条件平差原理
条件平差公式
![条件平差公式](https://img.taocdn.com/s3/m/ab235e17a4e9856a561252d380eb6294dd88221d.png)
条件平差公式
条件平差公式是一种用于对多个测量值进行分析和校正的数学方法。
其基本原理是,将所有测量值组成一个方程组,其中每个方程表示一个测量量与其他测量量之间的关系。
通过求解这个方程组,可以得到每个测量值的最优估计值和方差。
具体地说,条件平差公式可以分为两类:一类是基于观测方程的条件平差公式,另一类是基于误差方程的条件平差公式。
观测方程的条件平差公式是指,将所有测量值表示为观测方程的形式,然后通过最小二乘法求解得到最优估计值和方差。
观测方程通常表示为线性方程组的形式,即y=AX+e,其中y表示观测值,A表示系数矩阵,X表示未知数向量,e表示误差向量。
误差方程的条件平差公式是指,将所有误差表示为误差方程的形式,然后通过最小二乘法求解得到最优估计值和方差。
误差方程通常表示为非线性方程组的形式,即f(X)=e,其中f表示误差函数,X表示未知数向量,e表示误差向量。
无论是基于观测方程还是基于误差方程的条件平差公式,都具有很强的实用性和广泛的应用范围。
它们可以用于地理测量、航空测量、工程测量等领域,对于提高测量精度和减小误差具有重要意义。
- 1 -。
附有参数的条件平差
![附有参数的条件平差](https://img.taocdn.com/s3/m/95ebc10d5627a5e9856a561252d380eb6294238b.png)
4)按式(8)和式(9)计算参数近似值的改正
数 xˆ 和观测值L的改正数V。
xˆ
N
1 bb
B
T
N aa1W
V
P
1
AT
N
1 aa
(
Bxˆ
W
)
5)计算观测值和参数的平差值。
Lˆ L V , Xˆ X 0 xˆ
6)用平差值重新列平差值条件方程,检核整个 计算的正确性。
QLK QWK Q XˆK QKK QVK QLˆK
QLV QWV Q XˆV QKV QVV QLˆV
QLLˆ QWLˆ
Q XˆLˆ QKLˆ
QVLˆ
QLˆLˆ
Q
L
W
Xˆ
K
V
Lˆ
L
Q
QAT QAT Naa1BQXˆXˆ QA T QKK
QVV
Q QVV
W
AQ
N aa
BQXˆXˆ
解 : 本题n=3 ,t=2,r=n-t=1,又设u=1 ,故条件方
程的总数等于2。 两个平差值条件方程为
lˆ1lˆ2 lˆ3 0 lˆ3 Xˆ 0
将 Lˆi Li vi Xˆ X 0 xˆ,X 0 l3 , 代入以上条件方程,
并将它们线性化,可得
l2v1 l1v 2 v3 l1l2 l3 0 v3 xˆ 0
误差理论与测量平差
附有参数的条件平差
1.平差原理
一般地,附有参数的条件平差的函数模型为:
(1) A V B xˆ W 0
cn n1 cu u1 c1 c1
式中V为观测值L的改正数,xˆ 为参数近似值 X 0 的
改正数。其系数矩阵的秩分别为 rk(A) c, rk(B) u
平差原理和方法的使用与分析
![平差原理和方法的使用与分析](https://img.taocdn.com/s3/m/dc59a6c3690203d8ce2f0066f5335a8103d26659.png)
平差原理和方法的使用与分析一、引言平差作为一种测量数据处理的方法,广泛应用于测绘、空间定位、工程测量等领域。
平差的目的是通过处理观测数据,获得更为准确的测量结果。
在实际应用中,平差原理和方法的正确使用与分析将直接影响测量成果的质量。
二、平差原理的理解与应用平差的基本原理是通过最小二乘法,将观测数据的误差最小化。
在平差过程中,需要定义观测量、未知量和条件方程。
观测量是指通过测量得到的待确定的量,未知量是指需要求解的量,而条件方程则是将观测数据与未知量联系起来的等式。
在实际应用中,我们常用的平差方法有最小二乘平差、加权最小二乘平差和限差平差等。
最小二乘平差是指通过最小化观测数据的加权残差平方和,来获得最优的未知量组合。
加权最小二乘平差则是在最小二乘平差的基础上,考虑观测数据的精度权重,以提高平差结果的准确性。
限差平差是将观测数据的精度限制在一定范围内,以排除异常值的影响。
三、平差方法的适用性分析在选择平差方法时,我们需要根据实际情况进行适用性分析。
