数字电路实验二 半加半减器的设计

合集下载

数电实验报告 实验二 利用MSI设计组合逻辑电路

数电实验报告 实验二 利用MSI设计组合逻辑电路

数电实验报告实验二利用MSI设计组合逻辑电路姓名:学号:班级:院系:指导老师:2016年目录实验目的: .............................................................. 错误!未定义书签。

实验器件与仪器: .................................................. 错误!未定义书签。

实验原理: .............................................................. 错误!未定义书签。

实验内容: .............................................................. 错误!未定义书签。

实验过程: .............................................................. 错误!未定义书签。

实验总结: .............................................................. 错误!未定义书签。

实验:实验目的:1.熟悉编码器、译码器、数据选择器等组合逻辑功能模块的功能与使用方法。

2.掌握用MSI设计的组合逻辑电路的方法。

实验器件与仪器:1.数字电路实验箱、数字万用表、示波器。

2.虚拟器件:74LS00,74LS197,74LS138,74LS151实验原理:中规模的器件,如译码器、数据选择器等,它们本身是为实现某种逻辑功能而设计的,但由于它们的一些特点,我们也可以用它们来实现任意逻辑函数。

1.用译码器实现组合逻辑电路译码器是将每个输入的二进制代码译成对应的输出高、低电平信号。

如3线-8线译码器。

当附加控制门Gs的输入为高电平(S = 1)的时候,可由逻辑图写出。

从上式可看出。

-同时又是S2、S1、S0这三个变量的全部最小项的译码输出。

数字电路课程设计之加减法运算电路设计(1)

数字电路课程设计之加减法运算电路设计(1)

设计资料1加减法运算电路设计1.设计内容及要求1.设计一个4位并行加减法运算电路,输入数为一位十进制数,且作减法运算时被减数要大于或等于减数。

2.led 灯组成的七段式数码管显示置入的待运算的两个数,按键控制运算模式,运算完毕,所得结果亦用数码管显示。

3.提出至少两种设计实现方案,并优选方案进行设计2.结构设计与方案选择2.1电路原理方框图电路原理方框图如下→ →图1-1二进制加减运算原理框图如图1-1所示,第一步置入两个四位二进制数(要求置入的数小于1010),如(1001)2和(0111)2,同时在两个七段译码显示器上显示出对应的十进制数9和7;第二步通过开关选择运算方式加或者减;第三步,若选择加运算方式,所置数送入加法运算电路进行运算,同理若选择减运算方式,则所置数送入减法运算电路运算;第四步,前面所得结果通过另外两个七段译码器显示。

即:若选择加法运算方式,则(1001)2+(0111)2=(10000)2 十进制9+7=16置数开关选择运算方式加法运算电路减法运算电路译码显示计算结果显示所置入的两个一位十进制数并在七段译码显示器上显示16.若选择减法运算方式,则(1001)2-(0111)2=(00010)2十进制9-7=2 并在七段译码显示器上显示02.2.2加减运算电路方案设计2.2.1加减运算方案一如图2-2-1所示:通过开关S2——S9接不同的高低电平来控制输入端所置的两个一位十进制数,译码显示器U13和U15分别显示所置入的两个数。

数A 直接置入四位超前进位加法器74LS283的A4——A1端,74LS283的B4——B1端接四个2输入异或门。

四个2输入异或门的一输入端同时接到开关S1上,另一输入端分别接开关S6——S9,通过开关S6——S9控制数B的输入。

当开关S1接低电平时,B与0异或的结果为B,通过加法器74LS283完成两个数A和B的相加。

当开关S1接高电平时,B与1异或的结果为B非,置入的数B在74LS283的输入端为B的反码,且74LS283的进位信号C0为1,其完成S=A+B (反码)+1,实际上其计算的结果为S=A-B完成减法运算。

组合逻辑电路设计之全加器半加器

组合逻辑电路设计之全加器半加器

班级姓名学号实验二组合电路设计一、实验目的(1)验证组合逻辑电路的功能(2)掌握组合逻辑电路的分析方法(3)掌握用SSI小规模集成器件设计组合逻辑电路的方法(4)了解组合逻辑电路集中竞争冒险的分析和消除方法二、实验设备数字电路实验箱,数字万用表,74LS00, 74LS86三、实验原理1 •组合逻辑概念通常逻辑电路可分为组合逻辑电路和时序逻辑电路两大类。

