初中数学竞赛专题训练之不等式含答案
数学初中竞赛 方程和不等式 专题训练(含答案)
数学初中竞赛方程与不等式专题训练一.选择题1.方程x2+2xy+3y2=34的整数解(x,y)的组数为()A.3 B.4 C.5 D.62.已知两块边长都为a厘米的大正方形,两块边长都为b厘米的小正方形和五块长、宽分别是a厘米、b厘米的小长方形(a>b),按如图的方式正好不重叠地拼成一个大长方形,若已知拼成的大长方形周长为78厘米,四个正方形的面积和为242平方厘米,则每个小长方形的面积为()A.11平方厘米B.12平方厘米C.24平方厘米D.48平方厘米3.球赛入场券有10元、15元、20元三种票价,老师用480元买了40张入场券,其中票价为10元的比票价为20元的多的张数是()A.12 B.16 C.20 D.244.由方程组消去y后化简得到的方程是()A.2x2﹣2x﹣6=0 B.2x2+2x+5=0 C.2x2+5=0 D.2x2﹣2x+5=0 5.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了()A.25本B.20本C.15本D.10本6.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.7.如图是某汽车公司销售点的环形分布图.公司在年初分配给A、B、C、D四个销售点某种汽车各50辆.在销售前发现需将A、B、C、D四个销售点的这批汽车分别调整为40、45、54、61辆,但调整只能在相邻销售点之间进行,那么要完成上述调整,最少的调动辆次n为(一辆汽车从一个销售点调整到相邻销售点为一次)()A.15 B.16 C.17 D.188.已知在代数式a+bx+cx2中,a、b、c都是整数,当x=3时,该式的值是2008;当x=7时,该式的值是2009,这样的代数式有()A.0个B.1个C.10个D.无穷多个9.对于任意的有理数a,方程2x2+(a+1)x﹣(3a2﹣4a+b)=0的根总是有理数,则b的值为()A.1 B.﹣1 C.2 D.010.已知关于x的方程(x﹣a)(x﹣b)﹣1=0(a<b)的两根为p、q(p<q,且pq>0),则一定有()A.a<p<q<b B.>C.<<<D.<<<11.为了预防甲流,某班级准备300元钱,计划购入一批体温计.已知有两种体温计可供选购,其中水银体温计3元/支,电子体温计10元/支,由于水银体温计容易破裂且水银具有毒性,所以希望尽可能多地购买电子体温计.如果该班级共53名同学,且要求每位同学有一支体温计,则最多可购买电子体温计()支.A.20 B.21 C.30 D.3312.初二(1)班有48名同学,其中有男同学n名,将他们编成1号、2号、…,n号.在寒假期间,1号给3名同学打过电话,2号给4名同学打过电话,3号给5名同学打过电话,…,n号同学给一半同学打过电话,由此可知该班女同学的人数是()A.22 B.24 C.25 D.26二.填空题13.已知p,q都是正整数,方程7x2﹣px+2009q=0的两个根都是质数,则p+q=.14.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为.15.初三某班共有60名同学,学号依次为1号,2号,…,60号,现分成A,B,C三个小组,每组人数若干,若将B组的小俊(27号)调整到A组,将C组的小芸(43号)调整到B组,此时A,C两组同学学号的平均数都将比调整前增加0.5,B组同学学号的平均数将比调整前增加0.8,同时B组中的小营(37号)计算发现,她的学号数高于调整前B 组同学学号的平均数,却低于调整后的平均数.请问调整前A组共有名同学.16.“十一”国庆期间,某一商品搞清仓促销活动,从10月2日起每天比前一天降价50元,每一天的销售量比前一天增加50件,若“十一”期间7天这种商品的销售共收入308700元,则10月4日这一天收入元.17.某小区打算购买100盆花装饰花园,20人分三组刚好搬完(假设每人都需要搬),每组人的搬花量如下表,请问第一组可能有人.组别第一组第二组第三组每人搬花盆数 5 4 1018.在车站开始检票时,有a(a>0)名旅客在候车室等候检票进站,检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放个检票口.19.某中学有九百多名师生外出参加社会实践活动,准备租某种客车若干辆.如果每辆车刚好坐满(即每个人都刚好有一个座位),就会余下14个人;如果多准备一辆车,那么每辆车刚好都空1个座位,则这种客车每辆的乘客座位有个.20.甲、乙两商店某种铅笔标价都是1元,一天,让学生小王欲购这种铅笔,发现甲、乙两商店都让利优惠:甲店实行每买5枝送1枝(不足5枝不送);乙店实行买4枝或4枝以上打8.5折,小王买了13枝这种铅笔,最少需要花元.三.解答题21.解方程组:22.已知关于x的一元二次方程x2+2(k+1)x+k2+2=0有两个实根x1,x2.(1)求实数k的取值范围;(2)若|x1|﹣|x2|=2,求k的值.23.将一个三位数分成4个数,使得第一个数乘以2,第二个数除以2,第三个数减1,第四个数加2,得到的结果相等,若该三位数比这四个数中最大的数的2倍大59,求这三位数.24.a、b、c为正整数,关于x的方程ax2+bx+c=0的两实根的绝对值都小于,求a+b+c 的最小值.25.《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入;(4)整体求和等.例如,ab=1求证:=1证明:原式===1波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征.阅读材料二:基本不等式(a>0,b>0),当且仅当a=b时等号成立,它是解决最值问题的有力工具.例如:在x>0的条件下,当x为何值时,x+有最小值,最小值是多少?解:∵x>0,>0∴,即x,∴当且仅当x=,即x=1时,x+有最小值,最小值为2.请根据阅读材料解答下列问题:(1)已知ab=1,求下列各式的值:=;②=.(2)若abc=1,解方程=1(3)若正数a、b满足ab=1,求M=的最小值.参考答案一.选择题1.解:方程变形得:(x+y)2+2y2=34,∵34与2y2是偶数,∴x+y必须是偶数,设x+y=2t,则原方程变为:(2t)2+2y2=34,∴2t2+y2=17,它的整数解为,则当y=3,t=2时,x=1;当y=3,t=﹣2时,x=﹣7;当y=﹣3,t=2时,x=7;当y=﹣3,t=﹣2时,x=﹣1.∴原方程的整数解为:(1,3),(﹣7,3),(7,﹣3),(﹣1,﹣3)共4组.故选:B.2.解:依题意,得:,整理,得:,(①2﹣②)÷2,得:ab=24.故选:C.3.解:分别设三种票买了x、y、z张.则根据题意,得,由②,得:y=40﹣x﹣z,③将③代入①,得:x﹣z=24.故选:D.4.解:,由①,得x=y+1③,将③代入②,得(x﹣1)2+x2+4=0,化简,得2x2﹣2x+5=0,故选:D.5.解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意,得:,解得:,答:甲种笔记本买了25本,乙种笔记本买了15本.故选:C.6.解:∵各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,∴2022用算筹可表示为故选:C.7.解:根据题意可得:互不相邻两点B、D,B处至少调动5辆次,D处至少调入11辆次,两处之和至少16辆次,因而四个销售点调动至少16辆次,又A、B的数量减少,C、D的数量增加,所以从A调11辆到D,从B调1辆到A,调4辆到C,共调整了11+1+4=16辆.综上,最少调动16辆次.故选:B.8.解:根据题意,得,由②﹣①,得4b+40c=1,③∵a、b、c都是整数,∴③的左边是4的倍数,与右边不等,所以,这样的代数式不存在;故选:A.9.解:∵方程的△=(a+1)2+8(3a2﹣4a+b)=(5a﹣3)2+8b﹣8≥0,∴当8b﹣8≥0时,必定△≥0,即方程必有实根,∴b≥1,当b=1时,3a2﹣4a+1=(3a﹣1)(a﹣1),∴十字因式分解得方程为(x﹣a+1)(2x+3a﹣1)=0,∴b=1成立,当b=2时,3a2﹣4a+b=3a2﹣4a+2不能因式分解,∴方程有可能为无理数解,同理可得b=﹣1以及0时,方程有可能为无理数解,故b的值为1.故选:A.10.解:设y=(x﹣a)(x﹣b),则此二次函数开口向上,当(x﹣a)(x﹣b)=0时,即函数与x轴的交点为:(a,0),(b,0),当(x﹣a)(x﹣b)=1时,∵p、q是关于x的方程(x﹣a)(x﹣b)﹣1=0的两实根,∴函数与y=1的交点为:(p,1),(q,1),根据二次函数的增减性,可得:当a<b,p<q时,p<a<b<q,故<<<当p,q同为负数不合题意,故>不成立,故选:C.11.解:设可购买电子体温计x支,则需买水银体温计(53﹣x)支,由题意,得.10x+3×(53﹣x)≤300.解得:x≤20∴最多可购买电子体温计20支,故选:A.12.解:一半同学是48÷2=24人,1号给3=2+1名打电话,2号给4=2+2名打电话,3号给5=2+3名打电话,…n号给2+n=24名打电话,所以n=22,48﹣22=26,该班有女生26名,故选:D.二.填空题(共8小题)13.解:x 1+x2=x 1x2==287q=7×41×qx 1和x2都是质数则只有x1和x2是7和41,而q=1所以7+41=p=336所以p+q=337故填:33714.解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x==,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=(舍)或z=10或z=(舍)或z=7或z=(舍)或z=4或z=(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=(舍)或z=5或z=(舍)或z=2或z=(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=(舍)即:满足条件的不同的装法有6种,故答案为6.15.解:设A,B,C组调整前的人数分别是n A,n B,n C,则A,B,C调整后的人数分别是n A+1,n,n C﹣1,B设A,B,C组调整前各组的号码之和分别为w A,w B,w C,则A,B,C调整后各组的号码之和分别为w A+27,w+16,w C﹣43,B根据题意得:由③得,n B=20∴36.2<<37,即724<w B<740又∵n A+n B+n C=60∴n C=40﹣n A④整理得:由①得∴w C+w A=2500﹣56n A又∵∴w B=1830﹣(2500﹣56n A)=﹣670+56n A∴724<﹣670+56n A<740解得∵n A为正整数,所以n A=25所以本题答案为2516.解:设10月1日这种商品每件x元,销售量为a件,由题意,得ax+(x﹣50)(a+50)+(x﹣100)(a+100)+(x﹣150)(a+150)+(x﹣200)(a+200)+(x﹣250)(a+250)+(x﹣300)(a+300)=308700,化简整理,得7ax+1050x﹣1050a﹣227500=308700,两边除以7,得ax+150x﹣150a﹣32500=44100,所以(x﹣150)(a+150)=54100.即10月4日这一天收入54100元.故答案为:54100.17.解:设第一组x人,第二组y人,第三组(20﹣x﹣y)人,由题意得:5x+4y+10(20﹣x﹣y)=100∴x=∵x,y为正整数,∴100﹣6y为5的整数倍,∴y=5或10或15∴x=14或8或2故答案为:14或8或218.解:设一个窗口每分检出的人是c,每分来的人是b,至少要开放x个窗口;a+30b=30c①,a+10b=2×10c②,a+5b≤5×x×c,由①﹣②得:c=2b,a=30c﹣30b=30b,30b+5b≤5×x×2b,即35b≤10bx,∵b>0,∴在不等式两边都除以10b得:x≥3.5,答:至少要同时开放4个检票口.19.解:设准备客车x辆,每辆客车有座位x个,根据题意知:xy+14=(x+1)y﹣x﹣1,得y=x+15,又知xy>900,即x(x+15)>900,x2+15x﹣900>0,解得:x>或x<(舍去)即x>23.43,当x =24时,y =39,xy =936,当x =25时,y =40,xy =1000(不符合题意)即这种客车每辆的乘客座位有39个,故答案为:39.20.解:因为甲店实行每买5枝送1枝,所以小王先到甲店花5元钱买了6枝,剩下7枝到乙店购买,用去了7×0.85=5.95,所以小王一共花了:5+5.95=10.95元.故填:10.95.三.解答题(共5小题)21.解:由①得,( x +y )2=9,则x +y =3或x +y =﹣3, 与②组成方程组和, 解得,,, 所以原方程组的解为,.22.解:(1)∵原方程有两个实数根,∴△=[2(k +1)]2﹣4(k 2+2)=8k ﹣4≥0,解得k ≥.(2)∵x 1、x 2是方程x 2+2(k +1)x +k 2+2=0有两个实根,k ≥,∴x 1+x 2=﹣2(k +1)<0,x 1x 2=k 2+2>0,∴(|x 1|﹣|x 2|)2=x 12﹣2|x 1•x 2|+x 22=x 12+2x 1x 2+x 22﹣4x 1x 2=(x 1+x 2)2﹣4x 1x 2=(2)2=20,∴[﹣2(k +1)]2﹣4(k 2+2)=20,即8k ﹣24=0,解得:k =3.故k 的值为3.23.解:设这个相等的结果为x ,则由三位数分成的四个数分别为:、2x 、x +1、x ﹣2,则这个三位数为:+2x +(x +1)+(x ﹣2)=﹣1 ∴100≤﹣1<1000 ∴≤x <∴四个数、2x 、x +1、x ﹣2中,2x 最大,由题意得:﹣1=2×2x +59 ∴=60∴x =120 ∴这个三位数为:×120﹣1=539答:这个三位数为539.24.解:由于a ,b ,c 是正整数,关于x 的一元二次方程ax 2+bx +c =0的两个实数根, 则判别式△=b 2﹣4ac ≥0,若方程的两根设为x 1,x 2,且x 1≤x 2,则由题设可得x 1+x 2=﹣,x 1x 2=, 则﹣<x 1≤x 2<0.令f (x )=ax 2+bx +c ,即有f (﹣)>0, 即﹣b +c >0,且﹣<﹣<0.整理可得:2a >3b ,且a +9c >3b ,且b 2>4ac即有2a >3b >18c .结合前者,可知,最小为a =16,b =9,c =1.则a +b +c 的最小值为26.25.解:(1)①∵ab =1∴a=∴原式=+=+=1故答案为:1②∵ab=1∴a=原式=+=1故答案为:1(2)∵=1,且abc=1,∴+=15x=1x=(3)∵正数a、b满足ab=1∴b=,a>0,b>0,∴a+=(﹣)2+2≥2∵M====1﹣∴当a+=2时,M的值最小,∴M最小值=1﹣=2﹣2。
