大学物理波的干涉和衍射
大学物理中的光的干涉与衍射光的干涉与衍射现象
![大学物理中的光的干涉与衍射光的干涉与衍射现象](https://img.taocdn.com/s3/m/c38d1d2f53d380eb6294dd88d0d233d4b04e3f75.png)
大学物理中的光的干涉与衍射光的干涉与衍射现象大学物理中的光的干涉与衍射光的干涉与衍射现象是大学物理中一个重要且有趣的研究课题。
这些现象揭示了光的波动性质,以及波动性对光的传播与相互作用的影响。
本文将系统地介绍光的干涉与衍射现象,并探讨其在物理学与现实生活中的应用。
一、光的干涉现象光的干涉是指两列或多列光波相互叠加形成的明暗条纹图案。
常见的干涉现象包括杨氏双缝干涉、杨氏单缝干涉、牛顿环等。
1.1 杨氏双缝干涉杨氏双缝干涉是光的干涉现象中最典型的实验之一。
它利用一束光通过两狭缝后产生的明暗交替的干涉条纹来说明光的波动性质。
当光线经过两条狭缝时,由于来自不同狭缝的光波具有相位差,它们会相互干涉,形成一系列明暗相间的条纹。
1.2 杨氏单缝干涉杨氏单缝干涉是光的干涉现象中较为简单的一种。
它是通过单个狭缝产生的衍射效应,导致在观察屏幕上出现明暗相间的条纹。
单缝干涉通常用于分析光的波长和狭缝大小之间的关系。
1.3 牛顿环牛顿环是一种非常有趣的干涉现象。
它是由一片凸透镜与平面玻璃片之间的空气薄膜所形成的。
当光线垂直照射到凸透镜与平面玻璃片之间的空气薄膜时,由于空气薄膜的厚度不均匀,光线在不同厚度处产生不同的相位差,从而形成一系列明暗相间的圆环。
二、光的衍射现象光的衍射是指光通过物体的边缘或孔径时发生偏离直线传播的现象。
常见的衍射现象包括夫琅禾费衍射、菲涅耳衍射等。
2.1 夫琅禾费衍射夫琅禾费衍射是一种通过窄缝衍射的现象。
当一束平行光通过一个窄缝时,光波会在缝口处发生衍射,形成一系列明暗相间的条纹。
这种衍射现象的强度分布与缝口的大小和光波的波长有关。
2.2 菲涅耳衍射菲涅耳衍射是一种通过物体边缘衍射的现象。
当一束平行光照射到物体的边缘时,光波会在物体边缘发生衍射,从而形成明暗相间的衍射图样。
菲涅耳衍射常用于分析物体的形状和边缘的特性。
三、光的干涉与衍射在应用中的意义光的干涉与衍射现象在科学研究和实际应用中具有重要意义。
实验报告之仿真(光的干涉与衍射)
![实验报告之仿真(光的干涉与衍射)](https://img.taocdn.com/s3/m/ec813a1a650e52ea551898c3.png)
大学物理创新性试验实验项目:单缝﹑双缝﹑多缝衍射现象仿真实验专业班级:材料成型及控制工程0903班姓名:曹惠敏学号:090201097目录1光的衍射2衍射分类3实验现象4仿真模拟5实验总结光的衍射光在传播路径中,遇到不透明或透明的障碍物,绕过障碍物,产生偏离直线传播的现象称为光的衍射。
光的衍射现象是光的波动性的重要表现之一.波动在传播过程中,只要其波面受到某种限制,如振幅或相位的突变等,就必然伴随着衍射的发生. 然而,只有当这种限制的空间几何线度与波长大小可以比拟时,其衍射现象才能显著地表现出来.所有光学系统,特别是成像光学系统,一般都将光波限制在一个特定的空间域内,这使得光波的传播过程实际上就是一种衍射过程.因此,研究各种形状的衍射屏在不同实验条件下的衍射特性,对于深刻理解衍射的实质,研究光波在不同光学系统中的传播规律分析复杂图像的空间频谱分布以及改进光学滤波器设计等具有非常重要的意义.随着计算机技术的飞速发展, 计算机仿真已深入各种领域。
光的干涉与衍射既是光学的主要内容 , 也是人们研究与仿真的热点。
