互作用过程中,小球和小车组成的系统动量守恒B. 小球离开小车后做竖直上抛运动C. 小球离开小车后做斜上抛运动D. 小球第二次冲出轨道后在空中能上升的最大高度为0.6ℎ3.如图所示,半径为R、质量为M的14光滑圆槽置于光滑的水平地面上,一个质量为m的小木块从槽的顶端由静止滑下.则木块从槽口滑出时的速度大小为()A. √2gRB. √2gRMM+mC. √2gRmM+mD. √2gR(M−m)M4.如图所示,甲、乙两人各站在静止小车的左右两端,当他俩同时相向行走时,发现小车向右运动.下列说法不正确的是(车与地面之间无摩擦)()A. 乙的速度必定大于甲的速度B. 乙对小车的冲量必定大于甲对小车的冲量C. 乙的动量必定大于甲的动量D. 甲、乙动量总和必定不为零5.质量为m的物体,沿半径为R的轨道以速率v做匀速圆周运动,如图所示,取v B方向为正方向,求物体由A至B过程所受的合外力在半周期内的冲量()A. 2mvB. −2mvC. mvD. −mv6.两球A、B在光滑水平面上沿同一直线,同一方向运动,m A=1kg,m B=2kg,v A=6m/s,v B=2m/s.当A追上B并发生碰撞后,两球A、B速度的可能值是()A. v A′=5m/s,v B′=2m/sB. v A′=2m/s,v B′=4m/sC. v A′=−4m/s,v B′=7m/sD. v A′=7m/s,v B′=1.5m/s7.有一条捕鱼小船停靠在湖边码头,小船又窄又长,甲同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,另外一位同学用卷尺测出船后退的距离d,然后用卷尺测出船长L.已知甲同学的质量为m,则渔船的质量为( )A. m(L+d)d B. m(L−d)dC. mLdD. m(L+d)L二、多选题(本大题共3小题,共12.0分)8.如图所示,在质量为M(含支架)的小车中用轻绳悬挂一小球,小球的质量为m0,小车和小球以恒定速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发生的?()A. 在此过程中小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=Mv1+mv2+m0v3B. 在此碰撞过程中,小球的速度不变,小车和木块的速度分别为v1和v2,满足(M+m0)v=Mv1+mv2C. 在此碰撞过程中,小球的速度不变,小车和木块的速度都变成u,满足Mv=(M+m)uD. 碰撞后小球摆到最高点时速度变为为v1,木块的速度变为v2,满足(M+m0)v=(M+m0)v1+mv29.一静止的铝原子原子核 1327Al俘获一速度为1.0×107m/s的质子p后,变为处于激发状态的硅原子核 1428Si,下列说法正确的是()A. 核反应方程为p+ 1327Al→ 1428SiB. 核反应方程过程中系统动量守恒C. 核反应过程中系统能量不守恒D. 核反应前后核子数相等,所以生成物的质量等于反应物的质量之和E. 硅原子核速度的数量级105m/s,方向与质子初速度方向一致10.如图所示,质量M=3kg的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动.质量m=2kg的小球(视为质点)通过长L=0.75m的轻杆与滑块上的光特轴O连接,开始时滑块静止、轻杆处于水平状态.现给小球一个v0=3m/s的竖直向下的初速度,取g=10m/s2则()A. 小球m从初始位置到第一次到达最低点的过程中,滑块M在水平轨道上向右移动了0.3mB. 小球m从初始位置到第一次到达最低点的过程中,滑块对在水平轨道上向右移动了0.5mC. 小球m相对于初始位置可以上升的最大高度为0.27mD. 小球m从初始位置到第一次到达最大高度的过程中,滑块M在水平轨道上向右移动了0.54m三、计算题(本大题共10小题,共100.0分)11.如图所示,质量为5kg的木板B静止于光滑水平面上,物块A质量为5kg,停在B的左端.质量为1kg的小球用长为0.45m的轻绳悬挂在固定点O上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A发生碰撞后反弹,反弹所能达到的最大高度为0.2m,物块与小球可视为质点,不计空气阻力.