首先,应考虑观测数据的误差特点,如观测数据是否服从正态分布、是否存在系统误差等。
对于服从正态分布的数据,最小二乘平差是一种较为合适的方法。
对于存在系统误差的数据,可以考虑加权最小二乘平差来降低系统误差对结果的影响。
其次,应考虑观测数据的精度要求,以及所求未知量的敏感度。
如果精度要求较高或者所求未知量对结果较为敏感,可以采用限差平差来排除异常值的影响。
四、平差方法的误差分析在平差过程中,误差分析是至关重要的。
常见的误差包括观测误差、建模误差和未知量的估计误差。
观测误差是指测量仪器、环境等因素引起的误差,可以通过观测数据的重复测量来进行估计。
建模误差则是由于条件方程的建立不完善或者模型假设不准确而导致的误差。
未知量的估计误差是未知量的真值与估计值之间的差异。
误差分析的结果可用于判断平差结果的可靠性。
如果误差分析结果较小,说明平差结果较为可靠;如果误差分析结果较大,则需要重新考虑观测数据的准确性和建模的合理性。
1-2条件平差原理--条件平差的计算步骤
![1-2条件平差原理--条件平差的计算步骤](https://img.taocdn.com/s3/m/df2819af89eb172ded63b76e.png)
得: 3ka 9 0
3.步骤三
依据
K
N
W 1
aa
计算出联系数K。
解法方程得: ka 3
C
L3
L1
A
L2
B
三角形示例图
条件平差的计算步骤
4.步骤四
由式 V P 1 AT K 计算出观测值改正数,并依据式 Lˆ L V
出观测值的平差值。
计算
1 0 0 1
Lˆ3
L3
v3
731234
条件平差的计算步骤
5.步骤五
为了检查平差计算的正确性,将平差值待入平差值条件方程式 ALˆ A0 0 ,
看是否满足方程式关系。
583115 481611 731234 180 0
3
V P1AT K 0 1 0 1 3 3
0 0 1 1
3
Lˆ1 Lˆ2
L1
L2
v1 v2
583115 481611
条件平差的计算步骤
1.步骤一
根据实际问题,确定几何模型的总观测值的个数 n,必要观测值的个数 t 及
多余观测值的个数 r=n-t,进一步列出平差值条件方程 ALˆ A0 0 或改正数条 件方程 AV W 0 。
C
L3
L1
A
L2
B
三角形示例图
以确定三角形的形状为例,对三角形中的三个 内角等精度观测,得观测值如下: L1=58°31′12″,L2=48°16′08″,L3=73°12′31″,试用条 件平差法,计算三角形各内角的平差值。
条件平差的基本原理
![条件平差的基本原理](https://img.taocdn.com/s3/m/61cd0491294ac850ad02de80d4d8d15abe23006b.png)
v1
V
n ,1
v2
vn
wa F1L1, L2 ,, Ln
wb F2 L1, L2 ,, Ln
wr Fr L1, L2 ,, Ln
则相应方程的矩阵表达式分别为
F Lˆ 0
AV W 0 W FL
3. 基础方程
按求函数极值的拉格朗日乘数法,设乘数
5)求观测值的平差值; Lˆ L V
6)检核。 F (Lˆ) 0
7)检核。
3. 实例分析 例6-1水准网如右图:观测值及其权矩阵如下:
L 0.023 1.114 1.142 0.078 0.099 1.216 T m
P diag1 1 1 2.5 2.5 2.5
求各水准路线的最或然值。
解: 1)列出条件方程
或
v1 v2 v3 v2
0 0 v4 4 0
v1
1 0
1 1
1 0
0 1
v2 vv43
0 4
0 0
令c=1,则由定权公式
,有 pi
C Si
1 Si
P 1
1 p1
0
0
0
0
1 p2
0
0
0
0
1 p3
0
0 s1 0 0 0 2 0 0 0
0 0
0 0
1 p4
0
K
r ,1
ka
kb
kr T
,称为联系数向量。组成函数
V T PV 2K T AV W
将 φ 对V 求一阶导数,并令其为零,得
d dV
2V T P
2KT
A
0
两边转置,得
3-2 高程网条件平差
![3-2 高程网条件平差](https://img.taocdn.com/s3/m/545298afdd3383c4bb4cd237.png)
