练习刚体转动解析

合集下载

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。

然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。

实验五 刚体转动的研究(教案)

实验五 刚体转动的研究(教案)

实验五 刚体转动的研究[目的]:1、 研究刚体转动时合外力矩与刚体转动角加速度的关系;2、 考查刚体的质量分布改变时对转动的影响。

[仪器]刚体转动实验仪(BD -J -101),砝码托,砝码片,细线,电子秒表,游标卡尺(0-150mm ,0.02mm ),物理天平(TW -1B ),钢卷尺,小螺丝刀。

图14-1为刚体转动实验仪的示意图。

图中1为均匀的横杆,2为可移动的圆柱形重物,3为塔轮,4为引线,5为滑轮,6为砝码。

横杆、重物和塔轮构成一转动系统,在砝码重力作用下可作匀角加速度的运动。

[原理]1、 根据刚体转动定律,转动系统所受合外力矩合M 与角加速度β的关系为:βI M =合 (14-1)其中I 为系统对回转轴的转动惯量。

合外力矩合M 主要由引线的张力矩M 和轴承的摩擦力矩阻M 构成,则: βI M M =-阻摩擦力矩阻M 是未知的,但是它主要来源于接触磨擦,可以认为是恒定的,因而将上式改为βI M M +=阻 (14-2)在此实验中,若要研究引线的张力矩M 与角加速度β之间是否满足式(14-2)的关系,就要测不同时M 的β值。

(1) 关于引线张力矩M设引线的张力为T F ,绕线轴半径为R ,则:R F M T =,又设滑轮半径为r ,其转动惯量为轮I ,转动时砝码下落加速度为a ,参照图14-2可以写出:ma F mg T =-1ra I r F r F T T 轮=-1 从上述二式中消去1T F ,同时取2'21r m I =轮('m 为滑轮质量),得出:)]21(['a mm a g m F T +-=在此实验中,)21('a mma +不超过g 的%3.0,如果要求低一些,可取mg F T ≈。

这时:m g R M ≈ (14-3) 在实验中是通过改变塔轮的R 来改变M 的。

(2) 角加速度β的测量测出砝码从静止开始下落到地板上的时间为t ,路程为s ,则平均速度tsv =,落到地板前瞬间的速度v v 2=,下落加速度t v a =,角加速度Ra=β,即: 22Rts=β (14-4) (3) 外力矩与角加速度的关系使用不同半径的塔轮,改变外力矩M ,测量各M 的角加速度β,作β-M 图线。

刚体旋转知识点归纳总结

刚体旋转知识点归纳总结

刚体旋转知识点归纳总结1. 刚体旋转的基本概念刚体是指在一定时间内,其内部各点的相对位置不改变的物体。

刚体旋转是指刚体围绕固定点或固定轴发生的旋转运动。

在刚体旋转中,需要引入一些基本概念:1.1 刚体的转动刚体的旋转可以是定点转动,也可以是定轴转动。

在定点转动中,刚体绕固定点旋转,而在定轴转动中,刚体绕固定轴旋转。

定点转动和定轴转动都是刚体旋转运动的两种基本形式。

1.2 刚体的转动角度和角速度刚体的转动角度是刚体在单位时间内所转过的角度,通常用θ表示。

刚体的角速度是指刚体单位时间内转过的角度,通常用ω表示。

在刚体定点转动中,角速度是刚体绕定点旋转的角度速度;在刚体定轴转动中,角速度是刚体绕定轴旋转的角度速度。

1.3 刚体的转动惯量刚体的转动惯量是衡量刚体抵抗旋转的惯性大小,通常用I表示。

刚体转动惯量的大小取决于刚体形状、质量分布以及旋转轴的位置。

对于质点组成的刚体,其转动惯量可以通过对质点的质量进行积分得到。

1.4 刚体的角动量刚体的角动量是刚体旋转运动的物理量,通常用L表示。

角动量的大小和方向分别由角速度和转动惯量决定。

在定点转动中,如果刚体的角速度和转动惯量都不变,那么刚体的角动量也保持不变;在定轴转动中,如果刚体绕固定轴旋转,那么刚体的角动量也保持不变。

2. 刚体的转动力学刚体的转动力学研究刚体在旋转运动中所受的力和力矩,包括转动定律、角动量定理、动能定理等内容。

2.1 刚体的平衡刚体旋转平衡需要满足一定的条件,包括力矩平衡条件和动量平衡条件。

刚体力矩平衡条件是指刚体所受的合外力矩为零;刚体动量平衡条件是指刚体所受的合外力矩关于某一点的力矩为零。

2.2 刚体的角动量定理刚体的角动量定理描述了刚体在受到外力矩作用下,其角动量的变化规律。

根据角动量定理,刚体所受外力矩产生的角动量变化率等于刚体所受外力矩的矢量和。

2.3 刚体的动能定理刚体的动能定理描述了刚体在旋转运动中,其动能的变化规律。

根据动能定理,刚体所受外力矩产生的功率等于刚体动能的变化率。

大学物理第四章 刚体的转动部分的习题及答案

大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。

二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。

(练习)刚体转动

(练习)刚体转动

d π 2 t 由 dt 150 π t 2 t dt 得 d 0 150 0 π 3 t rad 450
在 300 s 内转子转过的转数
π 3 4 N (300 ) 3 10 2π 2π 450

