单因素方差分析和多因素方差分析简单实例 (1)

合集下载

单因素方差分析完整实例

单因素方差分析完整实例

什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。

单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。

单因素方差分析相关概念•因素:影响研究对象的某一指标、变量。

•水平:因素变化的各种状态或因素变化所分的等级或组别。

•单因素试验:考虑的因素只有一个的试验叫单因素试验。

单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。

下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。

现需要在显著性水平a = 0.0!下检验这些百分比的均值有无显著的差异。

设各总体服从正态在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。

假定除抗生素这一因素外,其余的一切条件都相同。

这就是单因素试验。

试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。

即考察抗生素这一因素对这些百分比有无显著影响。

这就是一个典型的单因素试验的方差分析问题单因素方差分析的基本理论⑴备择假设Hi,然后寻找适当的检验统计量进行假设检验。

本节将借用上面的实例来讨论单因素试验的方差分析问题。

2厂…j $)下进行了nj = 4次独立试验,得到如上表所示的结果。

这些结果是一个随机变量。

表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为山、》2、…r »则按题意需检验假设页:旳=“2 =…=川尸1 : \J “5不全相等为了便于讨论,现在引入总平均卩[Ho :屍="2 =…=毎=qI 闻:力屆…:吗不全为零因此,单因素方差分析的任务就是检验s个总体的均值®是否相等,也就等价于检验各水平Aj的效应6是否都等于零。

样本产恥…佔吁/来自正态总体N (虬2), 9与02未知,且设不同水平Aj 下的样本 之间相互独立,则单因素方差分析所需的检验统计量可以从总平方和的分解导出来。

单因素方差分析和多因素方差分析简单实例

单因素方差分析和多因素方差分析简单实例

单因素方差分析实例[例6-8]在1990 年秋对“亚运会期间收看电视的时刻”调查结果如下表所示。

问:收看电视的时刻比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有无显著的不同?即要查验从“态度”上看,这三组居民的样本是取自同一整体仍是取自不同的整体在SPSS 中进行方差分析的步骤如下:(1)概念“居民对亚运会的总态度得分”变量为X(数值型),概念组类变量为G(数值型),G=1、2、3 表示第一组、第二组、第三组。

然后录入相应数据,如图6-66所示图6-66 方差分析数据格式(2)选择[Analyze]=>[Compare Means]=>[One-Way ANOVA...],打开[One-Way ANOVA]主对话框(如图6-67所示)。

从主对话框左侧的变量列表当选定X,单击按钮使之进入[Dependent List]框,再选定变量G,单击按钮使之进入[Factor]框。

单击[OK]按钮完成。

图6-67 方差分析对话框(3)分析结果如下:因此,收看电视时刻不同的三个组其对亚运会的态度是属于三个不同的整体。

多因素方差分析[例6-11]从由五名操作者操作的三台机械每小时产量中别离各抽取1 个不同时段的产量,观测到的产量如表6-31所示。

试进行产量是不是依托于机械类型和操作者的方差分析。

SPSS 的操作步骤为:(1)概念“操作者的产量”变量为X(数值型),概念机械因素变量为G1(数值型)、操作者因素变量为G2(数值型),G1=1、2、3 别离表示第一、二、三台机械,G2=1、2、3、4、5 别离表示第1、2、3、4、5 位操作者。

录入相应数据,如图6-68所示。

图6-68 双因素方差分析数据格式(2)选择[Analyze]=>[General Linear Model]=>[Univariate...],打开[Univariate]主对话框(如图6-69所示)。

方差分析(单因素、多因素方差分析)

方差分析(单因素、多因素方差分析)

单因素方差分析1.基本理解方差分析:是一种利用实验获取数据并进行分析的统计方法,经常用于研究不同效应对指定实验的影响是否显著。

方差分析用于检验连续型随机变量在三及以上分类数据不同水平上的差异情况。

方差分析包括:单因素方差分析、多元素方差分析、多元方差分析、协方差分析、重复测量方差分析。

在问卷数据中:单因素方差分析使用较多。

单因素方差分析:用于检验单个因素取不同水平是某因变量的均值是否有显著的变化,也可进一步用于因变量均值的多重比较(检验某些水平下的实验结果具体区别于其他水平的显著差异)。

图1检验步骤2.单因素方差分析操作步骤操作步骤第一步:首先将数据导入spss中并进行赋值后,点击分析、比较平均值、单因素ANOVA检验。

图2单因素方差分析第一步操作步骤第二步:进入图中对话框后将需检验的变量放入因变量列表中,在因子中放入分类变量,点击事后比较勾选假定等方差(LSD),不假定等方差(塔姆黑泥T2)点击继续。