组合逻辑电路又称组合电路,组合电路的输出只决定于当时的外部输入情况,与电路的过去状态无关。

因此,组合电路的特点是无“记忆性”。

在组成上组合电路的特点是由各种门电路连接而成,而且连接中没有反馈线存在。

所以各种功能的门电路就是简单的组合逻辑电路。

组合电路的输入信号和输出信号往往不只一个,其功能描述方法通常有函数表达式、真值表,卡诺图和逻辑图等几种。

实验中用到的74LS00和74LS86的引脚图如图所示。

00 四2输入与非门4B 4A 4Y 3B 3A 3Y1A 1B 1Y 2A 2B 2Y GND2•组合电路的分析方法。

组合逻辑电路分析的任务是:对给定的电路求其逻辑功能,即求出该电路的输出与输入之间的关系,通常是用逻辑式或真值表来描述,有时也加上必须的文字说明。

分析一般分为(1)由逻辑图写出输出端的逻辑表达式,简历输入和输出之间的关系。

(2)列出真值表。

(3)根据对真值表的分析,确定电路功能。

3•组合逻辑电路的设计方法。

组合逻辑电路设计的任务是:由给定的功能要求,设计出相应的逻辑电路。

一般设计的逻辑电路的过程如图(1)通过对给定问题的分心,获得真值表。

在分析中要特别注意实际问题如何抽象为几个输入变量和几个输出变量直接的逻辑关系问题,其输出变量之间是否存在约束关系,从而过得真值表或简化真值表。

(2)通过卡诺图化简或逻辑代数化简得出最简与或表达式,必要时进行逻辑式的变更,最后画出逻辑图。

(3)根据最简逻辑表达式得到逻辑电路图。

四•实验内容。

1•分析,测试半加器的逻辑功能。

数字电子技术基础实验二 组合逻辑电路设计

数字电子技术基础实验二 组合逻辑电路设计

数字电子技术基础实验报告题目:实验二组合电路设计小组成员:小组成员:1.掌握全加器和全减器的逻辑功能;2.熟悉集成加法器的使用方法;3.了解算术运算电路的结构;4.通过实验的方法学习数据选择器的结构特点、逻辑功能和基本应用。

二、实验设备1.数字电路实验箱;2.Quartus II 软件。

三、实验要求要求1:参照参考内容,调用MAXPLUSⅡ库中的组合逻辑器件74153双四数据选择器和7400与非门电路,用原理图输入方法实现一一位全加器。

(1)用 Quartus II波形仿真验证;(2)下载到 DE0 开发板验证。

要求2:参照参考内容,调用MAXPLUSⅡ库中的组合逻辑器件74138三线八线译码器和门电路,用原理图输入方法实现一位全减器。

(1)用 Quartus II 波形仿真验证;(2)下载到 DE0 开发板验证。

要求3:参照参考内容,调用MAXPLUSⅡ库中的组合逻辑器件74138三线八线译码器和门电路,用原理图输入方法实现一个两位二进制数值比较器。

(MULTISM仿真和FPGA仿真)。

1、74138三线八线译码器原理2、74153双四数据选择器原理3、全加器原理全加器能进行加数、被加数和低位来的进位信号相加,并根据求和的结果给出该位的进位信号。

图一图一是全加器的符号,如果用i A,i B表示A,B两个数的第i位,1i C 表示为相邻低位来的进位数,i S表示为本位和数(称为全加和),i C表示为向相邻高位的进位数,则根据全加器运算规则可列出全加器的真值表如表一所示。

表一可以很容易地求出S 、C 的化简函数表达式。

i i i-1i i i-1i i ()i i S A B C C A B C A B =⊕⊕=⊕+用一位全加器可以构成多位加法电路。

由于每一位相加的结果必须等到低一位的进位产生后才能产生(这种结构称为串行进位加法器),因而运算速度很慢。

为了提高运算速度,制成了超前进位加法器。

这种电路各进位信号的产生只需经历以及与非门和一级或非门的延迟时间,比串行进位的全加器大大缩短了时间。

电子技术实验报告(数电部分)

电子技术实验报告(数电部分)

电气与电子信息工程学院实验报告课程名称:电子技术实验(数电部分)专业名称:班级:学号:姓名:湖北理工学院电气与电子信息工程学院实验报告规范实验报告是检验学生对实验的掌握程度,以及评价学生实验课成绩的重要依据,同时也是实验教学的重要文件,撰写实验报告必须在科学实验的基础上进行。

真实的记载实验过程,有利于不断积累研究资料、总结研究实验结果,可以提高学生的观察能力、实践能力、创新能力以及分析问题和解决问题的综合能力,培养学生理论联系实际的学风和实事求是的科学态度。

为加强实验教学中学生实验报告的管理,特指定湖北理工学院电气与电子信息工程学院实验报告规范。

一、每门实验课程中的每一个实验项目均须提交一份实验报告。

二、实验报告内容一般应包含以下几项内容:1、实验项目名称:用最简练的语言反映实验内容,要求与实验课程安排表中一致;2、实验目的和要求:明确实验的内容和具体任务;3、实验内容和原理:简要说明本实验项目所涉及原理、公式及其应用条件;4、操作方法与实验步骤:写出实验操作的总体思路、操作规范和操作主要注意事项,准确无误地记录原始数据;5、实验结果与分析:明确地写出最后结果,并对实验得出的结果进行具体、定量的结果分析,说明其可靠性;6、问题与建议(或实验小结):提出需要解决问题,提出改进办法与建议,避免抽象地罗列、笼统地讨论。