例6 半径为R,质量为m的均 匀圆盘在水平桌面上绕中心轴 转动,盘与桌面间的摩擦系数为 μ ,求转动中的摩擦力矩的大小. 解:设盘厚度为h,以盘轴心 为圆心取半径为r, 宽为dr的 微圆环,其质量为
(mA mC 2)mB g FT2 mA mB mC 2 mA mB g 令 mC 0,得 FT1 FT2 mA mB
FT1
PC
FC
FT2
例3 一根长为l 质量为m 的均匀细直棒,其一端有一固定的光 滑水平轴,因而可以在竖直平面内转动。最初棒静止在水平位 置,求它由此下摆 角时的角加速度和角速度。( J 1 ml 2 ) 解: 棒下摆为加速过程,外力矩为 重力对O 的力矩。
x O
3

mg
x
重力对整个棒的合力矩与全部重力集中 作用在质心所产生的力矩一样。 重力力矩为: M mgx
1 M mgl cos 2 d d d d dt d dt d
1 mgl cos M 2 3g cos (为一变量) 1 J 2l ml 2 3
由动能定理

O

m
l
x

C
mg
l A 0 Md 0 mgcosd 2 1 2 lmg 1 2 J ml sin 0 J 0 3 2 2 3gsin 1/ 2 3gsin 2 ( ) l l
此题也可用机械能守恒定律方便求解

刚体转动的物理原理

刚体转动的物理原理

刚体转动的物理原理
刚体转动是指刚体围绕固定轴线的旋转运动。

对于一个刚体,其旋转运动的物理原理可以通过以下几个方面来解释:
1. 转动惯量:刚体的转动惯量代表了刚体围绕轴线旋转时对转动的惰性。

刚体的转动惯量与刚体的质量分布和绕轴线的位置有关。

转动惯量越大,对于同样的转动力矩,刚体转动的角加速度越小。

2. 转动力矩:刚体转动时,如果施加一个力矩以改变刚体的角动量,刚体就会产生角加速度。

转动力矩是指力在刚体上产生的旋转效果,它的大小等于力的大小乘以力臂的长度。

力臂是力相对于轴线的垂直距离。

3. 角动量守恒:在没有外力或外力作用力矩为零的情况下,刚体的角动量守恒。

刚体的角动量是指刚体沿轴线旋转时的动量,它等于刚体转动惯量乘以角速度。

角动量守恒意味着刚体在旋转过程中,如果没有外力或外力矩的作用,角动量保持不变。

4. 角动量定理:角动量定理描述了刚体转动时角动量的变化率等于作用在刚体上的外力矩。

即角动量的变化等于力矩的时间积分。

这个定理可以用来分析刚体在外力矩作用下的角加速度和角速度变化。

总之,刚体转动的物理原理主要涉及转动惯量、转动力矩、角动量守恒和角动量
定理等概念,通过这些原理可以解释和描述刚体转动的运动规律。

大学物理同步训练第 版 刚体定轴转动详解

大学物理同步训练第 版 刚体定轴转动详解

第三章 刚体定轴转动一、选择题1. 两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若B A J J >,但两圆盘的质量与厚度相同,如两盘的密度各为A ρ和B ρ,则(A )A B ρρ>(B )B A ρρ> (C )A B ρρ=(D )不能确定A ρ和B ρ哪个大答案:A 分析:22m m R R h hρππρ=→=,221122m J mR h πρ==,故转动惯量小的密度大。

2. 有两个半径相同、质量相等的细圆环。

1环的质量分布均匀,2环的质量分布不均匀。

它们对通过环心并与环面垂直的轴的转动惯量分别为1J 和2J ,则(A )12J J >(B )12J J < (C )12J J =(D )不能确定1J 和2J 哪个大 答案:C分析:22J R dm mR ==⎰,与密度无关,故C 选项正确。

3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度1ω按图1所示方向转动。

将两个大小相等、方向相反的力F 沿盘面同时作用到圆盘上,则圆盘的角速度变为2ω,则(A )12ωω>(B )12ωω= (C )12ωω<(D )不能确定如何变化答案:C分析:左边的力对应的力臂大,故产生的(顺时针)力矩大于右边的力所产生的力矩,即合外力距(及其所产生的角加速度)为顺时针方向,故圆盘加速,角速度变大。

