管道阴极保护基本知识
管道阴极保护原理
管道阴极保护原理
管道阴极保护原理是基于电化学原理的一种方法,主要通过在受保护的金属管道表面提供一个外部电流,以便减少或防止金属腐蚀。
其原理主要包括两个方面:阳极保护和阴极保护。
阳极保护是指在管道周围埋设一个阳极,并将阳极与金属管道连接起来。
阳极通常由具有较高腐蚀性的金属制成,如锌或铝。
当外部电流通过阳极流入金属管道时,阳极材料会发生电化学反应,释放出电子,并在阳极处形成一个阴极保护电流。
这个保护电流会抵消管道表面的阳极腐蚀电流,从而减少或消除金属腐蚀的发生。
阴极保护是指在管道表面施加一个外部电流源,以使管道表面成为一个阴极。
通过与阳极连接,使阳极保护电流源将电子输送到管道表面,从而在管道上形成一个保护性的电化学反应。
这个电化学反应会导致阴极处的氧还原反应,将金属的阳极腐蚀电流转化为阴极保护电流,减少了金属的腐蚀。
综上所述,管道阴极保护的原理是通过在金属管道上提供一个外部电流,使金属表面形成一个保护性的电化学反应,来减少或防止管道的腐蚀。
阳极保护和阴极保护是实现管道阴极保护的两种不同方式。
埋地管道的阴极保护(外加电流法)
•
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
埋地管道的阴极保护
主讲:外加电流法
阴极保护的原理
• 金属—电解质溶解腐蚀体系受到阴极极化时,电 位负移,金属阳极氧化反应过电位ηa 减小,反应 速度减小,因而金属腐蚀速度减小,称为阴极保 护效应.
• 实质:由外电路向金属通入电子,以供去极化剂 还原反应所需,从而使金属氧化反应〔失电子反 应受到抑制.
施工中注意的问题:
保护材料及设备,这些是阴极保护成功的前提,但最终的 实现则通过施工来完成.外加电流阴极保护施工应注意以 下问题: 1施工前对所有电极进行检查,主要是外观检查,表面不得沾有 油污等其它杂物,电极体表面是否破损等;另外对连接及 绝缘电阻进行检查,以保证连接或绝缘良好.
2施工时严格按照设计图进行施工,辅助阳极及参比电极均要 求连接良好,且对相应的电缆均要做好标记,以备将来检修 使用.
• 如果是复杂的管路系统中,外加电流阴极保护建议 采用恒电流控制.
2.辅ቤተ መጻሕፍቲ ባይዱ阳极地床
• 辅助阳极地床分为深井阳极地床和浅埋阳极地床; • 深层土壤电阻率比地表低; • 基本要求: • 1、 导电性好; • 2、 排流量大; • 3、 耐腐蚀,消耗量小,寿命长; • 4、 具有一定的机械强度、耐磨、耐冲击震动; • 5、 容易加工、便于安装; • 6、 材料易得、价格便宜.
护 • ④: 每个辅助阳极床的保护范围大,当管道防腐层质量良好
时, 一个阴极保护站的保护范围可达数十公里 • ⑤: 对裸露或防腐层质量较差的管道也能达到完全的阴极
保护
缺点
关于长输管道的阴极保护及故障分析
关于长输管道的阴极保护及故障分析长输管道是输送油气、水等液体或气体的重要通道,其保护是关系到国家能源安全和环境安全的关键问题。
阴极保护是一种有效的管道保护方法,主要是通过施加电场,使管道表面电位负化,从而减少管道金属的腐蚀速率,延长管道使用寿命。
本文将阐述长输管道的阴极保护原理、方法及故障分析。
一、阴极保护原理由于土壤中存在着各种离子,例如水、氯离子等,这些离子会形成电池,导致管道金属表面出现电位差,这种现象称为自然电位。
如果管道的自然电位低于一定的电位(通常为-0.85V),则管道处于负电位,就会发生金属的电化学腐蚀。
阴极保护的主要原理是通过施加外加电场,将管道表面电位负化,使得管道处于负电位,在靠近管道表面的电场区域内,电子从管道金属表面流向土壤中的正离子,使其发生还原反应,从而减少管道金属腐蚀速率。
1、电位调节法:通过在管道两端安装钛阳极和铁/铜阴极,以及控制钛阳极输出的电流来调节管道表面的电位,从而达到保护作用。
2、电流输出法:在管道保护系统的控制下,直接将电流输出到管道端部的阳极或在管道上部固定钛阳极来保护管道。
3、均匀分散法:通过在管道上均匀分布一定数量的阳极,使得管道表面的电位均匀调整到负电位,从而保护整个管道。
1、偏移现象:阴极保护系统在使用过程中,由于地下水流的影响,土壤的化学组成及导电性不均匀等因素,易出现管道阴极保护区域偏移的现象。
一般采用分析安装阳极的位置是否正确,调整阴阳极之间的距离和电位来解决偏移问题。
2、极化过度:在保护过程中,如果管道阴极保护电位过于负化,反而会引起金属氢化、内应力等问题,从而导致管道的损坏。
应当合理调整阴极保护的电位,避免出现极化过度的情况。
3、外来干扰:阴极保护系统如果受到外部电源干扰(例如电力系统、通信设备等),会导致保护系统失效,出现管道腐蚀。
一般应在设计阴极保护系统时,选取合适的接地点,采取防雷、防电磁干扰等措施来预防外来干扰。
综上所述,长输管道阴极保护技术是一项重要的保护措施,可有效减少管道的金属腐蚀速率,延长管道寿命。
长输管道阴极保护技术全解
长输管道阴极保护技术:
主要应用于高电阻率土壤、淡水及空间狭窄局部场合,如套管内
牺牲阳极种类及应用范围: 带状牺牲阳极::
长输管道阴极保护技术:
3、牺牲阳极种类及应用范围: (2)镁合金牺牲阳极:
镁合金牺牲阳极相对密度小,电极电位很负,极化率低,对铁的驱动电压大。因其具有很负的开路电位等性能,广泛地应用于土壤、海水、海泥及工业水环境中。
长输管道阴极保护技术:
阴极保护的起源