七年级不等式试题及答案
七年级不等式试题及答案一、选择题1. 若a > b,c > 0,则下列不等式中正确的是()A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c答案:A2. 若a < b < 0,c > 0,则下列不等式中正确的是()A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c答案:B二、填空题1. 若x > 5,则x - 3 _______ 2。
答案:>2. 若y < -2,则-2y _______ 4。
答案:>三、解答题1. 若a > b,且a > 0,b > 0,求证:a² > b²。
证明:因为a > b,且a > 0,b > 0,所以a - b > 0,两边同时乘以a + b(a + b > 0),得到a² - b² > 0,所以a² > b²。
2. 若x > y,且x < 0,y < 0,求证:-x > -y。
证明:因为x > y,且x < 0,y < 0,所以-x < -y,两边同时乘以-1(-1 < 0),得到-x > -y。
四、应用题1. 某工厂生产的产品,若每件产品成本为c元,售价为p元,且c < p。
已知生产了n件产品,求工厂的总利润。
解:总利润 = 总售价 - 总成本= np - nc= n(p - c)因为c < p,所以p - c > 0,所以工厂的总利润为n(p - c)元。
2. 某学校有m个学生,每个学生至少需要x本练习本,现在学校有y 本练习本,且x > y/m。
问学校是否需要购买额外的练习本?解:因为每个学生至少需要x本练习本,共有m个学生,所以总共需要mx本练习本,又因为x > y/m,所以mx > y,所以学校需要购买额外的练习本。
初一不等式试题及答案
初一不等式试题及答案1. 若不等式 \(2x - 5 < 3\),求 \(x\) 的取值范围。
答案:首先将不等式 \(2x - 5 < 3\) 进行移项,得到 \(2x < 8\)。
然后将两边同时除以2,得到 \(x < 4\)。
因此,\(x\) 的取值范围是\(x < 4\)。
2. 已知 \(a > 0\),\(b < 0\),判断不等式 \(a - b > 0\) 是否成立。
答案:由于 \(a > 0\) 且 \(b < 0\),即 \(a\) 是正数,\(b\) 是负数。
根据不等式的性质,正数减去负数结果为正数,所以 \(a - b > 0\) 成立。
3. 解不等式组:\[\begin{cases}x + 2 > 0 \\3x - 4 \leq 5\end{cases}\]答案:首先解第一个不等式 \(x + 2 > 0\),得到 \(x > -2\)。
接着解第二个不等式 \(3x - 4 \leq 5\),得到 \(x \leq 3\)。
因此,不等式组的解集为 \(-2 < x \leq 3\)。
4. 若不等式 \(3x - 7 > 0\),求 \(x\) 的最小整数值。
答案:首先解不等式 \(3x - 7 > 0\),得到 \(3x > 7\)。
然后将两边同时除以3,得到 \(x > \frac{7}{3}\)。
因为 \(x\) 必须是整数,所以 \(x\) 的最小整数值是 3。
5. 已知不等式 \(5x - 2 \geq 8\),求 \(x\) 的取值范围。
答案:将不等式 \(5x - 2 \geq 8\) 进行移项,得到 \(5x \geq10\)。
然后将两边同时除以5,得到 \(x \geq 2\)。
因此,\(x\) 的取值范围是 \(x \geq 2\)。
6. 判断不等式 \(-3x + 4 > 0\) 是否有解。
不等式练习题及答案
不等式练习题及答案一、单项选择题1. 若 x > -3,下列不等式成立的是:A) x > 2 B) x < -2 C) x < 3 D) x > -1答案:D) x > -12. 若 2x + 5 < 13,下列不等式成立的是:A) x < 4 B) x < 3 C) x < 6 D) x < -4答案:C) x < 63. 若 -2x + 3 > -7,下列不等式成立的是:A) x > 2 B) x < -2 C) x > 5 D) x < -3答案:A) x > 2二、填空题1. 若 -4x + 5 < -3,解得 x > ______。
答案:-2/32. 若 2x - 7 > 13,解得 x > _______。
答案:103. 若 3x + 2 < -4,解得 x < _______。
答案:-2三、证明题证明:对于任意实数 x,都成立 x + 7 > x + 3。
解答:假设 x 为任意实数。
我们需要证明当 x + 7 > x + 3。
首先,将 x + 7 和 x + 3 分别展开,得到:x + 7 > x + 3由于两边都有 x,我们可以将其消去,得到:7 > 3由于 7 大于 3,所以原不等式成立。
证毕。
四、应用题若某数与它的倒数的和大于5/2,求这个数的取值范围。
解答:假设该数为 x。
根据题意,我们有不等式:x + 1/x > 5/2为了处理分式,我们可以先将不等式转化为二次方程的形式,即:2x^2 + 2 - 5x > 0化简后得到:2x^2 - 5x + 2 > 0为了求解该二次不等式,我们需要找到其根的位置。
通过求解 x 的二次方程 2x^2 - 5x + 2 = 0,得到两个根 x = 1/2 和 x = 2。
初二不等式练习题及答案
初二不等式练习题及答案1. 解不等式2x - 5 < 7。
解:首先将等号左边的表达式变成0,得到2x - 5 - 7 < 0。
然后合并同类项:2x - 12 < 0。
通过对序号相反的两个数字应用不等式规则,得到x < 6。
2. 解不等式3(4 - x) > 5x + 12。
解:首先将括号内的表达式进行分配,得到12 - 3x > 5x + 12。
然后通过对等式两侧的同类项进行移项,得到-3x - 5x > 12 - 12。
合并同类项,得到-8x > 0。
由于8x为负数,所以需要将不等号翻转,得到x < 0。
3. 解不等式2(3x - 1) ≤ 4(x + 2) - 1 + 5x。
解:首先将括号内的表达式进行分配,得到6x - 2 ≤ 4x + 8 - 1 +5x。
合并同类项,得到6x - 2 ≤ 9x + 7。
然后将未知数移动到等号的一侧,得到6x - 9x ≤ 7 + 2。
合并同类项,得到-3x ≤ 9。
由于系数为负数,所以需要将不等号翻转,得到x ≥ -3。
4. 解不等式-2x + 5 > 4 - 3x。
解:首先将未知数移动到等号的一侧,得到-2x + 3x > 4 - 5。
合并同类项,得到x > -1。
5. 解不等式2x - 8 < x + 3。
解:首先将未知数移动到等号的一侧,得到2x - x < 3 + 8。
合并同类项,得到x < 11。
答案:1. x < 62. x < 03. x ≥ -34. x > -15. x < 11通过对初二不等式练习题的解答,我们可以进一步巩固和加深对不等式的理解和应用。
熟练掌握不等式的求解方法和规则,能够帮助我们在数学问题中更加灵活地运用和处理不等式关系,解决实际问题。
初中数学竞赛不等式(含答案)
12.不等式A 卷1.不等式2(x + 1) -12732-≤-x x 的解集为_____________。
2.同时满足不等式7x + 4≥5x – 8和523x x -<的整解为______________。
3.如果不等式33131++>+x mx 的解集为x >5,则m 值为___________。
4.不等式22)(7)1(3)12(k x x x x ++<--+的解集为_____________。
5.关于x 的不等式(5 – 2m)x > -3的解是正数,那么m 所能取的最小整数是__________。
6.关于x 的不等式组⎩⎨⎧<->+25332b x x 的解集为-1<x <1,则ab____________。
7.能够使不等式(|x| - x )(1 + x ) <0成立的x 的取值范围是_________。
8.不等式2<|x - 4| <3的解集为_____________。
9.已知a,b 和c 满足a ≤2,b ≤2,c ≤2,且a + b + c = 6,则abc=______________。
10.已知a,b 是实数,若不等式(2a - b)x + 3a – 4b <0的解是94>x ,则不等式(a – 4b)x + 2a – 3b >0的解是__________。
C 卷一、填空题1.不等式2|43|2+>--x x x 的解集是_____________。
2.不等式|x| + |y| < 100有_________组整数解。
3.若x,y,z 为正整数,且满足不等式⎪⎩⎪⎨⎧≥+≥≥1997213z y y z x 则x 的最小值为_______________。
4.已知M=1212,12122000199919991998++=++N ,那么M ,N 的大小关系是__________。
全国各地初中(九年级)数学竞赛《不等式》真题大全 (附答案)
全国初中(九年级))数学竞赛专题大全竞赛专题5 不等式一、单选题1.(2021·全国·九年级竞赛)若满足不等式871513n n k <<+的整数k 只有一个,则正整数n 的最大值为( ). A .100B .112C .120D .1502.(2021·全国·九年级竞赛)27234x x x ----有意义,则x 的取值范围是( )A .4x >B .7x ≥5x ≠C .4x >且5x ≠D .45x <<3.(2021·全国·九年级竞赛)某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该运动队有20名同学,统计表如下表,由于不小心弄脏了统计表,下表中阴影部分的两个数据看不到. 鞋码 38 394041 42 人数 532下列说法正确的是( ).A .这组鞋码数据中的中位数是40,众数是39 B .这组鞋码数据中的中位数与众数一定相等 C .这组鞋码数据中的平均数p 满足3940p ≤≤ D .以上说法都不对4.(2021·全国·九年级竞赛)如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的有序对(),a b 共有( ). A .17个B .64个C .72个D .81个5.(2021·全国·九年级竞赛)若不等式054ax ≤+≤的整数解是1,2,3,4,则a 的取值范围是( ). A .54a -B .1a <-C .514a -≤<-D .54a -6.(2021·全国·九年级竞赛)2009x y 且0x y <<,则满足此等式的不同整数对(,)x y 有( )对. A .1B .2C .3D .47.(2021·全国·九年级竞赛)有两个四位数,它们的差是534,它们平方数的末四位数相同.则较大的四位数有( )种可能.A .1B .2C .3D .48.(2021·全国·九年级竞赛)一个正方形纸片,用剪刀沿一条不过顶点的直线将其剪成两部分,拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分,又从得到的3部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分,……,如此下去,最后得到34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ). A .2004B .2005C .2006D .20079.(2021·全国·九年级竞赛)若正数a ,b ,c 满足不等式1126352351124c a b c a b c a b a c b ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩则a ,b ,c 的大小关系是( )A .a b c <<B .b c a <<C .c a b <<D .不确定10.(2021·全国·九年级竞赛)设114,,11(1)r a b c r r r r r r r ≥=-==++++的是( ). A .a b c >> B .b c a >> C .c a b >> D .c b a >>二、填空题11.(2021·全国·九年级竞赛)设a ,b 为正整数,且2537a b <<则b 取最小值时a b +=_____ 12.(2021·全国·九年级竞赛)已知实数x ,y 满足234x y -=且0,1x y ≥≤,则x y -的最大值是______,最小值是_______.13.(2021·全国·九年级竞赛)已知01a ≤≤,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ([]x 表示不超过x 的最大整数),则[]10a 的值等于_______.14.(2021·全国·九年级竞赛)若化简2269x x x --+25x -,则满足条件是x 的取值围是_________.15.(2021·全国·九年级竞赛)[]x 表示不超过x 的最大整数(例如[]3.23=).已知正整数n 小于2006,且362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦,则这样的n 有___________个. 16.(2021·全国·九年级竞赛)不等式2242x ax a +<的解是___________.17.(2021·全国·九年级竞赛)已知正整数m 和n 有大于1的最大公约数,并且满足3371m n +=,则mn =________.18.(2021·全国·九年级竞赛)长沙市某中学100名学生向某“希望学校”捐书1000本,其中任意10人捐书总数不超过190本,那么捐书最多的某同学最多能捐书_________本.19.(2021·全国·九年级竞赛)已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________. 三、解答题20.(2021·全国·九年级竞赛)某宾馆底楼客房比二楼客房少5间,某旅游团有48人.若全部安排底楼,每间房间住4人,房间不够;每间住5人,则有房间没有住满5人.又若全部安排住2楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人.问该宾馆底楼有多少间客房?21.(2021·全国·九年级竞赛)一座大楼有4部电梯,如果每部电梯可停靠三层(不一定连续三层,也不一定停最低层),对大楼中的任意两层,至少有一部电梯可在这两层停靠.