最简单线性电源电路设计(从框图到实际电路)

合集下载

理解线性程控电源的工作原理

理解线性程控电源的工作原理
理解线性程控电源 的工作原理
应用指南 1554
目录
线性可编程电源工作原理综述
2
输出特性
3
扩展电压和电流的输出范围
5
电源的快速编程能力
6
这篇应用指南讲述了线性程控电源的基础,同时详 细描述了其输出特性,以量帮助您更好了解和使用可编 程线性电源。
线性电源工作原理综述
图 1 所示电源是个双量程电源,允许电源在低电流
电源的基本设计模型,包括了整流器和负载器件, 以及串联在一起的控制元件。 图 1 是串行调整电源的简 化电路图, 它包括了作为电源开关的相位控制预调整 器, 串联在一起的可变阻抗元件。该相位控制的预调整 器通过保持串联元件上稳定的低压降, 把功耗减到了 最 小。一个反馈控制电路连续监测电源的输出,并调整串 行阻抗,以稳定一个连续的输出电压。图 1 所示, 电源 中的可变电阻串联器件, 实际上是由工作在线性模式下 的一个或多个功率晶体管构成;因此,采用这种类型调
整器的电源通常称为线性电源。线性电源有许多优点。 凭借高稳定和低噪声的输出,成为研发工作台上电源的 最简单和有效的解决方案。
在性能方面,线性电源有极其良好的源和负载特 性,能快速响应电网和负载的变化。因此它的电源调整 率、负载调整率和瞬态恢复时间等指标, 优于绝大多数
Range 1
AC Input
Range 2
Output voltage
Common mode noise <1.5 μArms
Normal
mode
noise
R
<5mVpp* <0.5mVrms* <8mVpp** <1mVrms**
+
Output terminal

LDO工作原理详解

LDO工作原理详解

准LDO 稳压器(Quasi-LDO regulators)
•另一种广泛应用于某些场合是准LDO(例如 :5V到3.3V 转换器)。准LDO介于 NPN 稳压 器和 LDO 稳压器之间而 •得名,导通管是由单个 •PNP管来驱动单个NPN •管。因此,它的跌落压 •降介于NPN稳压器和 •LDO之间: •Vdrop=Vbe +Vsat
•K=2.2/0.085=23.5, 在理论实现零温度系数
•由于该电压等于硅的带隙电压(外推到绝对温度), 所以这类基准电路也叫“带隙”基准电路。
•注:实际上利用的不是带隙电压,有些Bandgap结构输出电压与带隙电压也不一 致
电路开始上电,由于上半部分 镜像电流源处于零电流状态, 节点1处于高电位,同样下半部 分也处于零电流状态,节点3处 于低电位,MP1导通,2节点电 位被拉高,MN1导通,这样节点 1被拉低,说明镜像电流源中的 管子导通,有电流流过偏置
误差放大器
反馈网络(取样电路)
•负
•U
L
•载
•误差放大
•基准电 压 •取样电 路
•调整元 件
电路开始启动,恒流源电路给整个电路提供偏置,基准源电 压快速建立
输出随着输入不断上升,输出达到规定值 误差放大器将输出反馈电压和基准电压之间的误差小信号进
行放大,再经调整管放大到输出,从而形成负反馈,保证了 输出电压稳定 输入电压变化或输出电流变化,这个闭环回路将使输出电压 保持不变
•哪个更好 ??
•线性电源
•开关电源
优点 外围器件少,PCB面
积小,花费少 无开关噪声,纹波
小 缺点
降压输出 效率低,功耗大
优点 可升压、可降压 效率高,功耗小 缺点 设计更复杂,外围

开关电源工作原理

开关电源工作原理

开关电源工作原理目前常见的电源在主要有两种电源类型:线性电源(linear)和开关电源(switching)。

一、线性电源线性电源主要包括工频变压器、输出整流滤波器、控制电路、保护电路等。

工作过程:先将220 V市电通过变压器转为低压交流电,比如说12V,然后再通过一系列的二极管或整流桥堆进行整流,将低压AC交流电转化为脉动电压(配图1和2中的“3”);再通过电容对脉动电压进行滤波,经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),要想得到高精度的稳定的直流电压,还需要稳压二极管或者电压反馈电路调整输出电压。

