2018年浙江省杭州市中考数学试卷及答案解析
2018年杭州中考数学试卷含答案解析Word版
2018年中考数学试题浙江省杭州市一、选择题1.= )( D. A. 3B. -3C.2.1800000 )数据用科学计数法表示为(6656 D. 18×1010 A. 1.8B. 1.8×10C. 18× 3. )下列计算正确的是(D.B.A.C.4.“”成绩,得到五个各不相同的数据,统计时,出现了一处错误:一分钟跳绳测试五位学生)将最高成绩写得更高了。
计算结果不受影响的是(A.B. C. D. 平均数标准差方差中位数5.AMANABC )分别是△,边上的高线和中线,则(若线段A.B.C.D.6.20+5-2分,不答的题得道题,规定:每答对一题得某次知识竞赛共有分,每答错一题得060 )道题,答错了分。
已知圆圆这次竞赛得了道题,则(分,设圆圆答对了 D.C.A.B.7.3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数一个两位数,它的十位数字是1—63的倍数的概率等于)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是字)( D.B. A.C.ABCD8.P,,矩形内一点(不含边界),设如图,已知点)(,若,,则,B. A.C.D.bc9. 时,函数有最(是常数)时,甲发现当四位同学在研究函数, 3 ;丁发现当的一个根;丙发现函数的最小值为是方程小值;乙发现)时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是( A.B. C. D. 丁乙甲丙10.DEBCABCDABACEBEADE,连结与边记△∥在△,交于点中,点,在,边上,如图,BCESS )(的面积分别为,△,21A. B. ,则若,则若C. D. ,则,则若若二、填空题11.a-3a=________ 。
计算:12.abcabAB1=45°2=________。
,,若∠如图,直线分别交于∥,则∠,直线与直线,________ 13. 因式分解:14.ABCOACDEABODE,是半径,交的中点,过点是⊙的直径,点作于点如图,⊥DEA=________DDFAF。
2018年杭州市中考数学试卷含答案解析(Word版)
浙江省杭州市2018年中考数学试题一、选择题1、=( )A、 3B、 -3C、D、2、数据用科学计数法表示为( )A、 1、86B、 1、8×106C、 18×105D、 18×1063、下列计算正确得就是( )A、 B、 C、 D、4、测试五位学生“一分钟跳绳”成绩,得到五个各不相同得数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响得就是( )A、方差B、标准差C、中位数D、平均数5、若线段AM,AN分别就是△ABC边上得高线与中线,则( )A、 B、 C、 D、6、某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答得题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则( )A、 B、 C、 D、7、一个两位数,它得十位数字就是3,个位数字就是抛掷一枚质地均匀得骰子(六个面分别有数字1—6)朝上一面得数字。
任意抛掷这枚骰子一次,得到得两位数就是3得倍数得概率等于( )A、 B、 C、 D、8、如图,已知点P矩形ABCD内一点(不含边界),设, , , ,若, ,则( )A、 B、C、 D、9、四位同学在研究函数(b,c就是常数)时,甲发现当时,函数有最小值;乙发现就是方程得一个根;丙发现函数得最小值为3;丁发现当时, .已知这四位同学中只有一位发现得结论就是错误得,则该同学就是( )A、甲B、乙C、丙D、丁10、如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE 得面积分别为S1, S2, ( )A、若,则B、若,则C、若,则D、若,则二、填空题11、计算:a-3a=________。
12、如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
13、因式分解: ________14、如图,AB就是⊙得直径,点C就是半径OA得中点,过点C作DE⊥AB,交O于点D,E两点,过点D作直径DF,连结AF,则∠DEA=________。
浙江省杭州市中考数学真题试题(含解析)
浙江省杭州市2018年中考数学真题试题一、选择题1.=()A. 3B. -3C.D.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:|-3|=3【分析】根据负数的绝对值等于它的相反数,即可求解。
2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×106【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1800000=1.8×106【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。
3.下列计算正确的是()A. B. C. D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB、∵,因此A符合题意;B不符合题意;CD、∵,因此C、D 不符合题意;故答案为:A【分析】根据二次根式的性质,对各选项逐一判断即可。
4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数【答案】C【考点】中位数【解析】【解答】解:∵五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了∴中位数不会受影响故答案为:C【分析】抓住题中关键的已知条件:五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了,可知最高成绩提高,中位数不会变化。
5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.【答案】D【考点】垂线段最短【解析】【解答】解:∵线段AM,AN分别是△ABC边上的高线和中线,当BC边上的中线和高重合时,则AM=AN当BC边上的中线和高不重合时,则AM<AN∴AM≤AN故答案为:D【分析】根据垂线段最短,可得出答案。
6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
2018年浙江省杭州市中考数学试卷含答案解析(Word版)
浙江省杭州市2018年中考数学试题一、选择题1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则二、填空题11.计算:a-3a=________。
12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E 两点,过点D作直径DF,连结AF,则∠DEA=________。
浙江省杭州市2018年中考数学真题试题(含解析)
浙江省杭州市2018年中考数学真题试题一、选择题1.=()A. 3B. -3 C.D.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:|-3|=3【分析】根据负数的绝对值等于它的相反数,即可求解。
2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106 C. 18×105 D. 18×106【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1800000=1.8×106【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。
3.下列计算正确的是()A. B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB、∵,因此A符合题意;B不符合题意;CD、∵,因此C、D 不符合题意;故答案为:A【分析】根据二次根式的性质,对各选项逐一判断即可。
4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差 C. 中位数 D. 平均数【答案】C【考点】中位数【解析】【解答】解:∵五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了∴中位数不会受影响故答案为:C【分析】抓住题中关键的已知条件:五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了,可知最高成绩提高,中位数不会变化。
5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B.C.D.【答案】D【考点】垂线段最短【解析】【解答】解:∵线段AM,AN分别是△ABC边上的高线和中线,当BC边上的中线和高重合时,则AM=AN当BC边上的中线和高不重合时,则AM<AN∴AM≤AN故答案为:D【分析】根据垂线段最短,可得出答案。
6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
完整word版,2018中杭州中考数学(含答案)