问:这座大楼最多有几层22.(2021·全国·九年级竞赛)解方程22424x x x x ⎡⎤+-=⎢⎥⎣⎦.23.(2021·全国·九年级竞赛)证明:对任意实数x 及任意正整数n 有[][]121n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.24.(2021·全国·九年级竞赛)已知01,01,01a b c <<<<<<,证明: ()()()1,1,1a b b c c a ---中至少有一个不大于14. 25.(2021·全国·九年级竞赛)设正数a ,b ,c ,x ,y ,x 满足a x b y c z k +=+=+=,证明;2ay bz cx k ++<. 26.(2021·全国·九年级竞赛)已知实数a ,b ,c 满足0,10a b c ac ++==,证明1110a b c++<.27.(2021·全国·九年级竞赛)下图是某单位职工年龄(取正整数)的频率分布图(每组可含最低年龄但不含最高值),根据图中提供的信息回答下列问题:(1)该厂共有多少职工?(2)年龄不小于38但小于44岁的职工人数占职工总人数的百分比是多少? (3)如果42岁的职工有4人,那么42岁以上的职工有多少人?(4)有人估计该单位职工的平均年龄在39岁与42岁之间,问这个估计正确吗?28.(2021·全国·九年级竞赛)某人到花店买花,他只有24元,打算买6支玫瑰和3支百合,但发现钱不够,只买了4支玫瑰和5支百合,这样还剩下2元多钱.请你算一算:2支玫瑰和3支百合哪个价格高?29.(2021·全国·九年级竞赛)1132x x -+ 30.(2021·全国·九年级竞赛)解不等式:2243414143x x x x x x x x +-->-++-- 31.(2021·全国·九年级竞赛)求满足下列条件的最小正整数n ,使得对这样的n ,有唯一的正整数k ,满足871513n n k <<+. 32.(2021·全国·九年级竞赛)解不等式: 2256154x x x x -+≤++.33.(2021·全国·九年级竞赛)解不等式21311x x x x -+>-+. 34.(2021·全国·九年级竞赛)如果二次不等式:28210ax ax ++<的解是71x -≤<-,求a 的值. 35.(2021·全国·九年级竞赛)某校参加全国数,理,化,计算机比赛的人数分别是20,16,x ,20人.已知这组数据的中位数和平均数相等,求这组数据的中位数.36.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6次、第7次,第8次,第9次射击中,分别得到9.0环、8.4环、8.1环、9.3环,他的前9次射击所得平均环数高于前5次射击所得平均环数,如果要使10次射击的平均环数超过8.8环,那么他第10次射击至少要得多少环?(每次射击环数精确到0.1环)37.(2021·全国·九年级竞赛)今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60g,60g,47g ,现要配制成浓度为7%的盐水100g .间甲盐水最多可用多少克?最少可用多少克?38.(2021·全国·九年级竞赛)求证:对任意的实数x ,y ,[2][2][][][]x y x x y y ++++.39.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8、第9次射击中,分别得了9.0环,8.4环,8.1环,9.3环,他的前9次射击所得环数的平均值高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中最少要得多少环?(每次射击所得环数都精确到0.1环)40.(2021·全国·九年级竞赛)已知x ,y ,z 都是正数,证明:32()()()()()()x y x z y z y x z x z y +≤++++++.41.(2021·全国·九年级竞赛)某饮料厂生产A 、B 两种矿泉水,每天生产B 种矿泉水比A 种矿泉水多10吨,A 种矿泉水比B 种矿泉水每天多获利润2000元,其中A 种矿泉水每吨可获利润200元,B 种矿泉水每吨可获利润100元.(1)问:该厂每天生产A 种,B 种矿泉水各多少吨?(2)由于江水受到污染,市政府要求该厂每天必须多生产10吨矿泉水,该厂决定响应市政府的号召,在每天的利润不超过原利润的情况下不少于8000元,该厂每天生产A 种矿泉水最多多少吨?42.(2021·全国·九年级竞赛)要使不等式2320x x -+≤①与不等式2(1)(3)20m x m x -+--<②无公共解,求m 的取值范围.43.(2021·全国·九年级竞赛)已知三个非负数a ,b ,c ,满足325a b c ++=和231a b c +-=.若37m a b c =+-,求m 的最大值和最小值.44.(2021·全国·九年级竞赛)某班学生到公园进行活动,划船的有22人,乘电动车的有20人,乘过山车的有19人,既划船又乘电动车的有9人,既乘电动车又乘过山车的有6人,既划船又乘过山车的有8人,并且有4人没有参加上述3项活动中任何一项活动,问这个班学生人数的可能值是多少?竞赛专题5 不等式答案解析 (竞赛真题强化训练)一、单选题1.(2021·全国·九年级竞赛)若满足不等式871513n n k <<+的整数k 只有一个,则正整数n 的最大值为( ). A .100 B .112C .120D .150【答案】B 【解析】 【分析】 【详解】 由已知不等式得13156767,,787878n k k n nk n n +<<<<<<.因由已知条件,67n 与78n 之间只有 唯一一个整数k ,所以76287n n-≤解得112n ≤.当112n =时,9698k ≤≤,存在唯一97k =,所以n 的 最大值为112.故应选B .2.(2021·全国·九年级竞赛)27234x x x ----有意义,则x 的取值范围是( )A .4x >B .7x ≥5x ≠C .4x >且5x ≠D .45x <<【答案】C 【解析】 【分析】 【详解】依题意得27077321544x x x x x x x x ⎧⎧-≥≤≥⎪⎪-≠⇒≠≠⎨⎨⎪⎪>>⎩⎩或且,4x ⇒>且5x ≠.故选C .3.(2021·全国·九年级竞赛)某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该运动队有20名同学,统计表如下表,由于不小心弄脏了统计表,下表中阴影部分的两个数据看不到. 鞋码 38 39 40 41 42 人数 532下列说法正确的是( ).A .这组鞋码数据中的中位数是40,众数是39 B .这组鞋码数据中的中位数与众数一定相等 C .这组鞋码数据中的平均数p 满足3940p ≤≤ D .以上说法都不对 【答案】C 【解析】 【分析】 【详解】设穿39码和40码的学生分别有x 人和y 人,则()2052310x y +=-++=.(1)若y x ≥,即穿40码的人数最多时,中位数和众数都等于40,故选A 错;(2)若5x y ==,则中位数1(3940)39.52=+=,众数为39和40,中位数不等于众数,故选B 错;(3)平均数[]13853940(10)41342239.75220xp x x =⨯++⨯-+⨯+⨯=-,且010x ≤≤,于是39.2539.75p <≤,满足3940p ≤≤,故选C 正确.所以应选C .4.(2021·全国·九年级竞赛)如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的有序对(),a b 共有( ). A .17个 B .64个 C .72个 D .81个【答案】C 【解析】 【分析】 【详解】 解 因98ax b x ⎧≥⎪⎪⎨⎪<⎪⎩中x 的整数值仅为1,2,3,所以01,34,98a b <≤<≤即9a <≤, 2432b <≤,故a 可取1,2,…,9这9个值,b 可取25,26,….32这8个值,所以有序对(),a b 有8972⨯=个.故选C .5.(2021·全国·九年级竞赛)若不等式054ax ≤+≤的整数解是1,2,3,4,则a 的取值范围是( ). A .54a -B .1a <-C .514a -≤<-D .54a -【答案】C 【解析】 【分析】 【详解】解 由054ax ≤+≤得51ax -≤≤-,且已知0x >,所以0a <,15ax a ≤-≤-. 又不等式054ax ≤+≤的整数解是1,2,3,4,所以101a <-≤,且545a≤-<解得 1a ≤-且5114a -<-≤,故514a -≤<-,所以选C .6.(2021·全国·九年级竞赛)2009x y 且0x y <<,则满足此等式的不同整数对(,)x y 有( )对. A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】 【详解】选C .理由:由20094941=⨯,得200941= 又0x y <<2009200941641241541341441===20094114761641025369656===因此,满足条件的整数对(,)x y 为(41,1476),(164,1025),(369,656).共有3对.7.(2021·全国·九年级竞赛)有两个四位数,它们的差是534,它们平方数的末四位数相同.则较大的四位数有( )种可能. A .1 B .2C .3D .4【答案】C 【解析】 【分析】 【详解】理由:设较大的四位数为x ,较小的四位数为y ,则534x y -=, ① 且22x y -能被10000整除.而22()()x y x y x y -=+-2672()x y =⨯+,则x y +能被5000整除.令()5000x y k k ++=∈N . ②由式①②解得2500267,2500267.x k y k =+⎧⎨=-⎩ 考虑到x ,y 均为四位数,于是,100025002679999,100025002679999,k k ≤+≤⎧⎨≤-≤⎩解得126755832500625k ≤≤. k 可取1,2或3.从而,x 可取的值有3个:2767,5267,7767.8.(2021·全国·九年级竞赛)一个正方形纸片,用剪刀沿一条不过顶点的直线将其剪成两部分,拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分,又从得到的3部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分,……,如此下去,最后得到34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ). A .2004 B .2005C .2006D .2007【答案】B 【解析】 【分析】 【详解】解 (算两次方法)依题意,用剪刀沿不过顶点的直线剪成两部分时,所得各张多边形(包括三角形)的纸片的内角和增加了2180360⨯︒=︒,剪过k 刀后,可得(1)+k 个多边形,这些多边形的内角总和为360360(1)360k k ︒+⨯︒=+⨯︒.另一方面,因为这1k +个多边形中有34个为六十二边形,它们的内角总和为34(622)1802040180⨯-⨯=⨯︒︒,余下的多边形(包括三角形)有13433k k +-=-个,其内角总和至少为(33)180k -⨯︒,于是(1)3602040180(33)180k k +⨯︒≥⨯︒+-⨯︒,解得2005k ≥.其次,我们按如下方式剪2005刀时,可得到符合条件的结论.先从正方形剪下1个三角形和1个五边形,再将五边形剪成1个三角形和1个六边形,…,如此下去,剪了58刀后,得到1个六十二边形和58个三角形,取出其中33个三角形,每个各剪一刀,又可得到33个四边形和33个三角形,对这33个四边形,按上述方法各剪58刀,便得到33个六十二边形和3358⨯个三角形,于是共剪了583333582005++⨯=(刀),故选B .9.(2021·全国·九年级竞赛)若正数a ,b ,c 满足不等式1126352351124c a b c a b c a b a c b ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩则a ,b ,c 的大小关系是( )A .a b c <<B .b c a <<C .c a b <<D .不确定【答案】B 【解析】 【分析】 【详解】解 由已知条件及加法的单调性得1126352251124c c a b c c c a a a b c a a b b a b c b b ⎧+<++<+⎪⎪⎪+<++<+⎨⎪⎪+<++<+⎪⎩,即1736582371524c a b c c a a b c a b a b c b ⎧<++<⎪⎪⎪<++<⎨⎪⎪<++<⎪⎩①②③由①,②得17816176366c a b c a a a <++<=< (传递性),所以a c >. 由①,③得7673222b a bc c c c <++<=< (传递性),所以b c <.可见,a ,b ,c 的大小关系是a c b >>,故选B . 10.(2021·全国·九年级竞赛)设114,,11(1)r a b c r r r r r r r ≥=-==++++的是( ). A .a b c >> B .b c a >>C .c a b >>D .c b a >>【答案】D 【解析】 【分析】 【详解】 解:因111221r r r ≥<+=+,故 ()(111a b r r r r r r =+<=+++, 1111r r r r c b r r r x +-+->=+⋅+.所以c b a >>. 故选:D . 二、填空题11.(2021·全国·九年级竞赛)设a ,b 为正整数,且2537a b <<则b 取最小值时a b +=_____ 【答案】17 【解析】 【分析】 【详解】由已知条件得32,57a b b a >>.令32,57A a b B b a =-=-,则A ,B 均为正整数,解出52,737310a A B b A B =+=+≥+=.当1,1A B ==时等号成立,故b 的最小值为10,这时527a =+=,17a b +=.故应填17.12.(2021·全国·九年级竞赛)已知实数x ,y 满足234x y -=且0,1x y ≥≤,则x y -的最大值是______,最小值是_______. 【答案】 4352【解析】 【分析】 【详解】 434370222y x ++≤=≤=. 又243x y -=所以24433x x x y x -+-=-=.故当0x =时,x y -取最小值43;当72x =时,x y -取最大值175(4)322+=所以应填45,32.13.