最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”).配图1:标准的线性电源设计图配图2:线性电源的波形线性电源的优点:纹波小,调整率好,对外干扰小。

适合用于模拟电路,各类放大器等低功耗设备.线性电源的缺点:体积大,笨重,效率低、发热量也大.需要庞大而笨重的变压器,所需的滤波电容的体积和重量也相当大,线性电源的调整管工作在放大状态,因而发热量大,效率低(35%左右),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。

对于高功耗设备而言,线性电源将会力不从心。

二、开关电源开关电源是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。

开关电源的工作原理,简单的说是将交流电先整流成直流电,再将直流逆变成交流电,再整流输出成所需要的直流电压。

①交流电源经整流滤波成直流;②通过高频PWM(脉冲宽度调制)信号控制开关管进行高速的导通与截止,将直流电转化为高频率的交流电提供给开关变压器进行变压;③开关变压器次级感应出高频交流电压,经整流滤波变成直流电供给负载;④输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的.开关电源的主要优点:体积小、重量轻(体积和重量只有线性电源的20~30%)、效率高(一般为60~70%,而线性电源只有30~40%)、自身抗干扰性强、输出电压范围宽、模块化。

【很完整】牛人教你开关电源各功能部分原理分析、计算与选型

【很完整】牛人教你开关电源各功能部分原理分析、计算与选型

【很完整】⽜⼈教你开关电源各功能部分原理分析、计算与选型1 开关电源介绍此⽂档是作为张占松⾼级开关电源设计之后的强化培训,基于计划安排,由申⼯讲解了变压器设计之后,在此⽂章中简单带过变压器设计原理,重点讲解电路⼯作原理和设计过程中关键器件计算与选型。

开关电源的⼯作过程相当容易理解,其拥有三个明显特征:开关:电⼒电⼦器件⼯作在开关状态⽽不是线性状态⾼频:电⼒电⼦器件⼯作在⾼频⽽不是接近⼯频的低频直流:开关电源输出的是直流⽽不是交流也可以输出⾼频交流如电⼦变压器1.1 开关电源基本组成部分1.2 开关电源分类:开关电源按照拓扑分很多类型:buck boost 正激反激半桥全桥 LLC 等等,但是从本质上区分,开关电源只有两种⼯作⽅式:正激:是开关管开通时传输能量,反激:开关管关断时传输能量。

下⾯将以反激电源为例进⾏讲解。

1.3 反激开关电源简介反激⼜被称为隔离buck-boost 电路。

基本⼯作原理:开关管打开时变压器存储能量,开关管关断时释放存储的能量反激开关电源根据开关管数⽬可分为双端和单端反激。

根据反激变压器⼯作模式可分为CCM 和DCM 模式反激电源。

根据控制⽅式可分为PFM 和PWM 型反激电源。

根据驱动占空⽐的产⽣⽅式可分为电压型和电流型反激开关电源。

我们所要讲的反激电源精确定义为:电流型PWM 单端反激电源。

1.4 电流型PWM 单端反激电源此类反激电源优点:结构简单价格便宜,适⽤⼩功率电源。

此类反激电源缺点:功率较⼩,⼀般在150w 以下,纹波较⼤,电压负载调整率低,⼀般⼤于5%。

此类反激电源设计难点主要是变压器的设计,特别是宽输⼊电压,多路输出的变压器。

2 举例讲解设计过程为了更清楚了解设计中详细计算过程,我们将以220VAC-380VAC 输⼊,+5V±3%(5A),±15±5%(0.5A)三路共地输出反激电源为例讲解设计过程。

提出上⾯要求,选择思路如下:提出上⾯要求,选择思路如下:电源总输出功率P=5*5W+15*0.5*2=40W 功率较⼩,可以选择反激开关电源。

计算机主板各供电电路图解

计算机主板各供电电路图解

计算机主板各供电电路图解主板上的供电电路常见有CPU供电电路,内存供电电路,AGP、PCI、ISA供电电路以及I/O供电电路等,这些电源电路一种是开关电源,由双场效应管(MOSFT管)和电感线圈、电解电容组成;另一种是低压差线性调压芯片组成的调压电路。