2018 年浙江省杭州市中考数学试卷一、选择题:本大题有10 个小题,每题 3 分,共 30 分。
在每题给出的四个选项中,只有一项为哪一项切合题日要求的。
1. |-3|=()A. 3B.-3C. 1/3D.-1/32.数据 1800000用科学记数法表示为()A . 1.86B . 1.8 ×106C . 18 ×105D . 18 ×1063.以下计算正确的选项是()A. √(22 ) =2B. √(22 ) = ±2C.. √(42 ) =2D. √(42 ) = ±24.测试五位学生的“一分钟跳绳”成绩,获得五个各不同样的数据、在统计)时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是(方差B.标准差C.中位数D.均匀数5.若线段 AM ,AN分别是△ABC的BC边上的高线和中线,则()A. AM >AN B. AM ≥AN C. AM <AN D.AM ≤AN6.某次知识比赛共有 20 道题,现定:每答对一道题得+5分,每答错一道题得-2 分,不答的题得 0 分,已知圆圆这次竞赛得了 60 分,设圆圆答对了 x 道题,答错了 y 道题,则()A . x-y=20 B.x+y=20C. 5x-2y=60 D . 5x+2y=607.一个两位数,它的十位数字是 3,个位数字是投掷一枚质地均匀的骰子(六个面分别标有数字 1-6 )向上一面的数字,随意投掷这枚骰子一次,获得的两位数是 3 的倍数的概率等于()A. 1/6B. 1/3C. 1/2D.2/38.如图,已知点 P 是矩形 ABCD内一点(不含界限),设∠PAD=1 ,∠PBA=θθ,∠PCB= θ,∠PDC=θ,若∠APB=80 °,∠CPD=50 °,则()234A .(θ1+θ4 ) - (θ2+θ3 ) =30°B .(θ2+ θ4 ) - (θ1+ θ3 ) =40 °C.(θ1+θ2 ) - (θ3+θ4 ) =70° D .(θ1+ θ2 ) + (θ3+θ4 ) =180 °9 .四位同学在研究函数 y=x 2 +bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现-1是方程 x2 +bx+c=0的一个根;丙发现函数的最小值为 3;丁发现当 x=2 时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲 B.乙 C.丙 D.丁10.如图,在△ABC 中,点 D 在 AB 边上,DE∥BC,与边 AC交于点 E,连接BE.记△ADE ,△BCE 的面积分别为 S1,S2()A.若 2AD>AB,则3S 1>2S2B.若 2AD>AB,则 3S1<2S2C.若 2AD<AB,则 3S1>2S2D.若 2AD<AB,则 3S1<2S2二、填空题:本大题有 6 个小题,每题 4 分,共 24 分。
浙江省杭州市2018年中考数学试题(解析)
2018年浙江省杭州市中考数学试卷解读版一、仔细选一选<本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.1.<2018•杭州)计算<2﹣3)+<﹣1)的结果是< )A.﹣2 B.0 C.1 D.2考点:有理数的加减混合运算。
专题:计算题。
分析:根据有理数的加减混合运算的法则进行计算即可得解.解答:解:<2﹣3)+<﹣1),=﹣1+<﹣1),=﹣2.故选A.点评:本题主要考查了有理数的加减混合运算,是基础题比较简单.2.<2018•杭州)若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是< )A.内含B.内切C.外切D.外离考点:圆与圆的位置关系。
分析:两圆的位置关系有5种:①外离;②外切;③相交;④内切;⑤内含.若d>R+r则两圆相离,若d=R+r则两圆外切,若d=R﹣r则两圆内切,若R﹣r<d<R+r则两圆相交.本题可把半径的值代入,看符合哪一种情况.解答:解:∵两圆的半径分别为2cm和6cm,圆心距为4cm.则d=6﹣2=4,∴两圆内切.故选B.点评:本题主要考查两圆的位置关系.两圆的位置关系有:外离<d>R+r)、内含<d<R﹣r)、相切<外切:d=R+r或内切:d=R﹣r)、相交<R﹣r<d<R+r).3.<2018•杭州)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是< )pmIuLF5OZ9A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大pmIuLF5OZ9考点:可能性的大小;随机事件。
分析:利用随机事件的概念,以及个数最多的就得到可能性最大分别分析即可.解答:解:A.摸到红球是随机事件,故此选项错误;B.摸到白球是随机事件,故此选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项正确;故选:D.点评:此题主要考查了随机事件以及可能性大小,利用可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等得出是解题关键.4.<2018•杭州)已知平行四边形ABCD中,∠B=4∠A,则∠C=< )A.18°B.36°C.72°D.144°考点:平行四边形的性质;平行线的性质。
2018年浙江省杭州市中考数学试卷-答案
浙江省杭州市2018年初中毕业学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】A 【解析】解:33【考点】绝对值及有理数的绝对值2.【答案】B【解析】根据科学计数法的表示形式为:n ×10a ,其中110<<a .表示绝对值较大的数解:61800000 1.810=⨯【考点】科学记数法3.【答案】A 【解析】解:222=,因此A 符合题意;B 不符合题意;244=,因此C 、D 不符合题意;故选A.【考点】二次根式的性质与化简 4.【答案】C【解析】解:中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了∴计算结果不会受影响的是中位数,故选C.【考点】方差、标准差、中位数、平均数 5.【答案】D【解析】解:线段AM,AN 分别是ABC △边上的高线和中线,当BC 边上的中线和高重合时,则=AM AN 当BC 边上的中线和高不重合时,则<AM AN∴AM AN ≤故选D.【考点】垂线段的性质6.【答案】C【解析】根据题意得:522060-+--=()x y x y ,即5260-=x y 故选C. 【考点】二元一次方程的实际应用鸡兔同笼问题7.【答案】B【解析】解:根据题意可知,这个两位数可能是:31、32、33、34、35、36,一共有6种可能得到的两位数是3的倍数的有33、36两种可能.13()3P ∴=两位数是的倍数 【考点】概率公式,复合事件概率的计算8.【答案】A【解析】解:矩形ABCD ∴90∠+∠=︒PAB PAD 即90∠=︒-∠PAB PAB80∠=︒PAB∴18080100∠+∠=︒-︒=︒PAB PBA9010010︒-∠+∠=︒∠-∠=︒即PAB PBA PBA PAB ①同理可得:180509040∠-∠=︒-︒-︒=︒PDC PCB ②由②-①得:30∠-∠-∠-∠=︒()PDC PCB PBA PAB2423 30θθθθ()-()故选A.【考点】三角形内角和定理,矩形的性质9.【答案】B【解析】解:根据题意得:抛物线的顶点坐标为:(1,3)且图像经过(2,4)设抛物线的解析式为:3(x 1)3=-+y a+3=4a解之:=1a∴抛物线的解析式为: 221324=-+=-+()y x x x当x=1时,y=7,∴乙说法错误,故选B.【考点】二次函数图象与系数的关系,二次函数的最值10.【答案】D【解析】解:如图,过D 作DF AC 于分,过B 作BM ⊥AC 于M∴∥DF BM ,设DF =1h ,BM =2h ∴=AD AE AB AC∥DE BC ∴=AD AE AB AC∴12h AD AE AB h AC 若2<AD AB设12==h AD AE AB h AC k 0.50k 0.5()∴1AE AC k CE AC AE AC k ==-=-,(),12=h h k1112221111k ,(1k)2222=⨯=⨯⨯=⨯=-S AE h AC h S CE h AC h 00.5<<k∴23(1)2-<k K ∴123S 2S <故选D.【考点】三角形的判定与性质第Ⅱ卷二、填空题11.【答案】-2a【解析】解:32-=-a a a 故答案为:-2a【考点】整式的加减12.【答案】135︒ 【解析】解:∥a b ∴1345∠=∠=︒23180∠+∠=︒ 2=18045135故答案为:135︒ 【考点】对顶角、邻补角,平行线的性质13.【答案】()()1a b a b --+【解析】解:原式=()()()()()()221.a b b a a b a b a b a b ---=-+-=--+【考点】提公因式法因式分解14.【答案】30° 【解析】解:⊥DE AB 90DCO ∴∠=︒点C 是半径OA 的中点1122==OC OA OD 30∠=︒CDO∴AOD 60弧AD =弧AD ∴1302∠=∠=︒DEA AOD 故答案为:30°【考点】垂径定理、锐角三角函数、三角形外角的性质15.