其他科学家的研究工作: 1890年,美国发明家爱迪生试验了外加电流法对船的保护方法,由于没有合适的外加电源和阳极材料而未获成功。1902年科恩采用直流电机首次实现了强制电流阴极保护的实际应用。1906年盖波建立了第一个管道阴极保护系统。用一台容量为10V/12A的直流发电机保护地下300m长的煤气管道。并获得专利。
长输管道阴极保护检测技术:
铜—饱合硫酸铜电极(CSE)制作材料和使用的要求:
铜电极采用紫铜丝或棒(纯度不小于99.7%)
01
硫酸铜为化学纯,用蒸馏水配制饱和硫酸铜溶液
02
五、长输管道阴极保护检测技术:
长输管道阴极保护检测技术:
主要测试仪表和电极的选用: 主要测试仪表和电极 直流电压表 (V) 直流电流表 (A) 接地电阻测量仪(ZC-8) 辅助阳极 牺牲阳极 铜—饱合硫酸铜电极(CSE)
长输管道阴极保护检测技术:
测试仪表的选用: 基本要求是: 满足测试要求的显示速度、准确度 携带方便、耗电小 有较好的环境适应性 一般选用数字式仪表。
适用范围广,尤其是中短距离和复杂的管网 阳极输出电流小,发生阴极剥离的可能性小 随管道安装一起施工时,工程量较小 运行期间,维护工作简单。 阳极输出电流不能调节,可控性较小
关于长输管道的阴极保护及故障分析
关于长输管道的阴极保护及故障分析长输管道是石油、天然气、化工产品等重要能源和物质运输的主要途径之一。
在使用过程中,长输管道的阴极保护是非常重要的。
本文将从长输管道阴极保护的原理、方法、故障类型及其分析等方面进行介绍。
一、阴极保护原理阴极保护是一种经济、有效的金属防腐措施,通过在金属表面施加一个负电位,将金属的电位调整到阴极区,在物质和能量的作用下,使金属表面处于保护状态,从而防止金属的电化学腐蚀。
在长输管道中,阴极保护的主要目的是保证管道金属表面的电位低于其溶解电位,使其处于被保护状态,从而防止腐蚀。
1. 熔融热浸镀法熔融热浸镀法是将金属作为阳极,通过在其表面浸涂含有阴离子的熔态物质,在高温下将该物质还原成金属的一种阴极保护方法。
该方法的优点是保护效果好,缺点是操作复杂,成本较高。
2. 电化学阴极保护法电化学阴极保护法是将外部电源与被保护金属合成电池,通过从外部输入一个反向电流,使金属的电位降低到保护电位以下,从而达到防腐的目的。
该方法的优点是施工简单,成本低,但需要对金属进行严格的电位控制。
渗入阻抗阴极保护法是一种新型的阴极保护方法,通过将阻抗控制器引入管道,将介质中的电导率、温度、湿度等参数作为参量,根据管道的工作状态和防腐要求计算出合适的电位值,并通过介质的渗入作用对管道进行阴极保护。
该方法的优点是操作简便,防腐效果好,但需要对阴极保护设备进行严格监护。
三、故障分析阴极保护设备在工作过程中也会出现一些故障,主要包括以下几点:1. 阳极失效阳极失效是指金属阳极在使用过程中出现脱落、损坏等情况,从而导致被保护金属表面的电位增加,无法达到保护状态,最终导致金属的腐蚀。
防止阳极失效的方法包括定期检查和更换。
2. 阴极材料污染长输管道中的介质可能会对阴极保护材料产生腐蚀或污染,从而导致阴极材料的损坏和阴极保护效果的降低。
预防阴极材料污染的方法包括管道清洗、选择防腐能力强的阴极材料等。
3. 阴极保护电流过小或过大阴极保护电流过小或过大都会导致保护效果下降。
管道阴极保护需要注意的条件
管道阴极保护需要注意的条件在对管道施加阴极保护的时候,需要具备一些条件,这些条件如下:
①管道纵向电阻
管道的纵向电阻会对管道的阴极保护产生重要的影响,也是管道阴极保护的重要的影响因素之一。
管道进行焊接连接之后,管道本身就会具有电连续性;对于没有焊接连接的管道来说,就需要把跨接电缆焊接在管道上从而达到电连续性的目的,这样就保证了管道的纵向电阻。
②管道对地散流电阻
管道的外面带有覆盖层,这个覆盖层可以起到对地绝缘的目的,因此不能称管道为对地电阻。
但是并不存在绝对理想的覆盖层,阴极保护的电流将会从土壤进入到管道中去,这是通过管道覆盖层来实现的,这种参数的取决因素是管道覆盖层的质量。
③管道衰减系数
管道阴极保护的理想状态应该是纵向电阻越小越好,主要是因为,阴极保护是电流作用的结果,管道时电的载体。
管道对地的散流电阻越大越有利。
管道阴极保护知识阴极保护参数
第13页/共18页
在工程实际中也可采用通电情况下管道对 地电位较自然电位向负偏移300mV以上的指标。 选用这个偏移指标时应考虑以下因素:
(1)本指标不能提供完全的保护,但在无 杂散电流环境下,对裸露或防腐层质量低劣的 管道则是切实可行的手段:
第14页/共18页
(2)在具有良好防腐绝缘层的管道或受到杂散 电流干扰的管道上,使用本指标是浪费的或错误 的;
第3页/共18页
三、最大保护电位
管道通人阴极电流后,管道电位变负,当 其负电位提高到一定程度时,H+在阴极表面还 原,使得管道表面会析出氢气,减弱甚至破坏 防腐层的粘结力。所以必须将通电点电位控制 在比析氢电位稍正一些的位置。这个电位称为 最大保护电位。最大保护电位应经过试验,考 虑防腐层的种类及环境来确定,以不损坏防腐 层的粘结力为准。
本指标用于管道表面是均匀极化而又没有 杂散电流干扰的情况ቤተ መጻሕፍቲ ባይዱ,判定阴极保护效果是 相当准确的。在具有中断电流测量手段时,推 荐采用这个指标。
第12页/共18页
(二)特殊条件的考虑
(1)对于裸钢表面或涂敷不良的管道,在 预先确定的电流排放点(阳极区)确定净电流 是 从电解质流向管道表面。