§3-2 高程网条件平差0.5学时高程网包括水准网和三角高程网。
对高程网进行条件平差时,一般以已知高程点的高程值作为起算数据,以各测段的观测高差值作为独立观测值,写出其满足的条件关系式,按照条件平差的原理解算各高差值的改正数和平差值,然后再计算出各待求点的高程平差值,并进行精度评定。
一、高程网条件方程的个数及条件方程式进行条件平差时,首先要确定条件方程的个数。
从上节内容可知道,在一般情况下,条件方程式的个数与多余观测的个数r相符。
而要确定多余观测个数就必须先确定必要观测个数t。
高程测量(包括三角高程测量和水准测量)的主要目的是确定未知点的高程值。
如图3-2所示高程网中,有2个已知高程点A、B,3个未知高程点C、D、E和8个高差观测值。
从图中可以看出,要确定3个未知点的高程值,至少需要知道其中的3个高差观测值(如h1、h2、h3,或h6、h7、h8,或h2、h4、h5等多种选择),即必要观测个数t = 3。
图3-2 则多余观测个数r = n – t = 8 - 3 = 5,可以写出这5个条件方程式⎪⎪⎪⎭⎪⎪⎪⎬⎫=-++=+-=-+=+-=--0ˆˆ0ˆˆ ˆ0ˆˆˆ0 ˆˆˆ 0ˆˆˆ72875764532421B A H H h h h h h h h h h h h h h h相对应的改正数条件方程式形式⎪⎪⎪⎭⎪⎪⎪⎬⎫=-+=-+-=--+=-+-=--+00 0005724875376425321421w v v w v v v w v v v w v v v w v v v其中⎪⎪⎪⎭⎪⎪⎪⎬⎫-++-=+--=-+-=+--=---=)()()()()(7258754764353224211B A H H h h w h h h w h h h w h h h w h h h w这些条件方程式(或改正数条件方程式),大体上分为两类:其一是闭合路线情况,如条件方程式中前四个条件方程式,可称为闭合条件方程式;其二是附合路线情况,如条件方程式中第五个,反应的是从A 点出发后测得的B 点的高程值是否与B 点的已知高程值相等的问题,可称为附合条件方程式。
条件平差
![条件平差](https://img.taocdn.com/s3/m/24d8fe3da76e58fafab00346.png)
得法方程: AQATK-W=0 T 1 T N AQA AP A 令 aa r .r r .nn.nn.r 则有: NaaK-W=0
法方程系数阵Naa是一个r阶的满秩方阵,且可逆
N11k1 N12k 2 N1r k r W1 0 N 21k1 N 22k 2 N 2 r k r W2 0 N r1k1 N r 2 k 2 N rn k r Wr 0
目标函数:f x min n1 x a h x min F a , x f 1k 约束条件: h x 0 k 1 n1 F a, x
0 a F a, x 0 x
L2
L4 L1 L3 L2
A
B
C
§6-2 条件方程
条件方程的个数等于多余观测数r。条件方程之间 不能线性相关,在一个平差问题中,条件方程的个 数是固定不变的.
一、r的确定: r=n-t 二、条件方程的列立: 原则:足数(r个),线性无关,形式简单,易 于列立
控制网常见几何模型
水准网 三角网(测角网) 三边网(测边网) GPS基线向量网 单一附合导线
由此可得联系数K的解:
r ,1
K ( AQA ) W
T
T 1
V QA K
条件平差的 最小二乘解:
n,1
ˆ L V L
三、条件平差计算步骤:
1.根据平差问题的具体情况,列出条件方程,条 件方程的个数等于多余观测数r。 2.组成法方程式,法方程的个数等于多余观测数r 3.解法方程,求出联系数K值。 4.将K代入改正数方程式,求出V值,并求出观测 值的平差值=L+V。 5.检验平差计算的正确性(可用平差值重新列出 平差值条件方程式,看其是否满足方程)。
第三章条件平差
![第三章条件平差](https://img.taocdn.com/s3/m/485021e004a1b0717fd5ddde.png)
独立三角网
自由三角网
自由测角网
附合三角网(测角)
• 例:
∆ቤተ መጻሕፍቲ ባይዱ
α ∆
当n=35、n=22、n=35+22时,其条件式个数各为多 少?有哪些类型?