4. 均匀细棒OA 的质量为M ,长为L ,可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )合外力矩从大到小,角速度从小到大,角加速度从大到小(B )合外力矩从大到小,角速度从小到大,角加速度从小到大(C )合外力矩从大到小,角速度从大到小,角加速度从大到小 (D )合外力矩从大到小,角速度从大到小,角加速度从小到大 答案:A分析:(定性)由转动定律M I β=可知,角加速度与力矩成正比,故B 、D 错误;由机械能守恒可知,棒在下落的过程中重力做功,故角速度从小到大,C 错误。

4-2刚体的转动-刚体动力学解析

4-2刚体的转动-刚体动力学解析
1 ( m A m C )m B g 2 T2 1 m A m B mC 2
mB g
1 m A mB mC 2 m Am B g T1 1 m A m B mC 2
物体B由静止出发作匀速直线运动
2mB gy v 2ay 1 m A mB mC 2
考虑滑轮与轴承间的摩擦力
由初始条件 : t 0时, 0 0, 0 0得 :


0
3g d sind 2l 0
3g (1 cos ) 2l
例4:一半径为R,质量为m的匀质圆盘,平放在粗 糙的水平桌面上。设盘与桌面间摩擦系数为 , 令圆盘最初以角速度 0绕通过中心且垂直盘面的 轴旋转,问它经过多少时间才停止转动?
2m1m2 T1 T2 g m2 m1
m2 m1 a g m2 m1
上题中的装置叫阿特伍德机,是一种可用来测 量重力加速度g的简单装置。因为在已知m1、 m2 、 r和J的情况下,能通过实验测出物体1和2的加速度a, 再通过加速度把g算出来。在实验中可使两物体的m1 和 m2 相近,从而使它们的加速度 a 和速度 v都较小, 这样就能角精确地测出a来。
例2.质量为 m A 的物体A静止在光滑的水 平面上,它和一轻绳相连接,此绳跨过一半 径为R、质量为 mC 的园柱形滑轮C,并系在 另一质量为 m B 的物体B上,滑轮与轴承间 A 的摩擦力不计.问: C (1)两物体的线加 速度? 水平和铅直 B 两段绳的张力? (2)B由静止下落距离y时速率? (3)若滑轮与轴承间的摩擦力矩为 M ,再 求线加速度及绳的张力.
1 1 2 a RT2 RT1 M J mC R mC Ra 2 R 2 ( 4)
解(1)(2)(4),即可得 a,T

刚体旋转知识点总结图解

刚体旋转知识点总结图解

刚体旋转知识点总结图解一、刚体的定义刚体是指形状和大小在一定范围内不改变,结构完整,部分不会随着外力的作用而发生形变的物体。

刚体的旋转是指刚体绕着某个固定轴线旋转的运动。

二、刚体的转动定律1. 刚体的角位移:刚体绕固定轴线旋转时,每个质点的位移方向都与该质点的运动轨迹相切,并且线速度不同,但角速度相同。

2. 刚体的角加速度:刚体绕固定轴线旋转时,各质点的加速度虽然大小不同,但方向都垂直于该质点的运动轨迹,并与其对应的线速度方向一致。

3. 刚体的角动量:刚体绕固定轴线旋转时,当刚体的转动轴不经过质心时,刚体的角动量等于该点相对于质心的角动量之和。

三、刚体的转动定律1. 角动量定理:刚体绕固定轴线旋转时,刚体的角动量与外力矩之和等于刚体对旋转轴的角动量的变化率。

2. 动能定理:刚体绕固定轴线旋转时,刚体的动能等于刚体的角动量的变化率与角速度的乘积之和。

3. 动量矩定理:刚体绕固定轴线旋转时,刚体的角动量改变的原因是外力矩。

如果外力矩为零,则刚体的角动量是守恒的。

四、刚体的转动惯量1. 刚体的转动惯量:刚体绕固定轴线旋转时,刚体对于该轴线的转动惯量等于各质点到该轴线距离的平方与质点质量乘积之和。

2. 转动惯量的计算方法:刚体对于不同轴线的转动惯量计算是以刚体某一坐标轴为基准,按照平行轴定理或垂直轴定理进行转动惯量的计算。

3. 转动惯量的应用:刚体绕固定轴线旋转时,转动惯量的大小决定了刚体旋转的惯性大小。

转动惯量越大,刚体绕轴旋转越困难。

五、刚体的转动动力学1. 合力与合力矩:刚体绕固定轴线旋转时,合力是刚体质心的动力学性质,而合力矩是刚体绕轴线旋转的动力学性质。

2. 麦克尔斯定理:刚体绕固定轴线旋转时,如果刚体受到合力矩的作用,则该合力矩等于刚体在质心处受到的效力矩与刚体到该轴的距离的乘积。

3. 角动量矩定理:刚体绕固定轴线旋转时,角动量矩定理描述了刚体对旋转轴的角动量的变化率等于刚体受到的外力矩。

六、刚体的平衡与稳定1. 刚体的平衡:刚体绕固定轴线旋转时,刚体处于平衡状态可以分为静平衡和动平衡,其中静平衡是指刚体的合外力和合外力矩均为零,而动平衡是指刚体的合外力为零。

