江苏专转本考试数学

合集下载

江苏专转本高等数学考纲及重点总结

江苏专转本高等数学考纲及重点总结

江苏专转本高等数学考纲及重点总结一、考纲概述江苏省专升本高等数学考纲主要包括以下几个部分:数列的概念及运算、函数的概念与性质、极限与连续、导数与微分、计算题和应用题等。

下面将更具详细的内容进行总结。

二、考纲详解1.数列的概念及运算(1)数列的概念和基本性质:如等差数列、等比数列等。

(2)数列的运算:包括加减、乘除以及幂运算等。

2.函数的概念与性质(1)函数的定义与性质:如定义域、值域、单调性等。

(2)复合函数与反函数。

(3)高次函数的性质:如奇偶性等。

3.极限与连续(1)极限的定义和性质:如无穷小量、无穷大量等。

(2)极限存在准则与计算:如夹逼准则、拉格朗日中值定理等。

(3)连续性:如连续函数的性质。

4.导数与微分(1)导数的定义与性质。

(2)函数的求导法则:如和差积商等。

(3)高阶导数和隐函数求导等。

(4)函数的微分与高阶导数的应用。

5.计算题该部分主要考察学生对数学基本运算和推理能力的运用,题型多样,如解方程、求极限、求导数、求积分、解微分方程等。

重点是考察基础知识的灵活运用。

6.应用题该部分主要考察学生对数学知识在实际问题中的应用能力。

题型较多样化,如最优化问题、曲线的切线与法线等。

三、重点内容总结根据考纲的要求,我们可以总结出以下几个重点内容:1.等差数列和等比数列学生需要掌握这两种特殊数列的概念和性质,能够进行数列的运算,如求通项、求和等。

2.函数的性质和复合函数、反函数的运算学生需要理解函数的定义域、值域、单调性等性质,能够进行复合函数和反函数的运算。

3.极限和连续性学生需要理解极限的定义和性质,熟练掌握极限存在的判定准则,能够计算极限,理解连续函数的性质。

4.导数的计算和应用学生需要熟练掌握导数的定义和性质,能够进行函数的求导计算,掌握常见函数的导数公式,能够计算高阶导数和隐函数的导数,理解微分的概念和应用。

5.计算题和应用题学生需要熟练掌握数学基本运算和推理能力,灵活运用基础知识解决各类计算题,理解数学在实际问题中的应用。

江苏省专转本《高等数学》考试大纲

江苏省专转本《高等数学》考试大纲

江苏省专转本《高等数学》考试大纲一、答题方式答题方式为闭卷,笔试二、试卷题型结构试卷题型结构为:单选题、填空题、解答题、证明题、综合题三、考试大纲(一)函数、极限、连续与间断考试内容函数的概念及表示法:函数的有界性、单调性、周期性和奇偶性、复合函数、反函数分段函数和隐函数、基本初等函数的性质及其图形、初等函数、函数关系的建立。

数列极限与函数极限的定义及其性质:函数的左极限与右极限、无穷小量和无穷大量的概念及其关系、无穷小量的性质及无穷小量的比较、极限的四则运算。

极限存在的两个准则:单调有界准则和夹逼准则、两个重要极限、函数连续的概念、函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质。

考试要求1、理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系。

2、了解函数的有界性、单调性、周期性和奇偶性。

3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4、掌握基本初等函数的性质及其图形,了解初等函数的概念。

5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

6、掌握极限的性质及四则运算法则。

7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

(二)导数计算及应用考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数隐函数以及参数方程所确定的函数的导数、高阶导数、一阶微分形式的不变性、微分中值定理、洛必达(L’Hospital)法则、函数单调性的判别、函数的极值、函数的最大值和最小值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘。