图形条件(内角和条件):
B
b1
a2
c1 D c2 a1 b3 c3 a3 b2 C
A
圆周条件(水平条件):
b1
a2
c1 a1 a3 c3
c2 b2 b3
5.1.06、 5.1.07
上节内容回顾:
改正数条件式 观测值的协方差阵 法方程
AV W 0
D P Q
2 0 1 2 0
r n n n
Naa K W 0 N aa AQ AT
r r n r
改正数方程
V P A K QA K
T
1 T
wr
T
• 则条件方程可写成:
ˆA 0 AL 0
• 以及改正数条件式:
W AL A0
AV W 0
这样一来,对于一个平差问题,我们能够得到 其数学模型:
AV W 0 D P Q
2 0 1 2 0
下面要解决的问题是: 由上述的数学模型来求改正数V。
不难发现,不能求得V的唯一解!!! 解决不唯一解的办法就是附加一个约束条件---“最小二乘估计” 即满足:
极条件(边长条件):
b1 a2
c1
a1 b3 c3
c2 b2 a3
极条件(边长条件)就是指由不同路线推算得到 的同一边长的长度应相等。
三角网的基本图形 1) 单三角形 2)大地四边形
3)中点多边形。
第五章条件平差
![第五章条件平差](https://img.taocdn.com/s3/m/655c19b1284ac850ad0242ae.png)
二、法方程及改正数方程
将V T PV min的原则作用于条件方程 。
组成新函数:
V T PV-2k T AV W
式中
r 1
k k a , kb , k r 条件方程联系数
T
对新函数求导: T T 2V P 2A k ---改正数方程
dSCD ˆ f T dL SCD ˆ SCD T 2 T ˆ f D f f QL ˆL ˆ ˆL ˆ f 0 L S CD
得测边相对中误差为: 3、大地四边形测角网
2
ˆS
CD
SCD
=
ˆ 0 f T QL ˆL ˆ f
设
F ( f1 , f 2 , f m )
T T
G ( g1 , g 2 , g m ) 有
均为m维向量函数,且 f i、g i 均为x的函数, d F G dG F T dG T dF F G dx dx dx dx
注意:当N为满秩方阵时,才有 N 1唯一存在,法方程才有唯
测方向网
测角网
测角网
三角网
测边网
测边长
测边+测方向
边角网
(导线网) 测边+测角
三、三角网的布设--从高级到低级逐级布设 四、三角网平差的方法 1。严密平差 ----遵守VTPV=min原则 ; 2。近似平差
5.3 测角网条件平差
独立网(经典自由网)---只有必要起算数据d。
非独立网(附合网)---已知条件超过必要起算数据。
3 图形条件: n=12 t=2×2+4=8 r =4 1 极条件:
v2 v1 v6 v5 v11 v10 W1 0
导线网条件平差计算
![导线网条件平差计算](https://img.taocdn.com/s3/m/27aa0c7086c24028915f804d2b160b4e767f812b.png)
感谢您的观看
汇报人:XX
实例总结和经验教训
实例分析:介绍 具体的导线网条 件平差计算实例, 包括数据来源、 计算过程和结果
分析
总结:对实例分 析的结果进行总 结,提炼出导线 网条件平差计算 的关键技术和方
法
经验教训:分享 在实例分析过程 中遇到的问题和 解决方法,以及 可以改进和优化
的地方
实例应用:探讨 实例分析结果在 实际工程中的应 用,以及如何根 据实际情况调整 和改进计算方法
精度分析和误差处理
精度分析:通过对比实际测量数据和计算结果,评估平差计算的准确性和可靠性。 误差处理:对测量过程中产生的误差进行修正,以提高平差计算的精度。 实例分析:通过具体实例展示精度分析和误差处理在导线网条件平差计算中的应用。 注意事项:强调在进行精度分析和误差处理时应注意的事项,以确保计算结果的准确性。
软件测试和性能评估
测试目的:验证软件是否符合 设计要求和功能需求
测试方法:单元测试、集成测 试、系统测试和验收测试
性能评估指标:处理速度、精 度、可靠性、可扩展性和可维 护性
评估工具:负载测试、压力测 试和性能分析工具
导线网条件平差 计算的未来发展
导线网条件平差计算技术的发展趋势和方向
智能化:随着人 工智能技术的不 断发展,导线网 条件平差计算将 更加智能化,能 够自动识别和解
决各种问题。
自动化:未来导 线网条件平差计 算将更加自动化, 减少人工干预, 提高计算效率和
精度。
精细化:随着测量 技术和数据处理技 术的发展,导线网 条件平差计算将更 加精细化,能够对 各种复杂情况进行
精确处理。
集成化:未来导 线网条件平差计 算将与其他测量 技术进行集成, 形成更加完整的 测量系统,提高 测量精度和效率。
6 第五章 条件平差
![6 第五章 条件平差](https://img.taocdn.com/s3/m/b6bb3fd926fff705cc170aa4.png)
三角网的基本图形构成
单三角形; 大地四边形; 中点多边形
30
§2 条件方程
二.三角网 1.独立测角网条件方程
测角网的观测值
测角网的观测值很简单,全部是角度观测值
测角网的作用
确定待定点的平面坐标
测角网的基准
位置基准2个(任意一点坐标X0Y0) 方位基准1个(任意一边方位角α0) 长度基准1个(任意一边的边长S0)
Av f 0
V PV min
T
在满足 Av f 0 的条件下,
求函数 V PV min 的V值
T
条件 极值 问题
4
§1 条件平差原理 条件平差的步骤
5
§1 条件平差原理
列条件方程 观测值权阵
最小二乘原则
求唯一解
6
§1 条件平差原理 一.基础方程及其解
r个线性条件方程:
3 ka 3 k 2 0 6 b
写成矩阵形式:
(2)定权: 100米量距为单位权:Pi=100/Si