已知A、B间的动摩擦因数为0.1,为使A、B达到共同速度前A不滑离木板,重力加速度g=10m/s2,求:(1)碰撞后瞬间物块A的速度大小为多少;(2)木板B至少多长;(3)从小球释放到A、B达到共同速度的过程中,小球及A、B组成的系统损失的机械能.12.如图所示,宽为L=0.1m的MN、PQ两平行光滑水平导轨分别与半径r=0.5m的相同竖直半圆导轨在N、Q端平滑连接,M、P端连接定值电阻R,质量M=2kg的cd绝缘杆垂直静止在水平导轨上,在其右侧至N、Q端的区域内充满竖直向上的匀强磁场,B=1T.现有质量m=1kg的ab金属杆,电阻为R o,R o=R=1Ω,它以初速度v0=12m/s水平向右与cd绝缘杆发生正碰后,进入磁场并最终未滑出,cd 绝缘杆则恰好能通过半圆导轨最高点,不计其它电阻和摩擦,ab金属杆始终与导轨垂直且接触良好,取g=10m/s2,求:(1)碰后瞬间cd绝缘杆的速度大小v2与ab金属杆速度大小v1;(2)碰后ab金属杆进入磁场瞬间受到的安培力大小F ab;(3)ab金属杆进入磁场运动全过程中,电路产生的焦耳热Q.13.如图所示,在光滑的水平面上有一带半圆形光滑弧面的小车,质量为M,圆弧半径为R,从距车上表面高为H处静止释放一质量为m的小球,它刚好沿圆弧切线从A点落入小车,求(1)小球到达车底B点时小车的速度和此过程中小车的位移;(2)小球到达小车右边缘C点处,小球的速度.14.如图所示,质量为3m的木块静止放置在光滑水平面上,质量为m的子弹(可视为质点)以初速度v0水平v0,试求:向右射入木块,穿出木块时速度变为25①子弹穿出木块后,木块的速度大小;②子弹穿透木块的过程中产生的热量.15.在光滑水平面上静止有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,滑块CD上表面是光圆弧,他们紧靠在一起,如图所示.一个可视为质点的物块P,质量也为m,它从木板AB的右端滑的14以初速度v0滑上木板,过B点时速度为v0,然后又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高2点C处.若物体P与木板AB间的动摩擦因数为μ,求:(1)物块滑到B处时木板AB的速度v1的大小;(2)木板AB的长度L;(3)滑块CD最终速度v2的大小.16.质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m 的小球(大小不计).今将小球拉至悬线与竖直位置成60∘角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块到达最低点与Q碰撞之前瞬间的速度是多大?(2)小物块Q离开平板车时平板车的速度为多大?(3)平板车P的长度为多少?(4)小物块Q落地时距小球的水平距离为多少?17.如图所示,水平地面上竖直固定一个光滑的、半径R=0.45m的1圆弧轨道,A、B分别是圆弧的端点,4圆弧B点右侧是光滑的水平地面,地面上放着一块足够长的木板,木板的上表面与圆弧轨道的最低点B 等高,可视为质点的小滑块P1和P2的质量均为m=0.20kg,木板的质量M=4m,P1和P2与木板上表面的动摩擦因数分别为μ1=0.20和μ2=0.50,最大静摩擦力近似等于滑动摩擦力;开始时木板的左端紧靠着B,P2静止在木板的左端,P1以v0=4.0m/s的初速度从A点沿圆弧轨道自由滑下,与P2发生弹性碰撞后,P1处在木板的左端,取g=10m/s2.求:(1)P1通过圆弧轨道的最低点B时对轨道的压力;(2)P2在木板上滑动时,木板的加速度为多大?(3)已知木板长L=2m,请通过计算说明P2会从木板上掉下吗?如能掉下,求时间?如不能,求共速?18.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60∘角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?(3)小物块Q落地时距小球的水平距离为多少?19.如甲图所示,光滑导体轨道PMN和是两个完全一样轨道,是由半径为r的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M和点相切,两轨道并列平行放置,MN和位于同一水平面上,两轨道之间的距离为L,之间有一个阻值为R的电阻,开关K是一个感应开关(开始时开关是断开的),是一个矩形区域内有竖直向上的磁感应强度为B的匀强磁场,水平轨道MN离水平地面的高度为h,其截面图如乙所示。