江苏专转本高等数学考试大纲及重点强调

江苏专转本高等数学考试大纲及重点强调

江苏专转本高数考纲及重点总结一、函数、极限和连续一函数1理解函数的概念:函数的定义,函数的表示法,分段函数;2理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性; 3了解反函数:反函数的定义,反函数的图象;4掌握函数的四则运算与复合运算;5理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数;6了解初等函数的概念;重点:函数的单调性、周期性、奇偶性,分段函数和隐函数二极限1理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势;会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件;2了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则;3理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷x→∞,x→+∞,x→-∞时函数的极限;4掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理;5理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较;6熟练掌握用两个重要极限求极限的方法; 重点:会用左、右极限求解分段函数的极限,掌握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限;三连续1理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类; 2掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型;3掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理包括零点定理,会运用介值定理推证一些简单命题; 4理解初等函数在其定义区间重点:理解函数左、右连续性闭区间上连续函数的性质,并定理用于不等式的证明; 二、一元函数微分学一导数与义,了解可导性与连续性的关数;2会求曲线上一点处的切的基本公式、四则运算法则函数的求导法、对数求导法以方法,会求分段函数的导数;数的n阶导数;6理解函数的与可导的关系,会求函数的一重点:会利用导数和微分的四方程的求导,会求简单函数的二中值定理及导数的应用1了解罗尔中值定理、拉格朗2熟练掌握洛必达法则求“0“1 ∞”、“0 0”和“∞ 0”3掌握利用导数判定函数的单方法,会利用函数的增减性证4理解函数极值的概念,掌握且会解简单的应用问题;5会判定曲线的凹凸性,会求6会求曲线的水平渐近线与垂重点:会用罗必达法则求极限数单调性证明不等式,掌握函其运用,会用导数判别函数图三、一元函数积分学一不定积分1理解原函数与不定积分概念原函数存在定理;2熟练掌握不定积分的基本公3熟练掌握不定积分第一换元与简单的根式代换;4熟练掌握不定积分的分部积二定积分1理解定积分的概念与几何意2掌握定积分的基本性质;3理解变上限的定积分是变上限的函数,掌握变上限定积分求导数的方法;4掌握牛顿—莱布尼茨公式;5掌握定积分的换元积分法与分部积分法;6理解无穷区间广义积分的概念,掌握其计算方法;7掌握直角坐标系下用定积分计算平面图形的面积、旋转体的体积;重点:掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元法与分部积分法,会求一般函数的不定积分;掌握积分上限的函数并会求它的导数,掌握牛顿—莱布尼兹公式以及定积分的换元积分法和分部积分法;会计算反常积分,会利用定积分计算平面图形的面积、旋转体的体积;四、向量代数与空间解析几何一向量代数1理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影;2掌握向量的线性运算、向量的数量积与向量积的计算方法;3掌握二向量平行、垂直的条件;二平面与直线1会求平面的点法式方程、一般式方程;会判定两平面的垂直、平行;2会求点到平面的距离;3了解直线的一般式方程,会求直线的标准式方程、参数式方程;会判定两直线平行、垂直;4会判定直线与平面间的关系垂直、平行、直线在平面上;重点:会求向量的数量积和向量积、两向量的夹角,会求平面方程和直线方程;五、多元函数微积分一多元函数微分学1了解多元函数的概念、二元函数的几何意义及二元函数的极值与连续概念对计算不作要求;会求二元函数的定义域;2理解偏导数、全微分概念,知道全微分存在的必要条件与充分条件;3掌握二元函数的一、二阶偏导数计算方法;4掌握复合函数一阶偏导数的求法;5会求二元函数的全微分;6掌握由方程Fx,y,z=0所确定的隐函数z=zx,y的一阶偏导数的计算方法; 7会求二元函数的无条件极值重点:会求多元复合函数的的偏导数;二二重积分1理解二重积分的概念、性质2掌握二重积分在直角坐标系重点:掌握二重积分的计算及会交换累次积分的次序六、无穷级数一数项级数1理解级数收敛、发散的概念数的基本性质;2掌握正项级数的比值数别法 3 掌握几何级数、调和级4了解级数绝对收敛与条件收二幂级数1了解幂级数的概念,收敛半2了解幂级数在其收敛区间内项积分;3掌握求幂级数的收敛半径、重点:掌握正项级数收敛性敛性,了解任意项级数绝对收的关系,了解交错级数的莱布径、收敛区间及收敛域; 八、常微分方程一一阶微分分方程的阶、解、通解、初程的解法;3掌握一阶线性方解二阶线性微分方程解的结方程的解法;重点:掌握变量可分离微分方方程的求解方法、会解二阶项为多项式、指数函数的二。

江苏省专转本《高等数学》考试大纲

江苏省专转本《高等数学》考试大纲

江苏省专转本《高等数学》考试大纲一、答题方式答题方式为闭卷,笔试二、试卷题型结构试卷题型结构为:单选题、填空题、解答题、证明题、综合题三、考试大纲(一)函数、极限、连续与间断考试内容函数的概念及表示法:函数的有界性、单调性、周期性和奇偶性、复合函数、反函数分段函数和隐函数、基本初等函数的性质及其图形、初等函数、函数关系的建立。

数列极限与函数极限的定义及其性质:函数的左极限与右极限、无穷小量和无穷大量的概念及其关系、无穷小量的性质及无穷小量的比较、极限的四则运算。

极限存在的两个准则:单调有界准则和夹逼准则、两个重要极限、函数连续的概念、函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质。

考试要求1、理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系。

2、了解函数的有界性、单调性、周期性和奇偶性。

3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4、掌握基本初等函数的性质及其图形,了解初等函数的概念。

5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

6、掌握极限的性质及四则运算法则。

7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

(二)导数计算及应用考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数隐函数以及参数方程所确定的函数的导数、高阶导数、一阶微分形式的不变性、微分中值定理、洛必达(L’Hospital)法则、函数单调性的判别、函数的极值、函数的最大值和最小值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘。

江苏省专转本《高等数学》考试大纲

江苏省专转本《高等数学》考试大纲

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载江苏省专转本《高等数学》考试大纲地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容江苏省专转本《高等数学》考试大纲一、答题方式答题方式为闭卷,笔试二、试卷题型结构试卷题型结构为:单选题、填空题、解答题、证明题、综合题三、考试大纲(一)函数、极限、连续与间断考试内容函数的概念及表示法:函数的有界性、单调性、周期性和奇偶性、复合函数、反函数分段函数和隐函数、基本初等函数的性质及其图形、初等函数、函数关系的建立。