(或对本次实验项目进行总结阐述。

)三、实验报告总体上要求字迹工整,文字简练,数据齐全,图标规范,计算正确,分析充分、具体、定量。

四、指导教师及时批改实验报告,并将批改后的报告返还学生学习改进。

五、实验室每学期收回学生的实验报告,并按照学校规章保存相应时间。

实验报告实验项目名称:逻辑门电路逻辑功能的测试同组人:实验时间:实验地点:指导教师:一、实验目的1、熟悉数字逻辑实验箱的结构、基本功能和使用方法。

2、掌握常用非门、与非门、或非门、异或门的逻辑功能及其测试方法。

二、实验主要仪器与设备三、实验预习要求做实验前必须认真复习数字逻辑实验箱、数字万用表、芯片CC4011、CC4030、CC4000的有关内容。

数字电路-实验指导书汇总

数字电路-实验指导书汇总

数字电路-实验指导书汇总TPE-D型系列数字电路实验箱数字逻辑电路实验指导书实验⼀门电路逻辑功能及测试实验⼆组合逻辑电路(半加器、全加器及逻辑运算)实验三时序电路测试及研究实验四集成计数器及寄存器实验⼀门电路逻辑功能及测试⼀、实验⽬的1、熟悉门电路逻辑功能。

2、熟悉数字电路实验箱及⽰波器使⽤⽅法。

⼆、实验仪器及器件1、双踪⽰波器;2、实验⽤元器件74LS00 ⼆输⼊端四与⾮门 2 ⽚74LS20 四输⼊端双与⾮门 1 ⽚74LS86 ⼆输⼊端四异或门 1 ⽚74LS04 六反相器 1 ⽚三、预习要求1、复习门电路⼯作原理及相应逻辑表达式。

2、熟悉所⽤集成电路的引线位置及各引线⽤途。

3、了解双踪⽰波器使⽤⽅法。

四、实验内容实验前检查实验箱电源是否正常。

然后选择实验⽤的集成电路,按⾃⼰设计的实验接线图接好连线,特别注意Vcc 及地线不能接错(Vcc=+5v,地线实验箱上备有)。

线接好后经实验指导教师检查⽆误可通电实验。

实验中改动接线须先断开电源,接好后在通电实验。

1、测试门电路逻辑功能⑴选⽤双四输⼊与⾮门74LS20 ⼀只,插⼊⾯包板(注意集成电路应摆正放平),按图接线,输⼊端接S1~S4(实验箱左下⾓的逻辑电平开关的输出插⼝),输出端接实验箱上⽅的LED 电平指⽰⼆极管输⼊插⼝D1~D8中的任意⼀个。

⑵将电平开关按表置位,分别测出输出逻辑状态值及电压值填表。

表2、异或门逻辑功能测试⑴选⼆输⼊四异或门电路74LS86,按图接线,输⼊端1、2、4、5 接电平开关输出插⼝,输出端A 、B 、Y 接电平显⽰发光⼆极管。

⑵将电平开关按表的状态转换,将结果填⼊表中。

表3、逻辑电路的逻辑关系⑴⽤ 74LS00 双输⼊四与⾮门电路,按图、图接线,将输⼊输出逻辑关系分别填⼊表,表中。

⑵写出两个电路的逻辑表达式。

4、逻辑门传输延迟时间的测量⽤六反相器(⾮门)按图接线,输⼊80KHz 连续脉冲(实验箱脉冲源),⽤双踪⽰波器测输⼊、输出相位差。

数字电路实训报告

数字电路实训报告

一、设计目的及要求:(一)实验目的:1. 通过实验培养学生的市场素质,工艺素质,自主学习的能力,分析问题解决问题的能力以及团队精神。

2. 通过本实验要求学生熟悉各种常用中规模集成电路组合逻辑电路的功能与使用方法,学会组装和调试各种中规模集成电路组合逻辑电路,掌握多片中小规模集成电路组合逻辑电路的级联、功能扩展及综合设计技术,使学生具有数字系统外围电路、接口电路方面的综合设计能力。

(二)实验要求1. 数字显示电路操作面板:左侧有16个按键,编号为0到15数字,面板右侧有2个共阳7段显示器。

2. 设计要求:当按下小于10的按键后,右侧低位7段显示器显示数字,左侧7段显示器显示0;当按下大于9的按键后,右侧低位7段显示器显示个位数字,左侧7段显示器显示1。

若同时按下几个按键,优先级别的顺序是15到0。

二、电路框图及原理图原理图概要:数字显示电路由键盘、编码、码制转换、译码显示组成。

各部分作用:1. 键盘:用于0~15数字的输入。

可以由16个自锁定式的按键来排列成4×4键盘。

2.编码:采用两片74ls148级联来完成对0~15的编码,并且是具有优先级的编码。

3.码制转换:本电路采用了2个74ls00、1个74ls04、1个74ls283来完成对0~15出事编码的码制转换,转换成个位与十位的8421bcd码,为下一步的解码做准备。