(完整版)动量定理精选习题+答案

(完整版)动量定理精选习题+答案
小球由静止摆到最低点的过程中绳子的拉力不做功只有重力做功机械能守恒即可由机械能守恒定律求出小球与q碰撞前瞬间的速度?到达最低点时与q的碰撞时间极短且无能量损失满足动量守恒的条件且能量守恒由两大守恒定律结合可求出碰撞后小球与q在平板车p上滑动的过程中系统的合外力为零总动量守恒即可由动量守恒定律求出小物块q离开平板车时速度
三、计算题(本大题共 10 小题,共 100.0 分)
M 在水平轨道上向右移动了 0.54 m
11. 如图所示,质量为 5kg 的木板 B 静止于光滑水平面上,物块 A 质量为 5kg,停在 B 的左端 .质量为 1kg
的小球用长为 0.45??的轻绳悬挂在固定点 O 上,将轻绳拉直至水平位置后, 由静止释放小球, 小球在最
m 的静
止木块发生碰撞,碰撞的时间极短 .在此碰撞过程中,下列哪个或哪些说法是可
能发生的? ( )
A. 在此过程中小车、木块、摆球的速度都发生变化,分别变为
??1、 ??2 、 ?3?,满足 (?? + ??0 )??= ???1? +
???2? + ??0 ??3
B. 在此碰撞过程中, 小球的速度不变, 小车和木块的速度分别为 ?1?和 ?2?,满足 (?? + ??0)??= ???1?+ ???2?
4
B. 5 ??0
1
C. 5 ??0
1
D. 25 ??0
2. 如图所示,小车静止在光滑水平面上, AB 是小车内半圆弧轨道的水平直径,现 将一小球从距 A 点正上方 h 高处由静止释放,小球由 A 点沿切线方向经半圆轨 道后从 B 点冲出,在空中能上升的最大高度为 0.8? ,不计空气阻力 .下列说法正 确的是 ( )
1

动量定理习题

动量定理习题

动量定理习题
以下是一些动量定理的习题:
1. 一个物体质量为2 kg,速度为3 m/s。

在受到一个作用力2 N的情况下,物体的速度变为5 m/s,求作用时间是多久。

解答:根据动量定理,如果没有外力作用,动量守恒。

初态动量等于末态动量,即
2 kg ×
3 m/s = 2 kg × 5 m/s。

可得初态动量为6 kg·m/s,末态动量为10 kg·m/s。

因此作用力的改变量为
10 kg·m/s - 6 kg·m/s = 4 kg·m/s。

根据力的定义F = Δp / Δt,其中F是力,Δp是动量的变化量,Δt是时间。

将已知条件代入方程,可得
2 N = 4 kg·m/s / Δt。

解得Δt = 2秒。

2. 一个质量为0.5 kg的物体以5 m/s的速度向东方运动,在受到一个作用力后,速度变为3 m/s向西方运动。

求作
用力的大小和方向。

解答:根据动量定理,如果没有外力作用,动量守恒。


态动量等于末态动量,即
0.5 kg × 5 m/s = 0.5 kg × (-3 m/s)。

可得初态动量为2.5 kg·m/s,末态动量为-1.5 kg·m/s。

因此作用力的改变量为
-1.5 kg·m/s - 2.5 kg·m/s = -4 kg·m/s。

由于速度的方向改变了,作用力的方向与速度的方向相反,所以作用力的方向是向东方,大小为4 kg·m/s。

物理动量定理题20套(带答案)