(2021·全国·九年级竞赛)已知01a ≤≤,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ([]x 表示不超过x 的最大整数),则[]10a 的值等于_______. 【答案】6 【解析】 【分析】 【详解】 因122902303030a a a <+<+<<+<,所以1229,,,303030a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦每一个等于0或1.由题设知其中恰有18个等于1, 所以12111213290,1303030303030a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=+==+=+=+==+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦于是111201,123030a a <+<≤+<,解得1183019,61063a a ≤<≤<所以[]106a =.故应填6. 14.(2021·全国·九年级竞赛)若化简2269x x x --+25x -,则满足条件是x 的取值围是_________. 【答案】23x ≤≤ 【解析】 【分析】 【详解】由()2226923232(3)25x x x x x x x x x x --+=--=---=---=-,得2030x x -≥⎧⎨-≤⎩即23x ≤≤.故填23x ≤≤.15.(2021·全国·九年级竞赛)[]x 表示不超过x 的最大整数(例如[]3.23=).已知正整数n 小于2006,且362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦,则这样的n 有___________个. 【答案】334 【解析】 【分析】 【详解】解 设[]6n m =则(01)6na a m =≤+<从而66n m a =+.当102a ≤<时, 22(021)3n m a a =+≤<,故23n m ⎡⎤=⎢⎥⎣⎦.于是由362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦得662332m a m m m a ++==+,从而0a =.此时(6204)06133n m m =<≤≤. 当112a ≤<,223n m a =+由212222m m a m +≤+<+得213n m ⎡⎤=+⎢⎥⎣⎦代入 362n n n ⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦得2133m m m a ++=+,得13a =,与112a ≤<矛盾,舍去. 故所有的n 共有334个.16.(2021·全国·九年级竞赛)不等式2242x ax a +<的解是___________. 【答案】67a a x -<<(当0a >时);76a ax <<-(当0a <时);无解(当0a =时).【解析】 【分析】 【详解】解 原不等式化为()()670x a x a +-<,方程()()670x a x a +-=的两根为6a -和7a.若0a >,则67a a -<不等式的解为67a ax -<<; 若0a <,则76a a <-不等式的解为76a a x <<-; 若0a =,则67a a-=,不等式无解. 故应填:67a a x -<< (当0a >时); 76a ax <<-(当0a <时);无解(当0a =时). 17.(2021·全国·九年级竞赛)已知正整数m 和n 有大于1的最大公约数,并且满足3371m n +=,则mn =________. 【答案】196 【解析】 【分析】 【详解】理由:设k 是m ,n 的最大公约数,则m 和n 可以表示为,m ka n kb ==(1k >,a ,b 均为正整数).于是,()3323()371753m n ka kb k k a b +=+=+==⨯.因为1k >且7与53都是质数,23232k a b k a k k +>≥>, 所以7k =且2353k a b +=,即34953a b ⨯+=.由a ,b 是正整数,得1,4a b ==. 所以7,28m n ==.故728196mn =⨯=.18.(2021·全国·九年级竞赛)长沙市某中学100名学生向某“希望学校”捐书1000本,其中任意10人捐书总数不超过190本,那么捐书最多的某同学最多能捐书_________本. 【答案】109 【解析】 【分析】 【详解】设100名学生捐书数分别是12100,,,a a a ,不妨设其中100a 为最大,于是100101000a +=()129100a a a a +++++()101118100a a a a ++++()192027100a a a a +++++(91a +++)9299100a a a +++190190190≤+++111902090=⨯=,所以100109a ≤.另一方面,当12999a a a ====,100109a =时,满足题目要求,故捐书最多的人最多能捐书109本.19.(2021·全国·九年级竞赛)已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________. 【答案】 329 335或334 【解析】 【分析】 【详解】要使10a 最大,必须1a ,2a ,3a ,4a 及6a ,7a ,8a ,9a ,10a 尽量小.又因为1210a a a <<<,且1a ,2a ,3a ,4a 的最小可能值依次为1,2,3,4,于是有2000123≥+++56104a a a ++++,即56101990a a a +++≤.又651a a ≥+,752a a ≥+,853a a ≥+,954a a ≥+,1055a a ≥+,故51990615a ≥+,51975132966a ≤=.又5a 为正整数,所以5329a ≤,于是6710a a a +++=199********-=.又761a a ≥+,862a a ≥+,963a a ≥+,1064a a ≥+,故65101661a +≤,616515a ≤=13305,且6a 为正整数,所以6330a ≤,而651330a a ≥+=,所以6330a =,要7a ,8a ,9a 最小得7331a =,8332a =,9333a =,这时101661a =-()6789335a a a a +++=.但如果取1a ,2a ,3a ,4a 依次为1,2,3,5,那么同样可得569,,,a a a 取上述值,这时10334a =.故应填5a 的最大值是329,这时10a 的值应是335或334. 三、解答题20.(2021·全国·九年级竞赛)某宾馆底楼客房比二楼客房少5间,某旅游团有48人.若全部安排底楼,每间房间住4人,房间不够;每间住5人,则有房间没有住满5人.又若全部安排住2楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人.问该宾馆底楼有多少间客房? 【答案】宾馆的底楼有客房10间 【解析】 【分析】 【详解】设底楼有x 间客房,则2楼有()5+x 间客房. 简4485483(5)484(5)48x x x x <⎧⎪>⎪⎨+<⎪⎪+>⎩依题意可得不等式组解不等式组得9.611x <<.又x 为正整数,所以10x =. 答:宾馆的底楼有客房10间.21.(2021·全国·九年级竞赛)一座大楼有4部电梯,如果每部电梯可停靠三层(不一定连续三层,也不一定停最低层),对大楼中的任意两层,至少有一部电梯可在这两层停靠.问:这座大楼最多有几层? 【答案】这座大楼最多有5层【解析】 【分析】 【详解】设大楼有n 层,则楼层对的个数为(1)2n n -每架电梯停3层,有3232⨯=个楼层对, 所以(1)43,(1)242n n n n -⨯≥-≤,且n 为正整数,所以5n ≤.设置4部电梯使它们停靠的楼层分别为 ()()()()1,4,5,2,4,5,3,4,5,1,2,3满足题目要求,故这座大楼最多有5层.22.(2021·全国·九年级竞赛)解方程22424x x x x ⎡⎤+-=⎢⎥⎣⎦.【答案】4x =-或45【解析】 【分析】 【详解】原方程中显然0x ≠,故原方程可化为2241()2x x ⎡⎤+-=⎢⎥⎣⎦.又2222221()21()2()1x x x ⎡⎤⎡⎤⎡⎤+-=+-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,故原方程可化为224[()]1x x=+,所以4x 为整数,设4n x =(n 为整数),原方程又化为2[]14n n =+.于是2124n n n +≤<+,即222(12)2(12)440,2(13)2(12)4802(13)2(13)n n n n n n n n ⎧≤≥+⎧--≥⎪⇒≤≤⎨⎨--<<<⎩⎪⎩或 或.2(12)2(13n <<).又n 为整数,所以1n =-或5n =,故4x =-或4523.(2021·全国·九年级竞赛)证明:对任意实数x 及任意正整数n 有[][]121n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.【答案】见解析 【解析】 【分析】 【详解】设[]x x α=-,则01a ≤≤,于是存在小于n 的正整数r ,使1r rn nα-≤<故[][]1r rx x x n n-+<<+, 故当0k n r ≤≤-时,[][][][]11r k r n rx x x x x n n n n--≤+≤+<++=-, 故[](0)k x x k n r n ⎡⎤+=≤≤-⎢⎥⎣⎦当11n r k n -+≤≤-时,[][][][][]1111111r n r k r n r x x x x x x n n n n n n--+--+=++≤+<++=++<+, 故[]1(11)k x x n r k n n ⎡⎤+=+-+≤≤-⎢⎥⎣⎦,于是[]1111[]()(n n r n r x x x x x x x n n n n n ---+⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=++++++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦[][]21)(1)(1)(1)[]1n r n x x n r x r x n x r n n -+-⎡⎤⎡⎤++++=-++-+=+-⎢⎥⎢⎥⎣⎦⎣⎦①. 又因为[][]1n x r nx n x r +-≤≤+,所以[][]1nx n x r =+-②. 由①及②便知要证等式成立.24.(2021·全国·九年级竞赛)已知01,01,01a b c <<<<<<,证明: ()()()1,1,1a b b c c a ---中至少有一个不大于14. 【答案】见解析 【解析】 【分析】 【详解】 (1)1(1)22a a a a +--≤=11(1)(1)22b bc c --≤三式平方后相乘得 31(1)(1)(1)()4a b b c c a -⋅-⋅-≤故()()()1,1,1a b b c c a ---中至少有一个不大于14.25.(2021·全国·九年级竞赛)设正数a ,b ,c ,x ,y ,x 满足a x b y c z k +=+=+=,证明; 2ay bz cx k ++<. 【答案】见解析 【解析】 【分析】 【详解】因3()()()()()()k a x b y c z abc xyz ay c z bz a x cx b y =+++=+++++++()()abc xyz k ay bz cx k ay bx cx =++++>++.又0k >,所以2ay bz cx k ++<.26.(2021·全国·九年级竞赛)已知实数a ,b ,c 满足0,10a b c ac ++==,证明1110a b c++<.【答案】见解析 【解析】 【分析】 【详解】因10abc =,故a ,b ,c 都不为零.又2222()2()0a b c a b c ab bc ca ++=+++++=且2220a b c ++>,所以0ab bc ca ++<,于是1110bc ca ab a b c abc++++=<. 27.(2021·全国·九年级竞赛)下图是某单位职工年龄(取正整数)的频率分布图(每组可含最低年龄但不含最高值),根据图中提供的信息回答下列问题:(1)该厂共有多少职工?(2)年龄不小于38但小于44岁的职工人数占职工总人数的百分比是多少? (3)如果42岁的职工有4人,那么42岁以上的职工有多少人?(4)有人估计该单位职工的平均年龄在39岁与42岁之间,问这个估计正确吗? 【答案】(1)50;(2)60%;(3)15人;(4)正确 【解析】 【分析】 【详解】(1)职工人数47911106350=++++++=;(2)年龄不小于38但小于44岁职工人数占职工总数的百分比为91110100%60%50++⨯=; (3)年龄在42岁以上职工人数()1063415=++-=(人); (4)设该厂职工的年龄平均值为n ,则11(34436738940114210446463)199239.84395050n ≥⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=>且11(36438740942114410466483)209241.84425050n <⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=<,故所作的估计是正确的.28.(2021·全国·九年级竞赛)某人到花店买花,他只有24元,打算买6支玫瑰和3支百合,但发现钱不够,只买了4支玫瑰和5支百合,这样还剩下2元多钱.请你算一算:2支玫瑰和3支百合哪个价格高? 【答案】2支玫瑰的价格高于3支百合的价格. 【解析】 【分析】 【详解】解 设玫瑰每支x 元,百合每支y 元,依题意得632445242x y x y +>⎧⎨+=-⎩①② 32⨯-⨯②①得918y <,故2y <. 53⨯-⨯①②得1854x >,故3x >.答:2支玫瑰的价格高于3支百合的价格.29.(2021·全国·九年级竞赛)1132x x -+ 【答案】8313x ---≤≤【解析】 【分析】 【详解】解 首先,由1030x x -≥⎧⎨+≥⎩得31x -≤≤.1132x x -≥+① 数上式两边均非负(当31x -≤≤时),两边平方后,整理得 9843x x --≥+②于是980x --≥,即98x ≤-结合31x -≤≤得938x -≤≤-.并且②式两边平方,得2(98)16(3)x x ≥--+,整理得264128330x x ++≥.