(2)当土壤或水中含有硫酸盐还原菌,且 硫酸根含量大于0.5%(质量百分数)时,通 电保护电位应达到一950mV或更负。
第9页/共18页
五、阴极保护准则
SY/T 0036--2000提出的阴极保护准则 有以下内容。
(一)埋地钢质管道阴极保护准则
(1)在施加阴极电流的情况下,测得管地电位 为一850mV(CSE)或更负。测量中必须排除附加电 压降(IR降)的影响。
该指标是一个被广泛接受的参数,大量试验
管道阴极保护基本知识
管道阴极保护基本知识内容提要:◆阴极保护系统管理知识一、阴保护系统管理知识(一)阴极保护的原理自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。
我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。
每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易.腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。
阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。
阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液.有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。
1、牺牲阳极法将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。
在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。
牺牲阳极材料有高钝镁,其电位为—1。
75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为—0。
8V(相对于饱和硫酸铜参比电极)。
2、强制电流法(外加电流法)将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。
其方式有:恒电位、恒电流、恒电压、整流器等。
如图1—4示。
图1—4恒电位方式示意图外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。
而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。
石油天然气管道管路的阴极保护
第二章管路的阴极保护第一节管路的阴极保护一、阴极保护的原理使被保护的金属阴极极化,以减少和防止金属腐蚀的方法,叫作阴极保护。
阴极保护有两种方法,一种叫牺牲阳极保护,另一种叫强制阴极保护。
!"牺牲阳极保护在要保护的金属管路上,连接一种电位更负的金属或合金(如铝合金、镁合金),如图#$%$!(&)所示。
称为牺牲阳极。
原来在金属管路的两部分之间存在的电位差,在土壤中形成腐蚀电池(为了简化,可以把它看成是一对原电池),电流的方向如图。
管路连接牺牲阳极后,构成了一个新的腐蚀电池。
由于管路原来的腐蚀电池阳极的电极电位比外加的牺牲阳极的电位要正,所以整个管路成为阴极,电流从牺牲阳极流出,经土壤流到地下管路,再经导线流回阳极。
这样制止了管路上带正电的金属离子进入土壤,保护了管路免于腐蚀,而外加金属则成为阳极而不断地被腐蚀。
其保护电流的大小,主要决定于两极金属之间的电位差。
牺牲阳极保护的优点是构造简单,施工、管理方便,不需要外加电源,适用于无电源或需要局部保护的地方,对邻近的金属结构影响小。
其缺点是由于受两个金属之间电极电位差时限制,有效电位差及电流受到限制,用于地下管路保护的最大保护距离不过几公里,当土壤电阻率较高时,保护距离则更短,同时调节电流也困难,另一个缺点是阳极消耗量大,要消耗有色金属。
%"强制阴极保护利用外加直流电源,将被保护金属与直流电源负极相连,使被保护的金属整个表面变为阴极而进行阴极极化,以减轻或防止腐蚀,这种方法称为外加电流阴极保护或强制阴极保护如图#$%$!(’)所示。
强制阴极保护中的外加电流在管路和辅助阳极之间所建立的电位差,显然比牺牲阳极保护中,阳极与管路间仅依靠两种金属之间产生的电位差大得多。
因此,它的优点是可供给较大的保护电流,保护距离长。
同时,可以调节电流和电压,适用范围广。
辅助阳极的材料只要求有良好的导电性和抗腐蚀性,不消耗有色金属。
其缺点是需要外电源和经常的维护管理。
阴极保护培训基础知识及主要设备培训
一、阴保必要理论
5.IR降
5.1 什么是IR降? IR降:由于阴极保护电流在土壤中流动, 在土壤电阻上产生的电压降。
回顾下
的管道电位:
测试电位时,黑表笔接参比电极,
红表笔接管道,万用表打到直流电压档
,测试得电压数值为负。换句话说,测
试时电压表是反接,电流从参比电极流
出,经过电压表,再到管道,经土壤再
影响来源:结构物受阳极电场(阳极干扰)影响,吸收电流(阳极干扰源电势高于结构物电势,电场 方向由阳极干扰源指向结构物),电位负向极化;结构物受阴极电场(阴极干扰)影响,排放电流( 阴极干扰源电势低于结构物电势,电场方向由结构物指向阴极干扰源),电位正向极化。
联合描述:管道受阳极干扰、吸收电流、发生极化、电位负偏;管道受阴极干扰、释放电流、发生去 极化、电位正偏。这不就是直流杂散的影响方式么?