图3单因素方差分析事后比较勾选3.当因素方差分析结果后点击线性进入图中下方选项框、勾选描述、方差齐性检验点击继续、确定。

图4单因素方差分析选项勾选然后单因素方差分析的描述、方差齐性、假设检验就出来了。

图5单因素方差分析结果单因素方差分析事后两两比较结果。

图6事后比较结果4.结果整理将首先将描述统计的结果粘贴复制到Excel表格中进行整理,保留均值和标准差及前面的内容,后在后面加入ANOVA表中的F和p值,将整理好的两两比较结果粘贴到表格的最后,最后将整理好的结果粘贴到Word文档中进行整理。

可参考图中结果整理。

(注:一般在看结果时首先看ANOVA表的结果,看显著情况,显著(p<0.05)看方差齐性检验的结果,若方差齐性检验的结果方差齐(p>0.05),然后再看事后比较的结果,方差齐看LSD,方差不齐看塔姆黑泥的结果,同样差异的显著看事后比较每行对应的显著性(若p<0.05,代表比较的对象显著。

第一节单因素方差分析演示文档

第一节单因素方差分析演示文档

5.1.2 单因素方差分析的数学模型
进行单因素方差分析时,需要得到如表1所示 的数据结构.

表1 单因素方差分析中数据结构
观测值(j) A1
1
x11
2
x12
… ni 平均值

x1n1 x1.
A因素(i)
A2 x21 x22 …
x 2n2 x 2.
… … … … …
Am xm1 xm2 …
x mn m xm.
(3) 在打开的“方差分析:单因素方差分析”对话框中, 输入“输入区域”:B2:D8,“分组方式”取默认的 “列”方式,选中“标志位于第一行”复选框,如图2 所示,单击“确定”按钮.
表中用A表示因素,A的m个取值称为m个水平分别用 A1,A2,…,Am表示,每个水平对应一个总体.
从不同水平(总体)中抽出的样本容量可以相同,也
可以不同.若不同水平抽出的样本容量相同则称为均衡 数据,否则称非均衡数据.
设xij表示第i个总体的第j个观测值(j = 1, 2, …,ni, i =
由于在实际中有充分的理由认为粮食产量服从正态 分布, 且在安排试验时, 除所关心的因素(这里是化肥)外, 其它试验条件总是尽可能做到一致.
这使我们可以认为每个总体的方差相同
即 Xi~N(i,σ2) i = 1, 2, 3
因此,推断三个总体是否具有相同分布的问题就简 化为:检验几个具有相同方差的正态总体均值是否相等 的问题,即只需检验
(2) 把同一化肥(A的同一水平)得到的粮食产量看作同 一总体抽得的样本,施用不同化肥得到的粮食产量视为 不同总体下抽得的样本,表中数据应看成从三个总体X1, X2,X3中分别抽了容量为6的样本的观测值.
推断甲乙丙三种化肥的肥效是否存在差异的问题, 就是要辨别粮食产量之间的差异主要是由随机误差造成 的,还是由不同化肥造成的,这一问题可归结为三个总 体是否有相同分布的讨论.

01.单因素方差分析(简洁版)

01.单因素方差分析(简洁版)

6、延伸阅读
单因素方差分析也可以通过Analyze > Compare Means > One-Way ANOVA进行,将ALT送入Dependent List框 中,将Group送入Factor框中,其结果与本例的操作是一样的。 单因素方差分析适用于只有一个处理因素的完全随机设计,处理因素可以有2个及以上的处理水平,观察指 标为连续变量。适用条件包括: 1)观测指标满足独立性; 2)各组观测指标均来自正态分布总体; 3)各组观测指标方差相等。 在实际中由于方差分析具有稳健性,因此对正态性的条件要求不是很严格,但是对方差齐的要求比较严格。
Tests of Between-Subjects Effects表格给出了方差分析的结果。 在方差齐的条件下,Group一行结果显示,F值=68.810, P(Sig.)<0.001。
Multiple Comparisons表格给出了部分方法的多重比较结果, 分别列出了每个组和其他组比较的均数的差值(Mean Difference (I-J))、标准误(Std. Error)、P值(Sig.)和均数 差值的95%置信区间(95% Confidence Interval)。检验水准α 设为0.05,组间差异有统计学意义的结果已用*标出。 不同多重比较方法的选择,需要结合研究设计和每个方法各自 的特点及适用条件。我们以Bonferroni法和Dunnett法的结果 为例,进行解读: (1)Bonferroni法结果显示,A组与B组的ALT水平相比,Mean Difference=-15.160 U/L,P(Sig.)<0.001;A组与C组相比, Mean Difference=1.133 U/L,P(Sig.)=1.000;B组与C组相 比,Mean Difference=16.293 U/L,P(Sig.)<0.001。

方差分析-单因变量多因素方差分析.