1/Pi=Si/100 1/P1=2, 3=3, 1/P 1/P2=3, 4=5, 1/P
2 0 Q 0 0 0 3 0 0 0 0 3 0 0 0 0 5
AV f 0 PLL diag p1 p2 p4
组、解法方程: AQAT K f 0
由改正数方程求: V P A K
T 1
ˆ 求平差值: L L V
15
§1 条件平差原理 二.条件平差的求解步骤及示例
条件平差计算步骤
16
§1 条件平差原理
例:
r 1
r 1
r个改正数条件式:
a1v1 a2 v2 an vn wa 0 b1v1 b2 v2 bn vn wb 0 r1v1 r2 v2 rn vn wr 0
1-1条件平差原理--求取最或是值
![1-1条件平差原理--求取最或是值](https://img.taocdn.com/s3/m/e8be0509580216fc700afd76.png)
V P 1 AT K
Lˆ L V
理论
感谢聆听,批评指导
公式
思考
平差
算例
转置
PTV AT K
两边左乘权逆阵P–1 V P 1 AT K
条件平差的平差值求取原理(第一任务)
2.基础方程
3.法方程
条件平差的基础方程
AV W 0
令
V P 1 AT K
构法方程
将改正数方程带入条件方程,得
AP 1 AT K W 0
令令
N aa AP 1 AT
1.条件方程
纯量形式
ab11LLˆˆ11 ab22LLˆˆ22 bannLLˆˆnnba0000 r1Lˆ1 r2Lˆ2 rnLˆn r0 0
带入
Lˆi Li vi
令
ALˆ A0 0
平差值条件方程
条件平差是经典平差的重要方法之一,其实质是观测值的改正数在满足一定条 件下,求改正数带权平方和的极值问题,可采用拉格朗日乘任务)
1.条件方程
设在某个测量几何模型中,必要观测数为 t ,观测了 n 个只含偶然误差的独立观测值 ,相应的权为 p1、p2、...、pn ,改正数 v1、v2、...、vn 、平差值 Lˆ1、Lˆ2、、Lˆn 。
将它们用向量(矩阵)表示为:
L1
L
L2
n,1
Ln
v1
V
v2
n,1
vn
p1
P
n,n
0
0
0 0
p2
0
第9讲第三章条件平差-条件方程2pdf
![第9讲第三章条件平差-条件方程2pdf](https://img.taocdn.com/s3/m/2ee07956ad02de80d4d840b5.png)
如图平面三角网,其中 A、B、C 为已知点,P 为未知点,观测值为 cotL1v1 cotL3v3 cotL4v4 cotL6v6 w极 0 ,观测 各内角 Li ( i 1,2, ,6 )
(3)固定边条件一个
ˆ ,L ˆ L v , 值的平差值为 L i i i i
20
C 75
(2)圆周条件(水平条件) 圆周条件的个数等于中心点的条数。
9 3 6 D 4 2 B
ˆ L ˆ L ˆ 3600 0 L 3 6 9
A
8 1
ˆ L v 代入: 将L i i i L3 v 3 L6 v 6 L9 v 9 3600 0
v3 v6 v9 w4 0,w4 L3 L6 L9 3600
17
二、条件方程的形式
例 1:在右图所示的水准网中(箭头指 向高端) ,设观测高差为 h1 , h2 , h3 , h4 , h5 ,高 ˆ ,h ˆ ,h ˆ ,h ˆ ,h ˆ ,列出最或 差的最或然值为 h 1 2 3 4 5 然值及改正数应满足的条件关系式。
ˆ h ˆ ˆ h h 0 1 2 4 ˆ h ˆ ˆ 0 h h 2 3 5
28
观测值独立时
N AP 1 AT
C 75 6 D 3 A 8 1 4 2 B
n=9 t=4 r=n-t=9-4=5
9
19
(1)图形条件(内角和条件) 独立图形条件的个数等于互不重叠的三角形个数再加实 对角线的条数。
ˆ L ˆ L ˆ 180 0 0 ABD : L 1 2 3 ˆ L ˆ L ˆ 180 0 0 BCD : L 4 5 6 ˆ L ˆ L ˆ 180 0 0 ACD : L 7 8 9
课件:第3章第1讲(条件平差原理)
![课件:第3章第1讲(条件平差原理)](https://img.taocdn.com/s3/m/96e12667cc22bcd126ff0cf6.png)
ALˆ A0 0
AV W 0
(2)组成法方程; NK W 0
N AP1AT
(3)计算联系数K; K N 1W
三、解题步骤
(4)计算观测值改正数V ;
V P1 AT K
(5)计算观测值的平差值;
Lˆ L V
(6)检查平差计算的正确性,将平差值代入平差值 条件方程式,检验是否满足方程关系;
法方程的解: K N 1W
平差值: Lˆ L V
aa p
k
a
ab p
k
b
ar p
k
r
wa
0
apbk
a
bb
p
kb
br p
k
r
wb
0
ar
p
ka
br p
k
b
rr
p
kr
wr
0
二、精度评定
1. 单位权中误差的计算
ˆ 0
V T PV r
b0
0
a1v1 a2v2 anvn wa 0 b1v1 b2v2 bnvnwb0 r1v1 r2v2 rnvn wr 0
r1 Lˆ1
r2 Lˆ2
rn Lˆn
r0
0
wa (a1L1 a2 L2 an Ln a0 )
wb (b1L1 b2 L2 bn Ln b0
函数模型
W (AL A0 )
一、条件平差原理
AV W 0 按求函数极值的拉格朗日乘数法组成新函数
V T PV 2K T (AV W) 将Φ对V求导并令一阶导数为零:
K为乘系数(联系数)
K
r ,1
[ka
kb
kr ]T
d (V T PV) 2 (K T AV) 2V T P 2K T A 0
第六章 附有参数的条件平差
![第六章 附有参数的条件平差](https://img.taocdn.com/s3/m/97a4d4325727a5e9856a61f3.png)
问题:如何计算平差值函数的中误差?