由于光波波长较短,与此相应的复杂形状衍射屏的制作较困难,并且实验过程中对光学系统及环境条件的要求较高.因而在实际的实验操作和观察上存在诸多不便. 计算机仿真以其良好的可控性、无破坏、易观察及低成本等优点,为数字化模拟现代光学实验提供了一种极好的手段. 本次实验利用MATLAB软件实现对任意形状衍射屏的夫琅禾费衍射实验的计算机仿真。
衍射分类⒈菲涅尔衍射菲涅尔衍射:入射光与衍射光不都是平行光的衍射。
惠更斯提出,媒质上波阵面上的各点,都可以看成是发射子波的波源,其后任意时刻这些子波的包迹,就是该时刻新的波阵面。
菲涅尔充实了惠更斯原理,他提出波前上每个面元都可视为子波的波源,在空间某点P的振动是所有这些子波在该点产生的相干振动的叠加,称为惠更斯-菲涅尔原理。
惠更斯-菲涅尔原理能定性地描述衍射现象中光的传播问题,成为我们解释光的各类衍射现象的理论依据。
大学物理波动光学总结资料
![大学物理波动光学总结资料](https://img.taocdn.com/s3/m/473a82204531b90d6c85ec3a87c24028915f8503.png)
大学物理波动光学总结资料波动光学是指研究光的波动性质及与物质相互作用的学科。
在大学物理中,波动光学通常包括光的干涉、衍射、偏振、散射、吸收等内容。
以下是波动光学的一些基本概念和应用。
一、光的波动性质1.光的电磁波理论。
光是由电磁场传输的波动,在时空上呈现出周期性的变化。
光波在真空中传播速度等于光速而在介质中会有所改变。
根据电场和磁场的变化,光波可以分为不同的偏振状态。
2.光的波长和频率。
光波的波长和频率与它的能量密切相关。
波长越长,频率越低,能量越低;反之亦然。
3.光的能量和强度。
光的能量和强度与波长、频率、振幅有关。
能量密度是指单位体积内的能量,光的强度则是表征单位面积内能量流的强度。
二、光的干涉1.干涉的定义。
干涉是指两个或多个光波向同一方向传播时,相遇后相互作用所产生的现象。
2.杨氏双缝干涉实验。
当一束单色光垂直地照到两个很窄的平行缝口上时,在屏幕上会出现一系列互相平衡、互相补偿的亮和暗的条纹,这种现象就叫做杨氏双缝干涉。
3.干涉条纹的间距。
干涉条纹的间距与光波的波长、发生干涉的光程差等因素有关。
4.布拉格衍射。
布拉格衍射是一种基于干涉理论的衍射现象,用于分析材料的晶体结构。
三、光的衍射1.衍射的定义。
衍射是指光波遇到障碍物时出现波动现象,其表现形式是波动向四周传播并在背面出现干涉现象。
2.夫琅和费衍射。
夫琅和费衍射是指光波通过一个很窄的入口向一个屏幕上的孔洞传播时,从屏幕背面所观察到的特征。
孔洞的大小和形状会影响到衍射现象的质量。
3.斯特拉斯衍射。
斯特拉斯衍射是指透过一个透镜后,将光线聚焦到一个小孔上,然后在背面观察到的光的分布情况。
4.阿贝原则与分束学。
阿贝原则是指光学成像的基本原理,根据这个原理,任意一个物体都可以被看作一个点光源阵列。
分束学是将任意一个物体看作一个点光源阵列,在分别聚焦到像平面后重新合成图像。
四、光的偏振1.偏振的定义。
偏振是指光波的电场振动在一个平面内进行的波动现象。
光的衍射与光的干涉定律
![光的衍射与光的干涉定律](https://img.taocdn.com/s3/m/1eb46d91c0c708a1284ac850ad02de80d5d80649.png)
光的衍射与光的干涉定律光的衍射与光的干涉定律是光学中的两个重要概念,在研究光的传播和性质时起着关键的作用。
本文将详细介绍光的衍射与光的干涉定律,并探讨其应用及相关实验。
一、光的衍射光的衍射是指当光通过一个物体的边缘或者孔径时,光波的传播方向和振动方向发生改变,产生新的光波现象。
根据赫维兹原理,当光通过一个孔径时,会在光屏上产生圆形的衍射斑。