这两种电路都能够为主板上不同的芯片和组件提供精密的电源电压。

1、CPU供电电路为了降低CPU制造成本,CPU核心电压变得越来越低,于是把ATX电源供给主板的12V、5V和3.3V直流电通过CPU的供电电路来进行高直流电压到低直流电压转换。

(1)CPU供电电路组成由于CPU工作在高频、大电流状态,它的功耗非常大。

因此,CPU供电电路要求具有非常快速的大电流响应能力,同时干扰少。

CPU供电电路使用开关电源,该电源由控制(电源管理)芯片、场效应管、电感线圈和电解电容等元件组成,其中控制芯片主要负责识别CPU供电幅值,振荡产生相应的矩形波,推动后级电路进行功率输出(控制芯片的型号常见有:HIP630l、CS5301、TL494、FAN5056等),场效应管起开关控制作用,电感线圈和电解电容起滤波作用。

主板的CPU供电电路框图如图1所示。

主板的CPU供电电路框:图1 CPU供电电路框图开机后,当控制芯片获得ATX电源输出的+5V或+12V供电后,为CPU提供电压,接着CPU电压自动识别引脚发出电压识别信号VID 给控制芯片,控制芯片通过控制两个场效应管导通的顺序和频率,使其输出的电压与电流达到CPU核心供电要求,为CPU提供工作需要的供电。

CPU的供电方式又分为许多种,有单相供电电路、两相供电电路、多相供供电电路。

(2)CPU供电电路原理图2是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源。

+12V是来自ATX电源的输入,通过一个由电感线圈L1和电容C1组成的滤波电路,然后进入两个开关管(场效应管)组成的电路,此电路受到PMW控制芯片控制(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的输出所要求的电压和电流,再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线,这就是“多相”供电中的“一相”,即单相。

LDO电源设计原理和应用

LDO电源设计原理和应用

4
Introduction of LDO



为解决压差过大(功耗过大)而不适合用在低电压转换的 问题,出现了LDO(Low Dropout Linear Regulator ). 低压差线性稳压器也存在压差,具有线性电源的优点和缺 点。其转换效率近似等于输出电压除以输入电压的值。例 如,如果一个LDO输入电源是3.6V,在电流为200mA时 输出1.8V电压,那么转换效仅为50%。虽然就较大的输 入与输出电压差而言,确实存在这些缺点,但是当电压差 较小时,情况就不同了。例如,如果电压从1.5V降至1.2V, 效率就变成了80%。 在LDO中,产生压差的主要原因是在调整元件中有一个P 沟道的MOS管。当LDO工作时MOS管道通等效为一个电 阻,Rds(on), Vdropout = Vin - Vout = Rds(on) x Iout (式A)

8. 基准电压(Reference Voltage) 基准模块是线性稳压器的一个核心部分,基准的大小直接 决定了稳压器输出的大小,它是影响稳压器精度的最主要 因素。
11
Flows in Application





1、确定电路需要的电压类型是正电压还是负电压。 2、确定电路的输出电压、负载电流和输入电压(注意输 入电压和负载电流都需要降额80%考虑) 3、确定电路的最大、最小输入-输出电压差;电路的最 大、最小输入-输出电压差应该满足器件要求; 4、单板PCB、结构尺寸和生产线对封装形式的要求; 5、确定电路的电性能指标要求(如静态电流、精度、纹 波、效率等);器件的指标应该满足电路指标的要求,并 且考虑温度对各种性能指标的影响; 6、确定器件的输出电容以及ESR值,如果器件对输出电 容以及ESR有特殊要求,考虑公司现有器件是否满足要求; 7、其他要求(如电路是否需要使能控制端、价格因素 等)。

一款多路输出单端反激式开关电源的电路设计方案

一款多路输出单端反激式开关电源的电路设计方案

多路输出电源对于电源应用者来讲,一般都希望其所选择的新巨电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误。

仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的。

为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起。

从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux2等辅电路都处在失控之中。

从控制理论可知,只有Vp无论输入、输出如何变动(包括电压变动,负载变动等),在闭环的反馈控制作用下都能保证相当高的精度(一般优于0.5%),也就是说Vp在很大程度上只取决于基准电压和采样比例。

对Vaux1,Vaux2而言,其精度主要依赖以下几个方面:1)T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np32)辅助电路的负载情况。

3)主电路的负载情况注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了。

图1在以上3点中,作为一个具体的开关电源变换器,主变压器匝比已经设定,所以影响辅助电路输出电压精度最大的因素为主电路和辅电路的负载情况。

在开关电源产品中,有专门的技术指标说明和规范电源的这一特性,即就是交叉负载调整率。

为了更好地讲述这一问题,先将交叉负载调整率的测量和计算方法讲述如下。

电源变换器多路输出交叉负载调整率测量与计算步骤1)测试仪表及设备连接。

2)调节被测电源变换器的输入电压为标称值,合上开关S1、S2…Sn,调节被测电源变换器各路输出电流为额定值,测量第j路的输出电压Uj,用同样的方法测量其它各路输出电压。

3)调节第j路以外的各路输出负载电流为最小值,测量第j路的输出电压ULj。

4)按式(1)计算第j路的交叉负载调整率SIL。

SIL=×100%(1)式中:ΔUj为当其它各路负载电流为最小值时,Uj与该路输出电压ULj之差的绝对值;Uj为各路输出电流为额定值时,第j路的输出电压。

线性可调直流稳压电源的设计

线性可调直流稳压电源的设计

目录:.一、设计目的.二、设计任务和要求.三、电路原理分析与方案设计四、仿真过程及结果五、心得体会.六、参考文献资料.七、实物图一、目的稳压管稳压电路输出电流较小,输出电压不可调,不能满足很多场合下的应用。

串联型稳压电路以稳压管稳压电路为基础,利用晶体管的电流放大作用,增大负载电流;在电路中引用深度电压负反馈使输出电压稳定;并且,通过改变反馈网络参数使输出电压可调。

二、设计任务与要求要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。

指标:1、输出电压6V、9V两档,同时具备正负极性输出;2、输出电流:额定电流为150mA,最大电流为500mA;3、在最大输出电流的时候纹波电压峰值▲Vop-p≤5mv;任务:1、了解带有放大环节串联型稳压电路的电路图;2、识图放大环节串联型稳压电路的电路图;3、仿真电路并选取元件;4、安装调试带有放大环节串联型稳压电路;5、用仪器表对电路调试和测量相关;6、撰写设计报告、调试;三,电路原理分析与方案设计1、方案比较与确定基本思路:先对输入的220V 交流电压进行降压,然后就用单相桥式二极管对电压进行整流。

整流后利用电容的充放电效应,对其进行滤波,使输出电压平滑。

之后再通过稳压电路的功能使输出直流电压基本不受电网波动和负载电阻变化的影响,从而获得足够高的稳定性。

方案1:220V 交流电压经过基本部分降压整流后,将经过稳压部分对其进行稳压,稳压部分如下图,利用稳压管和三极管组成的稳压单元电路,同过D1 电压作为三极管Q1 的基准电压,电路引入电压负反馈,使电网电压波动不会对Q1 的基极电位产生很大的影响,则有U BE U B U E 可知,U BE 变化将导致发射极电流的变化,从而稳定R 两端电压,达到稳压的效果。

方案二:经过整流后,脉动电流通过滤波电路,其中滤波电路我采用RC 型滤波电路,先用电容值较大的电解电容对其进行低频滤波,靠近输出端处使用较低电容值的陶瓷电容进行高频滤波,使滤波后电压能够变得比较平滑和波动小。

UC3842电源

UC3842电源

用UC3842设计开关电源的几个技巧用UC3842做的开关电源的典型电路见图1。

过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。

当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1、R2开始下一次启动过程。

这被称为“打嗝”式(hiccup)保护。

在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms到几s)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。