刚体定轴转动知识点总结

刚体定轴转动知识点总结

刚体定轴转动知识点总结1. 刚体的转动定轴刚体的转动定轴是指固定不动的直线,沿其进行转动的刚体的每一个质点所受的力矩的代数和等于零。

在实际中,通常通过支点来实现转动定轴,比如钟摆、摇摆、旋转的转轴等。

2. 刚体的角位移、角速度和角加速度在刚体定轴转动中,刚体围绕定轴线进行旋转,其角位移、角速度和角加速度是非常重要的物理量。

角位移表示刚体在围绕定轴线旋转的过程中所经过的角度变化量,通常用θ表示;角速度表示刚体围绕定轴线旋转的速度,通常用ω表示;角加速度表示刚体围绕定轴线旋转的加速度,通常用α表示。

3. 牛顿第二定律在刚体定轴转动中的应用牛顿第二定律也适用于刚体定轴转动的情况。

在刚体定轴转动中,外力会给刚体带来转动运动,根据牛顿第二定律,刚体的角加速度与作用在其上的外力矩成正比。

因此,可以根据力矩的大小和方向来分析刚体的转动运动。

4. 转动惯量和转动动能在刚体定轴转动中,转动惯量是一个非常重要的物理量。

转动惯量描述了刚体围绕定轴线旋转的难易程度,其大小与刚体的质量分布和轴线的位置有关。

转动动能是刚体围绕定轴线旋转的能量,其大小取决于刚体的转动惯量和角速度。

5. 转动定律和角动量守恒定律在刚体定轴转动中,转动定律和角动量守恒定律是非常重要的定律。

转动定律描述了刚体受力矩产生的角加速度与所受力矩的关系,角动量守恒定律描述了刚体转动过程中角动量的守恒规律。

6. 平衡条件和稳定性分析在刚体定轴转动中,平衡条件和稳定性分析是非常重要的内容。

通过平衡条件,可以分析刚体围绕定轴线旋转的平衡状态。

稳定性分析则是分析刚体在平衡状态下的稳定性,通常通过刚体的势能函数和平衡位置的稳定性来进行分析。

7. 应用领域刚体定轴转动的理论和方法在工程技术、航空航天、机械制造、物理学等领域都有重要的应用价值。

比如在机械制造中,可以通过分析刚体的定轴转动来设计机械装置;在航空航天中,可以通过分析刚体的定轴转动来设计飞行器的运动控制系统。

刚体的转动部分习题分析与解答

刚体的转动部分习题分析与解答

动轨迹为一个圆弧。
刚体的定轴转动和平面转动的比较
03
定轴转动和平面转动是刚体转动的两种基本形式,它们在运动
学和动力学上有一些不同之处,如角速度、角加速度等。
03
刚体的动能与势能
刚体的动能
总结词
刚体的动能是指刚体在转动过程中所 具有的能量,与刚体的转动速度和质 量分布有关。
详细描述
刚体的动能计算公式为$E_{k} = frac{1}{2}Iomega^{2}$,其中$I$为刚体的转 动惯量,$omega$为刚体的角速度。转动惯量 是描述刚体质量分布对其转动影响的物理量, 与刚体的质量分布、形状和大小有关。
解答过程
钢球下落过程中,其速度逐渐增大,故其动能在 不断增加。同时,钢球离地面的高度逐渐减小, 故其势能在不断减小。由于钢球下落过程中只有 重力做功,故其机械能守恒。
习题五:关于刚体的机械能守恒的题目
总结词
理解机械能守恒的概念,掌握机械能守恒的条件和机械能守恒的计算方法。
详细描述
机械能守恒是指系统内各种形式的能量在相互转化时总量保持不变。对于刚体系统,只有重力或弹力 做功时机械能守恒。机械能
刚体的势能
总结词
刚体的势能是指刚体在转动过程中相对于某一参考点所具有 的能量。
详细描述
刚体的势能计算公式为$U = -GMmcostheta$,其中$G$为万 有引力常数,$M$和$m$分别为两个质点的质量,$theta$为 两质点连线和垂直于势能参考平面的夹角。对于刚体,势能的 具体值取决于参考点的选择。
实际问题。
习题五解答与解析
要点一
总结词
刚体的角动量守恒
要点二
详细描述
这道题目考察了学生在刚体转动中如何应用角动量守恒的 知识。学生需要理解角动量的概念,知道角动量等于刚体 的转动惯量乘以角速度,并能够根据角动量守恒的条件判 断刚体的运动状态。