数列极限与函数极限的定义及其性质:函数的左极限与右极限、无穷小量和无穷大量的概念及其关系、无穷小量的性质及无穷小量的比较、极限的四则运算。

极限存在的两个准则:单调有界准则和夹逼准则、两个重要极限、函数连续的概念、函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质。

考试要求1、理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系。

2、了解函数的有界性、单调性、周期性和奇偶性。

3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4、掌握基本初等函数的性质及其图形,了解初等函数的概念。

5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

6、掌握极限的性质及四则运算法则。

7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

江苏省专转本高数真题及答案

江苏省专转本高数真题及答案

江苏省专转本高数真题及答案高等数学试题卷(二年级)注意事项:出卷人:江苏建筑大学-张源教授1、考生务必将密封线内的各项目及第 2页右下角的座位号填写清楚. 3、本试卷共8页,五大题24小题,满分150分,考试时间120分钟. 一、选择题(本大题共6小题,每小题4分,满分24分) 1、极限 lim(2xsin 1 Sin 3x )=()x xA. 0B.2C.3D.52、设f (x)二2)sinx ,则函数f (x )的第一类间断点的个数为()|x|(x -4)'A. 0B.1C.2D.3133、设 f(x) =2x 2 -5x 2,则函数 f(x)()A.只有一个最大值B.只有一个极小值C.既有极大值又有极小值D.没有极值34、设z =ln(2x)-在点(1,1)处的全微分为()y1 1A. dx - 3dyB. dx 3dyC. 一 dx 3dyD. - dx - 3dy2 21 15、二次积分pdy.y f (x, y )dx 在极坐标系下可化为()sec'— 'sec jA. —4d 寸 o f (「cos 〒,「sin 寸)d 「B. —4d 丁 ? f (「cos 〒,「sin 寸)「d 「&下列级数中条件收敛的是()二、填空题(本大题共6小题,每小题4分,共24分)7要使函数f(x)=(1-2x )x 在点x=0处连续,则需补充定义f(0)= _________________ . 8、设函数 y = x (x 2 +2x +1)2 +e 2x ,贝卩 y ⑺(0) = _______ .江苏省 2 0 12 年普通高校专转本选拔考试2、考生须用钢笔或圆珠笔将答案直接答在试卷上, 答在草稿纸上无效. sec ? iC. o f (「cosd 「sin Jd 「D.4sec ?2d 丁 ? f (「cos 寸,「sin 寸):?d "「TVXTnW ?、n9、设y =x x (x >0),则函数y 的微分dy =.(1)函数f (x)的表达式;11、设反常积分[_e 」dx=q ,则常数a= ______________ . 12、幕级数£上律(x -3)n 的收敛域为 __________________ :“二 n3 三、计算题(本大题共8小题,每小题8分,共64 分)2x +2cosx —2 lim 厂x 0x ln(1 x)2116、计算定积分",-严.17、已知平面二通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平面二平行,又与x 轴垂直的直线方程.18、设函数“ f(x,xyr (x 2 y 2),其中函数f 具有二阶连续偏导数,函数具有二阶连-2续导数,求一Zc^cy19、已知函数f(x)的一个原函数为xe x ,求微分方程丫4/ 4^ f (x)的通解. 20、计算二重积分..ydxdy ,其中D 是由曲线y 「x-1,D闭区域.四、综合题(本大题共2小题,每小题10分,共20分)21、在抛物线y =x 2(x 0)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为2,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积.3x322、已知定义在(皿,畑)上的可导函数f(x)满足方程xf(x)-4( f(t)dt=x 3-3,试求:10、设向量a,b 互相垂直,且= 3,^=2,,贝 U ^+2b13、求极限 14、设函数 y = y(x)由参数方程 xdty = t 2 2lnt所确定, 求鱼dx dx 2 °15、求不定积分 2x 1 J 2~cos x1直线T 及x 轴所围成的平面(2)函数f(x)的单调区间与极值;(3)曲线y= f(x)的凹凸区间与拐点.五、证明题(本大题共2小题,每小题9分,共18分)123、证明:当0 : x :: 1 时,arcsinx x x3.6十x0 g(t)dt g(x)24、设f(x)一2—XHO,其中函数g(x)在(皿,母)上连续,且lim g(x丿=3证x T1—COSX卫(0) x = 01明:函数f (x)在X = 0处可导,且f (0)匕.一. 选择题1-5BCCABD二. 填空题7-12e°128x n(1 ln x)dx5ln 2 (0,6]三. 计算题13求极限x m0 2x 2 cos x - 216、计算定积分 ----------- dx .1x ? 2x T13 t -^dt 二21 1 :; t2 1 t2dt =2arctant 1 t2原式=x叫x2 2 cos x -2 2x—2si nx=limx_0x—sin x3= lim4x3 x刃2x314、设函数y = y(x)由参数方程所确定,求2』=t +21 nt dydxd2ydx2原式号dx dydtdx2t -t12td2y_d燈)dtdx2t2 dt t2dx2dxdtt2115、求不定积分2x 12dx. cos x2x 1原式=i'2■ dx ' cosx 二(2x 1)d tanx 二(2x 1) tanx - tanxd(2x 1) 原式=令.2x -1 “,则原式=.?? 32(1)函数f (x)的表达式;17、已知平面二通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平面二平行,又与x 轴垂直的直线方程.解:平面二的法向量n -OM 「=(0,3,一2),直线方向向量为S = n "「= (0,-2,-3),直线方程:x -1 y -1 z -10 一 -2 一 -3 18、设函数z 二f(x,xy^ (x 2 y 2),其中函数f 具有二阶连续偏导数,函数具有二阶连Z =f i f 2 y 2x ' zf i2 x f 2 xyf 22 2x 2y : .x :x.y19、已知函数f (x)的一个原函数为xe x ,求微分方程y” ? 4y ' 4y = f (x)的通解. 解:f (x) = (xe x ^ = (x 1)e x ,先求y ” ? 4y ' 4y = 0 的通解,特征方程:r 2 ? 4r *4 = 0,h 、2 = -2,齐次方程的通解为Y =(G C 2X )e'x .令特解为y =(Ax B)e x ,代入原方程9Ax 6A 9^x 1,有待定系数法得:__ 120、计算二重积分i iydxdy ,其中D 是由曲线y = :x-1,直线y= —x 及x 轴所围成的平面D 2闭区域.原式=ydy 丫 dx 1.j 0'2y12四. 综合题21、在抛物线y =x 2(x 0)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为2,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积. 3 解:设 P 点(x 0,x ° )(x 0 0),则 k 切=2x °,切线:,y - x ° = 2x 0(x- x °)续导数,求;2z解:9A=1QA+9B =1解得* A 」9 -1,所以通解为丫"6)宀(討?2x/即,y +x ° =2x °x ,由题意((y x^ 2x 0s y)dy =彳,得 X0 = 2,P(2,4)(2)函数f(x)的单调区间与极值;(3)曲线—f(x)的凹凸区间与拐点.x解:(1)已知 xf(x)-4 4 f (t)dt =X 3 -3两边同时对 x 求导得:f (X )? x 「(x)-4f(x) =3x 2 3即.y" — -y=3x 则 y = —3x 2+cx 3 由题意得:f(1)=—2, c=1,贝U f(x)=—3x 2 + x 3 ■ x ' (2) f (x) =3x 2 -6x = 0,论=0,x 2 = 2 列表讨论得在(-二,0) (2,::)单调递增,在(0,2)单调递减。