由于漏感等原因,有的开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压Vaux也不能降到足够低,所以一般在辅助电源的整流二极管上串一个电阻(R3),它和C1形成RC滤波,滤掉开通瞬间的尖峰。

仔细调整这个电阻的数值,一般都可以达到满意的保护。

使用这个电路,必须注意选取比较低的辅助电压Vaux,对3842一般为13~15V,使电路容易保护。

图2、3、4是常见的电路。

图2采取拉低第1脚的方法关闭电源。

图3采用断开振荡回路的方法。

图4采取抬高第2脚,进而使第1脚降低的方法。

在这3个电路里R3电阻即使不要,仍能很好保护。

注意电路中C4的作用,电源正常启动,光耦是不通的,因此靠C4来使保护电路延迟一段时间动作。

在过载或短路保护时,它也起延时保护的左右。

在灯泡、马达等启动电流大的场合,C4的取值也要大一点。

图1是使用最广泛的电路,然而它的保护电路仍有几个问题:1. 在批量生产时,由于元器件的差异,总会有一些电源不能很好保护,这时需要个别调整R3的数值,给生产造成麻烦;2. 在输出电压较低时,如3.3V、5V,由于输出电流大,过载时输出电压下降不大,也很难调整R3到一个理想的数值;3. 在正激应用时,辅助电压Vaux虽然也跟随输出变化,但跟输入电压HV的关系更大,也很难调整R3到一个理想的数值。

具有短路保护功能的通用线性电源控制电路设计

具有短路保护功能的通用线性电源控制电路设计

具有短路保护功能的通用线性电源控制电路设计摘要:随着技术的发展,各种电子产品已成为必不可少的工具,任何电子设备都需要电源供应,这通常需要稳定可靠的直流电源,只有确保良好的电源供应,电子设备才能发挥作用线性喂养随着时间的推移发生了变化。

技术相当成熟。

直流电源是因为其系统中的调节管始终在联机放大区域中工作。

由于直流电源具有低波动、低噪音、卓越的稳定性和快速响应等优点,因此在所有领域都得到广泛应用。

关键词:短路保护功能;通用线性;电源控制;电路设计引言线性电源是功率器件的在线工作状态,即能通过改变功率器件的电阻值实现稳定输出,同时消耗多个电源。

因此没有开关噪声,有低波动、高稳定性、突变能力等特点,需要测量精度信号,测量保护时间。

但是,线性电源有更多的缺点,例如体积大、能耗高、热可靠性差、断电时输出电压过度压缩到输入电压等。

1线性电源和开关电源比较区别两个电路的关键在于检查电路中晶体管的工作状态。

晶体管在放大的状态下工作并平衡反馈时,这是一个线性电源。

当开关处于活动状态时,晶体管被供电以产生高频信号。

线性电源在线性状态下工作,效率低下。

良好的线性电源供应器通常可提供50%至60%的生产力。

线性电源的工作方式必须要有低压,通常带有变压器,然后通过直流电压。

这会导致大量、笨重、低效和热增量,从而间接增加系统的热量,但也会导致较小的波、更好的调节能力、更少的外部干扰、模拟电路的理想选择、各种放大器等。

当前,线性供电产品应用于科研、高等院校、实验室、采矿、电解、电镀、充电器等领域。

在开/关时,其功率部件处于开/关状态(甚高频开/关、100-200 kHz的典型电源电压、300-500 kHz的模块),从而减少损耗并提高效率,但用高磁性材料对变频器充电,该材料体积小80%-90%,效率更高。

美国最好的VICOR模块预计为99%。

尽管开关效率高,尺寸小,但与线性电源相比,信号质量较低,因为开关线路和后部半调均会引起噪音和阻塞压力。

线性电源与开关电源原理介绍

线性电源与开关电源原理介绍

线性电源开关电源所有电源都有一个闭环负反馈,这个负反馈的作用就是出电压稳压二极管伏安特性1.并联式线性电源图例:最简单的并联式电源-稳压二极管稳压电路介绍:此电路是最常用的硅稳压管稳压电路。