光的衍射主要遵循以下定律:1. 衍射定律:光的衍射现象可以由赫维兹原理描述,即每一点成为次级波源,波源的干涉形成衍射现象。
2. 衍射图样定律:根据衍射现象可推导出不同孔径的物体在光屏上的衍射图样,如单缝衍射、双缝衍射等。
3. 衍射角定律:衍射角定律描述了衍射的角度与波长、孔径尺寸等因素之间的关系,可以用来计算衍射的位置和强度。
光的衍射广泛应用于科学研究和实际应用中,例如天文学中的天体观测、光刻技术中的微影制程等。
二、光的干涉光的干涉是指两个或多个光波相遇形成干涉图样的现象。
光的干涉可以分为两类:构成干涉的光源可以是同一光源的两个光波,或者来自不同光源的光波。
光的干涉遵循以下定律:1. 干涉定律:干涉图样可以由菲涅尔原理和赫维兹原理解释。
菲涅尔原理认为光波的振幅在干涉区域内叠加,赫维兹原理认为每一点成为次级波源形成干涉现象。
2. 干涉条纹定律:干涉现象产生的条纹可以通过叠加图案观察到,例如Young双缝干涉实验中的明暗条纹。
3. 干涉色定律:干涉现象还可以产生彩色条纹,根据不同波长的光波受干涉程度不同,出现不同颜色的现象。
光的干涉在波动光学研究中具有重要的应用,例如干涉仪的设计和测量,薄膜干涉等。
三、光的衍射与干涉实验为了验证光的衍射与干涉定律,科学家开展了大量实验。
其中一些经典的实验包括:1. 杨氏双缝干涉实验:将光通过两个狭缝,在光屏上形成明暗条纹,用以验证光的干涉理论。
2. 单缝衍射实验:通过一个狭缝使光通过,在光屏上观察到衍射图样,验证光的衍射理论。
3. 惠更斯衍射实验:将光通过一个孔径,观察到光的衍射现象,验证衍射定律。
大学物理波动光学知识点总结.doc
![大学物理波动光学知识点总结.doc](https://img.taocdn.com/s3/m/2299bd9cdc3383c4bb4cf7ec4afe04a1b171b07f.png)
大学物理波动光学知识点总结.doc波动光学是物理学中的重要分支,涉及到光的反射、折射、干涉、衍射等现象。
作为大学物理中的一门必修课程,波动光学是大学物理知识体系重要的组成部分。
以下是相关的知识点总结:1. 光的波动性光可以被看作是一种电磁波。
根据电磁波的性质,光具有波动性,即能够表现出干涉、衍射等现象。
光的波长决定了其在物质中能否传播和被发现。
2. 光的反射光在与物体接触时会发生反射。
根据反射定律,发射角等于入射角。
反射给人们带来很多视觉上的感受和体验,如反光镜、镜子等。
当光从一种介质向另一种介质传播时,光的速度和方向都会发生改变,这个现象称为折射。
光在空气、玻璃、水等介质中的折射现象被广泛应用到光学、通信等领域中。
4. 光的干涉当两束光相遇时,它们会相互干涉,产生干涉条纹。
这是因为两束光的干涉条件不同,它们之间产生了相位差,导致干涉现象。
干涉可以分为光程干涉和振幅干涉。
光经过狭缝或小孔时,其波动性会导致光将会分散成多个波阵面。
这种现象称为衍射。
衍射可以改变光的方向和能量分布,被广泛应用于成像和光谱分析等领域。
6. 偏振偏振是光波沿着一个方向振动的现象,产生偏振的方式可以通过折射、反射、散射等途径实现。
光的偏振性质在光学通信、材料研究等领域有着广泛的应用。
总结波动光学是大学物理学知识体系不可或缺的一部分,它涉及到光的波动性、光的反射、折射、干涉、衍射等现象。
对于工程、光学、材料等领域的学生和研究者来说,深入了解波动光学的基本原理和理论,都有助于提高知识和技术水平。
(完整word)大学物理教案 光的干涉、衍射与偏振
![(完整word)大学物理教案 光的干涉、衍射与偏振](https://img.taocdn.com/s3/m/e036616851e79b8969022637.png)