【答案】6080≤≤v【解析】解:根据题意得甲车的速度为120340\-=千米小时若10点追上,则24080=⨯-v 千米小时若11点追上,则2120=v ,即60=v 千米小时60v 80≤≤故答案为:6080≤≤v【考点】一次函数的图象,一次函数的实际应用,一次函数的性质16.【答案】32+【解析】当点H 在线段AE 上时把ADE 翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上 ∴四边形ADFE 是正方形∴AD AE =1=-=-AH AE EH AD把CDG 翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上2===+DC DH AB AD在Rt ADH 中,222+=AD AH DH解之:33=+=-AD AD33=+=-AD AD 舍去)3=+AD 【考点】勾股定理,矩形的性质,正方形的性质,翻折变换(折叠问题)三、解答题17.【答案】(1)有题意可得:100t>0vt =(),则v =100t . (2)不超过5小时卸完船上的这批货物, 5≤t , 则100205=≥v 答:平均每小时至少要卸货20吨.【解析】(1)根据已知条件易求出函数解析式.(2)根据要求不超过5小时卸完船上的这批货物,可得出t 的取值范围,再求出t=5时的函数值,就可得出答案.【考点】一元一次不等式的应用,反比例函数的性质,根据实际问题列反比例函数关系式18.【答案】(1)观察频数分布直方图可得出4=a(2)设收集的可回收垃圾总质量为W ,总金额为Q .每组含前一个边界值,不含后一个边界245453551651.5⨯+⨯+⨯+⨯=<..W kg,5150.8412⨯=<.Q 元,41.250 所以该年级这周的可回收垃圾被回收后所得全额不能达到50元.【解析】(1)观察频数分布直方图,可得出a 的值.(2)设收集的可回收垃圾总质量为W ,总金额为Q ,根据每组含前一个边界值,不含后一个边界,求出W 和Q 的取值范围,比较大小,即可求解.【考点】频数(率)分布表,频数(率)分布直方图19.【答案】(1)证明:=AB AC ,∠=∠ABC ACB ,ABC △为等腰三角形.AD 是BC 边上中线,∴=BD CD ,AD BC ⊥又∴⊥DE AB .∠=∠DEB ADC ,又∠=∠ABC ACB ,∴BDE △∽△CAD (2) 13=AB ,11052====BC BD CD BC , ∴222+=AD BD AB ,12=AD .BDE △∽△CAD∴=BD DE CA AD 即5 1312=DE , ∴DE =60 13. 【解析】(1)根据已知易证ABC △为等腰三角形,再根据等腰三角形的性质及垂直的定义证明∠DEB =∠ADC ,根据两组角对应相等的两三角形是相似三角形,即可证得结论.(2)根据等腰三角形的性质求出BD 的长,再根据勾股定理求出AD 的长,再根据相似三角形的性质,得出对应边成比例,就可求出DE 的长.【考点】等腰三角形的性质,勾股定理,相似三角形的判定与性质20.【答案】(1)根据题意,得331+=⎧⎨-+=-⎩,,k b k b ,解得2,1==k b . 所以21y x =+.(2)因为点2(22)+,a a 在函数21=+y x 的图像上,所以245=+a a解得5=a 或1=-a(3)由题意,得121212(21)(21)2()-=+-+=-y y x x x x ,所以m =2121212()()2()0,--=-≥x x y y x x所以10m +>, 所以反比例函数y =1m x+的图像位于第一、第三象限. 【解析】(1)根据已知点的坐标,利用待定系数法,就可求出一次函数的解析式.(2)将已知点的坐标代入所求函数解析式,建立关于a 的方程,解方程求解即可.(3)先求出12122()-=-y y x x ,根据m =1212()()--x x y y ,得出m =2121212()()2()0,--=-≥x x y y x x 从而可判断m +1的取值范围,即可求解.【考点】因式分解法解一元二次方程,待定系数法求一次函数解析式,反比例函数的性质21.【答案】(1)因为28∠=︒A ,所以62B ∠=︒又因为BC -BD,所以()1 18062=592BCD ∠=⨯︒-︒︒9059=31ACD ∠=︒-︒︒∴(2)因为BC =a , AC =b ,所以AB ==AD AB BD =a①因为22222)?2)b 2)220+-=+-=a a a a a b 所以线段AD 的是方程2220+-=x ax b 的一个根.②因为===AD EC AE 2b 所以2b 号是方程2220+-=x ax b 的根, 所以22 04+-=b ab b ,即43=ab b 因为0≠b ,所以34=a b . 【解析】(1)根据三角形内角和定理可求出∠B 的度数,再根据已知可得出BCD △是等腰三角形,可求出∠BCD 的度数,从而可求得∠ACD 的度数.(2)根据己知① ==,BC a AC b ,利用勾股定理可求出AB 的值,①再求出AD 的值,再根据AD 是原方程的一个根,将AD 的k 代入方程,可得出方程左右两边相等,即可得出解;②根据已知条件可得出2b ,将===AD EC AE 2b 代入方程化筒可得出43=ab b ,就可求出a 与b 之比. 【考点】一元二次方程的根,等腰三角形的性质,勾股定理,圆的认识22.【答案】(1)当0=y 吋,2)0(0+-+=≠()ax bx a b a ,因为∆=24()=(2)+++b a a b a b所以,当20+=a b ,即=0∆时,二次函数图像与x 轴有1个交点,当20+≠a b ,即0∆时,二次函数图像与x 轴有2个交点.(2)当10==时,x y ,所以函数图象不可能经过点C (1,1)所以函数图象经过A (-1,4),B (0,-1)两点,所以()4()1--+=⎧⎨-+=-⎩,,a b a b a b 解得a =3,b =-2所以二次函数的表达式为2321=--y x x(3)因为P (2,m )在该二次函数的图像上,所以423=+-+=+()m a b a b a b因为0>m ,所以30+>a b ,又因为0+>a b ,所以2a =3a +b -(a +b )>0,所以0>a【解析】(1)根据题意求出△=24-b ac 的值,再分情况讨论,即可得出答案.(2)根据已知点的坐标,可排除点C 不在抛物线上,因此将A 、B 两点代入函数解析式,建立方程组求出a 、b 的值,就可得出函数解析式.(3)抓住已知条件点P (2,m )(0>m )在该二次函数图象上,得出m =3a +b ,结合已知条件m 的取值范围,可得出3a +b >0,再根据0+>a b ,可证得结论.【考点】待定系数法求二次函数解析式,二次函数图像与坐标轴的交点问题23.【答案】(1)因为四边形ABCD 是正方形,所以90∠+∠=︒BAF EAD ,又因为⊥DE AG ,所以90∠+∠=︒∠=∠,所以EAD ADE ADE BAF又因为⊥BF AG ,90∠=∠=︒DEA AFB ,又因为=AD AB ,所以Rt DAE Rt ABF ≅△△,==FD AE BF ,(2)易知Rt BFG Rt DEA △∽△,=BF BG DE AD ,在Rt DEF △和Rt BEF ∆中,tan α=DE EF, tan =EF BFβ, 所以ktan β= tan ====BG EF BG EF BF EF EF BC BF AD BF DE BE DEα, 所以=tan tan αβ.(3)设正方形ABCD 的边长为1,则BG =k ,所以ABG △的面积等于12k ,因为ABD △的面积等于12, 又因为k ==BH BG HD AD,所以112(k 1)=+S , 所以22211551()244=++=-+≤S k k k S , 因为0<k <1,所以当k =12,即点G 为BC 中点时,21S S 有最大值54. 【解析】(1)根据正方形的性质及垂直的定义,可证得∠ADE =∠BAF ,∠ADE =∠BAF 及AD =AB,利用全等三角形的判定,可证得Rt DAE Rt ABF ≅△△,从而可证得结论.(2)根据已知验证Rt BFG Rt DEA △∽△,得出对应边成比例,再在Rt DEF △和Rt BEF △中,根据锐角三角函数的定义,分别表示出、tan tan αβ,从而可推出=tan tan αβ.(3)设正方形ABCD 的边长为1,则=BG k ,分别表示出ABG △,ABD △的面积,再根据k ==BH BG HD AD ,求出1S 及2S ,再求出1S 与2S 之比与k 的函数解析式,求出顶点坐标,然后根据k 的取值范围,即可求解.【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质,解直角三角形。
2018年浙江省杭州市中考数学试卷含答案
2018年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题日要求的。