基于二极管的反向击穿特性,将二极管工作在反向击穿时与负载并联,就能在一定条件下保证负载上的电压基本不变串联电阻置于输入电压和稳压二极管之间,用来限制流向负载和二极管的电流,稳压二极管补偿电流的变化。

稳压电压值会随着温度漂移。

它的损耗比串联的线性电源更大。

上调节,从而输出的负载电压保持不变,从而Vo基本稳定。

原理简介:将一个晶体管加到基本二极管稳压电路,可以利用增益的优势。

BJT接成射极跟随器,可以在稳压二极管的电流比较小的情况下,向负载提供很大的电流。

此时BJT基本上是一个误差放大器,当负载电流增加时,基极电压提高,晶体管的导通程度也增加,因而使电压回复到原来的值。

最简单的串联型稳压电源。

BJT BG是调整管,R1和Dw产生一个基准电压Uw接到BG的基极,R1是Dw的限流电阻,也是调整管BG 的基极偏流电阻。

我们假设输入电压Vi为一不稳定的直流输入电压,Vo是稳压后的直流输出电压,稳压二极管Dw给调整管BG 提供一个稳定的基极电压。

输出电压是多少?载电流增加时的调整过程相同。

了。

因此,串联型线性稳压电源,大多采用直流放大器来获得高稳定度的输出电压。

性电源框图,图示不包括AC/由取样元件取出一部分输出电压,称作取样电压,它与基准电压因此器件的输入输出之间会有1.7V到2.5V的压差。

这个压差(dropout voltage)为:导通管是一个PNP管。

LDO的最大优势就是PNP管只会带来很小的导通压降:满载的跌落压降一般小于500mV。

轻载时的压降只有10到20mV。

NPN,LDO和准LDO在参数上的最大不同IG联调整管VT、取样电阻R1和R2、比较放大器A组成。

取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相出电压。

线性稳压电源原理图

线性稳压电源原理图

线性稳压电源原理图线性稳压电源是一种常见的电子电路,用于将不稳定的输入电压转换为稳定的输出电压。

它在各种电子设备中都有广泛的应用,例如电脑、手机、电视等。

本文将介绍线性稳压电源的原理图及其工作原理。

首先,线性稳压电源的原理图包括输入端、变压器、整流桥、滤波电容、稳压管、电流限制电阻和输出端。

输入端接收交流输入电压,变压器将输入电压转换为所需的电压等级,整流桥将交流电转换为直流电,滤波电容用于平滑输出电压,稳压管用于稳定输出电压,电流限制电阻用于限制输出电流,输出端为最终输出稳定电压的地方。

其次,线性稳压电源的工作原理是通过稳压管来实现的。

稳压管是一种特殊的二极管,它能够在一定的电压范围内保持稳定的输出电压。

当输入电压发生变化时,稳压管会自动调节其导通电阻,以保持输出电压的稳定。

这样就能够确保输出端所需的稳定电压不受输入电压波动的影响。

另外,线性稳压电源还需要考虑输出电流的限制。

电流限制电阻的作用是限制输出电流,防止电路过载损坏。

当输出电流超过电流限制电阻所设定的数值时,电路会自动切断输出电压,以保护电路和设备的安全。

总的来说,线性稳压电源的原理图及其工作原理是通过一系列的电子元件和电路来实现的。

它能够将不稳定的输入电压转换为稳定的输出电压,并且能够限制输出电流,保护电路和设备的安全。

在实际的电子设备中,线性稳压电源扮演着非常重要的角色,确保设备正常、稳定地工作。

总的来说,线性稳压电源的原理图及其工作原理是通过一系列的电子元件和电路来实现的。

它能够将不稳定的输入电压转换为稳定的输出电压,并且能够限制输出电流,保护电路和设备的安全。

在实际的电子设备中,线性稳压电源扮演着非常重要的角色,确保设备正常、稳定地工作。

电源电路图详解

电源电路图详解

电源电路图详解!用电路元件符号表示电路连接的图,叫电路图。

电路图是人们为研究、工程规划的需要,用物理电学标准化的符号绘制的一种表示各元器件组成及器件关系的原理布局图,可以得知组件间的工作原理,为分析性能、安装电子、电器产品提供规划方案。