教学目标 掌握惠更斯-菲涅耳原理;波的干涉、衍射和偏振的特性,了解光弹性效应、电光效应和磁光效应。
掌握相位差、光程差的计算,会使用半波带法、矢量法等方法计算薄膜干涉、双缝干涉、圆孔干涉、光栅衍射。
掌握光的偏振特性、马吕斯定律和布儒斯特定律,知道起偏、检偏和各种偏振光。
教学难点 各种干涉和衍射的物理量的计算。
第十三章 光的干涉一、光线、光波、光子在历史上,光学先后被看成“光线"、“光波”和“光子”,它们各自满足一定的规律或方程,比如光线的传输满足费马原理,传统光学仪器都是根据光线光学的理论设计的。
当光学系统所包含的所有元件尺寸远大于光波长时(p k =),光的波动性就难以显现,在这种情况下,光可以看成“光线”,称为光线光学,。
光线传输的定律可以用几何学的语言表述,故光线光学又称为几何光学。
光波的传输满足麦克斯韦方程组,光子则满足量子力学的有关原理。
让电磁波的波长趋于零,波动光学就转化为光线光学,把电磁波量子化,波动光学就转化为量子光学。
二、费马原理光线将沿着两点之间的光程为极值的路线传播,即(,,)0QPn x y z ds δ=⎰三、光的干涉光矢量(电场强度矢量E )满足干涉条件的,称为干涉光。
类似于机械波的干涉,光的干涉满足:222010*********cos()r r E E E E E ϕϕ=++-1020212cos()r r E E ϕϕ-称为干涉项,光强与光矢量振幅的平方成正比,所以上式可改写为:12I I I =++(1—1)与机械波一样,只有相干电磁波的叠加才有简单、稳定的结果,对非干涉光有:1221,cos()0r r I I I ϕϕ=+-=四、相干光的研究方法(一)、光程差法两列或多列相干波相遇,在干涉处叠加波的强度由在此相遇的各个相干波的相位和场强决定。
能够产生干涉现象的最大波程差称为相干长度(coherence length )。
设光在真空中和在介质中的速度和波长分别为,c λ和,n v λ,则,n c v νλνλ==,两式相除得n vcλλ=,定义介质的折射率为: c n v=得 n nλλ=可见,一定频率的光在折射率为n 的介质中传播时波长变短,为真空中波长的1n倍.光程定义为光波在前进的几何路程d 与光在其中传播的介质折射率n 的乘积nd .则光程差为(1)nd d n d δ=-=-由光程差容易计算两列波的相位差为21212r r δϕϕϕϕϕπλ∆=-=-- (1—2)1ϕ和2ϕ是两个相干光源发出的光的初相。
大学物理光的干涉和衍射
![大学物理光的干涉和衍射](https://img.taocdn.com/s3/m/8151971d0740be1e650e9a75.png)
2
2
R2
2d
2
(2k 1)
d2
d1
d r
O
R1
2 (k 0,1,2,)
2 2
r4 r4 k 4, 2d 4 R1 R2
R2 102.8 cm
例14 当把折射率为n=1.40的薄膜放入迈克耳孙干涉仪的一 臂时,如果产生了7.0条条纹的移动,求薄膜的厚度。(已知 钠光的波长为 = 589.3 nm) 解:
2(n 1)t k
k t 2(n 1)
7 589.3 109 m 5.154 6 m 2(1.4 1)
t
光的衍射
3.单缝的夫琅禾费衍射
以垂直入射为例
半波带法
2 2
2
9 2R(d e) Rλ( k) 2
(2)
d max 2
由明纹条件
2d
kmax
2 2 4.5 4
max
2k
得
λ 1 d k 2 3)条纹向外侧移动
d
A
B
例11. 在牛顿环装置中,如果平玻璃由冕牌玻璃(n1=1.50) 和火石玻璃(n2=1.75)组成,透镜由冕牌玻璃组成,而 透镜与平玻璃间充满二硫化碳(n3=1.62)。试说明在单 色光垂直入射时反射光的的干涉图样是怎样的?