③因方程264128330x x ++=的两根为1,2831x -±= 所以③的解为831x --≤或831x -+≥结合938x -≤≤-得原不等式的解为8313x ---≤≤30.(2021·全国·九年级竞赛)解不等式:2243414143x x x x x x x x +-->-++-- 【答案】1144x -<<或364x -<<634x <【解析】 【分析】 【详解】解 不等式两边乘以4,化简为5115(1)(1)(1)(1)43414143x x x x +-->+--++-- 移项、整理得22151169161x x ->--,移项、通分得2224(646)0(169)(161)x x x -<--, 可化为222(646)(169)(161)0x x x ---<,即222139()()()0163216x x x ---<. 如右图得2116x <或2393216x <<,解得1144x -<<或364x -<<634x <<31.(2021·全国·九年级竞赛)求满足下列条件的最小正整数n ,使得对这样的n ,有唯一的正整数k ,满足871513n n k <<+. 【答案】15 【解析】 【分析】 【详解】因n ,k 为正整数,所以0,0n n k >+>. 由题中不等式得151387n k n +>>,即1513187k n >+>所以7687k n >>,故76,87k n k n ><. 令760,780A k n B n k =-≥=-≥,可解出87,76n A B k A B =+=+. 又因为A ,B 均为正整数,1,1A B ≥≥,所以8715n ≥+=.当且仅当1,1A B ==时n 取最小值15,这时k 有唯一值716113⨯+⨯=. 故所求n 的最小值为15.32.(2021·全国·九年级竞赛)解不等式: 2256154x x x x -+≤++.【答案】41x -≤<-或4x <-或15x ≥.【解析】 【分析】 【详解】解 移项,通分整理得1020(1)(4)x x x -+≤++故得(Ⅰ) 1020(1)(4)0x x x -+≥⎧⎨++<⎩,或(Ⅱ)1020(1)(4)0x x x -+≤⎧⎨++>⎩.解(I ) 1541x x ⎧≤⎪⎨⎪-<<-⎩,∴41x -≤<-. 解(Ⅰ)1541x x x ⎧≥⎪⎨⎪--⎩或∴4x <-或15x ≥. 综上所述得,原不等式的解为41x -≤<-或4x <-或15x ≥.33.(2021·全国·九年级竞赛)解不等式21311x x x x -+>-+. 【答案】1x <-或1x > 【解析】 【分析】 【详解】解 移项通分得(21)(1)(3)(1)0(1)(1)x x x x x x -+-+->-+,即220(1)(1)x x x x -+>-+. 因22172()024xx x,故上述不等式化为()()110,1x x x -+>∴<-或1x >. 34.(2021·全国·九年级竞赛)如果二次不等式:28210ax ax ++<的解是71x -≤<-,求a 的值. 【答案】3a =【解析】 【分析】 【详解】解 依题意,1,7--是方程28210ax ax ++=的两个根,且0a >,由韦达定理得 2(1)(7)a-⨯-=,所以3a =. 35.(2021·全国·九年级竞赛)某校参加全国数,理,化,计算机比赛的人数分别是20,16,x ,20人.已知这组数据的中位数和平均数相等,求这组数据的中位数. 【答案】18或20. 【解析】 【分析】 【详解】(1)当16x ≤时,平均数为564x x +=,中位数为2016182+=.由56184x+=,解得16x =,满足16x ≤;(2)当1620x ≤≤时,平均数564x x +=,中位数为202x +.由562042x x++=,解得16x =,不符合1620x <<;当20x ≥时,平均数为564x x +=,中位数为2020202+=.由56204x+=,解得24x =,符合20x ≥.因此,所求中位数为18或20.36.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6次、第7次,第8次,第9次射击中,分别得到9.0环、8.4环、8.1环、9.3环,他的前9次射击所得平均环数高于前5次射击所得平均环数,如果要使10次射击的平均环数超过8.8环,那么他第10次射击至少要得多少环?(每次射击环数精确到0.1环) 【答案】第10次至少要射9.9环 【解析】 【分析】 【详解】设前9次射击共得x 环,依题意得1(9.08.48.19.3)95x x -+++>,解得78.3x <,故78.30.178.2x ≤-=.依题目要求,第10次射击至少要达到的环数为()8.8100.178.29.9⨯+-=(环). 答:第10次至少要射9.9环37.(2021·全国·九年级竞赛)今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60g,60g,47g ,现要配制成浓度为7%的盐水100g .间甲盐水最多可用多少克?最少可用多少克? 【答案】甲种盐水最多可用49g ,最少可用35g 【解析】【分析】【详解】设3种盐水应分别取,,xg yg zg ,1005%8%9%1007%060060047x y z x y z x y z ++=⎧⎪++=⨯⎪⎪≤≤⎨⎪≤≤⎪≤≤⎪⎩,解得20043100y x z x =-⎧⎨=-⎩所以02004600310047x x ≤-≤⎧⎨≤-≤⎩, 解得3549x ≤≤.答:甲种盐水最多可用40g ,最少可用35g .38.(2021·全国·九年级竞赛)求证:对任意的实数x ,y ,[2][2][][][]x y x x y y ++++.【答案】见解析.【解析】【分析】【详解】设[],[]x x y y n αββ=+=+=+,其中0,1αβ≤<,m ,n 为整数.(1)若110,022αβ≤<≤<,则021,021,01αβαβ≤<≤<≤+<.这时有 [2][2][22][22]22x y m m m n αβ+=+++=+,[][][]x x y y +++[][()()][]m a m n n αββ=+++++++()22m m n n m n =+++=+,所以[2][2][][][]x y x x y y +=+++.(2)若111,122αβ≤<≤<,则122,122,12αβαβ≤<≤<≤+<.这时有 [2][2][22][22]2121x y m n m n αβ+=+++=+++222m n =++,[][][][][()()][]x x y y m m n n ααββ+++=+++++++()1221m m n n m n =++++=++.所以[2][2][][][]x y x x y y +>+++.(3)若110,122αβ≤<≤<(111,022αβ≤<≤<的情况类似),这时有021α≤<,13122,22βαβ≤<≤+<,这时有[2][2][22][22]221x y m a n m n β+=+++=++,[][][][()()]221x x y y m m n a n m n β+++=+++++++.综上所述,不论何种情况,都有[2][2][][][]x y x x y y +≤+++.39.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8、第9次射击中,分别得了9.0环,8.4环,8.1环,9.3环,他的前9次射击所得环数的平均值高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中最少要得多少环?(每次射击所得环数都精确到0.1环)【答案】第10次最少要得9.9环.【解析】【分析】【详解】9.设前5次射击所得平均环数为a ,第10次击中x 环,依题意59.08.48.19.39a a ++++<, ① 59.08.48.19.38.810a x +++++<. ② 由①得8.7a <,从而558.70.143.4a ≤⨯-=.由②得8834.8553.243.49.8x a >--≥-=,所以9.9x ≥,即第10次最少要得9.9环.40.(2021·全国·九年级竞赛)已知x ,y ,z 都是正数,证明:32()()()()()()x y x z y z y x z x z y +≤++++++. 【答案】见解析【解析】【分析】【详解】 (0,0)2a b ab a b +≥≥得 []()()()()11()2()()2()()x x y x z x x y x z x x x y x z x y x z x y x z +++++=⋅=+++++++①. 1()2()()y y y x y zy x y z ≤+++++②. 1()2()()z z z x z yz x z y ≤+++++③由①+②+③即得要证不等式. 41.(2021·全国·九年级竞赛)某饮料厂生产A 、B 两种矿泉水,每天生产B 种矿泉水比A 种矿泉水多10吨,A 种矿泉水比B 种矿泉水每天多获利润2000元,其中A 种矿泉水每吨可获利润200元,B 种矿泉水每吨可获利润100元.(1)问:该厂每天生产A 种,B 种矿泉水各多少吨?(2)由于江水受到污染,市政府要求该厂每天必须多生产10吨矿泉水,该厂决定响应市政府的号召,在每天的利润不超过原利润的情况下不少于8000元,该厂每天生产A 种矿泉水最多多少吨?【答案】(1)该厂每天生产A 种矿泉水30吨,B 种矿泉水40吨.(2)该厂每天最多生产A 种矿泉水20吨.【解析】【分析】【详解】解 (1)设该厂每天生产A 种矿泉水x 吨,则该厂每天生产B 种矿泉水10x +吨,依题意得()200100102000x x -+=,解得30,1040x x =+=.(2)设该厂每天生产A 吨矿泉水y 吨,依题意得该厂每天共生产30401080++=吨矿泉水且()10000200100808000y y ≥+-≥,其中100002003010040=⨯+⨯为该厂原来每天获得的利润,解上述不等式得020y ≤≤.答:(1)该厂每天生产A 种矿泉水30吨,B 种矿泉水40吨.(2)该厂每天最多生产A 种矿泉水20吨.42.(2021·全国·九年级竞赛)要使不等式2320x x -+≤①与不等式2(1)(3)20m x m x -+--<②无公共解,求m 的取值范围.【答案】0m ≥【解析】【分析】【详解】解 ①化为()()120x x --<,故①的解为12x <<.②化为()()1210m x x ⎡⎤⎣⎦-+-<.③(1)当1m =,③为()210x -<,即1x <,符合题意.(2)当10m ->,即1m 时,③的解为211x m -<<-符合题意. (3)当10m -<,即1m <时,又分两种情形讨论: 若211m <-,即1m <-时,③的解为21x m <-或1x >,不符合题意; 若211m >-,即1m >-时,③的解为1x <或21x m>-. 要使①与②无公共解,必须221m ≥-即0m ≥,结合1m <得01m ≤<. 综上所述,得到要使①与②无公共解,m 的取值范围是0m ≥.43.(2021·全国·九年级竞赛)已知三个非负数a ,b ,c ,满足325a b c ++=和231a b c +-=.若37m a b c =+-,求m 的最大值和最小值.【答案】m 的最大值为111-;m 的最小值为57- 【解析】【分析】【详解】 解 由325,231a b c a b c ++=+-=可解出73,711a c b c =-=-,于是()()37373711732m a b c c c c c =+-=-+--=-.由0,0,0a b c ≥≥≥得73071100c c c -≥⎧⎪-≥⎨⎪≥⎩解得37711c ≤≤. 所以m 的最大值为71321111m =⨯-=-,m 的最小值为353277m =⨯-=-. 44.(2021·全国·九年级竞赛)某班学生到公园进行活动,划船的有22人,乘电动车的有20人,乘过山车的有19人,既划船又乘电动车的有9人,既乘电动车又乘过山车的有6人,既划船又乘过山车的有8人,并且有4人没有参加上述3项活动中任何一项活动,问这个班学生人数的可能值是多少?【答案】这个班的学生人数可能是42,43,44,45,46,47,48.【解析】【分析】【详解】解 设3项活动都参加了的学生有n 人,于是由容斥原理I 知至少参加了一项活动人数为222019(968)38n n ++-+++=+.所以,这个班的学生人数为38442n n ++=+.另一方面参加了两项活动的学生人数分别是9,6,8,所以06n ≤≤,故424248n ≤+≤.综上所述,这个班的学生人数可能是42,43,44,45,46,47,48.。
初中数学不等式专题练习及答案