江苏省专转本统一考试高等数学复习资料总纲

江苏省专转本统一考试高等数学复习资料总纲

江苏省专转本统一考试高等数学复习资料总纲(总19页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高等数学复习提纲一、 极限(一)极限七大题型 1. 题型一()lim()m xn P x P x (,m n 分别表示多项式的幂次)要求: A:达到口算水平; B:过程即“除大”。

2. 题型二()lim x a a 有限分子分母将a 带入分母3. 题型三(进入考场的主要战场) ()lim v x xau x注:应首先识别类型是否为为“1”型!公式:1lim(1)e 口诀:得1得+得内框,内框一翻就是e 。

(三步曲)4. 题型四: 等价无穷小替换(特别注意:0→) (1)A:同阶无穷小:lim0()xf fg 是g 的同阶;B:等价无穷小:lim1(g )xf fg 和等价;C:高阶无穷小:lim0(g )xf f g是的高阶.注意:f g 和的顺序(2)常用等价替换公式:特别补充:2sec 1~2-(3)等价替换的的性质: 1)自反性:~;αα0 直接带入a 求出结果就是要求的值0 果:2)对称性:~~αββα若,则; 3)传递性:~~~.αββγαγ若,,则 (4)替换原则:A:非0常数乘除可以直接带入计算; B:乘除可换,加减忌换 (5)另外经常使用:ln M M e 进行等价替换题型五有界:,|()|M g x M有界 (sin ,cos ,arcsin ,arccot ,x x x x 均有界)识别不存在但有界的函数:sin,cos,,2e5. 题型六:洛必达法则(极限题型六),见导数应用:洛必达法则6. 题型七:洛必达法则(极限题型七),定积分,见上限变限积分7. 题型三&题型四的综合 (二)极限的应用 1、单侧极限(1)极限存在条件 0lim ()(0)(0)xx f x Af x f x A 左左右右(2)极限的连续性 000lim ()()()xx f x f x f x x x 即在连续(3)间断点及分类(★难点)把握两个问题:第一,如何找间断点 ;第二,间断点分类(难)。