2n2d
2
k
2n2d k 1 2
取 k = 1,2,3代入上式,分别得
1 4n2 d 1700 nm
4 2 n2 d 567 nm 3 4 3 n2 d 341 nm 5
红外线 黄光! 紫外线
例7. 平面单色光垂直照射在厚度均匀的油膜上,油膜覆盖在玻 璃板上。所用光源波长可以连续变化,观察到500 nm与700 nm波长的光在反射中消失。油膜的折射率为1.30,玻璃折射 率为1.50,求油膜的厚度。
波的干涉和衍射现象
![波的干涉和衍射现象](https://img.taocdn.com/s3/m/6829d9808ad63186bceb19e8b8f67c1cfbd6ee63.png)
波的干涉和衍射现象波的干涉和衍射是波动现象中非常重要且有趣的现象。
它们具有深刻的物理意义,不仅可以解释光的行为,还可以应用于各个领域。
本文将介绍波的干涉和衍射现象,并探讨它们在光学和其他领域中的应用。
波的干涉是指两个或多个波相互叠加时产生的干涉现象。
当两个波波峰或波谷相遇时,它们会相互增强,形成明亮的干涉条纹;而当波峰与波谷相遇时,则会相互抵消,形成暗条纹。
这种干涉现象可以用叠加原理解释。
波动理论认为,波既具有粒子特性,也具有波动特性,而干涉现象正是波动特性的体现。
波的干涉现象最早被英国物理学家托马斯·杨发现并解释为光的干涉。
杨实验通过将光线分成两道光,然后让它们通过两个微细的狭缝,之后让它们重新重合。
当光线重合时,就会观察到明暗相间的干涉条纹。
这一实验验证了光是一种波动现象,并奠定了光的波动理论的基础。
波的干涉除了可以发生在光波上,还可以发生在其他类型的波上,比如水波、声波等。
比如,当水波通过两个狭缝时,也会出现干涉现象,形成明暗相间的水波纹。
这种水波干涉现象在海洋学研究中被广泛应用,可以用来研究海浪的传播和波动特性。
波的衍射是指波通过障碍物或孔径时发生的偏斜现象。
当波通过一个小孔时,会呈现出一种扩散的现象,形成从中心向外辐射的光圈。
波的衍射现象可以解释为波通过障碍物或孔径时,波的传播方向发生了改变。
波的衍射现象对于光学的发展起到了重要作用。
它帮助人们理解了光是如何传播的,并为光的波动理论提供了重要的支持。
在现代光学中,衍射也被广泛应用于衍射光栅、衍射仪器等方面。
光栅是光的波长级衍射光栅,它可以分解复杂的光谱,对于光谱分析具有重要意义。
许多重要的科学实验,如迈克尔逊干涉仪的工作原理也依赖于衍射现象。
除了光学,波的干涉和衍射现象在其他学科中也有着广泛的应用。
比如,在声学中,波的干涉和衍射现象可以用来制作音乐乐器或调音。
在地质学中,地震波的干涉和衍射现象可以用来研究地壳的结构和地震活动。
大学物理基础知识光的干涉与衍射现象
![大学物理基础知识光的干涉与衍射现象](https://img.taocdn.com/s3/m/2fdabecda1116c175f0e7cd184254b35eefd1a11.png)
大学物理基础知识光的干涉与衍射现象光的干涉与衍射现象光的干涉和衍射现象是大学物理基础知识中的重要内容。
本文将介绍光的干涉和衍射的基本概念、原理以及实际应用。
一、光的干涉现象光的干涉是指两个或多个光波相遇时发生的现象。
干涉可以是构成性干涉(增强光强)或破坏性干涉(减弱或抵消光强)。
干涉现象可以通过光的波动性解释。
1. 干涉光的波动模型根据互相干涉的光波的波函数,可以使用叠加原理对光的干涉进行数学描述。
干涉是由于波峰与波峰相遇或波谷与波谷相遇而形成的,这种相遇会产生干涉图案。
2. 干涉的光程差干涉的关键参数是光程差,它是指两束相干光的传播路径的差值。
当光程差为整数倍的波长时,会出现构成性干涉;当光程差为半整数倍的波长时,会出现破坏性干涉。