3.1定轴转动刚体的转动定理解析

3.1定轴转动刚体的转动定理解析

h
x
C dx
x
m I x dx L ( L / 2 h )
2
L / 2 h
平行轴定理
质量为 m 的刚 体,如果对其质心轴 的转动惯量为 IC , 则对任一与该轴平行, d 相距为 的转轴的 转动惯量
注意
d
C
m
O
I O I C md
2
z
I
r
y
Iy
x
y
Ix
2 2 2
x
I z r dm ( x y )dm I x I y
A
mA
C
mC
mB
B
A
mA FN F T1 mA O x PA
FT1
C
mC FT2
FT2
2r
r
2m
B
A
m
课堂练习:在半径分别为R1和R2的 阶梯形滑轮上反向绕有两根轻绳, 各悬挂质量分别为m1、m2的物体, 若滑轮与轴间的摩擦忽略不计,绳 子与滑轮间无相对滑动,滑轮的转 动惯量为I,求滑轮的角加速度和各 绳中的张力T1和T2。
R2
R1
m1g T1 m1a1
a1 R1
m2
1 2 14 2 2 2 I I1 I 2 ml 0 sin ml 0 sin 3 9
例、求通过圆环中心并与圆环所在平面垂直的 转轴的转动惯量。设圆环的半径为R,质量m均 匀分布在圆环上。
dl
m
R
m I R dl mR 2 2R
2
例:有两个半径相同、质量相等的细圆环A和B, A环的质量均匀分布,B环的质量分布不均匀, 它们对通过环心且垂直于环面的轴的转动惯量 C 分别为IA和IB,则:【 】 (A)A环的转动惯量大于B环的转动惯量; (B)A环的转动惯量小于B环的转动惯量; (C)两个圆环的转动惯量相等; (D)无法判断。

第四章:刚体转动习题解答

第四章:刚体转动习题解答

l2
l1
厚 度 为 2.0cm 的 圆 盘 和 两 个 直 径 都 为 10cm 、长为 8.0cm 的共轴圆柱体组成, 设飞轮的密度为 7.8kg•m–3,求飞轮对轴 的转动惯量。
题解 4―12 图
d2 d1
解:总转动惯量等于各部分对转轴转动惯量之和,而且圆盘 和两个圆柱体共轴,因此飞轮对轴的转动惯量为
作用于质点上的重力为jmgoabg??任一时刻t质点也是重力的作用点的位置矢量为jgtibry???据定义该重力对原点o点的力矩为kbmmjgtibgrmgjg???????任一时刻t质点的动量为jmgtmvp???据定义质点对原点o的角动量为kbmgtmgtjgtibrjpl???????习题42我国第一颗人造卫星沿椭圆轨道运卫星v动地球的中心o为椭圆的一个焦点如图llo已知地球半径r6378km卫星与地面的最近距v离l439km与地面的最远距离l238km
第四章:刚体一章习题解答
习题 4—1 � M = 如图所示,X 轴沿水平方向,Y 轴竖直向下,在 t=0 时刻将质量为 m � ;在任意时刻 t,质点对原点的角动量 L =
的质点由 a 处静止释放,让它自由下落,则在任意时刻 t,质点对原点 O 的力矩 。
解:作用于质点上的重力为 � � G = mgj 任一时刻 t 质点 (也是重力的作用点 ) 的位 置矢量为 � � � r = bi + gtj 据定义,该重力对原点 O 点的力矩为 � � � � � � � M = r × G = (bi + gtj ) × mgj = bmgk 任一时刻 t 质点的动量为
轴正向
m,l
θ
M =
1 mgl cos θ 2
根据转动定律,棒的角加速度为