X
C
2
§6-2 精度评定
ˆ 设有平差值函数:
对上式全微分得:
ˆ d ˆ ˆ ˆ FxT dX ˆ dL dX F T dL ˆ ˆ L X
权函数式
ˆ, X ˆ) ( L
n ,1 u ,1
0
ˆ L
1 T QAT N 1BN 1 QAT N aa BQXX B aa bb ˆˆ
0
0
Q QVV
( N aa AQAT
1 N bb BT N aa B)
§6-2 精度评定
三、平差值函数的中误差
ˆ L ˆ L ˆ L ˆ ˆ1 180 X 8 6 1 ˆ ˆ2 S BD ˆ L ˆ L ˆ L ˆ) sin(180 X 8 6 1 S AB ˆ L ˆ) sin(L 6 8
c ,1
组成法方程式。
ˆ W 0 N aa K Bx T (式中Naa AQAT) B K 0
Байду номын сангаас
§6-1 附有参数的条件平差原理
解算法方程。
1 T 1 ˆ Nbb x B N aaW 1 ˆ K N aa ( Bx W ) T T 1 ˆ V QA K QA N aa ( Bx W )
L4
C
L3
ˆ W 0 N aa K Bx T B K 0
(式中Naa AQAT)
L1
A
L2
B
§6-1 附有参数的条件平差原理
3 1 1 0 1 1 ka 0 wa 3 k 0 x w 0 ˆ 2 0 1 b b kc 1 wc 0 1 1 ka 0 0 1 kb 0 kc
第3章条件平差原理
![第3章条件平差原理](https://img.taocdn.com/s3/m/182775020066f5335b812129.png)
v1 v2 v3 v4
573233
730305
1265125
1043317
推导如下:
VTPV VTP(P1ATK) VTATK(AV )TKWTK
纯量形式
20.09.2019 4
第三章 条件平差
第一节 条件平差原理
二、精度评定
则上述方程可表示为:
2. L、 W 、 K 、 V、 L ˆ的协因数阵及互 协因数阵
LL
W (A L A 0) A L A 0
DFFˆ02QFF
函数的方差
为了检查平差计算的正确性,可以将平差值代入平差值条件方程式,看是否满足 方程关系。
20.09.2019 10
第三章 条件平差
第一节 条件平差原理
[例3-1] n=4 t=3 r=1
A 1 P A TKW 0
p1
1
P
p2
1
n,n
Lˆ
n ,1
Lˆ Lˆ
1 2
Lˆ
n
L LV
n,1 n,1 n,1
Lˆ Lˆ
1 2
L1
பைடு நூலகம்
L
2
v1
v
2
Lˆ
n
L
n
vn
p1 P n,n
p2
kb
rr
第六章 附有参数的条件平差
![第六章 附有参数的条件平差](https://img.taocdn.com/s3/m/43f5b52ceefdc8d376ee32ef.png)
第六章——附有参数的条件平差
本例中n = 6,t = 3,r = 3,u = 1,故c = r + u = 4 由图知,可列2个图形条件,1个极条件和1个固定边条件。 这4个条件如下: v1 v 2 v3 wa 0 v 4 v5 v 6 wb 0 ˆ sin( L ˆ X ˆ ) sin( L ˆ L ˆ ) sin L 4 1 3 5 1 ˆ sin( L ˆ L ˆ ) sin X ˆ sin L 5 2 4 ˆ S AB sin X 1 ˆ L ˆ ) S BD sin( L 3 5
cn n1 cu u1 c1 c1
0 X ˆ x 式中V为观测值L的改正数, 为参数近似值 的改正数。其系数
矩阵的秩分别为
rk ( A) c, rk ( B) u 。其随机模型为:
2 2 DLL 0 QLL 0 P 1
(1)式中的未知数为n个观测值的改正数V 和u个参数近似值的改正 ˆ ,即未知数的个数为m = n + u,而方程的个数为 数 x c = r + u。由于m – c = n – r = t > 0,所以(1)式是一组具有无穷 多组解的相容方程组。必须根据最小二乘原理,求出能使 V T PV min 的一组解。为此,下面就来求解这组解。
第六章——附有参数的条件平差
取 X 0 30 0000,将非线性条件线性化后,得条件方程为:
1 1 0 0 1 0 0 1 1 0 1.732 0.577 0.577 1.155 1.155 0 0 0.577 0 0.577 0 0 9 1 0 8 ˆ V x 0 0 3.464 5.196 0 1.732 6.051
第六章 条件平差
![第六章 条件平差](https://img.taocdn.com/s3/m/fc1760abdd3383c4bb4cd27e.png)
CD BD AD Sin(a 2) Sin(a1) Sin(a3) • • = • • =1 BD AD CD Sin(b 2) Sin(b1) Sin(b3)
列条件的原则:将复杂图形分解成典型图形。
类型:图形条件、 极条件、 类型:图形条件、圆周条件 、极条件、固定方位 条件、固定边长条件、 条件、固定边长条件、固定坐标条件