方差分析-单因变量多因素方差分析.

练习(上机实践):
练习六 7、8题 (p169-170)
两个因素对过程的作用
因素 B 因素 A x111 1 x112 ... x11m x211 2 x212 ... x21m … …… xa11 a xa12 ... xa1m
x .1.
1
2 x121 x122 ... x12 m

b x1b1
行平均值
x 1. .
……
x1b 2 ... x1bm
பைடு நூலகம்
(bm 个样本数的 平均值)
二、操作步骤
执行 [Analyze][General linear Model][Univariate]
“Model”建立分析模型 分析模型是定义分析的效应级别。有两个选择: “Full Factor” 为系统缺省模型,包括主效应分析以 及所有可能的交互效应的分析。 “Custom”为用户自定义模型, ●只分析模型中的主效应 单击某一个单个的因素变量名,箭头将该变量设置到 Model框中。 ●分析模型中的双交互或多交互效应 可以同时送两个或多个到Model框中。 ●选择交互效应类型 Build Term(s)中的: Interaction项指定任意交互效应,即:“Full Factor” Main effects选项指定主效应。 All 2-way项指定双交互效应。 All 3-way项指定3交互及其以下的效应。 All 4-way项指定4交互及其以下的效应。 All 5-way项指定5交互及其以下的效应。
当作用在一个过程(一个因变量)的因素不只一个时,对 不同因素或因素的不同水平造成不同结果的研究将采用多 因素方差分析的研究方法。
一、概念
研究多个因素的各个水平对试验结果的影响,以及各因 素相互作用对试验的影响。 因素A的水平数a,i=1,2...a 因素B的水平数b,j=1,2...b 重复测量次数m,k=1,2...m

单因素方差分析完整实例

单因素方差分析完整实例

什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。

单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。

单因素方差分析相关概念●因素:影响研究对象的某一指标、变量。

●水平:因素变化的各种状态或因素变化所分的等级或组别。

●单因素试验:考虑的因素只有一个的试验叫单因素试验。

单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。

下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。

现需要在显著性水平α = 0.05下检验这些百分比的均值有无显著的差异。

设各总体服从正态分布,且方差相同。

青霉素四环素链霉素红霉素氯霉素29. 627.35.821.629.224. 332.66.217.432.828. 530.811.18.325.32. 034.88.319.24.2在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。

假定除抗生素这一因素外,其余的一切条件都相同。

这就是单因素试验。

试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。

即考察抗生素这一因素对这些百分比有无显著影响。

这就是一个典型的单因素试验的方差分析问题。

单因素方差分析的基本理论[1]与通常的统计推断问题一样,方差分析的任务也是先根据实际情况提出原假设H0与备择假设H1,然后寻找适当的检验统计量进行假设检验。

本节将借用上面的实例来讨论单因素试验的方差分析问题。

在上例中,因素A(即抗生素)有s(=5)个水平,在每一个水平下进行了n j = 4次独立试验,得到如上表所示的结果。

这些结果是一个随机变量。

表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为,则按题意需检验假设不全相等为了便于讨论,现在引入总平均μ其中:再引入水平A j的效应δj显然有,δj表示水平A j下的总体平均值与总平均的差异。

单因素方差分析和多因素方差分析简单实例

单因素方差分析和多因素方差分析简单实例

单因素方差分析和多因素方差分析简单实例
单因素方差分析与多因素方差分析(即分析方差分析,简称 ANOVA)是统计学中常用
的一种方法。

它可以用来评估相关变量之间的差异程度,以确定这些变量对数据集的影响
程度。

本文将对两种方法进行简单介绍,并通过一个实例来帮助大家更好地理解。

1、单因素方差分析
单因素方差分析是统计学中最常见的研究方法之一,可以用来评估一个单独变量的影响。

在这种情况下,我们分别将多个样本分为两组或以上,每组有不同的自变量。

然后使
用单因素处方差分析检验来检验这些样本组之间的均值的差异,从而得出该自变量对样本
组之间的均值的影响大小。

举个例子,假设我们有一个取自不同地区的样本,想要测试该样本收入水平是否受某
个城市所在地区影响,那么我们可以把这些样本分为两组:一组是属于某个城市所在地区,另一组是其他地区,然后使用单因素方法分析测试这两组样本收入水平是否显著不同。

拿前面的例子来说,我们在检验受某个城市影响的收入水平的时候如果只用单因素分
析可能不太准确,因为受某个城市影响的收入水平还可能受到一些其他因素的影响,比如
年龄、阶层等,这时就可以使用多因素方差分析来进行检验和确定不同因素的影响程度。