大学物理学教程第二(马文蔚)练习册答案4第四章 刚体转动

大学物理学教程第二(马文蔚)练习册答案4第四章 刚体转动

v人地 v人盘 +v盘地 1 + R
J m0 Rv人地 0
J m0 R 1 0
m0 R J m0 R
0.0952 rad/s
J m0R m0R
第 四 章 习 题 分 析
4-21 长为 L 质量为 m 的均质杆,可绕垂直于纸面的 O 4-21 轴转动,令杆至水平位置有静止下摆,在铅直位置 与质量为0.5m的物体发生完全非弹性碰撞,碰后物 体沿摩擦因数为的水平面滑动,试求此物体滑过的 距离s ? 解:细杆下摆过程机械能守恒
m1g T1 m1a1 R r R T ' 1 B : T2 m2 g m2 a2 T2 ' 轮: T1 ' R T2 ' r J1 J 2 B T1 T2 其中: T1 ' T1 T2 ' T2 B A a r a1 R 2 a2 a1
A:
3g L m 碰撞过程角动量守恒。 J J ' v ' L v L 2 12 1 2 3g 1 2 v ' m 2 gL mL mL v ' L v ' 25 3 L 3 L 2 6L 滑动过程 1 mv '2 mgs s 25 2
1 1 1 2 2 mgL mL 2 2 3
4-13 飞轮质量为60kg,直径为0.5m,转速为1000r/min, 现用一闸瓦使其在5s内停止转动,求制动力F。设闸瓦 第 与飞轮间的摩擦因数为0.4,飞轮的质量全部分布在轮 四 缘上。 章 解: 由细杆力矩平衡
习 题 分 析
FL Nl
N
F
FL 1.25F f N 2.5F l 0.5 又飞轮与闸瓦间的摩擦力 f N F

[分享]第四章刚体的转动问题与习题解答

[分享]第四章刚体的转动问题与习题解答

第四章 刚体的转动 问题与习题解答问题:4-2、4-5、4-94-2如果一个刚体所受合外力为零,其合力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否也一定为零?答:一个刚体所受合外力为零,其合力矩不一定为零,如图a 所示。

刚体所受合外力矩为零,其合外力不一定为零,例如图b 所示情形。

4-5为什么质点系动能的改变不仅与外力有关,而且也与内力有关,而刚体绕定轴转动动能的改变只与外力矩有关,而与内力矩无关?答:因为合外力对质点所作的功,等于质点动能的增量;而质点系中内力一般也做功,故内力对质点系的动能的增量有贡献。

而在刚体作定轴转动时,任何一对内力对转轴的力矩皆为一对大小相等、方向相反的力矩,且因定轴转动时刚体转过的角度d θ都一样,故其一对内力矩所作的功()0inij ij ji ij ji W M d M d M M d θθθ=+=+=,其内力功总和也为零,因而根据刚体定轴转动的动能定理可知:内力矩对其转动动能的增量无贡献。

4-9一人坐在角速度为0ω的转台上,手持一个旋转的飞轮,其转轴垂直地面,角速度为ω'。

如果突然使飞轮的转轴倒转,将会发生什么情况?设转台和人的转动惯量为J ,飞轮的转动惯量为J '。

答:(假设人坐在转台中央,且飞轮的转轴与转台的转轴重合)视转台、人和飞轮为同一系统。

(1)如开始时飞轮的转向与转台相同,则系统相对于中心轴的角动量为:10L J J ωω''=+飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的角动量为:21L J J ωω''=-在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''-=+即 102J Jωωω''=+,转台的转速变大了。

(2)如开始时飞轮的转向与转台相反,则系统相对于中心轴的角动量为:10L J J ωω''=-飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的F 1F 3ab角动量为:21L J J ωω''=+在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''+=-即 102J Jωωω''=-,转台的转速变慢了。