4.译码显示:本电路采用了两个74ls47分别对码制转换后的bcd码进行译码,并且由这两个芯片分别驱动两片七段共阳极数码管。

原理图:三、设计思想及基本原理分析:篇二:数电实验实验报告数字电路实验报告院系:电气工程学院专业:电气工程极其自动化班级:09级7班姓名:王哲伟学号:2009302540221 实验一组合逻辑电路分析一.试验用集成电路引脚图74ls00集成电路 74ls20集成电路四2输入与非门双4输入与非门二.实验内容 1.实验一x1abdabcd按逻辑开关,“1”表示高电平,“0”表示低电平2.5 vc示灯:灯亮表示“1”,灯灭表示“0”自拟表格并记录: 2.实验二密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开。

数字电路实验报告3

数字电路实验报告3

数字电路实验报告3实验目的本实验旨在通过实际操作,进一步了解数字电路中的加法器和减法器的基本原理,并通过观察和分析实验结果,加深对数字电路的理解。

实验原理加法器加法器是数字电路中常用的逻辑电路,用于将两个二进制数相加。

常见的加法器有半加法器、全加法器等。

在本实验中,我们将使用半加法器和全加法器来实现二进制数的加法运算。

半加法器是最基本的加法器,它只能实现1位二进制数的相加。

半加法器有两个输入端A和B,表示要相加的两个二进制位,以及两个输出端Sum和Carry,分别表示相加的结果和进位。

全加法器是在半加法器的基础上进行改进,可以实现多位二进制数的相加。

全加法器有三个输入端A、B和Carry-in,分别表示要相加的两个二进制位和进位。

它还有两个输出端Sum和Carry-out,分别表示相加的结果和进位。

减法器减法器是用于实现二进制数的减法运算的数字电路。

它可以将两个二进制数相减,并得到减法的结果。

在本实验中,我们将使用全减法器来实现二进制数的减法运算。

全减法器是将半减法器进行组合得到的。

它有三个输入端A、B和Borrow-in,分别表示被减数、减数和借位。

它还有两个输出端Diff和Borrow-out,分别表示减法的结果和借位。

实验步骤1.搭建半加法器电路:根据半加法器的原理图,使用逻辑门和触发器等器件,搭建一个半加法器电路。

2.连接输入端:将两个二进制数的相应位连接到半加法器电路的输入端A和B上。

3.连接输出端:将半加法器电路的输出端Sum和Carry连接到示波器上,用于观察结果。

4.输入数据:给输入端A和B分别输入二进制数,记录输入的数值。

5.观察结果:观察示波器上显示的结果,并记录下来。

6.分析结果:根据观察到的结果,分析二进制数的相加运算是否正确,以及进位是否正确。

7.搭建全加法器电路:根据全加法器的原理图,使用逻辑门和触发器等器件,搭建一个全加法器电路。

8.连接输入端:将两个二进制数的相应位和进位信号连接到全加法器电路的输入端A、B和Carry-in上。

数字逻辑电路实验报告

数字逻辑电路实验报告

数字逻辑电路实验报告指导老师:班级:学号:姓名:时间:第一次试验一、实验名称:组合逻辑电路设计1二、试验目的:掌握组合逻辑电路的功能测试。

1、验证半加器和全加器的逻辑功能。

2、、学会二进制数的运算规律。

3、试验所用的器件和组件:三、74LS00 3片,型号二输入四“与非”门组件74LS20 1片,型号四输入二“与非”门组件74LS86 1片,型号二输入四“异或”门组件实验设计方案及逻辑图:四、/全减法器,如图所示:1、设计一位全加时做减法运时做加法运算,当M=1M决定的,当M=0 电路做加法还是做减法是由SCin分别为加数、被加数和低位来的进位,、B和算。

当作为全加法器时输入信号A分别为被减数,减数Cin、B和为和数,Co为向上的进位;当作为全减法时输入信号A 为向上位的借位。

S为差,Co和低位来的借位,1)输入/(输出观察表如下:(2)求逻辑函数的最简表达式函数S的卡诺图如下:函数Co的卡诺如下:化简后函数S的最简表达式为:Co的最简表达式为:2(3)逻辑电路图如下所示:、舍入与检测电路的设计:2F1码,用所给定的集成电路组件设计一个多输出逻辑电路,该电路的输入为8421为奇偶检测输出信号。

当电路检测到输入的代码大于或F2为“四舍五入”输出信号,的个数为奇数时,电路。

当输入代码中含1F1=1;等于5是,电路的输出其他情况F1=0 F2=0。

该电路的框图如图所示:的输出F2=1,其他情况输出观察表如下:(输入/0 1 0 0 1 01 0 1 0 0 11 1 1 0 0 01 0 1 1 1 11 0 0 1 0 11 0 1 0 0 11 0 0 1 1 01 1 1 0 1 11 0 1 1 0 011111求逻辑函数的最简表达式(2)的卡诺如下:函数F1 F2函数的卡诺图如下:的最简表达式为:化简后函数F2 的最简表达式为:F1)逻辑电路图如下所示;(3课后思考题五、化简包含无关条件的逻辑函数时应注意什么?1、答:当采用最小项之和表达式描述一个包含无关条件的逻辑问题时,函数表达式中,并不影响函数的实际逻辑功能。