所以,单因素方差分析和多因素方差分析都是用来评估变量之间差异程度的统计方法,但并不能确定变量之间的关联性和互动作用。

至于哪一个方法更适合于某种特定情况,需
要结合实际情况,根据具体分析需求而定。

方差分析公式单因素方差分析多因素方差分析的计算公式

方差分析公式单因素方差分析多因素方差分析的计算公式

方差分析公式单因素方差分析多因素方差分析的计算公式方差分析公式计算单因素和多因素方差分析的方法是统计学中常用的数据分析技术。

方差分析可以用来比较两个或多个组之间的均值是否存在显著差异。

在本文中,将介绍单因素方差分析和多因素方差分析的计算公式和步骤。

一、单因素方差分析的计算公式单因素方差分析适用于只有一个自变量(因素)的情况下比较多个组的均值是否存在差异。

在进行单因素方差分析时,需要计算以下几个统计量。

1. 总平方和(SST):总平方和表示各组数据与整体均值之间的偏差总和。

其计算公式如下:SST = Σ(xi - x)²其中,xi为每个观察值,x为所有观察值的均值。

2. 组内平方和(SSW):组内平方和表示各组数据与各组均值之间的偏差总和。

其计算公式如下:SSW = Σ(xi - x i)²其中,xi为每个观察值,x i为各组观察值的均值。

3. 组间平方和(SSB):组间平方和表示各组均值与整体均值之间的偏差总和。

其计算公式如下:SSB = Σ(ni * (x i - x)²)其中,ni为每个组的观察次数,x i为各组观察值的均值,x为所有观察值的均值。

4. 平均平方和(MSW和MSB):平均平方和表示各组之间的平均差异程度。

其计算公式如下:MSW = SSW / (n - k)MSB = SSB / (k - 1)其中,n为总观察次数,k为组的个数。

5. F统计量:F统计量用于检验组间均值是否存在显著差异。

其计算公式如下:F = MSB / MSW二、多因素方差分析的计算公式多因素方差分析适用于两个或更多个自变量(因素)的情况下比较多个组的均值是否存在差异,并确定各因素之间的交互影响。

在进行多因素方差分析时,需要计算以下几个统计量。

1. 总平方和(SST):总平方和的计算方式与单因素方差分析相同。

2. 组内平方和(SSW):组内平方和的计算方式与单因素方差分析相同。

单因素方差分析方法

单因素方差分析方法

实例解析单因素的方差分析方法首先在单因素试验结果的基础上,求出总方差V 、组内方差vw、组间方差vB。

总方差 v=()2ijx x -∑组内方差 v w =()2ij x x i-∑ 组间方差 v B=b ()2ix x -∑从公式可以看出,总方差衡量的是所有观测值xij对总均值x 的偏离程度,反映了抽样随机误差的大小,组内方差衡量的是所有观测值xij对组均值x 的偏离程度,而组间方差则衡量的是组均值x i对总均值x 的偏离程度,反映系统的误差。

在此基础上,还可以得到组间均方差和组内均方差: 组间均方差2Bs ∧=1B-a v组内均方差 2ws∧=aab vw-在方差相等的假定下,要检验n 个总体的均值是否相等,须首先给定原假设和备择假设。

原假设 H 0:均值相等即μ1=μ2=…=μn备择假设H 1:均值不完全不相等则可以应用F 统计量进行方差检验:F=)()(b ab a vv w--1B =22∧∧ss WB该统计量服从分子自由度a-1,分母自由度为ab-a 的F 分布。

给定显著性水平a ,如果根据样本计算出的F 统计量的值小于等于临界值)(a ab 1a F --,α,则说明原假设H 0不成立,总体均值不完全相等,差异并非仅由随机因素引起。

下面通过举例说明如何在Excel 中实现单因素方差分析。

例1:单因素方差分析某化肥生产商需要检验三种新产品的效果,在同一地区选取3块同样大小的农田进行试验,甲农田中使用甲化肥,在乙农田使用乙化肥,在丙地使用丙化肥,得到6次试验的结果如表2所示,试在0.05的显著性水平下分析甲乙丙化肥的肥效是否存在差异。

表2 三块农田的产量要检验三种化肥的肥效是否存在显著差异,等同于检验三者产量的均值是否相等:给定原假设H 0:三者产量均值相等;备择假设H 1:三者的产量均不相等,对于影响产量的因素仅化肥种类一项,因此可以采用单因素方差分析进行多总体样本均值检验。