1.(3.00分)|﹣3|=()A.3 B.﹣3 C.D.﹣2.(3.00分)数据1800000用科学记数法表示为()A.1.86B.1.8×106C.18×105D.18×1063.(3.00分)下列计算正确的是()A.=2 B.=±2 C.=2 D.=±24.(3.00分)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A.方差 B.标准差C.中位数D.平均数5.(3.00分)若线段AM,AN分别是△ABC的BC边上的高线和中线,则()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN6.(3.00分)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=607.(3.00分)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.8.(3.00分)如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()A.(θ1+θ4)﹣(θ2+θ3)=30°B.(θ2+θ4)﹣(θ1+θ3)=40°C.(θ1+θ2)﹣(θ3+θ4)=70°D.(θ1+θ2)+(θ3+θ4)=180°9.(3.00分)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁10.(3.00分)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2二、填空题:本大题有6个小题,每小题4分,共24分。
2018年浙江省杭州市中考数学试卷试题及答案
2018年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)(2018•杭州)|3|(-= ) A .3B .3-C .13D .13-2.(3分)(2018•杭州)数据1800000用科学记数法表示为( ) A .61.8B .61.810⨯C .51810⨯D .61810⨯3.(3分)(2018•杭州)下列计算正确的是( )A 2=B 2=±C 2=D 2±4.(3分)(2018•杭州)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是( ) A .方差B .标准差C .中位数D .平均数5.(3分)(2018•杭州)若线段AM ,AN 分别是ABC ∆的BC 边上的高线和中线,则()A .AM AN >B .AM AN …C .AM AN <D .AM AN …6.(3分)(2018•杭州)某次知识竞赛共有20道题,规定:每答对一道题得5+分,每答错一道题得2-分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( ) A .20x y -=B .20x y +=C .5260x y -=D .5260x y +=7.(3分)(2018•杭州)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字16)-朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( ) A .16B .13C .12D .238.(3分)(2018•杭州)如图,已知点P 是矩形ABCD 内一点(不含边界),设1PAD θ∠=,2PBA θ∠=,3PCB θ∠=,4PDC θ∠=,若80APB ∠=︒,50CPD ∠=︒,则( )A .1423()()30θθθθ+-+=︒B .2413()()40θθθθ+-+=︒C .1234()()70θθθθ+-+=︒D .1234()()180θθθθ+++=︒9.(3分)(2018•杭州)四位同学在研究函数2(y x bx c b =++,c 是常数) 时, 甲发现当1x =时, 函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为 3 ;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的, 则该同学是( ) A . 甲B . 乙C . 丙D . 丁10.(3分)(2018•杭州)如图,在ABC ∆中,点D 在AB 边上,//DE BC ,与边AC 交于点E ,连结BE .记ADE ∆,BCE ∆的面积分别为1S ,2S ,( )A .若2AD AB >,则1232S S > B .若2AD AB >,则1232S S <C .若2AD AB <,则1232S S >D .若2AD AB <,则1232S S <二、填空题:本大题有6个小题,每小题4分,共24分。
2018年浙江省杭州市中考数学试卷含答案
数学试卷 第1页(共4页) 数学试卷 第2页(共4页)绝密★启用前浙江省杭州市2018年初中毕业学业考试数学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求的) 1.3-=( )A .3B .3-C .13D .31-2.数据1800000用科学计数法表示为( ) A .68.1B .6108.1⨯C .51018⨯D .61018⨯3.下列计算正确的是( ) A .222=B2=±C .242=D .242±=4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据.统计时,出现了一处错误:将最高成绩写得更高了.计算结果不受影响的是( ) A .方差B .标准差C .中位数D .平均数 5.若线段AM ,AN 分别是ABC △边上的高线和中线,则( ) A .>AM ANB .AN AM ≥C .<AM AND .AN AM ≤6.某次知识竞赛共有20道题.规定:每答对一题得5+分,每答错一题得2-分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( ) A .20-=x yB .20=+y xC .6025=-y xD .6025=+y x7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字.任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( ) A .61 B .31C .12D .238.如图,已知点P 是矩形ABCD 内一点(不含边界),设1∠=PAD θ,2∠=PBA θ,3∠=PCB θ,4∠=PDC θ,若︒=∠︒=∠50,80CPD APB ,则( )A .()1423-30++=︒()θθθθ B .()︒=++40-3142θθθθ)( C .()1234-70++=︒()θθθθD .()1234180+++=︒()θθθθ 9.四位同学在研究函数2(,y x bx c b c =++是常数)时,甲发现当1=x 时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2=x 时,4=y .已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁10.如图,在ABC △中,点D 在AB 边上,//DE BC ,与边AC 交于点E ,连结BE ,记,ADE BCE △△的面积分别为12,S S ,( )A .若2>AD AB ,则1232>S S B .若2>AD AB ,则1232<S SC .若AB AD <2,则2123S S >D .若2<AD AB ,则2123S S <第Ⅱ卷(选择题 共90分)二、填空题(本大题共有6个小题,每小题4分,共24分.请把答案填在题中的横线上) 11.计算:=-a a 312.如图,直线b a //,直线c 与直线,a b 分别交于A,B ,若︒=∠451,则=∠2.13.因式分解:()()=---a b b a 214.如图,AB 是O 的直径,点C 是半径OA 的中点,过点C 作⊥DE AB ,交O 于点D 、E 两点,过点D 作直径DF ,连结AF ,则∠=DFA15.某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地.甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是.毕业学校_____________姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------16.折叠矩形纸片ABCD时,发现可以进行如下操作:①把ADE△翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把CDG△翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC 边上,若AB=AD+2,EH=1,则AD=三、解答题(本大题共7个小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?18.(本小题满分8分)某校积极参与垃圾分类活动,以班级为单位收集可回收的垃圾.下面是七年级各班一周收集的可回收垃圾的质量频数和频数直方图(每组含前一个边界值,不含后一个边界值).(1)求a的值.(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得的金额能否达到50元?19.(本题满分8分)如图,在ABC△中,AB=AC,AD为BC边上的中线DE⊥AB于点E(1)求证:BDE△∽CAD△;(2)若AB=13,BC=10,求线段DE的长. 20.(本题满分10分)设一次函数=+y kx b(bk,是常数,0≠k)的图象过()()1,3,1,1--A B两点.(1)求该一次函数的表达式;(2)若点()2,22aa+在该一次函数图象上,求a的值;(3)已知点C()11,x y,D()22,yx在该一次函数图象上,设()()1212·m x x y y=--,判断反比例函数xmy1+=的图象所在的象限,说明理由.21.