科学家经过多年的研究与实践,发现碳钢结构不论在何种环境下,最负阳极电位不会比0.85VCSE更负,所以将-0.85VCSE定义为碳钢结构的最小保护电位。
一、阴保必要理论
7.阴极保护理论
阴极保护基本原理是使被保护金属作为阴极,对其施加一定的直流电流,使其产生阴极极化,当金 属的电位负于某一电位值时,该金属表面的电化学不均匀性得到消除,腐蚀得到有效抑制,达到保护的 目的。根据提供电流的方式不同,阴极保护又分为牺牲阳极阴极保护和外加电流阴极保护两种。
2价Fe在自然环境中极易被氧化成3价Fe ,形成Fe2O3 ·xH2O(铁锈)
一、阴保必要理论
3.钢铁的电化学腐蚀 3.2 析氢腐蚀 发生条件:钢铁表面水膜,呈较强酸性(H+浓度高) 有 H2 析出。
阳极反应:2Fe-4e-=2Fe2+ 阴极反应:2H++2e-=H2↑ 总反应式:Fe+2H+=Fe2++H2↑
管道阴极保护原理
管道阴极保护原理管道阴极保护是一种常用的防腐蚀技术,它通过在管道表面施加电流,使得金属表面成为阴极,从而抑制金属腐蚀的过程。
阴极保护原理是建立在电化学的基础上,通过改变金属表面的电位来控制金属的腐蚀行为。
在管道表面施加阴极保护时,通常会采用一种称之为“阳极”的外部金属或合金,并且将其与管道表面连接。
通过在管道表面与阳极之间施加一个电压,就可以在管道表面形成一个保护性的电流场,从而实现对管道的防腐蚀保护。
阴极保护的原理可以分为两种类型,即被动式和主动式。
被动式阴极保护是利用外部电流场将金属电位降低到保护性的水平,使得金属表面成为阴极而得到保护,而主动式阴极保护则是通过在金属表面产生一个持续的电流,从而使金属表面一直处于一种保护性的状态。
被动式阴极保护通常适用于已有一定腐蚀的金属结构,而主动式阴极保护则适用于对金属结构进行长期保护。
阴极保护的原理还涉及到电化学腐蚀的基本过程。
在金属表面,通常会发生氧化还原反应,即金属表面的阳极和阴极反应。
阳极反应是金属表面的局部溶解,而阴极反应则是通过还原来补充阳极反应所带来的电荷。
当金属表面成为阴极时,就会抑制金属的溶解,从而减缓金属的腐蚀速度。
阴极保护的原理还与管道表面的涂层有关。
在许多情况下,金属表面会涂上一层抗腐蚀的涂料,从而形成一个保护性的层。
而当涂层破损时,阴极保护就可以发挥重要作用,通过在涂层破损处形成一个电流场,从而实现对金属表面的保护。
阴极保护的原理也与管道周围的土壤环境有关。
在土壤中含有一定的电导率,通常是通过土壤中的水分和盐分来实现电导,从而可以形成一个电流场,将外部电流导入到管道表面,实现对金属的保护。
总的来说,管道阴极保护的原理可以归纳为通过在管道表面施加一个电流,使金属表面成为阴极,从而抑制金属腐蚀的过程。
这种原理不仅可以用于管道的防腐蚀保护,还可以用于其他金属结构的防护,是一种非常有效的防腐蚀技术。
关于长输管道的阴极保护及故障分析
关于长输管道的阴极保护及故障分析长输管道是输送液体或气体的重要设施,其安全运行和保护至关重要。
在长期运行中,长输管道会遭受来自地下水、土壤和大气环境等因素的腐蚀,因此需要采取阴极保护技术来延长管道的使用寿命。
本文将介绍长输管道的阴极保护原理和常见的故障分析。
一、阴极保护原理阴极保护是一种通过外加电流来保护金属表面免受腐蚀的技术。
其基本原理是通过在金属表面施加一个负电位,使金属成为阴极,从而减缓甚至停止金属的腐蚀。
对于长输管道来说,通常采用的阴极保护方法包括半保护和全保护两种。
半保护是指在管道的局部区域施加外加电流,通常适用于管道局部腐蚀严重的情况。
而全保护则是在整个管道表面均匀施加外加电流,适用于整个管道都需要保护的情况。
阴极保护系统通常由阳极、电源以及控制系统组成。
阳极通常采用铝、镁或锌等阳极材料,阳极和管道通过导线连接到电源上。
电源可以是直流电源或者是取自交流电源的整流装置,用来产生外加电流。
而控制系统则用来监测管道的电位和电流,保证管道的阴极保护效果。
二、阴极保护故障分析尽管阴极保护可以有效地延长长输管道的使用寿命,但是在实际运行中还是会出现一些故障,主要包括阳极失效、外加电流失效和控制系统失效等。
1. 阳极失效阳极失效是阴极保护系统的常见故障之一。
阳极失效可能是由于阳极材料本身腐蚀或者损坏导致的。
在这种情况下,阳极需要及时更换,以保证阴极保护系统的正常运行。
阳极的布置位置也需要考虑,不同位置的阳极需要采取不同的保护措施,比如对于埋地管道需要采用深埋和广埋的方式来安装阳极。
2. 外加电流失效外加电流失效是指外加电流未能在管道表面均匀分布或者未能达到设计要求。
这可能是由于电源故障或者导线连接不良导致的。
对于这种情况,需要及时对电源和导线进行检修和更换,以保证管道的阴极保护效果。
3. 控制系统失效控制系统失效是指用来监测管道电位和电流的设备出现故障。
控制系统失效可能是由于传感器损坏、连接线路故障或者控制器故障等原因导致的。
燃气管道阴极保护原理
燃气管道阴极保护原理
燃气管道阴极保护是一种常用的防腐措施,其原理是通过外加电流,在管道表面形成一个保护电流场,使管道表面处于阴极电位,从而抑制金属的腐蚀。