⑴新建工作表“例1”,分别单击B3:D8单元格,输入表2的产量数值。

方差分析实例详解

方差分析实例详解

方差分析计算实例一、单因素方差分析二、双因素方差分析一、单因素方差分析(一)完全随机试验设计1、重复数相同(1)实例:不同浇水量对某蔬菜产量的影响试验,设置5个浇水量A、B、C、D、E;每个浇水量设置四个小区,小区采用完全随机试验设计;各小区产量见下表(单位:kg)(2)基本参数计算处理数k=5,重复数n=4220.0250.9750.485,11.143χχ==(3)方差同质性检验2220.0250.975,c χχχ≤≤五个处理的方差无显著差异平方和计算:(4)方差分析自由度计算:方差分析表:22222222/()/()(45.2869.5288.55108.48130.12)/4441.95/(45)1089.89t i ij SS T n x nk =−=++++−⨯=∑∑1107.051089.8917.16e T t SS SS SS =−=−=222222()/()16.6115.9531.11441.95/(45)1107.05T ijij SS x x nk =−=+++−⨯=∑∑1514t df k =−=−=(1)5(41)15e df k n =−=−=145119T df nk =−=⨯−=变异来源平方和自由度均方F 值F 0.05处理间1089.894272.47238.213.056误差17.1615 1.14总变异1107.0519F 值大于F 0.05,五个处理蔬菜产量平均值差异显著。

将五个处理小区产量平均值从大到小排列,采用字母标记法表示各均值间差异是否显著,均值间的差值大于LSD ,差异显著,标记不同的字母;均值间的差值小于LSD ,差异不显著,标记相同的字母。

标记字母时,第一个值标a ,用最大值减第二个值,差值若大于LSD 则标b ,差值若小于LSD 则标a ,再以最大值减第三个值,直到出现大于LSD 值,标记b ,再以该值为标准向上比较,若差值大于LSD 就停止比较,若小于LSD 值则在a 后面加上b ,直至出现差值大于LSD 就停止比较;再以最上面标记b 的均值为标准在向下比较;直到所有的平均值都标记字母。

单因素方差分析步骤(1)

单因素方差分析步骤(1)

单因素方差分析步骤:对于只有一种因素影响的资料,例如本例只检测血型这一种变量是否影响肺活量。

我们先确立假设和确立检验标准H0:假设不同血型的人的肺活量是有差异的H1:假设不同血型的人的肺活量是没有差异的。

第一步:选择检验方式第二步:确定比较方式第三布:在选项里选择描述方式第四步:得出结果:由本图可知,p》0.05,可知肺活量的总体方差无差异,方差齐则可做方差分析再有下图可知:p= 0.789是大与0.05的,所以不是小概率事件,不拒绝H0,所以认为不同血型的人的肺活量是没有差异的。

随机区组设计资料的方差分析2.如果对四种饲料对猪体重增加量有无差异进行分析,则可将猪随机分组,本例中以a代表分组,b代表饲料,x代表体重增加量如图:对于这种资料分析,应选用单变量方差分析,主要是影响因素是多样的,主要描述的是体重增加量。

那么我们首先应1、确定假设:对于处理组:H0,假设三种处理方式体重增加量是相等的H1,假设三种处理方式体重增加量是不等的。

对于区组:H0,假设三组之间体重增加量是相等的H1,假设三组之间体重增加量是不等的。

2、确立检验标准a=0.053、计算统计量F F1=MS处理/MS误差F2=MS区组/MS误差4、确定p值,做出推断结论。

第一步:选择分析方式第二步:选择确立因变量,本题描述的是体重增加量,故选用x,确立区间,处理措施。

如图:第三步:确定模型,本题为确定区组a与处理措施b的交互作用,因此选用a,b交互模式。

如图:如需作图比较分组a 与处理措施b 的交互作用对体重影响有无差异可添加对比组,如图:确定观察均值的两两比较,主要针对与各分组的均值比较,及各处理方式的均值比较:在选项里设定输出,描述统计及方差齐性检验,显示分组及处理方式的均值。