不等式(组)专项练习(含答案)A 组 基础题组一、选择题 1.不等式x 2-x -13≤1的解集是( )A.x≤4B.x≥4C.x≤-1D.x≥-12.函数y=√3x +6中自变量x 的取值范围在数轴上表示正确的是( )3.不等式组{3x <2x +4,3-x 3≥2的解集在数轴上表示正确的是( )4.对于不等式组{12x -1≤7-32x ,5x +2>3(x -1),下列说法正确的是( )A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是-3,-2,-1D.此不等式组的解集是-52<x≤25.不等式组{4x -3>2x -6,25-x ≥-35的整数解的个数为 ( ) A.1 B.2 C.3 D.4 二、填空题 6.不等式3x+134>x 3+2的解集是 .7.不等式组{x -3(x -2)>4,2x -15≤x+12的解集为 .8.不等式组{x >-1,x <m有3个整数解,则m 的取值范围是 .9.将函数y=2x+b(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y=|2x+b|(b 为常数)的图象.若该图象在直线y=2下方的点的横坐标x 满足0<x<3,则b 的取值范围为 .三、解答题10.解不等式组{2x ≥-9-x ,5x -1>3(x +1),并把解集在数轴上表示出来.11. x 取哪些整数值时,不等式5x+2>3(x-1)与12x≤2-32x 都成立?12.解不等式组{x -23<1,2x +16>14.B 组 提升题组一、选择题1.关于x 的不等式x-b>0只有两个负整数解,则b 的取值范围是( ) A.-3<b<-2 B.-3<b≤-2C.-3≤b≤-2D.-3≤b<-22.不等式组{1-2x <3,x+12≤2的正整数解的个数是( )A.5B.4C.3D.2 二、填空题3.不等式组{x +1>0,1-12x ≥0的最小整数解是 .三、解答题 4.解不等式:x -22≤7-x 3.5.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的价格和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果 乙种糖果 丙种糖果价格(元/千克) 1525 30 千克数404020(1)求该什锦糖的价格;(2)为了使什锦糖每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克.不等式(组)培优训练一、选择题1.同时满足不等式x4-2<1-x2和6x-1≥3x -3的整数x 是 ( ) A.1,2,3 B.0,1,2,3C.1,2,3,4D.0,1,2,3,42.若三个连续正奇数的和不大于27,则这样的奇数组有( ) A.3组 B.4组 C.5组 D.6组3.在数轴上表示不等式2(1-x)<4的解集,正确的是( )4.如果x 的2倍加上5不大于x 的3倍减去4,那么x 的取值范围是( ) A.x>9 B.x≥9 C.x<9 D.x≤95.如图,直线y=kx+b 经过A(1,2),B(-2,-1)两点,则12x<kx+b<2的解集为( )A.12<x<2 B.12<x<1C.-2<x<1D.-12<x<16.关于x 的不等式组{2x <3(x -3)+1,3x+24>x +a 有四个整数解,则a 的取值范围是( )A.-114<a≤-52 B.-114≤a<-52 C.-114≤a≤-52 D.-114<a<-527.(2017浙江温州)不等式组{x +1>2,x -1≤2的解集是( )A.x<1B.x≥3C.1≤x<3D.1<x≤38.如图,函数y=2x-4与x 轴、y 轴交于点(2,0),(0,-4),当-4<y<0时,x 的取值范围是( )A.x<-1B.-1<x<0C.0<x<2D.-1<x<29.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张票,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少需要( ) A.12 120元 B.12 140元 C.12 160元 D.12 200元10.某商人从批发市场买了20千克肉,每千克a 元,又从肉店买了10千克肉,每千克b 元,最后他又以a+b 2元的单价把肉全部卖掉,结果赔了钱,原因是( )A.a>bB.a<bC.a=bD.与a 和b 的大小无关11.西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费方法,若整个小区每户都安装,收整体初装费10 000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1 000元,则这个小区的住户数( )A.至少为20B.至多为20C.至少为21D.至多为21 二、填空题 12.若代数式t+15-t -12的值不小于-3,则t 的取值范围是 .13.若不等式3x-k≤0的正整数解是1,2,3,则k 的取值范围是 . 14.若(x+2)(x-3)>0,则x 的取值范围是 . 15.若a<b,则2a a+b(填“>”或“<”).16.若不等式组{2x -a <1,x -2b >3的解集为-1<x<1,则(a-3)(b+3)的值为 .17.函数y 1=-5x+12,y 2=12x+1,使y 1<y 2的最小整数x 是 .三、解答题 18.解不等式:3x -25≥2x+13-1.19.若关于x 的方程3(x+4)=2a+5的解大于关于x 的方程(4a+1)x 4=a (3x -4)3的解,求a 的取值范围.20.有人问一位老师,他所教的班有多少位学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩下不足6位同学在操场上踢足球.”试问这个班共有多少位学生.21.随着教育改革的不断深入,素质教育的全面推进,某市利用假期参加社会实践活动的中学生越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量范围.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16 000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月的产量范围.参考答案A组基础题组一、选择题1.A 去分母,得3x-2(x-1)≤6, 去括号,得3x-2x+2≤6,移项、合并同类项,得x≤4,故选A.2.A 根据二次根式的非负性得3x+6≥0,解得x≥-2,表示在数轴上如图所示,故选A.3.A 由3x<2x+4得x<4; 由3-x 3≥2得3-x≥6,解得x≤-3.故不等式组的解集为x≤-3.故选A. 4.B {12x -1≤7-32x ,①5x +2>3(x -1),②解①得x≤4,解②得x>-52, 所以不等式组的解集为-52<x≤4,所以不等式组的整数解为-2,-1,0,1,2,3,4. 故选B.5.C {4x -3>2x -6,①25-x ≥-35,② 解不等式①得,x>-32,解不等式②得,x≤1,所以不等式组的解集是-32<x≤1,所以不等式组的整数解为-1、0、1,共3个.故选C. 二、填空题 6.答案 x>-3解析 去分母,得3(3x+13)>4x+24, 去括号,得9x+39>4x+24, 移项,得9x-4x>24-39, 合并同类项,得5x>-15, 系数化为1,得x>-3, 故原不等式的解集是x>-3.7.答案 -7≤x<1解析 解不等式x-3(x-2)>4得x<1;解不等式2x -15≤x+12得x≥-7,所以不等式组的解集为-7≤x<1. 8.答案 2<m≤3解析 由题意得不等式组的整数解是0,1,2,则m 的取值范围是2<m≤3. 9.答案 -4≤b≤-2解析 根据题意可画大致图象如下:则{0<-b2<3,-2×0-b ≥2,2×3+b ≥2,解得-4≤b≤-2. 三、解答题10.解析 {2x ≥-9-x ,①5x -1>3(x +1),②解①得x≥-3,解②得x>2,∴原不等式组的解集为x>2,其解集在数轴上表示如下:11.解析 根据题意解不等式组{5x +2>3(x -1),①12x ≤2-32x ,② 解不等式①,得x>-52, 解不等式②,得x≤1, ∴-52<x≤1,故满足条件的x 的整数值有-2、-1、0、1. 12.解析 解x -23<1,得x<5,解2x+16>14,得x>-1,在数轴上表示两个不等式的解集如下图:故不等式组的解集为-1<x<5.B组提升题组一、选择题1.D 由x-b>0,解得x>b,∵不等式只有两个负整数解,∴-3≤b<-2,故选D.2.C 解不等式1-2x<3,得x>-1,解不等式x+1≤2,得x≤3,2则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1,2,3这3个,故选C.二、填空题3.答案0解析解不等式x+1>0,得x>-1,解不等式1-1x≥0,得x≤2,2则不等式组的解集为-1<x≤2,所以不等式组的最小整数解为0,故答案为0.三、解答题4.解析3(x-2)≤2(7-x),整理得3x-6≤14-2x,3x+2x≤14+6,5x≤20,x≤4.∴不等式的解集为x≤4.5.解析(1)根据题意,得该什锦糖的价格为15×40+25×40+30×20=22(元/千克).100答:该什锦糖的价格是22元/千克.(2)设加入丙种糖果x 千克,则加入甲种糖果(100-x)千克,根据题意得30x+15(100-x )+22×100200≤20,解得x≤20.答:最多可加入丙种糖果20千克.不等式(组)培优训练一、选择题1.B 由题意得{x 4-2<1-12x ,6x -1≥3x -3,解得-23≤x<4,所以整数x 的取值为0,1,2,3.2.B 设三个连续正奇数中间的一个数为x,则(x-2)+x+(x+2)≤27,解得x≤9,所以x-2≤7.所以x-2只能分别取1,3,5,7.故这样的奇数组有4组.3.A 去括号,得2-2x<4.移项,得-2x<4-2.合并同类项,得-2x<2.系数化为1,得x>-1.在数轴上表示时,开口方向应向右,且不包括端点值.故选A.4.B 由题意可得2x+5≤3x -4,解得x≥9,所以x 的取值范围是x≥9.5.C 根据题图可得,12x<kx+b<2的解集为-2<x<1.故选C.6.B 不等式组{2x <3(x -3)+1,3x+24>x +a 的解集为8<x<2-4a. 因为不等式组有四个整数解,所以12<2-4a≤13,解得-114≤a<-52.7.D 解不等式x+1>2得x>1;解不等式x-1≤2得x≤3.所以不等式组的解集是1<x≤3.8.C9.C 设票价为60元的票数为x 张,票价为100元的票数为y 张,故{x +y =140,y ≥2x ,可得x≤4623.由题意可知x,y 为正整数,故x=46,y=94,∴购买这两种票最少需要60×46+100×94=12 160(元).故选C.10.A 根据题意得20a+10b 30-a+b 2=23a+13b-12a-b 2=16a-16b=16(a-b), 当a>b,即a-b>0时,该商人赔钱,故选A.11.C 设这个小区的住户数为x.则1 000x>10 000+500x,解得x>20.∵x 是整数,∴这个小区的住户数至少为21.故选C.二、填空题12.答案 t≤373解析 由题意得t+15-t -12≥-3,解得t≤373. 13.答案 9≤k<12解析 不等式3x-k≤0的解集为x≤k 3.因为不等式3x-k≤0的正整数解是1,2,3,所以3≤k 3<4,所以9≤k<12.14.答案 x>3或x<-2解析 由题意得{x +2>0,x -3>0①或 {x +2<0,x -3<0,② 解不等式组①得x>3,解不等式组②得x<-2.所以x 的取值范围是x>3或x<-2.15.答案 <解析 因为a<b,所以a+a<a+b,即2a<a+b.16.答案 -2解析 不等式组{2x -a <1,x -2b >3的解集为3+2b<x<a+12.由题意得{3+2b =-1,a+12=1,解得{a =1,b =-2. 所以(a-3)(b+3)=(1-3)×(-2+3)=-2.17.答案 0解析 根据题意得-5x+12<12x+1,解得x>-111,所以使y 1<y 2的最小整数x 是0. 三、解答题18.解析 去分母,得3(3x-2)≥5(2x+1)-15. 去括号,得9x-6≥10x+5-15.移项、合并同类项,得-x≥-4.系数化为1,得x≤4.19.解析 因为关于x 的方程3(x+4)=2a+5的解为x=2a -73, 关于x 的方程(4a+1)x 4=a (3x -4)3的解为x=-163a. 由题意得2a -73>-163a,解得a>718. 故a 的取值范围为a>718.20.解析 设该班共有x 位学生,则x-(x 2+x 4+x 7)<6. ∴328x<6.∴x<56.又∵x,x 2,x 4,x 7都是正整数,则x 是2,4,7的公倍数.∴x=28.故这个班共有28位学生.21.解析 设下个月的产量为x 件,根据题意,得{2x ≤192×200,20x ≤(60+300)×1 000,x ≥16 000,解得16 000≤x≤18 000.即下个月的产量不少于16 000件,不多于18 000件.。
初一不等式竞赛试题及答案
初一不等式竞赛试题及答案一、选择题(每题3分,共15分)1. 如果a > 0,b < 0,且|a| < |b|,那么a + b()A. 总是负数B. 可能是正数C. 总是正数D. 可能是零2. 对于任意实数x,下列不等式中正确的是()A. x^2 ≥ 0B. x^3 ≥ 0C. x^4 ≥ 0D. 所有选项都正确3. 如果x > y,那么下列不等式中一定成立的是()A. x + 1 > y + 1B. x - 1 > y - 1C. 2x > 2yD. 所有选项都正确4. 对于任意实数a和b,下列不等式中正确的是()A. a + b ≥ 0B. a - b ≥ 0C. a * b ≥ 0D. 无法确定5. 如果a < b < 0,那么下列不等式中一定成立的是()A. a^2 > b^2B. a^2 < b^2C. a^3 > b^3D. a^3 < b^3二、填空题(每题2分,共10分)6. 如果x > 0,那么x^2 ________ 0。
7. 对于任意实数x,|x|总是 ________ 0。
8. 如果a > b,且b > 0,那么1/a ________ 1/b。
9. 对于任意实数x,x^3 - 3x^2 + 2x ________ 0。
10. 如果a > 0,且b < 0,那么a + b ________ 0。
三、解答题(每题5分,共20分)11. 证明:对于任意实数x,x^3 - x^2 + x - 1 ≥ 0。
12. 已知a > b,证明:a^2 > b^2。
13. 已知x > y,证明:x^2 > y^2。
14. 已知a < b,证明:a^3 < b^3。
四、综合题(每题10分,共10分)15. 已知a, b, c是正整数,且a < b < c,请证明:(a + b) / c < 1。
初中不等式试题及答案
初中不等式试题及答案一、选择题1. 若不等式2x - 5 > 0成立,则x的取值范围是()。
A. x > 2.5B. x < 2.5C. x > -2.5D. x < -2.5答案:A2. 已知x + 3 > 0,那么以下哪个不等式一定成立?()A. x > -3B. x < -3C. x ≥ -3D. x ≤ -3答案:A二、填空题1. 解不等式3x - 7 < 0,得到x的解集是 x < \frac{7}{3} 。
2. 若不等式组\left\{\begin{matrix}x+2>0\\ 3x-4\leq5\end{matrix}\right. 的解集为x > -2,x ≤ 3,那么x的取值范围是 -2 < x ≤ 3。
三、解答题1. 解不等式2x + 3 > 5,并写出解集。
解:首先将不等式2x + 3 > 5化简,得到2x > 2,然后除以2得到x > 1。
因此,解集为x > 1。
2. 已知不等式组\left\{\begin{matrix}2x-1>3\\x+4<7\end{matrix}\right.,求x的取值范围。
解:首先解第一个不等式2x - 1 > 3,得到x > 2。
然后解第二个不等式x + 4 < 7,得到x < 3。
因此,x的取值范围是2 < x < 3。
四、应用题1. 某商店为了促销,规定购买商品金额超过100元即可享受8折优惠。
小华购买了一些商品,实际支付了80元,请问他购买的商品原价是多少?解:设小华购买的商品原价为x元,则根据题意有0.8x = 80。
解得x = 100。
所以,小华购买的商品原价是100元。
初中数学不等式专题练习及答案