三角形
t = 2*3 − 4 = 2 r = 3 − 2 =1
大地四边形
中心多边形
扇形
t = 2* 4 − 4 = 4 r = 8−4 = 4
t = 2*7 − 4 =10 r =18 −10 = 8 = k +2
t = 2*5 − 4 = 6 r =11− 6 = 5 = k +1
A
2 1 3
C
W = a11L1 + a12L2 + ⋅ ⋅ ⋅ + a1nLn + a10 1 W2 = a 21L1 + a 22L2 + ⋅ ⋅ ⋅ + a 2nLn + a 20 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ Wr = a r1L1 + a r2L2 + ⋅ ⋅ ⋅ + a rn Ln + a r0
r.nn.1 r.1 r,1 2 DLL = σ0 QLL n,n n,n 2 = σ0 −1 P LL n,n
条件平差计算步骤: 三、条件平差计算步骤:
1.根据平差问题的具体情况,列出条件方程, 根据平差问题的具体情况,列出条件方程, 条件方程的个数等于多余观测数r 条件方程的个数等于多余观测数r。 组成法方程式, 2.组成法方程式,法方程的个数等于多余观 测数r 测数r 解法方程,求出联系数K 3.解法方程,求出联系数K值。 代入改正数方程式,求出V 4.将K代入改正数方程式,求出V值,并求 出观测值的平差值=L+V =L+V。 出观测值的平差值=L+V。 检验平差计算的正确性( 5.检验平差计算的正确性(可用平差值重新 列出平差值条件方程式, 列出平差值条件方程式,看其是否满足方 程)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§9.1 条件平差原理
在条件观测平差中,以n 个观测值的平差值1
ˆ⨯n L 作为未知数,列出v 个未知数的条件式,
在min =PV V T 情况下,用条件极值的方法求出一组v 值,进而求出平差值。
9.1.1基础方程和它的解
设某平差问题,有n 个带有相互独立的正态随机误差的观测值 ,其相应的权阵
为 , 它是对角阵,改正数为 ,平差值为 。
当有r 个多余观测时,则平差值 应
满足r 个平差值条件方程为:
⎪⎪
⎭
⎪⎪⎬⎫=++++=++++=++++0ˆˆˆ0ˆˆˆ0
ˆˆˆ221122112211οο
οr L r L r L r b L b L b L b a L a L a L a n n n n n n (9-1) 式中i a 、i b 、…i r (i =1、2、…n )——为条件方程的系数;
0a 、0b 、…0r ——为条件方程的常项数
以i
i i v L L +=ˆ(i =1、2、…n )代入(9-1)得条件方程
(9-2)
式中a w 、b w 、……r w 为条件方程的闭合差,或称为条件方程的不符值,即
(9-3) 令
⎪⎪
⎪
⎪⎪
⎭
⎫
⎝⎛=⨯n n n n r r r r b b b a a a A
21
2121
⎪⎪
⎭
⎪⎪⎬⎫++⋅⋅⋅++=++⋅⋅⋅++=++++=022110221102211r L r L r L r w b L b L b L b w a L a L a L a w n n n n n b n n a ⎪⎪
⎭⎪
⎪⎬
⎫
=++⋅⋅⋅++=++⋅⋅⋅++=++⋅⋅⋅++000221122112211r n n b n n a n n w v r v r v r w v b v b v b w v a v a v a ⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛
=⨯n n L L L L 211
⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛
=⨯n n L L L L ˆˆˆˆ2
11
1⨯n L n
n P ⨯1
⨯n V 1
ˆ⨯n L 1
ˆ⨯n L
则(9-1)及(9-2)上两式的矩阵表达式为
0ˆ0
=+A L
A (9-4) 0=+W AV (9-5)
上改正数条件方程式中V 的解不是唯一的解,根据最小二乘原理,在V 的无穷多组解中,取PV V T = 最小的一组解是唯一的,V 的这一组解,可用拉格朗日乘数法解出。
为此,设 ,K 称为联系数向量,它的唯数与条件方程个数相等,按拉格朗日乘数法解条件极值问题时,要组成新的函数:
)(2W AV K PV V T T +-=Φ 将Φ对V 求一阶导数,并令其为零得:
A K P V T T =
K A PV T =
K A V V T 1-= (9-6)
上式称为改正数方程,其纯量形式为
)(1
r i b i a i i i k r k b k a p v +++= (i =1、2、…n ) (9-7)
代 K A P V T 1-=入0=+W AV 得
01=+-W K A AP T
0=+W NK (9-8)