具体原理如下:
1. 阴极保护通过外加电流,使得燃气管道成为一个阴极。
阴极是电化学反应中电子流入的地方,而阳极是电子流出的地方。
由于外加电流的存在,燃气管道表面成为阴极,吸收电流。
2. 燃气管道表面的腐蚀主要是由于金属表面与燃气介质中的水和氧发生电化学反应,形成电池。
燃气管道的金属表面处在阳极电位,发生金属的氧化腐蚀。
而通过阴极保护,使管道表面保持在阴极电位,不发生氧化反应。
3. 阴极保护可以通过两种方式实现,一种是通过外接电源将电流引入燃气管道,使其成为阴极;另一种是使用牺牲阳极,在燃气管道上固定一些易于腐蚀的阳极材料,使其作为阴极。
总体来说,燃气管道阴极保护的原理是通过外加电流或者牺牲阳极,将管道表面维持在阴极电位,从而抑制金属腐蚀的发生。
这种保护方式可以延长燃气管道的使用寿命,减少维修和更换的成本。
管道阴极保护的方法
管道阴极保护的方法管道阴极保护是一种防腐蚀措施,通过在管道表面施加电流,将管道设为负极,并通过引入外部电流,实现对金属表面的保护,减缓或阻止金属腐蚀。
下面将详细介绍几种常见的管道阴极保护的方法。
1. 电流放电法:电流放电法是通过在线结构上以链状方式分布大量阳极,形成一个与结构相连接的阳极体系,以达到阴、阳离子在电极表面相转移的目的。
该方法可采用分布在外部的阳极和直接埋设在土壤或水体中的阳极。
电流放电法适用于各种金属结构,尤其适用于顶棚、架梁等较长的结构。
2. 电位调节法:电位调节法是通过将阳极连接到要保护结构的阳极保护系统上,产生足够的电流和阴极保护电位,来减缓或阻止管道的腐蚀。
该方法适用于埋地管道、水箱和储罐等。
3. 牺牲阳极法:牺牲阳极法又称为牺牲保护法,它通过在管道金属表面放置一种具有更高的电位的金属,使其与管道组成一个局部电池,牺牲阳极因具有更负的电位,而被腐蚀,从而延缓或阻止管道腐蚀。
常用的牺牲阳极材料有锌、铝、镁等。
这种方法适用于在土壤、水下和混凝土中埋设的管道。
4. 电阻率测定法:电阻率测定法是通过测量管道金属表面电阻率的变化来判断管道阴极保护的状况。
如果管道表面电阻率的变化较大,说明管道阴极保护状态良好,否则需要采取相应的维护措施。
5. 化学浸渍法:化学浸渍法是通过将含有有机阴极保护试剂的水溶液浸渍到管道中,使其与管道表面发生相应的化学反应,形成一层保护膜,来实现管道的阴极保护。
常用的有机阴极保护试剂有盐酸、硫酸、有机酸等。
6. 有机涂层法:有机涂层法是在管道表面涂覆一层防腐蚀涂料,通过涂层形成的隔离层隔绝金属与外界环境的接触,从而达到防止金属腐蚀的目的。
常用的涂层材料有沥青、环氧树脂、聚氨脂等。
除了上述方法,还有一些其他的管道阴极保护的方法,如电化学方法、阳极膜法、外加电流浸渍法等。
不同的管道材料、设计要求和使用环境,选择不同的阴极保护方法,以达到最佳的防腐蚀效果。
需要指出的是,管道阴极保护是一个复杂的系统工程,它涉及到材料的选择、优化设计、施工及维护等方面的问题。
管道阴极保护
管道阴极保护1. 管道阴极保护的背景与概述在现代工业中,管道的使用非常普遍,尤其是在石油、天然气等行业中,管道起到了非常关键的作用。
然而,由于管道在使用过程中常常接触到水、土壤等导电介质,导致管道表面出现腐蚀的问题。
为了解决这一问题,管道阴极保护技术应运而生。
管道阴极保护通过施加电流使管道的金属表面成为阴极,从而抑制腐蚀的发生。
2. 管道阴极保护的原理管道阴极保护的原理是利用外加电源产生直接电流,通过作用于管道金属表面,使之成为阴极,从而抑制自腐蚀的发生。
具体原理如下:•管道金属表面通常会存在一些腐蚀点,这些点通常是金属的阴极位置。
•通过施加外加电流,使管道表面成为电流的路径,从而将自腐蚀的位置转变为阴极位置。
•通过向管道输送电流,并通过阳极来提供电子,实现对管道的阴极保护。
3. 管道阴极保护的实施步骤3.1 管道表面处理在实施管道阴极保护之前,需要对管道的表面进行处理。
处理步骤如下:1.清洁管道表面:通过高压水枪等工具将管道表面的污物、油漆等清除干净,以提供良好的阴极保护条件。
2.去除锈蚀:对于已经存在的锈蚀处,需要使用刷子、砂纸等工具进行去除,并用除锈剂进行清洗。
3.涂覆绝缘涂层:为了增强管道表面的绝缘性能,需要对管道进行绝缘涂层的涂覆,如使用油漆、聚乙烯等材料进行涂覆。
3.2 安装阴极保护设备在管道表面处理完毕后,需要安装阴极保护设备。
设备安装包括以下步骤:1.安装阴极:在管道的一段或多段位置,安装阴极,通常选择带有金属物质的材料作为阴极,如铁或铝。
2.安装阳极:将长条状的阳极埋入土壤中,以便提供电子并供给阴极保护系统所需的电流。
3.连接电缆:通过电缆将阴极和阳极与阴极保护设备连接起来,以便实现电流的传输。
3.3 测试与监测在阴极保护设备安装完毕后,需要进行测试与监测,以确保阴极保护系统的正常运行。
测试与监测包括以下内容:1.阳极地深度测试:使用测试设备,测试阳极埋入土壤中的深度,以确保其与土壤的良好接触。
管道阴极保护
四、阴极保护效果和影响因素