物理动量定理题20套(带答案)

物理动量定理题20套(带答案)一、高考物理精讲专题动量定理1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N 【解析】(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即2202v v aL -=可解得:221002v v L m a-==(2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:2Cv N mg m R-= 从B 运动到C 由动能定理可知:221122C B mgh mv mv =-解得;3900N N =故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.2.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。

车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。

动量定理的典型例题

动量定理的典型例题

动量定理的典型例题【例1】A、B、C三个质量相等的小球以相同的初速度v0分别竖直上抛、竖直下抛、水平抛出.若空气阻力不计,设落地时A、B、C三球的速度分别为v1、v2、v3,则 []A.经过时间t后,若小球均未落地,则三小球动量变化大小相等,方向相同B.A球从抛出到落地过程中动量变化的大小为mv1-mv0,方向竖直向下C.三个小球运动过程的动量变化率大小相等,方向相同D.三个小球从抛出到落地过程中A球所受的冲量最大【分析】A选项要判定三球的动量变化.若直接应用△p=p2-p1比较麻烦,因为动量是矢量,它们的方向并不是在同一直线上,不易求出矢量差.考虑到他们所受的合力均为重力,并都是相同的,由动量定理△p=F合t可知,A选项正确.B选项是判定A球从抛出到落地过程中动量变化.由△p=p2-p1,可得△p=mv1+mv0,方向竖直向下,故B选项是错误的.对C选项,由F合=△p/t知是正确的.因为竖直上抛的A球在空中持续时间最长,故A球受到的冲量mgt也是最大,因此D选项也是正确的.【答】ACD。

【例2】动量相等的甲、乙两车,刹车后沿两条水平路面滑行.若[]A.1:1B.1:2C.2:1D.1:4【分析】两车滑行时水平方向仅受阻力f作用,在这个力作用下使物体的动量发生变化.当规定以车行方向为正方向后,由牛顿第二定律的动量表述形式:所以两车滑行时间:当p、f相同时,滑行时间t相同.【答】A。

【说明】物体的动量反映了它克服阻力能运动多久.从这个意义上,根据p、f 相同,立即可判知t相同.若把题设条件改为“路面对两车的动摩擦因数相同”,则由f=μmg,得【例3】某消防队员从一平台上跳下,下落2m后双脚触地,接着他用双腿弯屈的方法缓冲,使自身重心又下降了0.5m.在着地过程中地面对他双脚的平均作用力估计为[]A.自身所受重力的2倍B.自身所受重力的5倍C.自身所受重力的8倍D.自身所受重力的10倍【分析】下落2m双脚刚着地时的速度触地后,速度从v降为v'=0的时间可以认为等于双腿弯屈又使重心下降△h=0.5m 所需的时间.在这段时间内,可把地面对他双脚的力简化为一个恒力,因而重心下降△h=0.5m的过程可以认为是一个匀减速过程,因此所需时间在触地过程中,设地面对双脚的平均作用力为N,取向上的方向为正方向,由动量定理【答】B.【说明】把消防队员双脚触地时双腿弯曲的过程简化为匀减速运动,即从实际现象中抽象为一个物理模型,是这道题所考察的很重要的一个能力,应予以领会.此外,本题与例4一样,必须注意应用动量定理列式时要先规定正方向,并找出合外力的冲量.【例4】质量为70kg的撑竿跳运动员,从5.60m高处落到海绵垫上,经时间1s 停下.(1)求海绵垫对运动员的平均作用力;(2)若身体与海绵垫的接触面积为0.20m2,求身体所受平均压强;(3)如不用海绵垫,落在普通沙坑中运动员以0.05m2的接触面积着地并历时0.1s 后停下,求沙坑对运动员的平均作用力和运动员所受庄强.(取g=10m/s2)【分析】以运动员为研究对象.从高h=5.6m处落至海绵或沙坑时后为始末两状态,则运动的初动量p1=mv,其方向竖直向下;末动量p2=mv'=0.在这始末两状态的过程中(即着地过程中),运动员除了受到向下的重力外,还受到竖直向上的支持力,在这两个力的合力冲量作用下,使运动员的动量发生了变化.【解】设始末两状态经历时间为△t,当规定竖直向上为正方向时,则合外力的冲量为(N—mg)△t。