不等式(组)专项练习(含答案)A 组 基础题组一、选择题 1.不等式x 2-x -13≤1的解集是( )A.x≤4B.x≥4C.x≤-1D.x≥-12.函数y=√3x +6中自变量x 的取值范围在数轴上表示正确的是( )3.不等式组{3x <2x +4,3-x 3≥2的解集在数轴上表示正确的是( )4.对于不等式组{12x -1≤7-32x ,5x +2>3(x -1),下列说法正确的是( )A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是-3,-2,-1D.此不等式组的解集是-52<x≤25.不等式组{4x -3>2x -6,25-x ≥-35的整数解的个数为 ( ) A.1 B.2 C.3 D.4 二、填空题 6.不等式3x+134>x 3+2的解集是 .7.不等式组{x -3(x -2)>4,2x -15≤x+12的解集为 .8.不等式组{x >-1,x <m有3个整数解,则m 的取值范围是 .9.将函数y=2x+b(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y=|2x+b|(b 为常数)的图象.若该图象在直线y=2下方的点的横坐标x 满足0<x<3,则b 的取值范围为 .三、解答题10.解不等式组{2x ≥-9-x ,5x -1>3(x +1),并把解集在数轴上表示出来.11. x 取哪些整数值时,不等式5x+2>3(x-1)与12x≤2-32x 都成立?12.解不等式组{x -23<1,2x +16>14.B 组 提升题组一、选择题1.关于x 的不等式x-b>0只有两个负整数解,则b 的取值范围是( ) A.-3<b<-2 B.-3<b≤-2C.-3≤b≤-2D.-3≤b<-22.不等式组{1-2x <3,x+12≤2的正整数解的个数是( )A.5B.4C.3D.2 二、填空题3.不等式组{x +1>0,1-12x ≥0的最小整数解是 .三、解答题 4.解不等式:x -22≤7-x 3.5.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的价格和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果 乙种糖果 丙种糖果价格(元/千克) 1525 30 千克数404020(1)求该什锦糖的价格;(2)为了使什锦糖每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克.不等式(组)培优训练一、选择题1.同时满足不等式x4-2<1-x2和6x-1≥3x -3的整数x 是 ( ) A.1,2,3 B.0,1,2,3C.1,2,3,4D.0,1,2,3,42.若三个连续正奇数的和不大于27,则这样的奇数组有( ) A.3组 B.4组 C.5组 D.6组3.在数轴上表示不等式2(1-x)<4的解集,正确的是( )4.如果x 的2倍加上5不大于x 的3倍减去4,那么x 的取值范围是( ) A.x>9 B.x≥9 C.x<9 D.x≤95.如图,直线y=kx+b 经过A(1,2),B(-2,-1)两点,则12x<kx+b<2的解集为( )A.12<x<2 B.12<x<1C.-2<x<1D.-12<x<16.关于x 的不等式组{2x <3(x -3)+1,3x+24>x +a 有四个整数解,则a 的取值范围是( )A.-114<a≤-52 B.-114≤a<-52 C.-114≤a≤-52 D.-114<a<-527.(2017浙江温州)不等式组{x +1>2,x -1≤2的解集是( )A.x<1B.x≥3C.1≤x<3D.1<x≤38.如图,函数y=2x-4与x 轴、y 轴交于点(2,0),(0,-4),当-4<y<0时,x 的取值范围是( )A.x<-1B.-1<x<0C.0<x<2D.-1<x<29.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张票,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少需要( ) A.12 120元 B.12 140元 C.12 160元 D.12 200元10.某商人从批发市场买了20千克肉,每千克a 元,又从肉店买了10千克肉,每千克b 元,最后他又以a+b 2元的单价把肉全部卖掉,结果赔了钱,原因是( )A.a>bB.a<bC.a=bD.与a 和b 的大小无关11.西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费方法,若整个小区每户都安装,收整体初装费10 000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1 000元,则这个小区的住户数( )A.至少为20B.至多为20C.至少为21D.至多为21 二、填空题 12.若代数式t+15-t -12的值不小于-3,则t 的取值范围是 .13.若不等式3x-k≤0的正整数解是1,2,3,则k 的取值范围是 . 14.若(x+2)(x-3)>0,则x 的取值范围是 . 15.若a<b,则2a a+b(填“>”或“<”).16.若不等式组{2x -a <1,x -2b >3的解集为-1<x<1,则(a-3)(b+3)的值为 .17.函数y 1=-5x+12,y 2=12x+1,使y 1<y 2的最小整数x 是 .三、解答题 18.解不等式:3x -25≥2x+13-1.19.若关于x 的方程3(x+4)=2a+5的解大于关于x 的方程(4a+1)x 4=a (3x -4)3的解,求a 的取值范围.20.有人问一位老师,他所教的班有多少位学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩下不足6位同学在操场上踢足球.”试问这个班共有多少位学生.21.随着教育改革的不断深入,素质教育的全面推进,某市利用假期参加社会实践活动的中学生越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量范围.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16 000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月的产量范围.参考答案A组基础题组一、选择题1.A 去分母,得3x-2(x-1)≤6, 去括号,得3x-2x+2≤6,移项、合并同类项,得x≤4,故选A.2.A 根据二次根式的非负性得3x+6≥0,解得x≥-2,表示在数轴上如图所示,故选A.3.A 由3x<2x+4得x<4; 由3-x 3≥2得3-x≥6,解得x≤-3.故不等式组的解集为x≤-3.故选A. 4.B {12x -1≤7-32x ,①5x +2>3(x -1),②解①得x≤4,解②得x>-52, 所以不等式组的解集为-52<x≤4,所以不等式组的整数解为-2,-1,0,1,2,3,4. 故选B.5.C {4x -3>2x -6,①25-x ≥-35,② 解不等式①得,x>-32,解不等式②得,x≤1,所以不等式组的解集是-32<x≤1,所以不等式组的整数解为-1、0、1,共3个.故选C. 二、填空题 6.答案 x>-3解析 去分母,得3(3x+13)>4x+24, 去括号,得9x+39>4x+24, 移项,得9x-4x>24-39, 合并同类项,得5x>-15, 系数化为1,得x>-3, 故原不等式的解集是x>-3.7.答案 -7≤x<1解析 解不等式x-3(x-2)>4得x<1;解不等式2x -15≤x+12得x≥-7,所以不等式组的解集为-7≤x<1. 8.答案 2<m≤3解析 由题意得不等式组的整数解是0,1,2,则m 的取值范围是2<m≤3. 9.答案 -4≤b≤-2解析 根据题意可画大致图象如下:则{0<-b2<3,-2×0-b ≥2,2×3+b ≥2,解得-4≤b≤-2. 三、解答题10.解析 {2x ≥-9-x ,①5x -1>3(x +1),②解①得x≥-3,解②得x>2,∴原不等式组的解集为x>2,其解集在数轴上表示如下:11.解析 根据题意解不等式组{5x +2>3(x -1),①12x ≤2-32x ,② 解不等式①,得x>-52, 解不等式②,得x≤1, ∴-52<x≤1,故满足条件的x 的整数值有-2、-1、0、1. 12.解析 解x -23<1,得x<5,解2x+16>14,得x>-1,在数轴上表示两个不等式的解集如下图:故不等式组的解集为-1<x<5.B组提升题组一、选择题1.D 由x-b>0,解得x>b,∵不等式只有两个负整数解,∴-3≤b<-2,故选D.2.C 解不等式1-2x<3,得x>-1,解不等式x+1≤2,得x≤3,2则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1,2,3这3个,故选C.二、填空题3.答案0解析解不等式x+1>0,得x>-1,解不等式1-1x≥0,得x≤2,2则不等式组的解集为-1<x≤2,所以不等式组的最小整数解为0,故答案为0.三、解答题4.解析3(x-2)≤2(7-x),整理得3x-6≤14-2x,3x+2x≤14+6,5x≤20,x≤4.∴不等式的解集为x≤4.5.解析(1)根据题意,得该什锦糖的价格为15×40+25×40+30×20=22(元/千克).100答:该什锦糖的价格是22元/千克.(2)设加入丙种糖果x 千克,则加入甲种糖果(100-x)千克,根据题意得30x+15(100-x )+22×100200≤20,解得x≤20.答:最多可加入丙种糖果20千克.不等式(组)培优训练一、选择题1.B 由题意得{x 4-2<1-12x ,6x -1≥3x -3,解得-23≤x<4,所以整数x 的取值为0,1,2,3.2.B 设三个连续正奇数中间的一个数为x,则(x-2)+x+(x+2)≤27,解得x≤9,所以x-2≤7.所以x-2只能分别取1,3,5,7.故这样的奇数组有4组.3.A 去括号,得2-2x<4.移项,得-2x<4-2.合并同类项,得-2x<2.系数化为1,得x>-1.在数轴上表示时,开口方向应向右,且不包括端点值.故选A.4.B 由题意可得2x+5≤3x -4,解得x≥9,所以x 的取值范围是x≥9.5.C 根据题图可得,12x<kx+b<2的解集为-2<x<1.故选C.6.B 不等式组{2x <3(x -3)+1,3x+24>x +a 的解集为8<x<2-4a. 因为不等式组有四个整数解,所以12<2-4a≤13,解得-114≤a<-52.7.D 解不等式x+1>2得x>1;解不等式x-1≤2得x≤3.所以不等式组的解集是1<x≤3.8.C9.C 设票价为60元的票数为x 张,票价为100元的票数为y 张,故{x +y =140,y ≥2x ,可得x≤4623.由题意可知x,y 为正整数,故x=46,y=94,∴购买这两种票最少需要60×46+100×94=12 160(元).故选C.10.A 根据题意得20a+10b 30-a+b 2=23a+13b-12a-b 2=16a-16b=16(a-b), 当a>b,即a-b>0时,该商人赔钱,故选A.11.C 设这个小区的住户数为x.则1 000x>10 000+500x,解得x>20.∵x 是整数,∴这个小区的住户数至少为21.故选C.二、填空题12.答案 t≤373解析 由题意得t+15-t -12≥-3,解得t≤373. 13.答案 9≤k<12解析 不等式3x-k≤0的解集为x≤k 3.因为不等式3x-k≤0的正整数解是1,2,3,所以3≤k 3<4,所以9≤k<12.14.答案 x>3或x<-2解析 由题意得{x +2>0,x -3>0①或 {x +2<0,x -3<0,② 解不等式组①得x>3,解不等式组②得x<-2.所以x 的取值范围是x>3或x<-2.15.答案 <解析 因为a<b,所以a+a<a+b,即2a<a+b.16.答案 -2解析 不等式组{2x -a <1,x -2b >3的解集为3+2b<x<a+12.由题意得{3+2b =-1,a+12=1,解得{a =1,b =-2. 所以(a-3)(b+3)=(1-3)×(-2+3)=-2.17.答案 0解析 根据题意得-5x+12<12x+1,解得x>-111,所以使y 1<y 2的最小整数x 是0. 三、解答题18.解析 去分母,得3(3x-2)≥5(2x+1)-15. 去括号,得9x-6≥10x+5-15.移项、合并同类项,得-x≥-4.系数化为1,得x≤4.19.解析 因为关于x 的方程3(x+4)=2a+5的解为x=2a -73, 关于x 的方程(4a+1)x 4=a (3x -4)3的解为x=-163a. 由题意得2a -73>-163a,解得a>718. 故a 的取值范围为a>718.20.解析 设该班共有x 位学生,则x-(x 2+x 4+x 7)<6. ∴328x<6.∴x<56.又∵x,x 2,x 4,x 7都是正整数,则x 是2,4,7的公倍数.∴x=28.故这个班共有28位学生.21.解析 设下个月的产量为x 件,根据题意,得{2x ≤192×200,20x ≤(60+300)×1 000,x ≥16 000,解得16 000≤x≤18 000.即下个月的产量不少于16 000件,不多于18 000件.。
不等式经典题型专题练习(含答案)-
26.解:(1)原不等式组的解集是x<2;(2)a=1.
27.(1)答案见解析;(2) 型住房 套, 型住房 套获得利润最大;(3)答案见解析.
19.6
20.(1)参赛学生人数在155≤x<200范围内;
(2)参赛学生人数是180人.
21.(1)40,50(2)当m=15时,总费用最低
22.(1)共有8种购买方案,
方案1:购买康乃馨1支,购买兰花6支;
方案2:购买康乃馨1支,购买兰花7支;
方案3:购买康乃馨1支,购买兰花8支;
方案4:购买康乃馨2支,购买兰花5支;
(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?
25.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次 .已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为acm,求a的取值范围.
16.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?
17.3个小组计划在10天内生产500件产品(计划生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产一件产品,就能提前完成任务。每个小组原先每天生产多少件产品?