3. 干涉的类型干涉现象可分为两种类型:薄膜干涉和双缝干涉。
薄膜干涉是指光线在介质的两个表面之间反射、透射产生的干涉现象;双缝干涉是指光通过两个相隔较近的缝隙后形成的干涉现象。
二、光的衍射现象光的衍射是指光线通过小孔或物体的边缘时发生的现象,光波会向周围扩散形成衍射图样。
衍射现象可以通过光的波动性解释。
1. 衍射光的波动模型光通过一个小孔或物体的边缘时,光波会发生弯曲,并在周围空间中形成散射波。
这些散射波的叠加就会形成衍射图样。
2. 衍射的特点衍射的特点是衍射波传播范围广,可以绕过物体的边缘,进入遮挡区域。
衍射图样的大小与孔径或物体边缘大小有关,小孔或细缝会产生较宽的衍射图样,大孔或宽缝会产生较窄的衍射图样。
3. 衍射的应用光的衍射现象在实际应用中具有广泛的意义,例如天文学中使用的干涉仪、显微镜的分辨率提升、光学存储器的读写操作等。
三、光的干涉与衍射的应用光的干涉与衍射现象不仅仅是基础学科的内容,也有着广泛的实际应用。
1. 干涉与衍射在光学仪器中的应用干涉仪是利用光的干涉现象进行测量和分析的仪器,如干涉计和迈克尔逊干涉仪等。
衍射仪是利用光的衍射现象进行实验和观测的仪器,如杨氏双缝干涉实验装置和夫琅禾费衍射装置等。
波的干涉与衍射:波的干涉与衍射现象的原理与应用
![波的干涉与衍射:波的干涉与衍射现象的原理与应用](https://img.taocdn.com/s3/m/13c415ace109581b6bd97f19227916888486b99b.png)
波的干涉与衍射:波的干涉与衍射现象的原理与应用波的干涉与衍射是波动现象的重要表现,广泛存在于自然界和人类日常生活中。
干涉与衍射现象不仅具有基础科学研究意义,还有着重要的应用价值。
本文将从原理、实验和应用角度,介绍波的干涉与衍射现象。
一、原理波的干涉与衍射现象的原理是基于波动的特性。
一个波的传播可以认为是在传播介质中不断的传递能量和振动的过程。
当波传播到一个障碍物或孔径时,会发生干涉和衍射现象。
干涉是指两个或多个波在空间中重叠产生干涉条纹的现象。
干涉的条件是波源相位差存在,即波源之间存在一定的相位差。
当两个波的相位差为整数倍的情况下,波的振幅会增强,形成明亮的干涉条纹。
而当两个波的相位差为奇数倍的情况下,波的振幅会相互抵消,形成暗淡的干涉条纹。
干涉可以分为两种类型:构造干涉和破坏干涉。
构造干涉是指波的振幅叠加形成明亮和暗淡的条纹,如杨氏双缝干涉实验和菲涅尔双透镜干涉实验。
而破坏干涉是指波的振幅相互抵消形成完全暗淡的区域,如牛顿环衍射实验。
衍射是指波传播到障碍物或孔径后发生弯曲和散射的现象。
当波通过孔径时,孔径大小与波长相比决定着波的弯曲程度。
当孔径较大时,波的弯曲程度较小,形成直线传播;而当孔径较小时,波的弯曲程度较大,形成球面传播。
衍射可以分为菲涅尔衍射和菲拉格衍射。
菲涅尔衍射是指波通过孔径后在传播屏幕上形成明暗相间的衍射图样。
菲拉格衍射是指波通过一个凹透镜或凸透镜时,在屏幕上形成明亮的中央区域和暗淡的外围区域。
二、实验为了观察和研究波的干涉与衍射现象,科学家们设计了一系列实验。
其中最经典的实验是杨氏双缝干涉实验和菲涅尔双透镜干涉实验。
杨氏双缝干涉实验是由英国物理学家杨森·杨于1801年首次提出的。
实验装置由一个波源和两个相距较远的狭缝组成。
波源发出的波通过两个狭缝后,在屏幕上形成一系列明暗相间的干涉条纹。
通过观察干涉条纹的位置和间隔,可以计算出波源的波长和频率。
菲涅尔双透镜干涉实验是由法国物理学家菲涅尔于1819年提出的。
大学物理光的干涉和衍射