《数字电子技术》实验指导书

《数字电子技术》实验指导书

数字电子技术实验指导书电气与电子工程学院实验一门电路逻辑功能及测试一、实验目的1. 熟悉门电路逻辑功能2. 熟悉数字电路实验仪及示波器使用方法二、实验仪器及材料1. 双踪示波器2. 器件74LS00 二输入端四与非门 2片74LS20 四输入端双与非门 1片74LS86 二输入端四异或门 1 片三、实验内容1.测试门电路逻辑功能(1).选用双四输入与非门74LS20一只,插入14P锁& 紧插座上按图1.1接线、输入端接K1-K16(电平开关输出插口),输出端接电平显示发光二极管(L1-L16任意一个)(2).将电平开关按表1.1置位,分别测输出电压及逻辑状态。

表 1.1输出输出1 2 4 5 Y 电压(V)H H H HL H H HL L H HL L L HL L L L2.异或门逻辑功能测试(1).选二输入四异或门电路74LS86,按图1.2接线,输入端1、2、4、5接电平开关,输出端A、B、Y接电平显示发光二极管。

(2).将电平开关按表1.2置位拨动,将输出结果填入表中。

表 1.2输入输出A B Y Y电压L L L LH L L LH H L LH H H LH H H HL H L H3、逻辑电路的逻辑关系(1).用74LS00、按图1.3,1.4接线,将输入输出逻辑关系分别填入表1.3、表1.4中,表1.3输入输出A B YL LL HH LH H表1.4输入输出A B Y ZL LL HH LH H(2).写出上面两个电路逻辑表达式。

五、实验报告1.按各步骤要求填表并画逻辑图。

2.回答问题:(1)怎样判断门电路逻辑功能是否正常?(2)与非门一个输入接连续脉冲,其余端什么状态时允许脉冲通过?什么状态时禁止脉冲通过?(3)异或门又称可控反相门,为什么?实验二组合逻辑电路(半加器、全加器)一、实验目的1.掌握组合逻辑电路的功能测试。

2.验证半加器和全加器的逻辑功能。

3.学会二进制数的运算规律。

经典:2、组合逻辑电路(半加器全加器及逻辑运算)

经典:2、组合逻辑电路(半加器全加器及逻辑运算)
2
实验二 组合逻辑电路(半加器全加器及逻辑运算)
三、必须掌握的知识点 1、实验芯片介绍
3
实验二 组合逻辑电路(半加器全加器及逻辑运算)
三、必须掌握的知识点
2、什么是组合逻辑电路
数字逻辑电路分为两大类: 1、组合逻辑电路; 2、时序逻辑电路。 组合逻辑电路特点:电路当前得输出仅取决于当前的 输入信号,输出信号随输入信号的变化而改变,与电 路原来的状态无关,这种电路无记忆功能。这就是组 合逻辑电路在逻辑功能上的共同特点。
请大家自觉遵守!谢谢!
20
15
实验二 组合逻辑电路(半加器全加器及逻辑运算)
3、测试全加器的逻辑功能
①写出以下电路的逻辑表达式;②根据表达式列出真值表;③根 据真值表画逻辑函数的卡诺图;④连接电路,根据不同的输入状 态,记录输出结果。
16
实验二 组合逻辑电路(半加器全加器及逻辑运算)
4、测试用异或、与或和非门组成的全加器
13 17
实验二 组合逻辑电路(半加器全加器及逻辑运算)
五、实验报告
1、整理实验数据、图表并对实验结果 进行分析讨论。
2、总结组合逻辑电路的分析方法。
关于悬空的问题 无论是TTL还是CMOS 多余或暂时不用的输入端不能悬空,可按以(1)与其它输 入端并联使用。(2)将不用的输入端按照电路功能要求接 电源或接地。比如将与门、与非门的多余输入端接电源, 将或门、或非门的多余输入端接地。
SABCi +ABCi +ABCi +ABi C ABCi
Co AB+ABCi +ABCi
AB+(AB)Ci
A
AB ABCi S
A
S
B Ci
AB CO

数字电路实验四 利用MSI设计组合逻辑电路(二)

数字电路实验四 利用MSI设计组合逻辑电路(二)

数字电路与逻辑设计实验报告实验三利用MSI设计组合逻辑电路(二)姓名:黄文轩学号:17310031班级:光电一班一、实验目的1.熟悉编码器.译码器数据选择器等组合逻辑功能模块的功能与使用方法。