最后得出结果:有本图可知F<3,p>0.05,可知各组间方差齐,可做方差检验。

如下图所示,可知p≥0.05,统计无差异,所以可知,三种处理方式对体重增加是无差异的。

单因素方差分析

单因素方差分析

2.
对前面的例子
H0: µ1 = µ2 = µ3 = µ4 • 颜色对销售量没有影响 H0: µ1 ,µ2 ,µ3, µ4不全相等 • 颜色对销售量有影响
方差分析的基本思想和原理
(两类方差) 两类方差)
1.
组内方差
因素的同一水平(同一个总体) 因素的同一水平(同一个总体)下样本数据的方差 比如,无色饮料A 比如,无色饮料A1在5家超市销售数量的方差 组内方差只包含随机误差
构造检验的统计量
(计算检验的统计量 F )
1. 将 MSA 和 MSE 进行对比,即得到所需要的检 MSA和 MSE进行对比 , 2.
验统计量F 验统计量F 当H0为真时,二者的比值服从分子自由度为 为真时, k-1、分母自由度为 n-k 的 F 分布,即 分布, MSA F= ~ F(k −1, n − k) MSE
k 2 k i=1 j =1 i=1 ni 2
前例的计算结果:SSA 前例的计算结果:SSA = 76.8455
构造检验的统计量
(三个平方和的关系) 三个平方和的关系 的关系)
总离差平方和(SST) 总离差平方和 (SST) 、 误差项离差平方和 (SSE)、水平项离差平方和 (SSA) 之间的关系 SSE) SSA)
对于因素的每一个水平, 对于因素的每一个水平,其观察值是来自服从正态分 布总体的简单随机样本 比如, 比如,每种颜色饮料的销售量必需服从正态分布
2.
各个总体的方差必须相同
对于各组观察数据, 对于各组观察数据,是从具有相同方差的总体中抽取 的 比如, 比如,四种颜色饮料的销售量的方差都相同
3.
观察值是独立的
误差的大小;SSA反映了随机误差和系统误差的大小 误差的大小;SSA反映了随机误差和系统误差的大小 2. 如果原假设成立,即H1= H2 =…= Hk为真,则表明 如果原假设成立, 为真, 没有系统误差,组间平方和SSA除以自由度后的均方 没有系统误差,组间平方和SSA除以自由度后的均方 与组内平方和SSE和除以自由度后的均方 与组内平方和SSE和除以自由度后的均方差异就不会 均方差异就不会 太大;如果组间均方 太大;如果 组间均方 显著地大于组内均方 , 说明各 组间均方显著地大于 组内均方 组内均方, 水平(总体)之间的差异不仅有随机误差, 水平(总体)之间的差异不仅有随机误差,还有系统误 差 3. 判断因素的水平是否对其观察值有影响 , 实际上就 判断因素的水平是否对其观察值有影响, 是比较组间方差 组内方差之间差异的大小 是比较组间方差与组内方差之间差异的大小 组间方差与 4. 为检验这种差异,需要构造一个用于检验的统计量 为检验这种差异,

方差分析

方差分析

第二节 单因素试验方差分析
ST ( xij x.. )2
i 1 j 1 m r
式(1)
将式(1)进行分解:
ST ( xij xi. )2 r ( xi. x.. )2
i 1 j 1 i 1
m
r
m
式(2)
第二节 单因素试验方差分析
ST ( xij xi. )2 r ( xi. x.. )2
fT=mr-1=n-1,fA=m-1,fe=mr-m=n-m
显然 fT= fA+ fe 式(10)
第二节 单因素试验方差分析
fT= fA+ fe 式(10)
式(10)称为偏差平方和自由度分解公式。因为总自 由度fT=n-1是总的数据个数减1,而组间自由度fA=m-1是因 素的水平数减1,都很好计算,所以一般先求出fT和fA,再 利用 fe =fT- fA 式(11) 求出组内自由度fe。
xi.
105.6 110.9 107.9 114.2 85.0 523.6

4
i 1
2 x ij
2820.24 3092.61 2958.13 3276.50 1807.24 13954.72
第二节 单因素试验方差分析
1、计算偏差平方和及自由度 x..=523.6 CT= x..2/n=523.62/20=13707.85
式(8) 式(9)
第二节 单因素试验方差分析
(三)计算自由度和方差
偏差平方和的大小,与参与求和的项数有关,为了比较 SA与Se的大小,应消除求和项数的影响,比较它们的平均值。 从数学上的理论推导知道,SA与Se的平均值,不是把SA与Se 分别除以相应的参与求和的项数,而应除以它们的自由度, 下面分别为ST 、SA与Se的自由度fT、fA和fe。