(本题满分10分)如图,在ABC△中,90∠=︒ACB,以点B为圆心,BC的长为半径画弧,交线段AB于点D,以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若28∠=︒A,求ACD∠的度数;(2)设,==BC a AC b①线段AD的长度是方程0222=-+baxx的一个根吗?说明理由.②若线段AD=EC,求ba的值.22.(本小题满分12分)设二次函数)(2babxaxy+-+=(,a b是常数,0≠a)(1)判断该二次函数图象与x轴交点的个数,说明理由;(2)若该二次函数的图象经过()()()1,4,0,1,1,1--A B C三个点中的其中两个点,求该二次函数的表达式;(3)若0+<a b,点()()2,0>P m m在该二次函数图象上,求证:0>a.23.(本小题满分12分)如图,在正方形ABCD中,点G在边BC上(不与点B、C重合),连接AG,作DE AG⊥,于点E,BF AG⊥于点F,设=BGkBC.(1)求证:AE=BF;(2)连接BE、DF,设βα=∠=∠EBFEDF,,求证:tan tan=kαβ;(3)设线段AG与对角线BD交于点H,AHD△和四边形CDHG的面积分别为21SS和,求12SS的最大值.数学试卷 第1页(共4页) 数学试卷 第2页(共4页)浙江省杭州市2018年初中毕业学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A 【解析】解:33-=【考点】绝对值及有理数的绝对值 2.【答案】B【解析】根据科学计数法的表示形式为:n ×10a ,其中110<<a .表示绝对值较大的数解:61800000 1.810=⨯ 【考点】科学记数法 3.【答案】A【解析】解:2=,因此A 符合题意;B不符合题意;4,因此C 、D 不符合题意;故选A. 【考点】二次根式的性质与化简 4.【答案】C【解析】解:Q 中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了∴计算结果不会受影响的是中位数,故选C. 【考点】方差、标准差、中位数、平均数 5.【答案】D【解析】解:Q 线段AM,AN 分别是ABC △边上的高线和中线,当BC 边上的中线和高重合时,则=AM AN 当BC 边上的中线和高不重合时,则<AM AN∴AM AN ≤故选D.【考点】垂线段的性质 6.【答案】C【解析】根据题意得:522060-+--=()x y x y ,即5260-=x y 故选C. 【考点】二元一次方程的实际应用鸡兔同笼问题 7.【答案】B【解析】解:根据题意可知,这个两位数可能是:31、32、33、34、35、36,一共有6种可能得到的两位数是3的倍数的有33、36两种可能.13()3P ∴=两位数是的倍数【考点】概率公式,复合事件概率的计算 8.【答案】A【解析】解:Q 矩形ABCD ∴90∠+∠=︒PAB PAD 即90∠=︒-∠PAB PABQ 80∠=︒PAB∴18080100∠+∠=︒-︒=︒PAB PBA9010010︒-∠+∠=︒∠-∠=︒即PAB PBA PBA PAB ①同理可得:180509040∠-∠=︒-︒-︒=︒PDC PCB ②由②-①得:30∠-∠-∠-∠=︒()PDC PCB PBA PAB 2423 30θθθθ\++=?()-()故选A.【考点】三角形内角和定理,矩形的性质 9.【答案】B【解析】解:根据题意得:抛物线的顶点坐标为:(1,3)且图像经过(2,4)设抛物线的解析式为:3(x 1)3=-+y aQ +3=4a解之:=1a∴抛物线的解析式为: 221324=-+=-+()y x x x当x=1时,y=7,∴乙说法错误,故选B.【考点】二次函数图象与系数的关系,二次函数的最值 10.【答案】D【解析】解:如图,过D 作DF ^AC 于分,过B 作BM ⊥AC 于M∴∥D F BM ,设DF =1h ,BM =2h ∴=AD AEAB AC Q ∥DE BC∴=AD AEAB AC ∴12h AD AEAB h AC== Q 若2<AD AB\设12==h AD AEAB h AC k 0.50k 0.5=<<<() ∴1AE AC k CE AC AE AC k ==-=-,(),12=h h k Q 1112221111k ,(1k)2222=⨯=⨯⨯=⨯=-S AE h AC h S CE h AC h Q 00.5<<k ∴23(1)2-<k K ∴123S 2S <故选D.【考点】三角形的判定与性质第Ⅱ卷二、填空题 11.【答案】-2a【解析】解:32-=-a a a 故答案为:-2a 【考点】整式的加减 12.【答案】135︒【解析】解:Q ∥a b ∴1345∠=∠=︒Q 23180∠+∠=︒\2=18045135邪-??故答案为:135︒【考点】对顶角、邻补角,平行线的性质 13.【答案】()()1a b a b --+【解析】解:原式=()()()()()()221.a b b a a b a b a b a b ---=-+-=--+ 【考点】提公因式法因式分解 14.【答案】30°【解析】解:Q ⊥DE AB 90DCO ∴∠=︒Q 点C 是半径OA 的中点\1122==OC OA OD\30∠=︒CDO ∴AOD 60?? Q 弧AD =弧AD∴1302∠=∠=︒DEA AOD故答案为:30°【考点】垂径定理、锐角三角函数、三角形外角的性质 15.【答案】6080≤≤v【解析】解:根据题意得甲车的速度为120340\-=千米小时 若10点追上,则24080=⨯-v 千米小时 若11点追上,则2120=v ,即60=v 千米小时\60v 80≤≤故答案为:6080≤≤v【考点】一次函数的图象,一次函数的实际应用,一次函数的性质 16.【答案】32+【解析】Q 当点H 在线段AE 上时把ADE V 翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上∴四边形ADFE 是正方形 ∴AD AE =Q 1=-=-AH AE EH ADQ 把CDG V 翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上\2===+DC DH AB AD在Rt ADH V 中,222+=AD AH DH解之:33=+=-AD AD33=+=-AD AD (舍去)\3=+AD 【考点】勾股定理,矩形的性质,正方形的性质,翻折变换(折叠问题) 三、解答题17.【答案】(1)有题意可得:100t>0vt =(),则v =100t. (2)Q 不超过5小时卸完船上的这批货物,\5≤t , 则100205=≥v 答:平均每小时至少要卸货20吨.【解析】(1)根据已知条件易求出函数解析式.(2)根据要求不超过5小时卸完船上的这批货物,可得出t 的取值范围,再求出t=5时的函数值,就可得出答案. 【考点】一元一次不等式的应用,反比例函数的性质,根据实际问题列反比例函数关系式 18.【答案】(1)观察频数分布直方图可得出4=a(2)设收集的可回收垃圾总质量为W ,总金额为Q .每组含前一个边界值,不含后一个边界245453551651.5⨯+⨯+⨯+⨯=<..W kg,5150.8412⨯=<.Q 元,41.250< 所以该年级这周的可回收垃圾被回收后所得全额不能达到50元. 【解析】(1)观察频数分布直方图,可得出a 的值.(2)设收集的可回收垃圾总质量为W ,总金额为Q ,根据每组含前一个边界值,不含后一个边界,求出W 和Q 的取值范数学试卷 第1页(共4页) 数学试卷 第2页(共4页)围,比较大小,即可求解.【考点】频数(率)分布表,频数(率)分布直方图19.【答案】(1)证明:Q =AB AC ,∠=∠ABC ACB ,ABC △为等腰三角形.Q AD 是BC 边上中线,∴=BD CD ,AD BC ⊥又∴⊥DE AB . Q ∠=∠DEB ADC ,又∠=∠ABC ACB ,∴BDE △∽△CAD(2)Q 13=AB ,11052====BC BD CD BC , ∴222+=AD BD AB ,12=AD . Q BDE △∽△CAD∴=BD DE CA AD 即5 1312=DE, ∴DE =6013.【解析】(1)根据已知易证ABC △为等腰三角形,再根据等腰三角形的性质及垂直的定义证明∠DEB =∠ADC ,根据两组角对应相等的两三角形是相似三角形,即可证得结论.(2)根据等腰三角形的性质求出BD 的长,再根据勾股定理求出AD 的长,再根据相似三角形的性质,得出对应边成比例,就可求出DE 的长.【考点】等腰三角形的性质,勾股定理,相似三角形的判定与性质20.【答案】(1)根据题意,得331+=⎧⎨-+=-⎩,,k b k b ,解得2,1==k b .所以21y x =+.(2)因为点2(22)+,a a 在函数21=+y x 的图像上,所以245=+a a 解得5=a 或1=-a(3)由题意,得121212(21)(21)2()-=+-+=-y y x x x x ,所以m =2121212()()2()0,--=-≥x x y y x x 所以10m +>, 所以反比例函数y =1m x+的图像位于第一、第三象限. 【解析】(1)根据已知点的坐标,利用待定系数法,就可求出一次函数的解析式. (2)将已知点的坐标代入所求函数解析式,建立关于a 的方程,解方程求解即可.