2掌握用MSI设计组合逻辑电路的方法.二、实验器件1.数字电路实验箱数字万用表、示波器。

2.虚拟器件: 74LS151, 74LS00.三、实验预习1、使用数据分配器设计半加半减器半加半减器的真值表如下表所示:考虑到数据选择器的特性是根据传入的地址选择对应的数据,所以我们可以将S、A、B作为地址输入到74LS151的S2、S1、S0选择输入端,根据真值表的要求为D0~D7的数据输入端赋值(与高/低电平相连),即可实现预期功能。

由于有两种不同的输出,我们需要两块74LS151来实现。

电路连接图如下所示:使用Multisum仿真检验正确性,以74LS197作为动态输入观察输出波形,仿真结果如下图所示:波形可以与真值表对应,我们判断这种电路接法是有效正确的。

二、使用74LS151设计逻辑单元逻辑单元的真值表如下图所示:74LS151输入端有三个,而目标逻辑单元有四个输入端,我们可以借助芯片的八个数据输入端置入第四个输入。

考虑对S1、S0、A的任一状态,输出Y可以表示为Y = f(B)的函数形式,因此只需要对每个状态,把B按照对应的逻辑接在D0~D7的数据输入端即可。

每个地址对应的逻辑如下表所示:这样我们可以得到使用一个与非门和74LS151芯片实现的逻辑单元,其电路图如下:使用Multisum仿真检验正确性,以74LS197作为动态输入观察输出波形,仿真结果如下图所示:同样实现了目标的逻辑功能,我们判断这种接法有效正确。

四、实验内容1、具体内容①AU(Arithmetic Unit,算术单元)设计,在实验箱上实现。

设计一个半加半减器,输入为S、A、B,其中S为功能选择口。

当S-0时输出A+B 及进位:当S=1时,输出A-B及借位。

实验二:半加、半减器,全加、全减器

实验二:半加、半减器,全加、全减器
A
B
S
C
0
0
0
00110101
0
1
1
0
1
AS
B
C
表1 图1
从二进制数加法的角度看,真值表中只考虑了两个加数本身,没有考虑低位来的进位,这就是半加器的由来
2.半减器原理
两个二进制数相减叫做半减,实现半减操作的电路称为半减器,表2为半减器的真值表。A为被减数,B为减数,S表示半减差,C表示向高位借位。
A
实验二:半加、半减器,全加、全减器
09020904
同组人员
一、实验目的:
1、掌握74LS00与74LS86器件的逻辑功能。
2、了解算术电路的结构
二、实验设备:
数字电路试验箱、74LS00、74LS86及基本门电路
三、实验原理:
1.半加器原理
两个二进制数相加叫做半加,实现半加操作的电路称为半加器,表1为那半加器的真值表,图1为半加器的符号。A为被加数,B为加数,S表示半加和,C表示向高位进位。
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
1
0
0
1
1
1
1
1
1
表3图3
4.全减器原理
全减器能减数、被减数和低位来的借位信号相减,并根据求减结果给出该位的借位信号。表4为全减器的真值表。 表示被减数 表示减数 表示相邻低位来的借位数, 表示本为和差, 表示向相邻高位的借位数。

加法和减法运算电路实验报告总结

加法和减法运算电路实验报告总结

加法和减法运算电路实验报告总结
加法和减法运算电路是数字电路中常见的基本电路之一。

本次实验主要目的是通过搭建加法器和减法器电路,实现两个二进制数的加法和减法运算。

通过本次实验,我学到了以下几点:
1. 加法器电路的原理:加法器电路是通过将两个输入数的每一位进行相加,然后进行进位运算,最后得到每一位的和。

根据加法器的不同类型(半加器、全加器等),我们可以得到不同位数的加法器电路。

2. 减法器电路的原理:减法器电路是通过将减数取反后与被减数相加,然后进行进位运算,最后得到每一位的差。

通常将减数进行取反可以简化运算过程。

3. 实验步骤:实验中我按照课本和实验要求进行了电路搭建工作。

首先,分别搭建了加法器和减法器电路,使用逻辑门和触发器实现了相关功能。

然后,通过给定的测试用例检验了电路的正确性。

4. 实验结果:实验中我得到了正确的加法和减法运算结果。

通过观察电路输出与预期结果的一致性,我验证了电路的正确性。

同时,我还注意到了电路的稳定性和可靠性。

5. 实验总结:通过本次实验,我对加法和减法运算电路有了更深入的理解。

我学会了如何搭建这些基本的数字电路,并且能够根据需求进行相应的扩展和改进。

在今后的学习和实践中,我将能够更好地应用这些原理和方法。

总之,本次实验使我对加法和减法运算电路有了更深刻的理解和掌握。

通过实际动手操作,我不仅获得了实验结果,还加深了对数字电路的理论知识的理解,为将来的学习和实践奠定了基础。

数字电路实验三 利用MSI设计组合逻辑电路(一)

数字电路实验三 利用MSI设计组合逻辑电路(一)

数字电路与逻辑设计实验报告实验三利用MSI设计组合逻辑电路(一)姓名:黄文轩学号:17310031班级:光电一班一、实验目的1.熟悉编码器.译码器数据选择器等组合逻辑功能模块的功能与使用方法。