【物理】物理动量定理练习题20篇

【物理】物理动量定理练习题20篇

【物理】物理动量定理练习题2 0 篇一、高考物理精讲专题动量定理1. 质量为m 的小球,从沙坑上方自由下落,经过时间t₁到达沙坑表面,又经过时间t₂停在沙坑里.求:(1)沙对小球的平均阻力F;(2)小球在沙坑里下落过程所受的总冲量1.【答案】(1) (2)mgt₁【解析】试题分析:设刚开始下落的位置为A, 刚好接触沙的位置为B, 在沙中到达的最低点为C.(1)在下落的全过程对小球用动量定理:重力作用时间为ti+tz, 而阻力作用时间仅为t2,以竖直向下为正方向,有:mg(ti+t2)-Ft₂=0,解得:(2)仍然在下落的全过程对小球用动量定理:在t₁时间内只有重力的冲量,在t₂时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt₁-I=0,∴I=mgt₁方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2. 如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A 以vo=12m/s 的水平速度撞上静止的滑块B 并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m₁=0.5 kg、m₂=1.5kg。

求:①A 与B 撞击结束时的速度大小v;②在整个过程中,弹簧对A 、B 系统的冲量大小1。

【答案】①3m/s; ②12N·s【解析】【详解】①A 、B 碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m₁Vo=(m₁+m₂)v 代入数据解得v=3m/s②以向左为正方向, A 、B 与弹簧作用过程由动量定理得l=(m₁+m₂) (-v)-(m₁+m₂)v代入数据解得l=-12N ·s负号表示冲量方向向右。

3. 汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值B 时,安全气囊爆开.某次试验中,质量m=1600 kg 的试验车以速度v₁= 36 km/h 正面撞击固定试验台,经时间t₁= 0.10 s 碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I 的大小及F 的大小;(2)若试验车以速度v 撞击正前方另一质量m=1600 kg、速度v₂=18 km/h 同向行驶的汽车,经时间t₂=0. 16s 两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)1。

12动量定理练习(word版含答案)

12动量定理练习(word版含答案)

人教版(2019)选择性必修一 1.2 动量定理一、单选题1.将质量为0.5 kg 的小球以20 m/s 的初速度竖直向上抛出,不计空气阻力,g 取10 m/s 2,以下判断正确的是( )A .小球从被抛出至到达最高点受到的冲量大小为10 N·sB .小球从被抛出至落回出发点动量的变化量大小为零C .小球从被抛出至落回出发点受到的冲量大小为10 N·sD .小球从被抛出至落回出发点动量的变化量大小为10 N·s2.如图所示的摩天轮是人们喜爱的游乐设施,可以从高处欣赏城市及自然风光。

一质量为80kg 的人乘坐该摩天轮,若该摩天轮的直径约为125m ,运行一周约需30min ,以下说法正确的是( )A .摩天轮的线速度大小约为0.40m/sB .摩天轮的向心加速度大小约为427.610m/s -⨯ C .随轿厢转一周过程中,人的机械能守恒 D .随轿厢转一周,人的重力的冲量为零 3.一质量为2kg 的物块在合外力F 的作用下从静止开始沿直线运动。