(3)先求出12122()-=-y y x x ,根据m =1212()()--x x y y ,得出m =2121212()()2()0,--=-≥x x y y x x 从而可判断m +1的取值范围,即可求解.【考点】因式分解法解一元二次方程,待定系数法求一次函数解析式,反比例函数的性质21.【答案】(1)因为28∠=︒A ,所以62B ∠=︒又因为BC -BD,所以()118062=592BCD ∠=⨯︒-︒︒9059=31ACD ∠=︒-︒︒∴(2)因为BC =a ,AC =b ,所以AB==AD AB BDa①因为22222)?2)b 2)220+-=+-=a a a a a b 所以线段AD 的是方程2220+-=x ax b 的一个根. ②因为===AD EC AE 2b 所以2b号是方程2220+-=x ax b 的根, 所以2204+-=b ab b ,即43=ab b 因为0≠b ,所以34=a b .【解析】(1)根据三角形内角和定理可求出∠B 的度数,再根据已知可得出BCD △是等腰三角形,可求出∠BCD 的度数,从而可求得∠ACD 的度数.(2)根据己知①==,BC a AC b ,利用勾股定理可求出AB 的值,①再求出AD 的值,再根据AD 是原方程的一个根,将AD 的k 代入方程,可得出方程左右两边相等,即可得出解;②根据已知条件可得出2b ,将===AD EC AE 2b 代入方程化筒可得出43=ab b ,就可求出a 与b 之比.【考点】一元二次方程的根,等腰三角形的性质,勾股定理,圆的认识 22.【答案】(1)当0=y 吋,2)0(0+-+=≠()ax bx a b a ,因为∆=24()=(2)+++b a a b a b所以,当20+=a b ,即=0∆时,二次函数图像与x 轴有1个交点,当20+≠a b ,即0∆>时,二次函数图像与x 轴有2个交点.(2)当10==时,x y ,所以函数图象不可能经过点C (1,1)所以函数图象经过A (-1,4),B (0,-1)两点,所以()4()1--+=⎧⎨-+=-⎩,,a b a b a b 解得a =3,b =-2所以二次函数的表达式为2321=--y x x(3)因为P (2,m )在该二次函数的图像上,所以423=+-+=+()m a b a b a b 因为0>m ,所以30+>a b , 又因为0+>a b , 所以2a =3a +b -(a +b )>0, 所以0>a【解析】(1)根据题意求出△=24-b ac 的值,再分情况讨论,即可得出答案.(2)根据已知点的坐标,可排除点C 不在抛物线上,因此将A 、B 两点代入函数解析式,建立方程组求出a 、b 的值,就可得出函数解析式.(3)抓住已知条件点P (2,m )(0>m )在该二次函数图象上,得出m =3a +b ,结合已知条件m 的取值范围,可得出3a +b >0,再根据0+>a b ,可证得结论.【考点】待定系数法求二次函数解析式,二次函数图像与坐标轴的交点问题23.【答案】(1)因为四边形ABCD 是正方形,所以90∠+∠=︒BAF EAD ,又因为⊥D E A G ,所以90∠+∠=︒∠=∠,所以EAD ADE ADE BAF又因为⊥BF AG ,90∠=∠=︒DEA AFB ,又因为=AD AB ,所以Rt DAE Rt ABF ≅△△,==FD AE BF , (2)易知Rt BFG Rt DEA △∽△,=BF BG DE AD ,在Rt DEF △和Rt BEF ∆中,tan α=DEEF, tan =EFBFβ, 所以ktan β=tan ====BG EF BG EF BF EF EFBC BF AD BF DE BE DEα,所以=tan tan αβ.(3)设正方形ABCD 的边长为1,则BG =k ,所以ABG △的面积等于12k ,因为ABD △的面积等于12, 又因为k ==BH BGHD AD,所以112(k 1)=+S ,所以22211551()244=++=-+≤S k k k S , 因为0<k <1,所以当k =12,即点G 为BC 中点时,21S S 有最大值54.【解析】(1)根据正方形的性质及垂直的定义,可证得∠ADE =∠BAF ,∠ADE =∠BAF 及AD =AB,利用全等三角形的判定,可证得Rt DAE Rt ABF ≅△△,从而可证得结论.(2)根据已知验证Rt BFG Rt DEA △∽△,得出对应边成比例,再在Rt DEF △和Rt BEF △中,根据锐角三角函数的定义,分别表示出、tan tan αβ,从而可推出=tan tan αβ.(3)设正方形ABCD 的边长为1,则=BG k ,分别表示出ABG △,ABD △的面积,再根据k ==BH BGHD AD,求出1S 及2S ,再求出1S 与2S 之比与k 的函数解析式,求出顶点坐标,然后根据k 的取值范围,即可求解. 【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质,解直角三角形。
2018年浙江省杭州市中考数学试题(解析版)
D.D, 18xl06D, V ? = ±22018年浙江省杭州市中考数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分) 1. |_3|=().A.3B. -3C.-3【答案】A(解析】|_3| = 3.故选A.2. 数据18⑻000用科学计数法表示为().A. 1.86B. 1.8xl06C. 18xl05【答案】B【解析】180⑻00 = 1.8xl06,故选B.3. 下列计算正确的是().A. =2B.屁=±2C. 4^ =2【答案】A【解拓】」22= 2, A 正确;拉=2, B 错误;#=4,C 、D 错误. 故选A .4. 测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一 处错误:将最高成绩写的更高了.计算结果不受影响的是(). A,方差B,标准差C.中位数D,平均数【答案】C【解析】中位数只受数据排列顺序的影响;方差、标准差与数据波动有关,受单个数据变化的影响; 平均数与数据大小有关.故选c.5.若线段1,分别是的5C边上的高线和中线,贝lj ().A. AM > ANB. AM^ANC. AM < AN D, AM彡AN【答案】D【解析】①等腰三角形,等边三角形:中线、高线、角平分线三线合一,AM = AN ,②其他三角形:由三角形三边关系知,中线 >高线,..AM < AN .综上所述,AM^AN .故选D •6.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一题得-2分,不答的题得0分.已知鹵圆这次竞赛得了 60分,设圆圆答对了 x道题,答错了 J题,则(;. A. x-y = 20 B. x + y=20 C. 5x-2_y =60D. 5x+2_y = 60【答案】C【解答】答对了^道题,得分5x.答错^题,失分办,即得分-2j.不答20-x-j题,得分0分.共得分60分,则5x-2_y = 60 .故诜C/. 一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1: 6)朝上一面的数字.任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于(),1112A. —B. —C•一D,—6 3 2 3【答案】B【解析】共有情况31,32,33,34,35,36,共6种,其中33,36为3的倍数,共2种.•••概率为-=-•6 3故选B .8.如图,己知点尸是矩形内一点(不含边界),设ZPAD = 0',ZPBA = , ZFCB = 03, 乙PDC =沒4.若ZAPB= 80° ,ZCPD =50°,贝IJ ().B ,(色 + 怂)-(6\+<93) = 40。
2018年浙江杭州市中学考试数学试卷及问题详解
OOCOACDABABDE、交是作的直径,点是半径于的中点,过点,14.如图, EDDFAFDFA,连结.两点,过点,则作直径
AB地.甲车地出发沿同一条公路匀速前往8点出发,如15.某日上午,甲、乙两车先后从st(小时)变化的图象,乙车9图是其行驶路程点出发,若要在(千米)随行驶时间10v(单位:千米/小时)的范围点和11点)追上甲车,则乙车的速度点至11点之间(含10是.
某校七年级各班一周收集的可回收垃圾的质量的频数表
kg)组别(
频数
4.5 4.0~
2
5.0~4.5
a
5.5 5.0~
3
5.5~6.0
1
a的值;(1)求kg被回收,该年级这周收集的可回收垃圾被回收后/)已知收集的可回收垃圾以0.8元(2所得金额能否达到50元?
ABCABACBCDEABEAD.
于点为19.如图,在,中,边上的中线,
A.方差B.标准差C.中位数D.平均数
ANABCBCAM边上的高线和中线,则(,的分别是)5.若线段AMANAMANAMANAMAN.B.A..D C52分,不答6.某次知识竞赛共有20道题,规定:每答对一道题得分,每答错一道题得yx道题,则(设圆圆答对了)道题,答错了.的题得0分.已知圆圆这次竞赛得了60分xy20xy205x2y605x2y60.B..CA.D7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1~6)朝上一面的数字.任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()
S22S3S3SABAB2ADAD2,则.若B.若,则A2211S23S3S2SAB2ADAB2ADD.若C.若,则,则2121.