2掌握用MSI设计组合逻辑电路的方法.二、实验器件1.数字电路实验箱数字万用表、示波器。

2.虚拟器件: 74LS197, 74LSI38. 74LS151,及各种门电路三、实验预习1、数据分配器考虑输入信号D为0和1的情况D=0:无论A、B、C输入如何,输出的F0--F7均为1D=1:地址信号ABC对应位置的输出为0,其他位置输出为1.这与74LS138正常工作时的逻辑相同。

因此我们只需要将D作为芯片工作与否的控制端即可。

即将D与G1连接,G——2——A——=G——2——B——=0。

就能实现目标功能。

使用Multisum仿真电路以验证接法的正确性:电路图如下所示:将仿真结果与数据分配器真值表对比:通过仿真过程我们可以看出,电路实现了将G1送来的数据只通过一条线反向送到输出端的功能。

二、基于门电路的半加半减器设计首先我们需要得到器件的真值表:基于真值表画出卡诺图并化简逻辑表达式:Y:C:根据卡诺图化简可以得到:Y=A⊕BC=(S⊕A)B这样我们可以得到使用一个与门和两个异或门实现的半加半减器,其电路图如下:使用Multisum仿真检验正确性,以74LS197作为动态输入观察输出波形,仿真结果如下图所示:波形可以与真值表对应,我们判断这种电路接法是有效正确的。

三、基于74LS138的半加半减器设计我们根据真值表得到,Q = S—A—B+ S—AB—+ SA—B+ SAB—, C = S—AB+ SA—B如果希望用74LS138的输出替代上述的逻辑表达式,我们使S与S2相连,A与S1相连,B与S0相连,则上式化简为Q=Y——1——*——Y——2——*——Y——5——*——Y——6——,C = Y——3——*——Y——5——.只需要将译码器中几个输出端接入与非门即可。

实验二:半加、半减器,全加、全减器

实验二:半加、半减器,全加、全减器
B
S
C
0
0
0
0
0
1
1
1
1
0
1
0
1
1
0
0
表2
从二进制数减法的角度看,真值表中只考虑了两个减数本身,没有考虑低位来的借位,这就是半减器的由来。
3.全加器原理
全加器能加数、被加数和低位来的进位信号相加,并根据求和结果给出该位的进位信号。表3为全加器的真值表,图3为全加器的符号。 表示被加数 表示加数 表示相邻低位来的进位数, 表示本为和值(全加和), 表示向相邻高位的进位数
0
0
0
1
1
1
0
1
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
1
0
0
1
1
0
0
0
1
1
1
1
1
表4
四、实验内容
1、用一个74LS00、一个74LS86器件实现半加器、半减器。要求当M值为0时为半加器M值为1时为半减器。
⑴真值表
M
A
B
S
C
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1

0
0
0
0
1
0
1
1
1
1
1
0
1
0
1
1
1
0
0
S=A⊕B
当A= 0 B= 1 时S亮C亮

数字电路中加法器和减法器逻辑图分析

数字电路中加法器和减法器逻辑图分析

数字电路中加法器和减法器逻辑图分析1.加法器,减法器都是从一位的二进制数开始进行例题讲解,逐渐扩展到多位二进制位数之间的运算。

在设计逻辑电路的过程中,根据所描述的功能构建好真值表。

出题者喜欢要求读者用与或门,与或非门构建函数表达式。

它的原因在于依据真值表写函数表达式,最标准的就是最小项表达式。

以下小图的逻辑图来看与或门,我们的头脑中不能老是思维定势,认为输入就是两个,在实际生活中,输入应该非常多,远非两个,在逻辑符号中,要清楚地认识与非门的多输入的画法,将与门分成了好几格,每一格代表一个与门电路。

下小图可以写成AB+CD+EF(不认真考虑前面的输入),由细小的门集成为更大的门,将某一部分单独来看,它们就是一个整体,如(AB+CD+EF),体现在逻辑图中就是一个角。

如果从全图的角度看,在最后一级门电路中,每一个小整体代表着输出。

最后一级的与门中,有两个输入,有三个输入,这都是可以的,最多输入的个数是依照初始的输入的个数来定,不可能超过这个数,只可能少于这个数,因为对于某一输出而言,并非所有的输入对它都是有效的。

从最左边的所有输入,经过逻辑电路图,在最右边得到了所有的输出。

还有一点,这是与或表达式的逻辑图,如果在写逻辑表达式,包括化简变化函数式时,采用了不同于与或形式的表达式,那么最终得到的逻辑图就和下面的与或形式的逻辑图完全不一样。