刚体的转动知识点总结

刚体的转动知识点总结

一、刚体的基本概念1. 刚体的定义:刚体是一个质点系列,这些质点之间的相对位置在任意时刻都是固定的,不会改变。

2. 刚体的运动方式:除了平动外,刚体还可以进行转动运动。

3. 刚体的主要特征:刚体在转动运动中的主要特征是角位移、角速度和角加速度。

二、刚体的转动定律1. 牛顿第一定律在转动中的应用:刚体静止或匀速转动时,对固定轴的力矩为零。

2. 牛顿第二定律在转动中的应用:刚体转动的加速度和力矩之间的关系。

3. 牛顿第三定律在转动中的应用:力矩的作用对应地产生反作用力矩。

三、刚体的转动运动学1. 角度和弧度的关系:1弧度对应角度2pi,即1弧度=180°/π。

2. 角速度和角位移的关系:角位移是角速度随时间的积分。

3. 角加速度和角速度的关系:角加速度是角速度随时间的导数。

4. 刚体的角度运动学方程:θ=θ0+ω0t+1/2αt²,ω=ω0+αt,ω²=ω0²+2α(θ-θ0)。

四、刚体的转动动力学1. 转动惯量的概念:刚体对任意轴的转动惯量是对角速度与角动量之间关系的比较重要的物理量。

2. 转动惯量与质量的关系:转动惯量与质量和物体形状有关,质量越大,转动惯量越大。

3. 转动惯量的计算方法:在一个轴上转动的刚体对该轴的转动惯量的计算方法是对每个质点的质量进行求和。

4. 牛顿第二定律在转动中的适用条件:转动惯量与角加速度的关系。

五、刚体的转动运动与平动的转换1. 垂直平动和转动的关系:刚体在平动运动中的质心对其转动惯量有影响。

2. 能量守恒在转动中的应用:刚体在转动运动中的动能和势能之间的转换过程与保守力的性质有关。

1. 刚体的转动平衡条件:刚体在平衡时,合外力和合力矩均为零。

2. 刚体的稳定条件:刚体在平衡时,摆子有稳定和不稳定平衡之分。

以上便是刚体的转动知识点总结,这些知识点涵盖了刚体的基本概念、转动定律、转动运动学、转动动力学、转动运动与平动的转换以及转动稳定性等内容。

05刚体的定轴转动习题解答

05刚体的定轴转动习题解答

05刚体的定轴转动习题解答05刚体的定轴转动习题解答第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2 Mr J =。

3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有:()A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:JFra /21=(2) 受力分析得:===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为:()A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m 解:答案是A 。

简要提示:由定轴转动定律:α221MR FR =,得:mRFt 4212==?αθ 所以:mFM W /42=?=θ5. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为:()A .0211ωJJ J+ B .0121ωJJJ + C .021ωJ JD .012ωJ J解:答案是A 。

大学物理习题册及解答(第二版)第四章-刚体的定轴转动

大学物理习题册及解答(第二版)第四章-刚体的定轴转动

上环可以自由在纸面内外摆动。求此时圆环摆的转动惯量。 O
(*)(3)求两种小摆动的周期。哪种摆动的周期较长?
R C
解:(1)圆环放在刀口上O,以环中 心的平衡位置C点的为坐标原点。Z轴
J zc MR2
O
P
ŷ

x
指向读者。圆环绕Z轴的转动惯量为
Z
R
由平行轴定理,关于刀口的转动惯量为 J zo J zc MR 2 2MR 2
m(l a) J
杆摆动过程机械能守恒
J 1 Ml2 3
1 J 2 Mg l (1 cos )
2
2
解得小球碰前速率为 Ml
2gl sin
m(l a) 3 2
5.一轻绳绕过一半径R,质量为M/4的滑轮。质量为M的人抓住绳 子的一端,而绳子另一端系一质量为M/2的重物,如图。求当人相 对于绳匀速上爬时,重物上升的加速度是多少?
解:选人、滑轮、与重物为系统,系统所受对滑轮轴的
外力矩为
1 MgR

物2
设u为人相对绳的匀速度,为重物上升的
速度。则该系统对滑轮轴的角动量为
L M R M (u )R (1 M R2 ) 13 MR MRu
2
24
8
据转动定律
du 0 dt
dL dt
a
即 1 MgR d (13 MR MRu)
6. 一飞轮以角速度0绕光滑固定轴旋转,飞轮对轴的转动惯 量为J1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转 轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系
统的角速度 / 3 0
7.一长为l,质量可以忽略的直杆,可绕通过其一端的 水平光滑轴在竖直平面内作定轴转动,在杆的另一端固 定着一质量为m的小球,如图所示.现将杆由水平位置 无初转速地释放.则杆刚被释放时的角加速度a0 _ , 杆与水平方向夹角为60°时的角加速度a_
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用刚体的转动动能定理求解。对于仅受保守力
矩作用的刚体转动问题,也可用机械能守恒定律 求解。
另 外:实际问题中常常有多个复杂过程,要分 成几个阶段进行分析,分别列出方程,进行求解。
例1 一质点m,速度为v,如图所示,A、B、C 分别
为三个参考点,此时m 相对三个点的距离分别为d1 、d2 、 d3
6-2. 有两个半径相同,质量相等的细圆环A和B,A环的质量分布均
匀, B环的质量分布不均匀,它们对通过环心并与环面垂直的轴的
转动惯量分别为JA和JB, 则
(A)JAJB.
(B) JAJB.
√(C) JA=JB.
(D) 不能确定JA、JB哪个大.
6-3. 一圆盘饶过盘心且与盘面垂直的轴O以角速度按图示方向
OM
1 2
mv
2 0
GMm r0
1 2
mv
2
GMm R
mv0r0sin(π ) mvR
v
v0r0sin
R
4v0sin
sin
1 4
1
3GM 2 Rv 0 2
1/ 2
1/ 2
v
v01
3GM 2 Rv 0 2
例4 在高速旋转的微型电机里,有一圆 柱形转子可绕垂直其横截面并通过中心的转
轴旋转.开始起动时,角速度为零.起动后
求 此时刻质点对三个参考点的动量矩