SPSS单因素和多因素方差分析法名师制作优质教学资料

SPSS单因素和多因素方差分析法名师制作优质教学资料
第一栏:方差来源;第二栏:离均差平方和;第三栏:自由度 第四栏:均方差(第二栏与第三栏之比);第五栏:F值(组间均方与 组内均方之比);第六栏:F值对应的概率即P值
(4)多重比较检验结果
表5-8显示了两两基金之间费用比率均值比较结果。表中的星号表示在显著性水平0.05的条件下,相应 的两组均值存在显著性差异。表中第四列Mean Difference表示两两不同基金费用比率差值的均值。第六列 是进行t检验的概率P值,可以通过比较P值大小来判断两两基金之间的费用比率是否有显著差异。从结果来 看,只有第一种和第四种基金费用比率的概率P值(0.033)小于显著性水平。因此这四种基金中,只有它 们之间的费用比率存在显著性差异,其他基金的费用比率之间都没有显著差异。
5.2 SPSS在单因素方差分析中 的应用
单因素方差分析也叫一维方差分析,它用来研究一个 因素的不同水平是否对观测变量产生了显著影响,即 检验由单一因素影响的一个(或几个相互独立的)因 变量由因素各水平分组的均值之间的差异是否具有统 计意义。 1.使用条件 应用方差分析时,数据应当满足以下几个条件:
如果因变量的分布明显的是非正态,不能使用该 过程,而应该使用非参数分析过程;
如果几个因变量之间彼此不独立,应该用GLM过 程。
5.2.4 实例进阶分析:股票基金的费用比率
1. 实例内容 Money杂志报告了股票和债券基金的收益和费用比
率。10种中等规模的资本股票基金、10种小额资本股 票基金、10种混合型股票基金和10种专项股票基金的 费用比率的数据见表5-5所示(单位:%)。 (1)请检验这4种类型股票基金之间的平均费用比率 的差异性。 (2)混合型股票基金的费用比率是其他三种类型基 金费用比率的平均水平吗?
2.水平

SPSS单因素和多因素方差分析法

SPSS单因素和多因素方差分析法

SPSS单因素和多因素方差分析法SPSS是一种广泛应用于社会科学研究中的数据分析软件。

它提供了一系列功能强大的统计工具,用于分析各种数据。

在SPSS中,单因素和多因素方差分析法是常用的统计方法之一,用于比较两个或多个组之间的差异。

单因素方差分析法又称单变量方差分析,用于比较一个自变量(也称为因子或组别)对于一个因变量(也称为依变量或观察变量)的影响。

它适用于多个组之间存在一个自变量的情况。

例如,假设我们想要比较三种不同讲义对学生阅读理解成绩的影响,我们可以将讲义视为自变量,阅读理解成绩视为因变量。

通过单因素方差分析,我们可以确定这三个组之间是否存在显著差异。

多因素方差分析法又称多变量方差分析,用于比较两个或多个自变量对于一个因变量的影响。

它适用于多个组之间存在多个自变量的情况。

例如,假设我们想要比较四种不同肥料对植物生长的影响,我们可以将肥料的种类和施肥时间视为两个自变量,植物生长情况视为因变量。

通过多因素方差分析,我们可以确定这四个组之间是否存在显著差异,并确定哪个自变量或哪些自变量对于植物生长有较大的影响。

在SPSS中进行单因素和多因素方差分析的步骤大致相似。

首先,我们需要将数据输入到SPSS中。

然后,我们需要选择适当的分析方法。

对于单因素方差分析,我们选择“统计”菜单下的“方差分析”选项。

对于多因素方差分析,我们选择“统计”菜单下的“一般线性模型”选项。

接下来,我们需要选择自变量和因变量,并指定相应的因子水平或组别。

最后,我们需要运行分析并查看结果。

分析结果包括多个方面的信息。

首先,我们可以看到各组之间的均值差异以及是否显著。

通过协方差差异分析表,我们可以判断方差分析的显著水平。

如果方差分析的显著水平小于0.05,则说明至少有一组之间存在显著差异。

此外,还可以查看效应大小,以确定自变量对因变量的影响程度。

最后,通过多重比较(如Tukey's HSD),我们可以确定哪些组之间存在显著差异。

统计分析方法(t检验、单因素方差分析和多因素方差分析)

统计分析方法(t检验、单因素方差分析和多因素方差分析)
两组独立样本的比较:独立样本t检验 多组独立样本之间的比较:单因素方差分析
两组独立样本的比较:独立样本t检验 在变量视图中填入变量:这里的X为需分析数据,G代表分组
在数据视图中录入数据: G下方的数据1、2为分组 X下方的数据为相应的分组 对应的需要分析的数据
在工具栏里选择分析——描述统计——探索
将X选入因变量列表,G选入因子列表, 然后单击绘制

勾选带检验的正态图,其余的 可按照默认值 单击继续
在输出页面中找到上述表格,如果sig即P值,大于0.05,说明该 组数据属于正态性数据,可以继续进行独立样本的t检验;如果 有任何一组P值小于0.05,则需改用非参数检验
数据符合正态时,在工具栏中选 择分析,在下拉菜单中选择比较 均值,再选择独立样本T检验
将X选入检验变量,G选入分组变 量,然后点击定义组,组1后填 入1,组2后填入2,继续——确定
在输出页面中找到上述表格,如果sig即P值,大于0.05,说明两组数据方差齐,则 看第一行数据,如果小于0.05,说明两组数据方差不齐,则看第二行数据;sig的 值即为最终所需P值。
单因素方差分析
数据录入后,进行正态性检验,方法 见4、5、6页PPT。检验结果需要全部 正态才能进行单因素方差分析,否则 需要用非参数检验,但非参数检验没 有两两比较。
分析——比较均值——单因素ANOVA 将X选入因变量列表,G选入因子列表 中,单击两两比较,选择LSD,继续, 单击选项,选择方差同质性检验,继 续——确定
方差齐性检验结果显著性大于0.05, 说明方差齐,可以进行单因素方差分 析,如果显著性小于0.05,则说明方 差不齐,则不能进行单因素方差分析
该表为总体的显著性
该表为两两比较的结果 1 2 为1组与2组比较