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省普通高校专转本模拟试题及参考答案高等数学 试题卷一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分.在下列每小题中选出一个正确答 案,请在答题卡上将所选项的字母标号涂黑)1. 要使函数21()(2)xx f x x −−=−在区间(0,2) 内连续,则应补充定义 f (1) =( )A. 2eB. 1e −C. eD. 2e − 2. 函数2sin ()(1)xf x x x =−的第一类间断点的个数为( )A. 0B. 2C. 3D. 1 3. 设'()1f x =,则0(22)(22)limh f h f h h→−−+=( )A. 2−B. 2C. 4D. 4−4.设()F x 是函数()f x 的一个原函数,且()f x 可导,则下列等式正确的是( ) A. ()()dF x f x c =+∫ B. ()()df x F x c =+∫ C.()()F x dx f x c =+∫ D.()()f x dx F x c =+∫5. 设2Dxdxdy =∫∫,其中222{(,)|,0}D x y x y R x =+≤>,则R 的值为( )A. 1B.D.6.下列级数中发散的是( )A 21sin n nn∞=∑. B. 11sin n n ∞=∑C. 1(1)nn ∞=−∑ D.211(1)sinnn n ∞=−∑ 7.若矩阵11312102A a −−= 的秩为2,则常数a 的值为( )A. 0B. 1C. 1−D. 28. 设1100001111111234D =−−,其中ij M 是D 中元素ij a 的余子式,则3132M M +=( ) A. 2− B. 2 C. 0 D. 1 二、填空题(本大题共6小题,每小题4分,满分24分) 9. 1lim sinn n n→∞=____________________________.10.设函数2sin ,0()10,0xx f x x x ≠ =+ =,则'(0)f =______________________________________.11.设函数()cos 2f x x =, 则(2023)(0)f =__________________________________________. 12.若21ax e dx −∞=∫,则常数a =___________________________________.13. 若幂级数1nnn a x +∞=∑的收敛半径为2,则幂级数11(1)nn n x a +∞=−∑的收敛区间为__________________. 14.若向量组1(1,0,2,0)α=,2(1,0,0,2)α=,3(0,1,1,1)α=,4(2,1,,2)k α=线性相关,则k =_____________________________________.三、计算题(本大题共8小题,每小题8分,满分64分) 15. 求极限22sin lim(cos 1)x x t tdtx x →−∫;16.求不定积分22x x e dx ∫;17.求定积分21sin 2x dx π−∫; 18.设函数(,)z z x y =由方程cos y x e xy yz xz =+++所确定的函数,求全微分dz . 19.求微分方程''4'5x y y y xe −−−=的通解; 20.求二重积分Bxydxdy ∫∫,其中D 为由曲线2(0)y x x ≥及直线2x y +=和y 轴所围成的平面闭区域;21.设矩阵A 与B 满足关系是2AB A B =+,其中301110014A= ,求矩阵B .22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 四、证明题(本大题10分)23.证明:当04x π−<<时,0sin xt e tdt x <∫.五、综合题(本大题共2小题,每小题10分,满分20分)24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点.参考答案一、单项选择题1. B2. D3. D4. D5. B6. B7. A8. B9. C 二、填空题9. 1 10. 1 11. 0 12. 1ln 2213. (1,3)− 14. 4三、计算题15. 2232022250022sin sin 2sin()4lim lim 4lim (1cos )63()2x x x x x t tdt t tdt x x x x x x x →→→===−∫∫; 16. 2222222222222222222224x x x x x x x xxe e x e e e x e e e x e dx x x dx x dx x c =−=−+=−++∫∫∫;17.26206111sin (sin )(sin )22212x dx x dx x dx πππππ−=−+−−∫∫∫; 18. 因为sin sin ,,z zz x y zx y yz x x x x y x ∂∂∂−−−−=+++=∂∂∂+ 且0,y yz zz e x z e x z y x y yy y x∂∂∂−−−=++++=∂∂∂+ 所以可得sin y x y z e x zdzdx dy y x y x−−−−−−=+++. 19. 解:因为特征方程为2450r r −−=,特征值为125,1r r ==−,所以齐次微分方程''4'50y y y −−=的通解为5112x x y c e c e −=+; 设''4'5x y y y xe −−−=的一个特解为*()x y x ax b e −=+,可得11*()1236x y x x e −=−+,所以原方程的通解为:511211*()1236x x x y y y c e c e x x e −−=+=+−+.20. 由22y x x y =+= 可得交点坐标(11),, 可得21116xBxydxdydx xydy ==∫∫∫∫; 21. 因为2AB A B =+,所以可得(2)A E B A −=,从而可得:1(2)B A E A −=−;又因1211(2)221111A E −−−−=−−− ,所以可得1522(2)432223B A E A −−− =−=−− − ; 22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 解:111361113611136101241513601012010120101212212031240011200112100120101200112−−−−−−→−→−→− −−−−−−− →− − 一个特解为2220 ,齐次线性方程组12341234123430530220x x x x x x x x x x x x ++−=−++= −+−= 的一组基础解系为:11111η= ,所以原方程组的通解为:123412121210x x c x x=+. 四、证明题 23.证明:当04x π−<<时,0sin xt e tdt x <∫.证明:令0()sin xt f x x e tdt =−∫,则有'()1sin x f x e x =−,令:''()sin cos 0x x f x e x e x =−−=,可得4x π=−,当04x π−<<,''()0f x <,所以当04x π−<<时,'()1sin x f x e x =−为递减函数,可得'()1sin '(0)1x f x e x f =−>=,所以当04x π−<<时,0()sin xt f x x e tdt =−∫为递增函数,因此可得:0()sin (0)0xt f x x e tdt f =−>=∫,从而可证得:0sin x t e tdt x <∫; 五、综合题 24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..解:x x y = ⇒ =,则图形面积为:20Aydx dx = 旋转体的体积:2222200022y V x dy ydy ππππ====∫∫; 25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点. 解:(1)()()()1dxdxx x x f x e xe dx c e xe dx c x ce −−−−−∫∫=+=+=−++∫∫,又因为(0)0f =,所以可得:1c =−,即:()1x f x x e −=−+−; (2)令'()10x f x e −=−+=,可得0x =; x(,0)−∞ 0 (0,)+∞ '()f x −+因此可知:(,0)−∞为函数()1x f x x e −=−+−的递减区间,(0,)+∞为函数()1x f x x e −=−+−的递增区间,点(0,0)为函数()1x f x x e −=−+−的极小值点.。