电路图是电子工程师必学的基本技能之一,本文集合了稳压电源、DCDC转换电源、开关电源、充电电路、恒流源相关的经典电路资料,为工程师提供最新鲜的电路图参考资料,超全超详细,只能帮你到这了!一、稳压电源1、3~25V电压可调稳压电路图此稳压电源可调范围在3.5V~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。

工作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。

调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。

元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。

FU1选用1A,FU2选用3A~5A。

VD1、VD2选用6A02。

RP选用1W左右普通电位器,阻值为250K~330K,C1选用3300µF/35V电解电容,C2、C3选用0.1µF 独石电容,C4选用470µF/35V电解电容。

R1选用180~220Ω/0.1W~1W,R2、R4、R5选用10KΩ、1/8W。

V1选用2N3055,V2选用3DG180或2SC3953,V3选用3CG12或3CG80。

2、10A3~15V稳压可调电源电路图无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。

LDO工作原理详解

LDO工作原理详解
-
VOUT COUT
工作过程2: 倍压输出
I VIN
CIN
S2
S1
S4
S3
+ - CFLY
VOUT + - COUT
过程1等效电路:
VIN
+
+
CIN
CFLY
过程2等效电路:
+
VOUT
- CFLY
+
VIN
+
COUT -
CIN -
精品课件
可调电压电荷泵
工作原理:
VIN
Cin
SHDN
CONTROL
S1
S3
精品课件
Charge pump(电荷泵)
原理
VIN
Cin
SHDN
CONTROL / CLOCK
S1
S3
S2
S4
GND
C+
Cfly
CVOUT
Cout
倍压电荷泵示意图 (Vout = 2 x Vin)
精品课件
倍压电荷泵
工作过程1: 对电容CFLY充电
I
VIN
+
- CIN S2
S1
S4
S3
+ CFLY
精品课件
调整管
准LDO 稳压器(Quasi-LDO regulators)
另一种广泛应用于某些场合是准LDO(例如: 5V到3.3V 转换器)。准LDO介于 NPN 稳压器 和 LDO 稳压器之间而 得名,导通管是由单个 PNP管来驱动单个NPN 管。因此,它的跌落压 降介于NPN稳压器和 LDO之间: Vdrop=Vbe +Vsat
电路开始启动,恒流源电路给整个电路提供偏置,基准源电 压快速建立

CN3052A_线性锂电池充电电路

CN3052A_线性锂电池充电电路

REV 1.4
6
应用信息
电源低电压锁存(UVLO)
CN3052A内部有电源电压检测电路,当电源电压低于电源电压过低阈值时,芯片处于关断状态,充电也 被禁止。
睡眠模式
CN3052A内部有睡眠状态比较器,当输入电压VIN小于电池端电压+40mv时,充电器处于睡眠模式;只 有当输入电压VIN上升到电池端电压90mv以上时,充电器才离开睡眠模式,进入正常工作状态。
4.7uF
LED
330
4 VIN
8 CE
5 BAT
4.7uCHRG
6 FAULT
GND 3
1 TEMP
2 ISET
RISET
R1
Bat+
BatNTC
电池
R2
订购信息:
器件型号 CN3052A
图 1 典型应用电路
电压值 4.2V
封装形式 SOP8
工作环境温度 -40℃ to 85℃
应用:
移动电话 数码相机 MP3 播放器 电子词典 蓝牙应用 便携式设备 各种充电器
管脚排列:
TEMP 1 ISET 2 GND 3 VIN 4
8 CE
CN3052A 7 CHRG
6 FAULT 5 BAT