单因素及双因素方差分析及检验的原理及统计应用

单因素及双因素方差分析及检验的原理及统计应用

单因素及双因素方差分析及检验的原理及统计应用一、本文概述本文将全面探讨单因素及双因素方差分析及检验的原理及其在统计中的应用。

方差分析是一种在多个样本均数间进行比较的统计方法,其基本原理是通过分析不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果的影响。

单因素方差分析适用于只有一个独立变量影响研究结果的情况,而双因素方差分析则适用于存在两个独立变量的情况。

这两种方法在科学研究、经济分析、医学实验等众多领域具有广泛的应用价值。

本文将首先介绍单因素及双因素方差分析的基本概念和原理,包括方差分析的前提假设、模型的构建以及检验的步骤。

随后,通过实例演示如何进行单因素及双因素方差分析,并解释分析结果的意义。

本文还将讨论方差分析的局限性,以及在实际应用中需要注意的问题。

通过本文的学习,读者将能够掌握单因素及双因素方差分析及检验的基本原理和方法,了解其在不同领域的统计应用,提高数据分析和处理的能力。

本文还将为研究者提供有益的参考,帮助他们在实践中更好地运用方差分析解决实际问题。

二、单因素方差分析(One-Way ANOVA)单因素方差分析(One-Way ANOVA)是一种统计方法,用于比较三个或更多独立组之间的均值差异。

这种方法的前提假设是各组间的方差相等,且数据服从正态分布。

在进行单因素方差分析时,首先需要对数据进行正态性和方差齐性的检验。

如果数据满足这些前提条件,那么可以进行单因素方差分析。

该分析的基本思想是,如果各组之间的均值没有显著差异,那么各组内的变异应该主要来自随机误差。

如果有显著差异,那么各组间的变异将大于组内的变异。

单因素方差分析通过计算F统计量来检验各组均值是否相等。

F 统计量是组间均方误差与组内均方误差的比值。

如果F统计量的值大于某个显著性水平(如05)下的临界值,那么我们可以拒绝零假设,认为各组间的均值存在显著差异。

单因素方差分析在许多领域都有广泛的应用,如医学、生物学、社会科学等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

百度文库- 让每个人平等地提升自我
单因素方差分析实例
[例6-8]在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。

问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?即要检验从“态度”上看,这三组居民的样本是取自同一总体还是取自不同的总体
在SPSS 中进行方差分析的步骤如下:
(1)定义“居民对亚运会的总态度得分”变量为X(数值型),定义组类变量为G(数
值型),G=1、2、3 表示第一组、第二组、第三组。

然后录入相应数据,如图6-66所示
图6-66 方差分析数据格式
(2)选择[Analyze]=>[Compare Means]=>[One-Way ANOVA...],打开[One-Way ANOVA]主对
话框(如图6-67所示)。

从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G,单击按钮使之进入[Factor]框。

单击[OK]按钮完成。

图6-67 方差分析对话框
(3)分析结果如下:
因此,收看电视时间不同的三个组其对亚运会的态度是属于三个不同的总体。

多因素方差分析
[例6-11]从由五名操作者操作的三台机器每小时产量中分别各抽取1 个不同时段的产
量,观测到的产量如表6-31所示。

试进行产量是否依赖于机器类型和操作者的方差分析。

SPSS 的操作步骤为:
(1)定义“操作者的产量”变量为X(数值型),定义机器因素变量为G1(数值型)、操作
者因素变量为G2(数值型),G1=1、2、3 分别表示第一、二、三台机器,G2=1、2、3、4、5 分别表示第1、2、3、4、5 位操作者。

录入相应数据,如图6-68所示。

图6-68 双因素方差分析数据格式
(2)选择[Analyze]=>[General Linear Model]=>[Univariate...],打开[Univariate]主对话框(如图6-69所示)。

从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G1 和G2,单击按钮使之进入[Fixed Factor(s)]框。

单击[OK]按钮
图6-69 单变量多因素方差分析主对话框
(3)分析结果如下:
因此,可以认为机器类型和操作者的影响均是显著的。

1。

相关文档
最新文档