江苏专转本高等数学考试大纲

江苏专转本高等数学考试大纲

江苏专转本高等数学考试大纲This model paper was revised by the Standardization Office on December 10, 2020江苏省专转本《高等数学》考试大纲一、答题方式答题方式为闭卷,笔试二、试卷题型结构试卷题型结构为:单选题、填空题、解答题、证明题、综合题三、考试大纲(一)函数、极限、连续与间断考试内容函数的概念及表示法:函数的有界性、单调性、周期性和奇偶性、复合函数、反函数分段函数和隐函数、基本初等函数的性质及其图形、初等函数、函数关系的建立。

数列极限与函数极限的定义及其性质:函数的左极限与右极限、无穷小量和无穷大量的概念及其关系、无穷小量的性质及无穷小量的比较、极限的四则运算。

极限存在的两个准则:单调有界准则和夹逼准则、两个重要极限、函数连续的概念、函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质。

考试要求1、理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系。

2、了解函数的有界性、单调性、周期性和奇偶性。

3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4、掌握基本初等函数的性质及其图形,了解初等函数的概念。

5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。

6、掌握极限的性质及四则运算法则。

7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

(二)导数计算及应用考试内容导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数隐函数以及参数方程所确定的函数的导数、高阶导数、一阶微分形式的不变性、微分中值定理、洛必达(L’Hospital)法则、函数单调性的判别、函数的极值、函数的最大值和最小值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘。

2024专转本高数考纲

2024专转本高数考纲

2024专转本高数考纲高等数学是江苏省普通高校“专转本”选拔考试理、工、农、经、管等专业的必考科目,其考试目的是科学、公平、有效地测试考生在高职(专科)阶段对大学数学的基本概念、重要理论与思想方法的掌握水平,考查考生对大学数学课程的掌握程度。

以下是2024年江苏专转本高数考纲的具体内容:一、函数、极限、连续与间断函数的概念及表示法:函数的有界性、单调性、周期性和奇偶性、复合函数、反函数分段函数和隐函数、基本初等函数的性质及其图形、初等函数、函数关系的建立。

数列极限与函数极限的定义及其性质:函数的左极限与右极限、无穷小量和无穷大量的概念及其关系、无穷小量的性质及无穷小量的比较、极限的四则运算。

极限存在的两个准则:单调有界准则和夹逼准则、两个重要极限、函数连续的概念、函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质。

掌握用洛必达法则求未定式极限的方法。

二、一元函数微分学导数的概念及其几何意义:切线斜率、瞬时速度、相对变化率与平均变化率、导数的定义、左导数与右导数。

导数的计算:导数的四则运算、复合函数的导数、反函数的导数。

导数的应用:单调性判定与增减性判定、函数的极值判定与求法、最大值与最小值判定与应用。

导数的综合应用。

三、一元函数积分学定积分的概念与性质:定积分的几何意义。

定积分的计算:换元法、分部积分法。

广义积分。

定积分的几何应用:平面图形的面积、体积。

定积分的物理应用:变力沿直线所作的功、水压力。

四、向量代数与空间解析几何向量的概念及其表示:向量的模、向量的加法与数乘运算。

向量的数量积与向量积:向量的数量积的几何意义和性质、向量的向量积的几何意义和性质。

平面方程和直线方程:点向式方程和平面点法式方程、平面的一般方程和直线的标准方程与参数方程。

平面和直线的位置关系:平行和相交的条件,点到平面的距离和点到直线的距离。

曲面及其方程:球面和柱面,旋转曲面,二次曲面,曲线和曲面在坐标面上的投影。

江苏专转本高数考卷题型和分值分布

江苏专转本高数考卷题型和分值分布

江苏专转本⾼数考卷题型和分值分布题型分值表(总分150)
题型题数分值总分
选择题64分/个24分
填空题64分/个24分
计算题88分/个64分
证明题29分/个18分
解答题210分/个20分
计算题:
1. 第⼀题:求极限(等价⽆穷⼩,洛必达法则)
2. 第⼆题:求导数(求⼆阶导,隐函数或含参函数)
3. 第三题:不定积分(换元,分部)
4. 第四题:定积分(换元,分部)
5. 第五题:直线或平⾯⽅程
6. 第六题:抽象函数的⼆阶混合偏导
7. 第七题:⼆重积分
8. 第⼋题:微分⽅程
证明题:
1. 第⼀题:证明不等式
2. 第⼆题:可导性或根的存在性
解答题:
1. 第⼀题:⾯积或旋转体的体积
2. 第⼆题:综合题⽬(难度⼤)。