2.一位的全减器是指,两个一位的二进制数之间进行减法运算。

全减器的特例就是半减器。

多位二进制减法器,是由加法电路构成的;在加法电路的基础上,减法与加法采用同一套电路,实现加减法共用。

3.这里的多位二进制数的减法,是指无符号数,为什么?将减法运算转换为加法运算,采用的是补数的方法完成的。

这就解释了为什么两者能共用一套电路,是不是减法在转换时,我们需要在加法电路的基础上进行一些小的扩展,来进行减法的补码转换?N反是每一位都取反,没有符号位,下式当中,A-B是减法,通过形式转化,将-B化为B反+1-2n,B是正数,A和B均为无符号数,通过补码的转变,我们成功的将-B变为了固定的-2n,但是这还是有减号,该怎么解决?仔细观察下面这张图,A和B是两个四位二进制数相减。

半减器课程设计

半减器课程设计

半减器课程设计一、教学目标本课程的目标是让学生掌握半减器的原理和应用。

知识目标要求学生了解半减器的基本结构和工作原理,掌握半减器的符号表示和真值表,能够分析半减器的逻辑功能。

技能目标要求学生能够使用半减器进行简单的数字计算和逻辑判断,能够设计和实现半减器电路。

情感态度价值观目标要求学生培养对电子技术的兴趣和好奇心,培养学生的创新意识和实践能力。

二、教学内容本课程的教学内容主要包括半减器的原理和应用。

首先介绍半减器的基本结构和工作原理,通过示例让学生了解半减器的工作过程和逻辑功能。

然后介绍半减器的符号表示和真值表,让学生能够用符号表示半减器,并能够根据真值表分析半减器的输出。

最后介绍半减器的应用,通过实际案例让学生了解半减器在数字电路中的应用和实际效果。

三、教学方法本课程的教学方法包括讲授法、讨论法和实验法。

首先通过讲授法向学生介绍半减器的原理和应用,让学生掌握基本概念和理论知识。

然后通过讨论法引导学生进行思考和交流,让学生能够提出问题并解决问题。

最后通过实验法让学生亲手操作半减器电路,培养学生的实践能力和创新意识。

四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。

教材和参考书提供半减器的理论知识和技术细节,帮助学生理解和掌握半减器的基本概念。

多媒体资料可以通过图片、视频等形式展示半减器的实际应用和实验过程,丰富学生的学习体验。

实验设备则是学生进行实验操作的重要工具,通过实际操作让学生更好地理解和掌握半减器的原理和应用。

五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分。

平时表现主要评估学生的课堂参与度和讨论积极性,通过观察学生的发言和提问来评估学生的理解程度。

作业主要评估学生的实践能力,要求学生完成相关的半减器电路设计和实验报告。

考试则评估学生对半减器原理和应用的掌握程度,包括选择题、填空题和解答题。

评估方式应客观、公正,能够全面反映学生的学习成果。

六、教学安排本课程的教学安排将分为10次课,每次课时长为2小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二半加半减器的设计
一、实验目的
1、利用普通的门电路或使用译码器或使用数据选择器设计一个半加半减器。

二、实验仪器及器件
1、数字电路试验箱,示波器
2、虚拟器件:74LS197,74LS138,74LS00,74LS20,74LS151
三、实验预习
在proteus上进行了仿真实验,通过普通的门电路连接成半加半减器的逻辑电路。

在之后的课上了解了编码器和译码器以及数据选择器。

四、实验原理
1、用普通门电路实现组合逻辑电路
2、用译码器实现组合逻辑电路
译码器是将每个输入的二进制代码译成对应的输出高、低电平信号。

3、用数据选择器实现组合逻辑电路
数据选择器的功能是从一组输入数据中选出某一个信号输出。

或称为多路开关。

五、实验内容
首先,根据半加半减器的电路逻辑列出真值表:
输入输出
S A B Y C(进/借位) 74LS138对应输出位置0 0 0 0 0 Y0
0 0 1 1 0 Y1
0 1 0 1 0 Y2
0 1 1 0 1 Y3
1 0 0 0 0 Y4
1 0 1 1 1 Y5
1 1 0 1 0 Y6
1 1 1 0 0 Y7
根据真值表画出Y和C卡诺图:
Y:
S\AB 00 01 11 10
0 1 1
1 1 1
C:
S\AB 00 01 11 10
0 1
1 1
根据卡诺图可得逻辑表达式:
Y=A⊕B
C=(S⊕A)B
然后,开始在数电实验箱上连接电路,我选择的芯片是:74LS197,74LS00,74LS20,74LS138.对于74LS197,先将CP1接连续脉冲,然后分别将Q1,Q2,Q3接到“0-1”显示器上检查电路是否正常,接着将Q3,Q2,Q1分别接到74LS138的S0,S1,S2作为八进制输入,Q3,Q2,Q1分别代表S,A,B。

根据真值表,Y在Y1,Y2,Y5,Y6处有高电平的输出,C在Y3,Y5处有高电平输出,分别将它们接入与非门芯片74LS20、74LS00即可得到Y和C的输出。

最后,将CP1,S,A,B,Y,C接入示波器得到下图:
从上到下分别是CP1,B,A,S,C,Y.。

相关文档
最新文档