LA d1mv
A d1
m
v
LB d1mv
d2
d3
LC 0
B
C
例2 哈雷慧星绕太阳运行时的轨道是一个椭圆,
如图所示,它距离太阳最近的距离是
r近日 8.75,速10率10m
v近日 5.46 104m s-1
;它离太阳最远时的速率 v远日 9.08 102m s-1
(2) 电动机在6s内转过的圈数为
N 1 2
6
dt
1
0
2
6 0
m
(1
et
/
)dt
2.21103 r
(3) 电动机转动的角加速度为
d m et / 540πet /2rad s2 dt
例5 在高速旋转圆柱形转子可绕垂直其横截面通 过中心的轴转动.开始时,它的角速度 ω0 0 , 经300s 后,其转速达到 18000r·min-1 .转子的角 加速度与时间成正比.问在这段时间内,转子转 过多少转?
2mg 1 R3 2 mgR
R2 3
3
6-1. 关于刚体对轴的转动惯量,下列说法中正确的是: (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关. (C) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.
√(D) 取决于刚体的质量,质量的空间分布和轴的位置.
• 第二类:求刚体与质点的碰撞、打击问题。把它 们选作一个系统时,系统所受合外力矩常常等于 零,所以系统角动量守恒。列方程时,注意系统 始末状态的总角动量中各项的正负。对在有心力
场作用下绕力心转动的质点问题,可直接用角动 量守恒定。
• 第三类:在刚体所受的合外力矩不等于零时,比 如木杆摆动,受重力矩作用,求最大摆角等一般
其转速随时间变化关系为: m (1 et / ) , 式中 m 540 r s1, 2.0s .求:(1)t=6s
时电动机的转速.(2)起动后,电动机在 t=6s 时间内转过的圈数.(3)角加速度随时 间变化的规律.
解 (1) 将 t=6s 代入 m(1 et / )
ω 0.95ωm 513 r s1
解题指导
• 定轴转动的动力学问题
刚体定轴转动的动力学问题,大致有三种类型题。 其解题基本步骤归纳为:首先分析各物体所受力和 力矩情况,然后根据已知条件和所求物理量判断应 选用的规律,最后列方程求解。
• 第一类:求刚体转动某瞬间的角加速度,一般应用 转动定律求解。如质点和刚体组成的系统,对质点
列牛顿运动方程,对刚体列转动定律方程,再列角 量和线量的关联方程,并联立求解。
r远日 5.26 1012m
例3
发射一宇宙飞船去考察一 质量为 M 、半径为 R 的
行星.当飞船静止于空间距行星中心 4 R 时,以速度v 0发射一 质量为 m 的仪器。要使该仪器恰好掠过行星表面
求 θ角及着陆滑行时的速度多大?
解 引力场(有心力)
v0
系统的机械能守恒
质点的动量矩守恒
m r0
v R
,这时它离太阳的距离 r远日 ?
v远日
r近 日
r远 日
v近日
解 彗星受太阳引力的作用,而引力通过了 太阳,所以对太阳的力矩为零,故彗星在运 行的过程中角动量守恒. 于是有
r近日 v近日 r远日 v远日
因为 r近日 v近日 ,r远日 v远日
所以
r远日
r近 日v近 日 v远日
代入数据可, 得
解 令 ct,即 d ct ,积分
dt
t
d c tdt
得 1 ct 2
0
0
2
1 ct 2
2
当 t=300s 时
18000 r min 1 600 π rad s1
c
2
t2
2 600π 3002
π 75
rad s3
1 ct 2 π t 2
2 150
由 d π t 2
dt 150

d
π
t t 2dt
0
150 0
π t 3rad
450
在 300 s 内转子转过的转数
N π (300)3 3104
2π 2π 450
例6 半径为R,质量为m的均 匀圆盘在水平桌面上绕中心轴 转动,盘与桌面间的摩擦系数为 μ ,求转动中的摩擦力矩的大小.
解:设盘厚度为h,以盘轴心 为圆心取半径为r, 宽为dr的 微圆环,其质量为
(C)刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变.
6-5. 有一半径为R的水平圆转台,可绕通过其中心的竖直固定光
转动,若如图所示的情况那样,将两个大小相等方向相反但不在同
一条直线的力F沿盘面同时作用到圆盘上,则圆盘的角速度 :
(√A)必然增大.
(C) 不会改变.
(B) 必然减少. (D) 如何变化,不能确定.
F
·
F
O
6-4.刚体角动量守恒的充分而必要的条件是 (A)刚体不受外力矩的作用.
√(B)刚体所受合外力矩为零.
dr h r0
dm=ρdv
m
R 2 h
h2rdr
2mr R2
dr
它对桌面的压力为:
dN dm g 2mgr dr R2
与桌面间的摩擦力摩擦力的力矩为:
dM
rdf
sin 900
2mg
R2
r 2dr
整个圆盘的摩擦力矩为:
M
dM
R 2mg
R2
0
r 2dr
相关文档
最新文档