直流干扰的防护 在直流干扰易发、多发地区,防护直流干扰是阴极保护不能忽 视的任务,加强绝缘,采取排流措施是主要方面。
四、阴极保护效果和影响因素
交流干扰 交流干扰也称工频干扰,是广泛存在的工业供电系统对阴极 保护产生的干扰。与直流干扰主要由接触和流动产生不同,交流 干扰只有小部分可能由接地系统进入阴极保护系统(如交流电力 机车),绝大部分是由电磁感应进入阴极保护系统的,因此可以 说交流干扰是普遍存在、绝对存在的干扰,不能避免,不能排除, 只能防护、只能减轻。 交流干扰严重时可在阴极保护系统造成危及人身和设备安全 的过电压,必须采取有效接地等防护措施。 目前交流干扰对腐蚀的危害还没有一致看法,有认为有危害 应该防护,有主张无危害不必防护。不过综合安全考虑,一般可 认为12V以下的交流干扰不必专门采取防护措施,12V以上应该采 取适当防护措施。
一、基础概念
首先清楚几个概念: 浸于电解质溶液中的金属导体称为电极。 电解质是指在液体状态(溶解或熔融状态)时分子分 解为离子因而能导电的物质。 双电层在金属与溶液中的界面两侧形成电位差,这个 电位差即是该金属在该溶液中的电极电位。 如果把两个不同电极组成一体,因它们的电极电位不 同,电极间的电位差,形成电势,即为电池,用导线 把它接进电路,就可以向电路供电。把这样只有两个 电极构成的电池称为“原电池”。 发生极化时是阴极电位向负的方向移动,阳极电位向 正的方向移动,极化使电路电流减小。
二、阴极保护系统原理
因为有(阴极保护)电流流入,使腐蚀速率减 小或消失。也就是,电流的进、出是腐蚀与否 的标志,被保护物自身存在的阴、阳极区并未 停止电流过程和腐蚀过程,而是受到阴极保护 电流的补充(或覆盖),腐蚀因而减小或(相 当于)停止。
长输管道阴极保护
1 强制电流阴极保护
利用外部直流电源,取得阴极极化电流,以防止金属遭受[wiki]腐蚀[/wiki]的方法称强制电流阴极保护,或外加电流阴极保护。
此时被保护的金属接在直流电源的负极上,而电流的正极则接辅助阳极。
强制电位阴极保护为目前油气管道阴极保护的主要形式。
该保护系统主要包括供电电源,辅助阳极(阳极地床),参比电极,电绝缘装置,检测系统等。
2 牺牲阳极保护
在离子导电的介质中,与被保护体相连并可以提供阴极保护电流的金属或合金称牺牲阳极。
牺牲阳极保护实质上是应用了不同金属间电极电位差的电化学原理来实现阴极保护。
当钢铁管道与电位更负的金属电气连接,并且两者处于同一电解质溶液中(如土壤、海水)则电位更负的金属作为阳极在腐蚀过程中向管道提供阴极保护电流,实现管道的阴极保护。
常用的牺牲阳极有镁和镁合金、锌及锌合金以及铝合金三大类
3 阴极保护准则
(a)埋地钢质管道阴极保护应符合下列准则之一:
•在施加阴极保护电流的情况下,测得管/地电位为-850mV(相对饱和[wiki]硫酸[/wiki]铜参比电极下同)或更负。
•相对饱和硫酸铜参比电极的管/地极化电位为-850mV或更负。
•管道表面与同土壤接触的稳定参比电极之间阴极极化值最小为100mV。
这一准则可以用于极化的建立过程或衰减过程中。
(b)其它要求
•对于裸钢表面或涂敷不良的管道,在预先确定的电流排放点(阳极区)确定净电流应从电解质流向管道表面。
•当土壤或水中含有硫酸盐还原菌,且硫酸根含量大于0.5%时,通电保护电位应达到-950mV 或更负。
管道阴极保护原理
管道阴极保护原理
管道阴极保护是一种常用的防腐蚀方法,通过在管道表面施加电流,使管道成
为阴极,从而抑制金属腐蚀的过程。
管道阴极保护原理主要包括电化学原理、电流传递原理和电位原理。
首先,电化学原理是管道阴极保护的基础。
金属在电解质溶液中会发生电化学
反应,产生阳极和阴极反应。
在管道阴极保护系统中,通过外加电流使金属表面成为阴极,从而抑制金属的腐蚀。
这种方法可以有效延长管道的使用寿命,减少维护成本。
其次,电流传递原理是管道阴极保护的关键。
在管道阴极保护系统中,外加电
流需要通过电解质溶液传递到金属表面,形成均匀的阴极保护层。
因此,管道阴极保护系统的设计和施工需要考虑电流传递的均匀性,以确保整个管道表面都能得到有效的防腐蚀保护。
最后,电位原理是管道阴极保护的监测和调节依据。
通过监测管道表面的电位,可以了解管道阴极保护系统的工作状态,及时调节外加电流以保持合适的阴极保护电位。
这样可以有效防止管道出现过保护或欠保护的情况,保证管道的安全运行。
总之,管道阴极保护原理是基于电化学原理、电流传递原理和电位原理的。
通
过合理设计和施工管道阴极保护系统,可以有效抑制金属腐蚀,延长管道的使用寿命,降低维护成本,保障管道的安全运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管道阴极保护基本知识内容提要:◆阴极保护系统管理知识◆阴极保护系统测试方法◆恒电位仪的基本操作一、阴保护系统管理知识(一)阴极保护的原理自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。
我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。