F 随时间t 变化的图线如图所示,则( )A .t =2s 时物块的速率为1m/sB .t =2s 时物块的速率为4m/sC .t =3s 时物块的速率为1.5m/sD .t =3s 时物块的速率为1m/s4.质量为2kg 的弹性小球以5m /s 的速度垂直砸向地面,然后以同样大小的速度反弹回来,与地面接触时间Δ0.1s =t ,关于小球与地面的碰撞过程中,下列说法正确的是( )A .小球动量的变化量为0B .小球的加速度为0C .小球所受合外力的冲量大小为20N s ⋅D .地面对小球的冲量大小为20N s ⋅5.汽车安全性能是汽车品质的重要指标。

当汽车以50km/h 左右的速度撞向刚性壁障时,撞击使汽车的速度瞬间变到0,壁障对汽车产生了极大的冲击力。

“轰”的一声巨响之后,载着模拟司乘人员的崭新轿车眨眼间被撞得短了一大截,安全气囊打开,将司乘人员分隔在驾驶前台和座椅之间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【典型例题】
1.关于冲量、动量与动量变化的下述说法中正确的是( )
A .物体的动量等于物体所受的冲量
B .物体所受外力的冲量大小等于物体动量的变化大小
C .物体所受外力的冲量方向与物体动量的变化方向相同
D .物体的动量变化方向与物体的动量方向相同
2.A 、B 两个物体静止在光滑水平面上,当分别受到大小相等的水平力作用,经相等时间,则正确的是( )
A .A 、
B 所受的冲量相同 B .A 、B 的动量变化相同
C .A 、B 的末动量相同
D .A 、B 的末动量大小相同
3.在光滑的水平面上, 两个质量均为m 的完全相同的滑块以大小均为P 的动量相向运动, 发生正碰, 碰后系统的总动能不可能是( )
A .0
B . p 2/m
C . p 2/2m
D .2p 2/m
4.2005年7月26日,美国“发现号”航天飞机从肯尼迪航天中心发射升空,飞行中一只飞鸟撞上了航天飞机的外挂油箱,幸好当时速度不大,航天飞机有惊无险.假设某航天器的总质量为10 t ,以8 km/s 的速度高速运行时迎面撞上一
只速度为10 m/s 、质量为5 kg 的大鸟,碰撞时间为1.0×10-5 s ,则撞击过程中的平均作用力约为( )
A.4×109 N B .8×109 N C.8×1012 N D.5×106 N
5.在光滑的水平面的同一直线上,自左向右地依次排列质量均为m 的一系列小球,另一质量为m 的小球A 以水平向右的速度v 运动,依次与上述小球相碰,碰后即粘合在一起,碰撞n 次后,剩余的总动能为原来的1/8,则n 为( )
A .5
B .6
C .7
D .8
6.如图所示,质量为m 的小车静止于光滑水平面上,车上有一光滑的弧形轨道,另一质量为m 的小球以水平初速沿轨道的右端的切线方向进入轨道,则当小球再次从轨道的右端离开轨道后,将作( )
A .向左的平抛运动;
B .向右的平抛运动;
C .自由落体运动;
D .无法确定.
7.质量M =100 kg 的小船静止在水面上,船首站着质量m 甲=40 kg 的游泳者甲,船尾站着质量m 乙=60 kg 的游泳者乙,船首指向左方,若甲、乙两游泳者同时在同一水平线上甲朝左、乙朝右以3 m/s 的速率跃入水中,则( )
A .小船向左运动,速率为1 m/s
B .小船向左运动,速率为0.6 m/s
C .小船向右运动,速率大于1 m/s
D .小船仍静止
8.如图所示,两个质量都为M 的木块A 、B 用轻质弹簧相连放在光滑的水平地面上,一颗质量为m 的子弹以速度v 射向A 块并嵌在其中,求弹簧被压缩后的最大弹性势能。