江苏专升本高等数学真题(附答案)

江苏专升本高等数学真题(附答案)

江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。

(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。

(3)了解反函数:反函数的定义,反函数的图象。

(4)把握函数的四则运算与复合运算。

(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。

(6)了解初等函数的概念。

重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。

(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。

(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

(6)熟练把握用两个重要极限求极限的方法。

重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。

(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。

(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。

(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。

重点:理解函数(左、右连续)性的概念,会判别函数的中断点。

2020年江苏省普通高校“专转本”统一考试《高等数学》试卷

2020年江苏省普通高校“专转本”统一考试《高等数学》试卷

2020年江苏省普通高校“专转本”统一考试一、选择题(本大题共8小题,每小题4分,共32分)1. 极限sin 02lim sin 2xx x x x →⎛⎫+ ⎪⎝⎭的值为( )A.1B.2C.3D.42. 设函数()2,22,2x ax f x x b x ⎧-≠⎪=-⎨⎪=⎩在(),-∞+∞内连续,,a b 为常数,则a b -=( )A.2-B.0C.2D.4 3. 设函数()f x 在点0x =连续,且()3lim2x f x x→=,则()0f '=( ) A.23 B.32C.3D.6 4. 已知()f x 的一个原函数是ln 31x -,则()3f x dx =⎰( )A.1ln 913x C -+B.1ln 313x C -+ C.ln 91x C -+ D.3ln 91x C -+ 5. 下列反常积分中收敛的是( ) A.11dx x+∞⎰B. 211xdx x +∞+⎰C. 2111xdx x +∞++⎰D. 511xdx x +∞+⎰6. 设()220cos x f x t dt =⎰,则()f x '=( )A.()2cos 4xB. ()2cos 41x - C. ()22cos 4x D. ()22cos 41x ⎡⎤-⎣⎦7. 二次积分()1122xdx x y dy +⎰⎰在极坐标系中可化为( )A.124cos 0d d πθθρρ⎰⎰B.134cos 0d d πθθρρ⎰⎰C.122sin 04d d πθπθρρ⎰⎰D.132sin 04d d πθπθρρ⎰⎰8. 设函数()15f x x =+在区间()5,5-内可展开成幂级数0nn n a x ∞=∑,则2020a =( )A.202015 B.202015-C.202115 D. 202115-二、填空题(本大题共6小题,每小题4分,共24分)9.设01lim 1xx x x →∞→⎛⎫-= ⎪⎝⎭,则常数k = .10. 已知函数()2x f x e =,则()()0n f= .11. 设()y y x =是由参数方程353335x t t y t t⎧=+⎨=+⎩所确定的函数,则1t dy dx == .12. 设向量()2,6,a λ→=-与()1,,4b λ→=-垂直,则常数λ= .13. 微分方程231dy x ydx x =+的通解为 . 14. 设幂级数0nn n a x ∞=∑的收敛半径为8,则幂级数03nn n n a x ∞=∑的收敛半径为 .三、计算题(本大题共8小题,每小题8分,共64分) 15. 求极限()()ln 1limln 1x x x x x →+-+16. 求不定积分()2sin cos x x xdx -⎰17. 计算定积分218. 设()223,z f x y y =+,其中函数f 具有二阶连续偏导数,求22zy∂∂.19. 设(),z z x y =是由方程ln yz z x y +=-所确定的函数,求,z z x y∂∂∂∂.20. 求通过点()1,0,2-,且与直线202360x y z x y z ++-=⎧⎨-+-=⎩平行的直线方程.21.已知函数2xy e =是微分方程()2y y y f x '''-+=的一个特解,求该微分方程满足初始条件02x y ==,05x y ='=的特解.22.计算二重积分()Dx y dxdy +⎰⎰,其中D 是由直线y x =,y x =-,1y =围成的平面区域.四、证明题(本大题10分) 23. 证明:当0x ≠时,22xxe e x -+>+.五、综合题(本大题共2小题,每小题10分,共20分)24. 设平明图形D 由曲线xy e =与其曲线在()0,1处的法线及直线1x =围成,试求(1)平面图形D 的面积;(2)平面图形D 绕x 轴旋转一周所形成的旋转体的体积。

01—10年江苏专转本数学真题(附答案)

01—10年江苏专转本数学真题(附答案)

2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xx x =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=x x y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.等价无穷小,洛必达13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.x 分别为0,1,-1时化简求极限14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

江苏专转本数学真题共28页文档

江苏专转本数学真题共28页文档

<1>一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是( )A 、e xx x =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211( ) A 、211x- B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x fB 、0)('<x f ,0)(''>x fC 、0)('>x f ,0)(''<x fD 、0)('>x f ,0)(''>x f4、=-⎰dx x 21( ) A 、0 B 、2C 、-1D 、15、方程xy x 422=+在空间直角坐标系中表示( ) A 、圆柱面 B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数y x z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([ 三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=x x y ,求dy .12、计算xx dte x xt x sin lim2002⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求xz∂∂、y x z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分)21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积; (3)该平面图形分别绕x 轴、y 轴旋转一周的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省2011年普通高校专转本选拔考试
高等数学 试题卷
注意事项:
1.本试卷分为试题卷和答题卷两部分。