上式称为联系数法方程,简称法方程。
式中N 法方程系数距阵,为
⎥⎥⎥⎥⎥⎥⎥
⎥
⎥⎦
⎤⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦
⎤⎢⎣⎡⎥⎦
⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥
⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤
⎢⎣⎡⎥⎦⎤⎢⎣⎡=P rr P br P ar P br P bb P ab P ar P ab p aa N
(9-9) 因N A AP A P A A AP N T T T T T T T ====---111)()( 故,N 是r 阶的对称方阵。
⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯r b a r w w w W 1⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯n n v v v V 211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯οοοr b a A o r 1
r n T
n n n r r
r A P A N ⨯⨯-⨯⨯=1()r b a r
T k k k K =⨯1A
K P V V T T 22-=∂Φ∂⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯n n n p p p P 00000021
法方程的纯量形式为
⎪⎪⎪
⎪
⎪
⎭
⎪⎪
⎪
⎪
⎪⎬⎫=+⎥⎦⎤⎢⎣⎡+⋅⋅⋅+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+⎥⎦
⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+⎥⎦⎤
⎢⎣⎡++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡000r r b a b r b a a r b a w k p rr k p br k p ar w k p br k p bb k p ab w k p ar k p ab k p aa (9-10) 从法方程解出联系数K 后,将K 值代入改正数方程,求出改正数V 值,再求平差值
V L L +=ˆ,这样就完成了按条件平差求平差值的工作。
9.1.2 精度评定
当各被观测量的平差值求出后,下一步就是对观测精度及平差值或平差值函数的精度进行评定,下面来讨论这个问题。
1.单位权中误差
条件平差中单位权中误差
t
n PV
V T -±=0ˆσ
(9-11)
或 (9-12)
从中误差计算公式可知,为了计算0ˆσ
,关键是计算PV V T ()Pvv 。
下面将讨论PV V T ()Pvv 的计算方法。
(1)、由i V 直接计算
[]2222211n n v P v P v P Pvv +++= (9-13)
(2)、由联系数K 及常数项W 计算 因 0=+W AV
K A P V T 1-= 故()K A PP V K A P P V PV V T T T T T 11--==
K A V T T =
()K W K AV T T
-== (9-14) (3)、直接在高斯——杜力特表格中解算
将(9-4)的矩阵方程写为纯量形式则有
r r b b a a T k W k W k W PV V ++++=- 0
令 0=w W
[]
r
Pvv ±=0ˆσ
r r b b k W k W ++
]()[]()()[]1111-⋅⎥
⎦
⎤⎢⎣⎡-⋅-⋅--⋅r W r p
rr r W W r
r b
[])()(0w w r W w ⨯+=⋅= (9-15)
(2)平差值函数的权倒数
设有平差值函数为()
n
L L L f ˆ,,ˆ,ˆ21 =ϕ (9-16)
它的权函数式为:
n
n L d f L d f L d f ˆˆˆ2211+++= (9-17)
令()n T f f f f ,,21= ()
T n
L d L d L d L d ˆ,ˆ,ˆˆ21 = 则
L
d f d T ˆ=ϕ (9-18)
(9-19)
这就是高斯约化表中 的计算公式,其规律与[]r W w ⋅计算规律完全相同。
n
n L d L L d L L d L d ˆ)ˆ(ˆ)ˆ(ˆ)ˆ(2211∂∂++∂∂+∂∂=ϕϕϕϕ ⎥⎦
⎤⎢⎣
⎡⋅=r P ff ()()()⎥⎦⎤⎢⎣⎡-⋅⎥⎦
⎤⎢⎣⎡-⋅⎥⎦⎤
⎢⎣⎡-⋅--⎥⎦⎤⎢⎣⎡⋅⎥⎦
⎤⎢⎣⎡⋅⎥⎦⎤
⎢⎣⎡⋅-⎥⎦⎤⎢⎣⎡⎥
⎦⎤⎢⎣⎡⎥⎦⎤
⎢⎣⎡-
⎥⎦⎤⎢⎣⎡=1111111r P rf r P rr r P rf P bf P bb P bf P af P aa P af P ff P ϕϕ
P 1。