分分,共24二、填空题:本大题有6个小题,每小题43aa计算:11.. 451acb//abBA,则,,直线若与直线,12.如图,直线.分别交于点 2.
(完整版),2018年杭州市中考数学试卷含答案解析(版),推荐文档
浙江省杭州市2018年中考数学试题一、选择题1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则二、填空题11.计算:a-3a=________。
12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E两点,过点D作直径DF,连结AF,则∠DEA=________。
2018浙江杭州中考数学试卷(含解析)
2018年浙江杭州市初中毕业、升学考试数学学科(满分120分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2018浙江杭州,1,3分) |-3|=( ) A.3 B.-3 C.13 D. 13- 【答案】D【解析】负数的绝对值等于它的相反数,|-3|=3,故选择D 【知识点】负数的绝对值等于它的相反数 2.(2018浙江杭州,2,3分)数据1 800 000用科学计数法表示为( ) A. 61.8 B. 61.810⨯ C. 51.810⨯ D. 61810⨯ 【答案】B【解析】把大于10的数表示成10na ⨯的形式时,n 等于原数的整数位数减1,故选择B 【知识点】科学计数法 3.(2018浙江杭州,3,3分) 下列计算正确的是( ) A.22=2 B. 22=2± C. 24=2 D. 24=2±【答案】A【解析】20a a =≥,∴B 、D 错,24=4,∴C 也错【知识点】根式的性质 4.(2018浙江杭州,4,3分) 测试五位学生的“一分钟跳绳”的成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响到的是( ) A. 方差 B. 标准差 C.中位数 D. 平均数【答案】C【解析】平均数、方差、标准差与各个数据大小都有关系,而中位数只受数据排列顺序的影响,最大的更大不影响大小处中间数的位置 【知识点】数据分析 5.(2018浙江杭州,5,3分) 若线段AM ,AN 分别是△ABC 的BC 边上的高线和中线,则( ) A. AM AN > B. AM AN ≥ C. AM AN < D. AM AN ≤ 【答案】D【解析】AM 和AN 可以看成是直线为一定点到直线上两定点的距离,由垂线段最短,则AM AN <,再考虑特殊情况,当AB=AC 的时候AM=AN 【知识点】垂线段最短 6.(2018浙江杭州,6,3分)某次知识竞赛共有20道题,规定:每答对一道得+5,每答错一题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( ) A. 20x y -= B. 20x y += C. 5260x y -= D. 5260x y +=【答案】C【解析】答对得分:5x 分,答错得分-2y 分,不答得分0分,共得分60分,则5260x y -=【知识点】二元一次方程组的应用 7.(2018浙江杭州,7,3分) 一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1~6)朝上一面的数字。
2018年浙江省杭州市中考数学(含答案)
2018年杭州市中考数学试题一、选择题(本题有10小题,每小题3分,共30分)1. 3-=( )A. 3B. 3-C.31 D. 31- 2.数据1800000用科学计数法表示为( ) A.68.1 B.6108.1⨯ C. 51018⨯ D. 61018⨯3.下列计算正确的是( ) A. 222= B. 222±= C. 242= D. 242±=4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是( )A.方差B. 标准差C. 中位数D. 平均数5.若线段 AM ,AN 分别是ABC ∆边上的高线和中线,则( )A.AN AM >B. AN AM ≥C. AN AM <D. AN AM ≤6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A. 20=-y xB. 20=+y xC. 6025=-y xD. 6025=+y x7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( ) A. 61 B. 31C. 21 D. 32 8.如图,已知点P 矩形ABCD 内一点(不含边界),设1θ=∠PAD ,2θ=∠PBA ,3θ=∠PCB ,4θ=∠PDC ,若︒=∠︒=∠50,80CPD APB ,则( )A. ()︒=++30-3241θθθθ)(B. ()︒=++40-3142θθθθ)(C. ()︒=++70-4321θθθθ)(D. ()︒=+++1804321θθθθ)(9.四位同学在研究函数是常数)c b c bx ax y ,(2++=时,甲发现当1=x 时,函数有最小值;乙发现1-是方程02=++c bx ax 的一个根;丙发现函数的最小值为3;丁发现当2=x 时,4=y .已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A. 甲B.乙C. 丙D.丁10.如图,在ABC ∆中,点D 在AB 边上,BC DE //,与边AC 交于点E ,连结BE ,记BCE ADE ∆∆,的面积分别为,S S ,( )A. 若AB AD >2,则2123S S >B. 若AB AD >2,则2123S S <C. 若AB AD <2,则2123S S >D. 若AB AD <2,则2123S S <二、填空题(本大题共有6个小题,每小题4分,共24分)11.计算:=-a a 312.如图,直线b a //,直线c 与直线b a ,分别交于A,B ,若︒=∠451,则=∠213.因式分解:()()=---a b b a 214.如图,AB 是⊙的直径,点C 是半径OA 的中点,过点C 作AB DE ⊥,交O于点D 、E 两点,过点D 作直径DF ,连结AF ,则=∠DFA15.某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是16.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上,若AB=AD+2,EH=1,则AD=三、简答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。
中考真题:浙江省杭州市2018年中考数学试卷(word解析版)
浙江省杭州市2018年中考数学试题(解析版)一、选择题1.=()A. 3B. -3C.D.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:|-3|=3【分析】根据负数的绝对值等于它的相反数,即可求解。
2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×106【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1800000=1.8×106【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。
3.下列计算正确的是()A. B. C. D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB、∵,因此A符合题意;B不符合题意;CD、∵,因此C、D不符合题意;故答案为:A【分析】根据二次根式的性质,对各选项逐一判断即可。
4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差 C 中位数 D. 平均数【答案】C【考点】中位数【解析】【解答】解:∵五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了∴中位数不会受影响故答案为:C【分析】抓住题中关键的已知条件:五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了,可知最高成绩提高,中位数不会变化。
5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.【答案】D【考点】垂线段最短【解析】【解答】解:∵线段AM,AN分别是△ABC边上的高线和中线,当BC边上的中线和高重合时,则AM=AN当BC边上的中线和高不重合时,则AM<AN∴AM≤AN故答案为:D【分析】根据垂线段最短,可得出答案。