方案5:购买康乃馨2支,购买兰花6支;
方案6:购买康乃馨3支,购买兰花4支;
初中数学竞赛专题训练之不等式含答案
b c d > < ⎧ 2 x + 5 ⎪⎪ 32 B. -6≤a<- 11 2 C. -6<a ≤- 112 D. -6≤a ≤- 11a ()初中数学竞赛专项训练(4)(不等式)一、选择题:1、若不等式|x+1|+|x-3|≤a 有解,则 a 的取值范围是A. 0<a ≤4B. a ≥4C. 0<a ≤2D. a ≥2( )2、已知 a 、、、 都是正实数,且a c a c a c < ,给出下列四个不等式:① > ② <b d a + bc +d a + b c + db c b d③ ④ 其中正确的是 ( )a +bc +d a + b c + d A. ①③ B. ①④ C. ②④ D. ②③3、已知 a 、b 、c 满足 a <b <c ,ab+bc+ac =0,abc =1,则( )A. |a+b |>|c|B. |a+b|<|c|C. |a+b|=|c|D. |a+b|与|c|的大小关系不能确定> x - 5 4、关于 x 的不等式组 ⎨ 只有 5 个整数解,则 a 的取值范围是 ()⎪ x + 3 < x + a ⎪⎩ 2A. -6<a<-1125、设关于 x 的方程 ax 2 + (a + 2) x + 9a = 0 有两个不等的实数根 x 、 x ,且 x <1< x ,那么 a 的取值12 1 2范围是 ( )A. - 2 2< a <7 5B. a >2 5 C. a < - 2 7 D. - 2 11< a < 06、下列命题:①若 a=0,b ≠0,则方程 a x = b 无解 ②若 a=0,b ≠0,则不等式 a x > b 无解 ③若 a ≠0,则方程 ax = b 有惟一解 ④若 a ≠0,则不等式 ax > b 的解为 x >A. ①②③④都正确B. ①③正确,②④不正确C. ①③不正确,②④正确D. ①②③④都不正确 b,其中)7、已知不等式①|x-2|≤1 ② ( x - 2) 2 ≤ 1 ③ ( x - 1)( x - 3 ) ≤ 0 ④ x - 1 ≤ 0 其中解集是1 ≤ x ≤ 3 的不等x - 3式为A. ①B. ①②C. ①②③( )D. ①②③④8、设 a 、b 是正整数,且满足 56≤a+b ≤59,0.9<A. 171B. 177C. 180a b<0.91,则 b 2-a 2 等于D. 182( )二、填空题:1、若方程2 x + a x - 2= -1的解是正数,则 a 的取值范围是_________ 2、乒乓球队开会,每名队员坐一个凳子,凳子有两种:方凳(四脚)或圆凳(三脚,一个小孩走进会场,13、已知不等式①|x+2|<3②(x+2)2-9<0③x-16<0④<-1,其中解集是-5<x<1 x+5x-1的不等式有_____个。
【人教版】初中数学竞赛专题:第5章不等式2含答案
2b a c b a b c ≥ 2 (b a)(b c) ,
2c a b c a c b ≥ 2 (a c)(c b) ,
所以 (1 a)(1 b)(1 c) ≥ 8(b c)( a c)( a b)
8(1 a)(1 b)(1 c) .
5.4.11★★( 1)已知正数 x 、 y 、 z 满足
x y z 1,
2.
a
a
( 4)由( 3)可得
1
1 (a b)
2
a
b≥2 2
4,
ab
ba
这个不等式说明了两个数的和与倒数和之间的不等式关系
.
( 5)由 a2 b 2 ≥ 2ab , a2 c2 ≥ 2ac , b2 c2 ≥ 2bc 可以得到
a2 b2 c 2 ≥ ab bc ac .
5.4.8★★设 a , b , c 0 ,求证: b2 c2 a2
( 2)若 1 x 1 ,求 ( x 1)(1 3x) 的最大值 . 3
解析 (1)因为
1
x(1 2 x)
2x(1
2
2
1 (2 x 1 2x)
≤
2
4
2x) 1, 8
当x
1 时等号成立,所以,欲求的最大值是
1 .
4
8
( 2)因为
(x 1)(1 ≤ 1 (3x
3
1 3x) (3x
3 3 1 3x)2
4
3)(1 3 x) 4
4
4
≤ y≤4, ≤ z≤4.
3
3
5.4.19★★★已知实数 a、 b 、 c 满足: a b c ,且 a b c 1, a2 b2 c2 1 .
求证:
4 1a b .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛专项训练(4)(不等式)一、选择题:1、若不等式|x+1|+|x-3|≤a 有解,则a 的取值范围是 ( )A. 0<a ≤4B. a ≥4C. 0<a ≤2D. a ≥2 2、已知a 、b 、c 、d 都是正实数,且d c b a <,给出下列四个不等式:①d c c b a a +>+ ②dc cb a a +<+ ③d c c b a b +>+ ④dc d b a b +<+其中正确的是 ( ) A. ①③ B. ①④ C. ②④ D. ②③ 3、已知a 、b 、c 满足a <b <c ,ab+bc+ac =0,abc =1,则 ( ) A. |a+b |>|c| B. |a+b|<|c| C. |a+b|=|c| D. |a+b|与|c|的大小关系不能确定4、关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 235352只有5个整数解,则a 的取值范围是 ( )A. -6<a<-211 B. -6≤a<-211 C. -6<a ≤-211 D. -6≤a ≤-211 5、设关于x 的方程09)2(2=+++a x a ax 有两个不等的实数根1x 、2x ,且1x <1<2x ,那么a 的取值范围是( )A. 5272<<-a B. 52>a C. 72-<a D.0112<<-a 6、下列命题:①若a=0,b ≠0,则方程b ax =无解 ②若a=0,b ≠0,则不等式b ax >无解 ③若a ≠0,则方程b ax =有惟一解 ④若a ≠0,则不等式b ax >的解为abx >,其中( )A. ①②③④都正确B. ①③正确,②④不正确C. ①③不正确,②④正确D. ①②③④都不正确7、已知不等式①|x-2|≤1 ②1)2(2≤-x ③0)3)(1(≤--x x ④031≤--x x 其中解集是31≤≤x 的不等式为( ) A. ①B. ①②C. ①②③D. ①②③④8、设a 、b 是正整数,且满足56≤a+b ≤59,0.9<ba<0.91,则b 2-a 2等于 ( )A. 171B. 177C. 180D. 182二、填空题: 1、若方程122-=-+x ax 的解是正数,则a 的取值范围是_________ 2、乒乓球队开会,每名队员坐一个凳子,凳子有两种:方凳(四脚)或圆凳(三脚),一个小孩走进会场,他数得人脚和凳脚共有33条(不包括小孩本身),那么开会的队员共有____名。
3、已知不等式①3|2|<+x ②09)2(2<-+x ③051<+-x x ④116-<-x ,其中解集是15<<-x 的不等式有_____个。
4、若关于x 的一元二次方程02)5(22=+-+x a x 无实数根,则a 的取值范围是___5、在本埠投寄平信,每封信质量不超过20g 时付邮费0.80元,超过20g 而不超过40g 时付邮费1.6元,依次类推,每增加20g 需增加邮费0.80元(信的质量在100g 以内),如果某人寄一封信的质量为72.5g ,那么他应付邮费_______6、若1x 、2x 都满足条件|32||12|++-x x =4且1x <2x 则1x -2x 的取值范围是___三、解答题1、有一水池,池底有泉水不断涌出,要将满池的水抽干,用12台水泵需5小时,用10台水泵需7小时,若要在2小时内抽干,至少需水泵几台?2、已知一元二次方程01)4()1(22=+--+x k x k 的一个根大于1,另一个根小于1,求整数k 的值。
3、若关于x 的不等式|ax+a+2|<2有且只有一个整数解,求a 的整数值。
4、某宾馆一层客房比二层客房少5间,某旅游团48人,若全安排在第一层,每间4人,房间不够,每间5人,则有房间住不满;若全安排在第二层,每3人,房间不够,每间住4人,则有房间住不满,该宾馆一层有客房多少间?5、某生产小组开展劳动竞赛后,每人一天多做10个零件,这样8个人一天做的零件超过200个,后来改进技术,每人一天又多做27个零件,这样他们4个人一天所做零件就超过劳动竞赛中8个人做的零件,问他们改进技术后的生产效率是劳动竞赛前的几倍?数学竞赛专项训练(4)不等式参考答案一、选择题1、B 。
解:B4a 4|3-x ||1x |x 41x |1x |3x 4x -3|3-x |-1x 4x -31x |3x ||1x |03-x 0131。
故选原不等式有解,必须,,恒有因此,对一切实数时,当时,当,所以,+时, 当≥∴≥++>+=+>>=<=++=+++≤≥≤≤-x x2、D 。
解:dc d b a b d d c b b a d c b a d c b a d c c b a a c b c a b a c d a b c d a b d c b a d c b a +>+⇒+<+⇒+<+⇒<+<+⇒+>+⇒+>+⇒>⇒<∴1111都是正实数,、、、因 故选D 。
3、A 。
解:||||000100)(21)(2)(22222222222222c c b a b a c b abc a c b a c a c b b a c b a c b a abc c a c b b a ac bc ab =>--=+∴><∴>=<∴<<<++-=++∴=+++++=++ ,又 故选A 。
4、C 。
解:211615231423191817161552320-≤<-∴⎩⎨⎧<-≥-=⎩⎨⎧-><a a a a x ax x ,的取值范围是,、、、、个整数解,即解只能是,不等式组只有解不等式组,得故选C 。
5、D 。
解:易知0≠a ,原方程可变形为09)21(2=+++x a x ,记9)21(2+++=x ax y 则这个抛物线开口向上,因211x x <<,故当1=x 时,0<y 。
即09)21(1<+++a ,解得0112<<-a 故选D 。
6、B 。
7、C 。
8、B 。
解:由题设得:599.0<+b b 5691.0>+b b ,所以30=b ,31。
当b =30时,由0.9b<a<0.91b ,得27<a<28,这样的正整数a 不存在。
当b =31时,由0.9b<a<0.91b ,得27<a<29,所以a =28,所以17722=-a b 故选B 。
二、填空题1、解:解方程122-=-+x a x 得032>-=a x ,所以2<a ,但2≠x ,即232≠-a, 所以4-≠a ,故应填2<a 且4-≠a 。
2、解:设有x 人开会,则全坐圆凳共有x 5条脚,全坐方凳共有x 6条脚,于是x x 6335≤≤,即536215≤≤x ,而x 只能为整数,6=∴x ,故应填6。
3、解:由①得323<+<-x 即15<<-x ,则②得0)1)(5(<-+x x ,∴15<<-x 。
由③得15<<-x 。
由④得0116<+-x ,即015<-+x x , ∴15<<-x 。
故应填4。
4、解:0224)5(2<⨯⨯--=∆a ,即0)9)(1(<--a a ,∴91<<a ,故应填91<<a 。
5、解:4205.72320⨯<<⨯ ,由题意应付邮费0.8×4=3.2元,故应填3.2元。
6、解:4|32||12|=++-x x ,两边都除以2得:2|23||21|=++-x x 。
|21|-x 表示数轴上表示数x 的点到表示21的点之间的距离,|23|+x 表示数轴上表示数x 的点到表示数-23的点之间的距离,显然,当23<x 或21>x 时,2|)23(21||23||21|=-->++-x x ,而当2123≤≤-x 时,2|23||21|=++-x x ,又21x x <,∴212321≤<≤-x x ,故0221<-≤-x x ,故应填0221<-≤-x x 。
三、解答题1、解:设开始抽水时满池水的量为x ,泉水每小时涌出的水量为y ,水泵每小时抽水量为z ,2小时抽干满池水需n 台水泵,则⎪⎩⎪⎨⎧≤+⨯=+⨯=+ ③ ② ①nz y x z y x z y x 2210771255由①②得⎩⎨⎧=zy zx 535=,代入③得:nz z z 21035≤+∴2122≥n ,故n 的最小整数值为23。
答:要在2小时内抽干满池水,至少需要水泵23台。
2、解:原方程有一个大于1的根和一个小于1的根,相当于抛物线1)4()1(22+--+=x k x k y 与x 轴的两个交点分在点(1,0)的两旁,因为012>+k ,抛物线开口向上,所以当1=x 时,y 值小于0即可,即01120)1)(2(0201)4()1(22和的值只有整数 -∴<<-∴<-+<-+∴<+--+k k k k k k k k3、解:由题可得a ax a -<<--4,若0=a ,则004<<-,不等式无解,不合题意舍去。
若0>a ,则141-<<--x a,∵不等式有惟一整数解,∴2413-<--<-a ,即241<<a 。
∴1421<<a,即42<<a ,∴整数a 值只能为3。
若0<a 则a x 411--<<- ∵不等式有惟一整数解 ∴1410<---<a ,即241<-<a,∴1421<-<a ,即24-<<-a ,∴整数a 的值为-3。
综上所求,a 的整数值为±3。
4、解:设第一层有客房x 间,则第二层有)5(+x 间,由题可得⎩⎨⎧+<<+<< ② ①)5(448)5(35484x x x x由①得:⎩⎨⎧<<xx 548484,即12539<<x由②得:⎩⎨⎧+<<+)5(44848)5(3x x ,即117<<x∴原不等式组的解集为11539<<x ∴整数x 的值为10=x 。