REV 1.4
1
典型应用电路:
输入电压 4.35V to 6V
Wall Adapter
D1
USB Power M1
1K
VIN
CN3052A
图4 同时使用墙上适配器和USB接口
REV 1.4
7
电池温度监测
为了防止温度过高或者过低对电池造成的损害,CN3052A 内部集成有电池温度监测电路。电池温度监测 是通过测量 TEMP 管脚的电压实现的,TEMP 管脚的电压是由电池内的 NTC 热敏电阻和一个电阻分压 网络实现的,如图 1 所示。 CN3052A 将 TEMP 管脚的电压同芯片内部的两个阈值 VLOW 和 VHIGH 相比较,以确认电池的温度是否 超出正常范围。在 CN3052A 内部,VLOW 被固定在 45%×VIN,VHIGH 被固定在 80%×VIN。如果 TEMP 管脚的电压 VTEMP<VLOW 或者 VTEMP>VHIGH 超过 0.15 秒,则表示电池的温度太高或者太低,充电过程 将被暂停;如果 TEMP 管脚的电压 VTEMP 在 VLOW 和 VHIGH 之间超过 0.15 秒,充电周期则继续。 如果将 TEMP 管脚接到地,电池温度监测功能将被禁止。

线性直流稳压电源

线性直流稳压电源

1设计任务描述1.1设计题目:线性直流稳压电源1.2 设计要求1.2.1 设计目的(1)掌握线性直流构成原理与设计方法;(2)熟悉模拟元件的选择,使用方法。

1.2.2 基本要求(1)220V交流输入电压,12V直流输出电压;(2)使用集成三端稳压器进行稳压输出,输出纹波系数<1%;(3)输出功率>5%。

1.2.3 发挥部分(1)输出电压线性可调;(2)估算出线性电源高效率(>50%)的使用范围。

2 绪论根据小功率稳压电源的构成,它是由电源变压器、整流、滤波和稳压器等四部分组成的,其结构图和稳压过程如下所示:直流稳压电源的作用是将交流电网的电压转化为直流电压,为放大电路提供直流工作电源。

各部分的工作过程是:(1) 电源变压器将交流电网提供的电压V1=220V变为所需要的V2=12V的交流电压;(2)通过整流电路将交流为12V的电压转变为脉动的直流电压V R,其峰值仍然为12V;(3)由于脉动的直流电压V R中还含有较大的纹波,必须通过滤波电路加以滤除,所以此过程是用滤波电路将纹波滤除,从而得到平滑的直流电压V F;(4)因为得到的直流电压V F还会随着电网电压的波动、负载和温度的变化而变化,因而在进行了整流、滤波之后,还需要进行稳压处理。

此过程中稳压电路的作用是当电网电压波动、负载和温度发生变化时,进一步滤波,维持输出直流电压为12V的稳定性和带载能力。

通过上述四个大过程,就大体上完成了直流稳压电源的工作。

然后,根据每一个部分的工作原理,可以进一步对电路的元器件进行选择和对电路进行连接。

整流电路的作用是将交流电变换成直流电完成这一任务主要是靠二极管的单向导电性的作用,因此二极管是构成整流电路的关键原件,在选择二极管的时候要了解其工作的电压,以方便对它合理的选择。

在一般的小功率整流电路中,常见的几种整流电路有单向、半波、全波桥式和倍压整流电路。

在分析整流电路时,一般二极管都是用其理想模型来进行处理,即正向导通电阻为零,反向电阻为无穷大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最简单线性电源电路设计(从框图到实际电路)
 通过《最简单线性电源电路设计(从框图到实际电路)》一文的介绍,小编将带领大家一起学会如何将点路况图编程原理图
第一步:根据电路工作原理绘制电路原理框图,这个比较容易,而且比电路原理图更容易在网上得到。

框图内容越具体,转化原理图越容易。

下图是串联型稳压电源方框图:
第二步:将框图变为原理图:
先将每个方框的内容变为单元电路。

(1)变压器:
变压器的原理图比较简单,但实际设计中是整个电路最难的部分。

(2)整流桥
整流桥将正弦波整流为只有正半周期的电压,频率变为之前的2 倍。

(3)滤波器
滤波电路一般使用电容和电感,用电容最简单。

 (4)电压调整电路
利用三极管的Vce 可变,来控制其分压的大小,保持输出电压不变。

tips:感谢大家的阅读,本文由我司收集整编。

仅供参阅!。

相关文档
最新文档