试题卷共3页,5大题,满分150分,考试时间 120分钟。

2. 作答前,考生务必将自己的姓名、准考证号、座位号填写在试题卷和答题卷的指定位 置,并认真核对。

3. 考生须用蓝、黑色钢笔或圆珠笔将答案答在答题卷上,答在试题卷、草稿纸上无效。

4.考试结束时,考生须将试题卷和答题卷一并交回。

一、选择题(本大题共6小题,每小题4分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把所选项前的字母填在答题卷的指定位置上)
l. 当0→x 时,函数)(x f =e x -x -1是函数g(x )=x 2
的 ▲ .
A.高阶无穷小
B.低阶无穷小
C.同阶无穷小
D.等价无穷小
2. 设函数)(x f 在点x 0处可导,且lim
→h 4)
()(00=+--h
h x f h x f ,则)('0x f = ▲ .
A. -4
B. -2
C. 2
D. 4
3. 若点(1,-2)是曲线2
3
bx ax y -=的拐点,则 ▲ .
A. a =l, b =3
B. a =-3,b =-1
C. a =-l, b =-3
D. a =4,b =6
高等数学试题卷 第1页(共3页)
4. 设),(y x f z =为由方程8333
=+-x yz z
所确定的函数,则
=∂∂==0
0y x y
z
▲ .
21 B.2
1
C.一2
D. 2 5. 如果二重积分
y x D
d d y x f ),(⎰⎰
可化为二次积分⎰⎰
+12
2
1
,),(y dx y x f dy 则积分域D 可表示为
▲ .
A. { 11,10,≤≤-≤≤y x x y x )( }
B. { 11,21,≤≤-≤≤y x x y x )( }
C. { 01,10,≤≤-≤≤y x x y x )( }
D. { 10,21,-≤≤≤≤x y x y x )( }
6. 若函数
x
x f +=
21
)(的幕级数展开式为∑∞
=<<-=
)22()(n n n
x x a
x f ,则系数=n a
▲ .
A.n 21
B. 12
1
+n C. n
n 2)1(- D. 12)1(+-n n 二、填空题{本大题共6小题,每小题4分,共24分) 7. 已知lim 0
→x kx
x
x )2(
- =2e ,则k = ▲ . 8. 设函数⎰
=Φ+=Φ2
1,)1ln(x dt t x )(则)
(“ ▲ .
9.

1=
,=⨯=⋅=,2,4 ▲ .
10. 设函数y = arctan
==1
,x dy
x 则 ▲ .
11. 定积分

-+2
2
23sin )1(π
πxdx x 的值为 ▲ .
12.幕级数


=+0
1
n n n x 的收敛域为 ▲ .
三、计算题(本大题共8小题,每小题8分,共64分}
13. 求极限lim 0
→x )1ln(2
2
x e e x x +--)
(. 14.设函数)(x y y =由参数方程⎩
⎨⎧
+==+t
t x t y e y
22
所确定,求
dx
dy
. 15.设)(x f 的一个原函数为,sin 2
x x 求不定积分

.)
(dx x
x f 高等数学试题卷第2页(共3页)
16. 计算定积分
dx x x ⎰++
3
1
1.
17. 求通过x 轴与直线
1
32z
y x ==的平面方程. 18. 设),(y x
y
xf z = ,其中函数f 具有二阶连续偏导数,求y x z ∂∂∂2.
19. 计算二重积分⎰⎰D
ydxdy ,其中D 是由曲线2
2x y -= ,直线y=-x 及y 轴所围成的平面闭区域.
20. 已知函数x
e x y )1(+=是一阶线性微分方程y ˊ+2y= f(x)的解,求二阶常系数线性微分 方程y +3y ˊ+2y= f(x)的通解.
四、证明题(本大题共2小题,每小题9分,共18分) 21. 证明:方程2)1ln(2=+x x 有且仅有一个小于2的正实根. 22. 证明:当x>O 时, x x
201120102011≥+ .
五、综合题(本大题共2小题,每小题10分,共20分) 23. 设
⎪⎪⎪⎩⎪⎪⎪⎨⎧----=x
e x x ax x e fx ax ax 2sin 1
1
arctan 1
2 问常数a 为何值时, (1) x=O 是函数f(x)的连续点? (2) x=O 是函数f(x)的可去间断点?
x<0 x=0 x>0
(3) x=O 是函数f(抖的跳跃间断点?
24. 设函数f(x)满足微分方程xf' (x)一2f(x) =一(α+ 1)x(其中a 为正常数),且f(1) = 1 由曲线y= f(x)x 1与直线x=1,y=O 所围成的平面图形记为D.已知D 的面积为3
2. (1)求函数f(x)的表达式;
(2)求平面图形D 绕x 轴旋转一周所形成的旋转体的体积X V ; (3)求平面图形D 绕y 轴旋转一周所形成的旋转体的体积Y V .
高等数学试题卷第3页(共3页)。

相关文档
最新文档