每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。
腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。
阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。
阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。
有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。
1、牺牲阳极法将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。
在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。
牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。
2、强制电流法(外加电流法)将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。
其方式有:恒电位、恒电流、恒电压、整流器等。
如图1-4示。
图1-4恒电位方式示意图外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。
而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。
阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流。
两种方法的差别只在于产生保护电流的方式和“源”不同。
一种是利用电位更负的金属或合金,另一种则利用直流电源。
强制电流阴极保护驱动电压高,输出电流大,有效保护范围广,适用于被保护面积大的长距离、大口径管道。
牺牲阳极阴极保护不需外部电源,维护管理经济,简单,对邻近地下金属构筑物干扰影响小,适用于短距离、小口径、分散的管道。
(二)外加电流阴极保护系统的组成1、恒电位仪:珠三角管道采用的是IHF系列数控高频开关恒电位仪,它的主要作用是向管道输出保护电流。
2、阳极地床:由若干支辅助阳极(高硅铸铁)组成,通过辅助阳极把保护电流送入土壤,经土壤流入被保护的管道,使管道表面进行阴极极化 (防止电化学腐蚀),电流再由管道流入电源负极形成一个回路,这一回路形成了一个电解池,管道在回路中为负极处于还原环境中,防止腐蚀,而辅助阳极进行氧化反应遭受腐蚀,或是周围电解质被氧化。
阴保站的电能60%消耗在阳极接地电阻上, 故阳极材料的选择和埋设方式、场所的选择,对减小电阻节约电能是至关重要的。
珠三角管道的阳极地床辅助阳极一般为40支,阳极地床的接地电阻小于3Ω(设计要求),阳极地床与管道的垂直距离要大于50米。
3、参比电极:为了对各种金属的电极电位进行比较,必须有一个公共的参比电极,其电极电位具有良好的重复性和稳定性,构造简单,通常由饱和硫酸铜参比电极、锌电极等。
4、绝缘接头:阴极保护系统保护的是输油站外的长输管道,绝缘接头的作用是将阴极保护电流限制在两个阴极保护站之间的管道上。
5、检查片:由与管道同材质的金属制成50×100mm的挂片,检查片有两组,一组与输油管道相连,处于阴极保护状态,一组不与管道相连,处于自然腐蚀状态。
经过一定时间后将两组检查片的失重量进行比较,可分析管道的阴极保护效果。
6、测试桩:为了检测维护管道的阴极保护系统,在管道沿线设置电流及电位测试桩,电位测试桩每公里设置一个;电流测试桩每5公里设一个;套管电位测试桩每个套管处设置一个;绝缘接头电位测试桩每一绝缘处设一个。
(三)阴极保护的基本参数(1)最小保护电流密度阴极保护时,使腐蚀停止,或达到允许程度时所需的电流密度值称为最小保护电流密度。
最小保护电流密度的大小取决于被保护金属的种类、表面状况、腐蚀介质的性质、组成、浓度、温度和金属表面绝缘层质量等。
防腐绝缘层种类不同,所需要的保护电流密度也不同。
防腐绝缘层的电阻值越高,所需的保护电流密度值越小。
(2)最小保护电位为使腐蚀过程停止,金属经阴极极化后所必须达到的绝对值最小的负电位值,称之为最小保护电位。
最小保护电位也与金属的种类、腐蚀介质的组成、温度、浓度等有关。
最小保护电位值常常是用来判断阴极保护是否充分的基准。
因此该电位值是监控阴极保护的重要参数。
实验测定在土壤中的最小保护电位为-0.85V(相对饱和硫酸铜参比电极)。
(3)最大保护电位在阴极保护中,所允许施加的阴极极化的绝对值最大的负电位值,在此电位下管道的防腐层不受到破坏。
此电位值就是最大保护电位。
最大保护电位值的大小通过试验确定。
一般取-1.5V(CSE)。
阴极保护电位越大,防腐程度越高,单站保护距离也越长,但是过大的电位将使被保护管道的防腐绝缘层与管道金属表面的粘接力受到破坏,产生阴极剥离,严重时可以出现金属“氢破裂”。