【针对训练】
1.A 、B 两球质量相等,A 球竖直上抛,B 球平抛,两球在运动中空气阻力不计,则下述说法中正确的是( )
A .相同时间内,动量的变化大小相等,方向相同
B .相同时间内,动量的变化大小相等,方向不同
C .动量的变化率大小相等,方向相同
D .动量的变化率大小相等,方向不同
2.在水平地面上有一木块,质量为m ,它与地面间的滑动摩擦系数为μ。

物体在水平恒力F 的作用下由静止开始运动,经过时间t 后撤去力F 物体又前进了时间2t 才停下来。

这个力F 的大小为( )
A .μmg B.2μmg C.3μmg D.4μmg
3.甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s ,p 乙=7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则关于甲球动量的大小和方向判断正确的是( )
A .p 甲′=2kg ·m/s ,方向与原来方向相反
B .p 甲′=2kg ·m/s ,方向与原来方向相同
C .p 甲′=4 kg ·m/s ,方向与原来方向相反
D .p 甲′=4 kg ·m/s ,方向与原来方向相同
4.篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前.这样做可以( )
A .减小球对手的冲量
B .减小球的动量变化率
C .减小球的动量变化量
D .减小球的动能变化量 A B v
5.玻璃茶杯从同一高度掉下,落在水泥地上易碎,落在海锦垫上不易碎,这是因为茶杯与水泥地撞击过程中( )
A .茶杯动量较大
B .茶杯动量变化较大
C .茶杯所受冲量较大
D .茶杯动量变化率较大
6.如图所示,在光滑的水平面上有两辆小车,中间夹一根压缩了的轻质弹簧,两手分别按住小车使它们静止,对两车及弹簧组成的系统,下列说法中不正确的是()
A. 只要两手同时放开后,系统的总动量始终为零
B. 先放开左手,后放开右手,动量不守恒
C. 先放开左手,后放开右手,总动量向右
D. 无论怎样放开两手,系统的总动能一定不为零
7.甲、乙两节车厢在光滑水平轨道上相向运动,通过碰撞而挂接,挂接前甲车向东运动,乙车向西运动,挂接后一起向西运动,由此可以肯定 ( )
A.乙车质量比甲车大
B.乙车初速度比甲车大
C.乙车初动量比甲车大
D.乙车初动能比甲车大
8.质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2.在碰撞过程中,钢球受到的冲量的方向和大小为( )
A.向下,m(v1-v2) B.向下,m(v1+v2)
C.向上,m(v1-v2) D.向上,m(v1+v2)
9.质量为5 kg的物体,原来以v=5 m/s的速度做匀速直线运动,现受到跟运动方向相同的冲量15 N·s的作用,历时4 s,物体的动量大小变为( )
A.80 kg·m/s B.160 kg·m/s C.40 kg·m/s D.10 kg·m/s
10.一物体竖直向上抛出,从开始抛出到落回抛出点所经历的时间是t,上升的最大高度是H,所受空气阻力大小恒为F,则在时间t内( )
A .物体受重力的冲量为零
B .在上升过程中空气阻力对物体的冲量比下降过程中的冲量小
C .物体动量的增量大于抛出时的动量
D.物体机械能的减小量等于FH
11.煤矿中用高压水流对着煤层冲击,依靠水流的强大的冲击力可将煤层击落下来,从而达到采煤效果,设水的密度为ρ,水枪口的横截面积为S,水从水枪口喷出的速度为v,水平直射到煤层后速度变为零,则煤层受到水的平均冲力大小为?
12.如图所示,在光滑水平面上叠放A、B两物体,质量分别为mA、mB,A与B间的动摩擦因数为μ,质量为m的小球以水平速度v射向A,以v/5的速度返回,则⑴A与B相对静止时的速度⑵木板B至少多长,A才不至于滑落。

1. AC
2. C
3.B
4.B
5.D
6.C
7.C
8.D
9.C 10.B 11. ρv2S 12.(1)6mv/5(mA+mB )
(2)18m2mBv2/25μg(mA+mB)m2。

相关文档
最新文档