6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年浙江省杭州市中考数学试卷及答案解析(满分120分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2018浙江杭州,1,3分) |-3|=( ) A.3 B.-3 C.13 D. 13- 【答案】D【解析】负数的绝对值等于它的相反数,|-3|=3,故选择D 【知识点】负数的绝对值等于它的相反数2.(2018浙江杭州,2,3分)数据1 800 000用科学计数法表示为( ) A. 61.8 B. 61.810⨯ C. 51.810⨯ D. 61810⨯ 【答案】B【解析】把大于10的数表示成10na ⨯的形式时,n 等于原数的整数位数减1,故选择B 【知识点】科学计数法3.(2018浙江杭州,3,3分) 下列计算正确的是( )A.B. 2±C.D. 2±【答案】A0a =≥,∴B 、D ,∴C 也错【知识点】根式的性质 4.(2018浙江杭州,4,3分) 测试五位学生的“一分钟跳绳”的成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响到的是( )A. 方差B. 标准差C.中位数D. 平均数【答案】C【解析】平均数、方差、标准差与各个数据大小都有关系,而中位数只受数据排列顺序的影响,最大的更大不影响大小处中间数的位置 【知识点】数据分析 5.(2018浙江杭州,5,3分) 若线段AM ,AN 分别是△ABC 的BC 边上的高线和中线,则( )A. AM AN >B. AM AN ≥C. AM AN <D. AM AN ≤ 【答案】D【解析】AM 和AN 可以看成是直线为一定点到直线上两定点的距离,由垂线段最短,则AM AN <,再考虑特殊情况,当AB=AC 的时候AM=AN【知识点】垂线段最短 6.(2018浙江杭州,6,3分)某次知识竞赛共有20道题,规定:每答对一道得+5,每答错一题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( ) A. 20x y -= B. 20x y += C. 5260x y -= D. 5260x y += 【答案】C【解析】答对得分:5x 分,答错得分-2y 分,不答得分0分,共得分60分,则5260x y -= 【知识点】二元一次方程组的应用7.(2018浙江杭州,7,3分) 一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1~6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( ) A.16 B. 13 C. 12 D. 23【答案】B【解析】共有6种等可能:31,32,33,34,35,36;为3的倍数的有2种可能:33,36 【知识点】古典概率8.(2018浙江杭州,8,3分) 如图,已知点P 是矩形ABCD 内一点(不含边界),设1234,,,.PAD PBA PCB PDC θθθθ∠=∠=∠=∠=若8050O O APB CPD ∠=∠=,,则( )A. 01423++)30θθθθ=()-(B.2413++)40θθθθ=()-( C. 01234++)70θθθθ=()-( D.1234++)180θθθθ=()+( 【答案】A【思路分析】把矩形的内角为90°,转化为两个角的和,根据三角形的内角和,可得几个角的和,然后运用等式的性质进行加减【解题过程】000221=180-80-=100-θθ∠,000443=180-50-=130-θθ∠,00001213431+=90-=103+=90-=10θθθθθθ∠∴∠∴,,,,A 。
12434321-+-=---=-=θθθθθθθθ000()401030;C 、D 无法拼出21124334----θθθθθθθθ或、、;B. 02143-+-==+=40θθθθ≠000401050【知识点】三角形的内角和为180°,矩形的内角都为90°9.(2018浙江杭州,9,3分) 四位同学在研究函数y =x 2+bx +c(b,c 为常数)时,甲发现当1x =时,函数有最小值;乙发现-1是方程20ax bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A. B. C. D.【答案】B【思路分析】分别列出四个方程,假定某个是错的,则其他三个方程是对的,解出检验【解题过程】甲:1,22bb -==-;乙:10bc -+=;丙:2243,4124ac b c b a -=-=;丁:424b c ++=;若甲错:210412424b c c b b c -+=⎧⎪-=⎨⎪++=⎩,由乙,丁得1323b c ⎧=⎪⎪⎨⎪=-⎪⎩,代入丙不符合,不合题意;若乙错:22412424b c b b c =-⎧⎪-=⎨⎪++=⎩,由甲,丁得24b c =-⎧⎨=⎩,代入丙满足,符合题意;若丙错:210424b bc b c =-⎧⎪-+=⎨⎪++=⎩,由甲,丁得24b c =-⎧⎨=⎩,代入乙不满足,不符合题意;若丁错:2210412b bc c b ⎧=-⎪-+=⎨⎪-=⎩,由甲,乙得23b c =-⎧⎨=-⎩代入丙不满足,不合题意。
【知识点】二次函数最值,二次函数与一元二次方程的关系,二元方程组的解法 10.(2018浙江杭州, 10,3分)如图,在△ABC 中,点D 在AB 边上,DE//BC ,与边AC交于点E ,连接BE ,记△ADE ,△BCE 的面积分别为S 1,S 2,( ) A. 若2AD>AB ,则3S 1>2S 2 B. 若2AD>AB ,则3S 1<2S 2 C. 若2AD<AB ,则3S 1>2S 2 D. 若2AD<AB ,则3S 1<2S 2【答案】D 【思路分析】首先考虑极点位置,当2AD=AB 即AD=BD 时S 1,S 2的关系,然后再考虑AD>BD 时S 1,S 2的变化情况。
【解题过程】当2AD=AB 即AD=BD 时2 S 1= S 2,则3S 1<2S 2。
当2AD<AB 时,AD<BD,AE<EC, S 1变小,S 2变大,一定有3S 1<2S 2;反之,当2AD>AB 时,不确定。
【知识点】中位线及面积大小比较二、填空题:本大题共6小题,每小题4分,共24分.不需写出解答过程,请把最后结果填在题中横线上. 11.(2018浙江杭州,11,4分) 计算:3a a -=____________. 【答案】2a【解析】32a a a -= 【知识点】合并同类项 12.(2018浙江杭州,12,4分)如图,直线a//b ,直线c 与直线a,b 分别交于点A ,B ,若∠1=45°,则∠2=__________.【答案】135° 【解析】0000//,1345,218045135a b ∴∠=∠=∴∠=-=【知识点】平行线的性质13.(2018浙江杭州,13,4分)因式分解:2()()______.a b b a ---= 【答案】(b)(1)a a b --+【解析】22()()()()(b)(1)a b b a a b a b a a b ---=-+-=--+【知识点】因式分解 14.(2018浙江杭州,14,4分) 如图,AB 是O 的直径,点C 是半径OA 的中点,过点C 作DE ⊥AB ,交O 于点D ,E 两点,过点D 作直径DF ,连接AF ,则∠DFA=___________.【答案】30° 【解析】001==60==302AB DE C OA OC AC DO DOC DBA DFA ⊥∴∴∠=∴∠∠,且为中点,【知识点】垂径定理,圆的角度计算15.(2018浙江杭州,15,4分) 某日上午,甲,乙两车先后从A 地出发沿同一条公路匀速前进前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间(小时)变化的图象,乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是____________.【答案】6080v ≤≤ 【解析】由图象得120==40/)3V km h 甲(,考虑极点情况,若在10点追上,则(108)(109)V V -=-甲乙,解得: 80/V km h =乙,同理:若在11点追上,60/V km h =乙【知识点】一次函数的应用16.(2018浙江杭州,16,4分)折叠矩形纸片ABCD 时,发现可以进行如下操作:①把△ADE 翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把△CDG 翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上,若AB=AD+2,EH=1,则AD=___________.【答案】33+或【思路分析】由①得四边形AEFD 是正方形,将由③得K 型相似,然后结合勾股定理列方程求解,但要注意对点H 是落在线段AE 上还是BE 上分类讨论。
【解题过程】设AD=x 由题意:四边形AEFD 为正方形则AD=AE,由翻折:△DHG ≌△DCG ,BAHG=GC (1) 当H落在线段AE上时222222122,2,K ADH BHG,33=1=1=3=3333,3=333AD AHAB AD BE BH BGa EH AH a BH BG a a a RT BHG BH BG HG a a a a a a =+∴=∆∆∴=-∴-∴--∆+=+-=+=-∴=+由型可得又,,,在中()()解得:(2) 当H落在线段BE上时222222122,EH 11,K ADH BHG,1=1=1=3=11,1=3,13AD AHAB AD BH BH BGa EH AH a BH BG aa a RT BHG BH BG HG a a aa a a =+=∴=∆∆∴=+∴∴+∴++∆+=+-==-∴=由型可得,,,在中()()解得:(舍)【知识点】正方形的性质,折叠的性质,相似,勾股定理三、解答题(本大题共7小题,满分66分,解答应写出文字说明、证明过程或演算步骤) 17.(2018浙江杭州,17,6分) 已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨/小时),卸完这批货物所需的时间为t (单位:小时)(1)求v 关于t 的函数表达式;(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时要卸货多少吨? 【思路分析】根据题意直接求出比例系数,然后代入极点求出极点值,再得出范围 【解题过程】(1) 100(0)v t t=> (2) 0t 5<≤,当5t =时,20v =,1000,20,k v =>∴≥∴平均每小时至少要卸货20吨。