同时太大的电位将消耗过多的保护电流,形成能量浪费。
(四)阴极保护投入前的准备和验收1、阴极保护投入前对被保护管道的检查管道对地绝缘的检查:从阴极保护的原理介绍, 已得知没有绝缘就没有保护。
为了确保阴极保护的正常运行,在施加阴极保护电流前,必须确保管道的各项绝缘措施正确无误。
应检查管道的绝缘接头的绝缘性能是否正常;管道沿线的阀门应与土壤有良好的绝缘;管道与固定墩、跨越塔架、穿越套管处也应有正确有效的绝缘处理措施,管道在地下不应与其它金属构筑物有"短接"等故障;管道表面防腐层应无漏敷点,所有施工时期引起的缺陷与损伤均应在施工验收时使用埋地检漏仪检测,修补后回填。
2、对阴极保护施工质量的验收(1)对阴极保护间内所有电气设备的安装是否符合《电气设备安装规程》的要求,各种接地设施是否完成,并符合图纸设计要求。
(2)对阴极保护的站外设施的选材、施工是否与设计一致。
对通电点、测试桩、阳极地床、阳极引线的施工与连接应严格符合规范要求,尤其是阳极引线接正极,管道汇流点接负极,严禁电极接反。
(3)图纸、设计资料齐全完备。
(五)阴极保护投入运行的调试1、组织人员测定全线管道自然电位、土壤电阻率、阳极地床接地电阻,同时对管道环境有一个比较详尽的了解,这些资料均需分别记录整理,存档备用。
2、阴极保护站投入运行按照恒电位仪的操作程序给管道送电,使电位保持在-1.20伏左右,待管道阴极极化一段时间(四小时以上)开始测试直流电源输出电流、电压、通电点电位、管道沿线保护电位、保护距离等。
然后根据所测保护电位,调整通电点电位至规定值,继续给管道送电使其完全极化(通常在24小时以上)。
再重复第一次测试工作,并做好记录。
若个别管段保护电位过低,则需再适当调节通电点电位至满足全线阴极保护电位指标为止。
3、保护电位的控制各站通电点电位的控制数值, 应能保证相邻两站间的管段保护电位达到-0.85伏,同时各站通电点最负电位不允许超过规定数值。
调节通电点电位时,管道上相邻阴极保护站间加强联系,保证各站通电点电位均衡。
4、当管道全线达到最小阴极保护电位指标后,投运操作完毕,各阴极保护站进入正常连续工作阶段。
(六)阴极保护站的日常维护管理1、恒电位仪的巡检和维护。
1) 日常巡检:每天9:00和21:00对恒电位仪巡检一次,并记录输出电压、电流、保护电位数值, 与前次记录(或值班记录)对照是否有变化,若不相同应查找原因,采取相应措施使管道全线达到阴极保护。
2)每月维护:每月1日对恒电位仪进行切换使用。
改用备用的仪器时,应即时进行一次观测和维修,发现仪器故障应及时检修,保证供电。
维护内容:观察全部零件是否正常,元件有无腐蚀、脱焊、虚焊、损坏,各连接点是否可靠,电路有无故障,各紧固件是否松动,熔断器是否完好,如有熔断,需查清原因再更换。
检查接接阴极保护站的电源导线,以及接至阳极地床、通电点的导线是否完好,接头是否牢固。
定期检查工作接地和避雷器接地,并保证其接地电阻不大于10欧姆,在雷雨季节要注意防雷。
搞好站内设备的清洁卫生,注意保持室内干燥,通电良好,防止仪器过热。
2、参比电极的维护。
作为恒定电位仪信号源的埋地参比电极,在使用过程中需注意观察恒电位仪的输出数值,发现异常可检查参比电极井是否干涸,影响仪器正常工作。
3、阳极地床的维护。
阳极地床接地电阻每月测试一次,接地电阻增大至影响恒电位仪不能提供管道所需保护电流时,应该更换阳极地床或进行维修,以减小接地电阻。
4、测试桩的维护。
1) 检查接线柱与大地绝缘情况,电阻值应大于100千欧,用万用表测量,若小于此值应检查接线柱与外套钢管有无接地,若有则需更换或维修。
2) 测试桩应每年定期刷漆和编号。
3) 防止测试桩的破坏丢失,对沿线城乡居民及儿童作好爱护国家财产的宣传教育工作。
5、绝缘接头的维护。
每月检测绝缘接头两侧管地电位,若与原始记录有差异时,应对其性能好坏作鉴别。
如有漏电情况应采取相应措施。
6、阴极保护系统的管理目标(主要控制指标)1)保护率等于100%;管道总长-未达有效阴极保护管道长保护率= ─────────────────×100%管道总长2)运行率(开机率)大于98%;全年小时数-全年停机小时数开机率= ──────────────×100%全年小时数3)保护度大于85%;G1 / S1 -G2 / S2保护度= ─────────×100%G1 / S1式中:G1——未施加阴极保护检查片的失重量,g;S1——未施加阴极保护检查片的裸露面积,cm2;G2——施加阴极保护检查片的失重量,g;S2——施加阴极保护检查片的裸露面积,cm2;4)管道保护电位:一般为-0.85V~-1.5V,当土壤或水中含有硫酸盐还原菌且硫酸根含量大于0.5%时为-0.95V或更负(应考虑IR降的影响)。
(七)阴极保护系统常见故障的分析1、保护管道绝缘不良,漏电故障的危害在阴极保护站投入运行,或牺牲阳极保护投产一段时间后,出现了在规定的通电点电位下, 输出电流增大,管道保护距离却缩短的现象,或者在牺牲阳极系统中,牺牲阳极组的输出电流量增大,其值已超过管道的保护电流需要,但保护电位仍达不到规定指标的现象。