![大学物理光的干涉和衍射](https://img.taocdn.com/s3/m/17c61de80740be1e640e9ab4.png)
7
2.光程差—两束光光程之差
s1
r1
n1
p
n2 s2
r2
=n1r1- n2r2
图20-1
p
s1 s2
S1p= r1 S2p= r2
= (r1-e1 +n1e1) - (r2-e2 +n2e2) 图20-2
8
3.两束光干涉的强弱取决于光程差,而不是几 何路程之差
解 凡是求解薄膜问题应先求出两反射光线的光 程差。对垂直入射,i =0,于是
反 2e
n22 n12sin2i
+ 半 = 2en2
(0, )
2
无反射意味着反射光出现暗纹,所以
e 1.25 1.50
1
反
2en2
(k
) 2
(k=0,1,2,……)
n2=1.25(薄膜的折射率);要e最小,k =0
e =1200Å=1.2×10-7m
这对讨论光经过几种媒质后的相干叠加问题,是很不 方便的。为此引入光程的概念。
6
n=c/
= /n
1.光程
设经时间t,光在折射率为n媒质中通过的几何
路程为r,则nr称为光程。
显然,光程 nr=n t =c t 。
光程的物理意义: 光程等于在相同的时间内光在 真空中通过的路程。
引入光程概念后,就能将光在媒质中通过的几何
代入:d=0.25mm, L=500mm, 2=7×10-4mm , 1= 4 ×10-4mm得:
x =1.2mm 18
例题20-2 将双缝用厚e、折射率分别为n1=1.4、 n2=1.7的透明薄膜盖住,发现原中央明级处被第五级 亮纹占据,如图20-5所示。所用波长=6000Å,问:原中
物理原理波的干涉与衍射
![物理原理波的干涉与衍射](https://img.taocdn.com/s3/m/60fb00ac162ded630b1c59eef8c75fbfc77d94d5.png)
物理原理波的干涉与衍射物理原理:波的干涉与衍射一、引言波动理论是物理学中重要的研究领域,涉及各种波的行为和性质。
其中,波的干涉和衍射是波动理论中的两个重要现象。
本文将着重介绍波的干涉和衍射的基本原理及其应用。
二、波的干涉1. 干涉现象的定义干涉是指两个或多个波在特定条件下相遇时发生相互作用的现象。
干涉的结果取决于波的干涉相位差。
2. 干涉的分类干涉分为等厚干涉和等倾干涉两种类型。
等厚干涉是指波通过等厚介质产生的干涉现象,如牛顿环。
等倾干涉是指波通过等倾介质产生的干涉现象,如双缝干涉。
3. 干涉的原理干涉原理基于波的叠加原理,即波的合成等于各个波的矢量和。
干涉现象的出现是因为波的相位差引起的干涉条件改变。
4. 干涉的应用(1)干涉仪:干涉仪是利用波的干涉现象测量光的性质和物体的参数的仪器。
常见的干涉仪有迈克尔逊干涉仪和杨氏双缝干涉仪。
(2)涂膜技术:干涉技术可以应用于薄膜的制备和检测,用于提高光学元件的性能。
(3)干涉图案:干涉现象产生的干涉图案可以用于制作光栅、干涉滤波器等。
三、波的衍射1. 衍射现象的定义衍射是指波通过障碍物边缘或在有限孔径中传播时,波的传播方向和波前面发生弯曲和变形的现象。
2. 衍射的原理衍射原理基于海耶-菲涅尔原理,即波传播时,每个波前上的每个点都可以看作是波源,它们产生的次波相互叠加形成新的波前。
3. 衍射的特点(1)衍射现象的出现与波的波长和传播环境有关,有利于波的传播方向的弯曲。
(2)衍射现象在光学中明显,但也存在于其他波动现象中,如声波和水波。
4. 衍射的应用(1)光学衍射:衍射可以用于测量光的波长、制备光栅、研究光学仪器的分辨率等。
(2)声学衍射:衍射可以用于声学测量、超声波成像、喇叭和扩音器的设计等。
(3)电磁波衍射:衍射在天线设计、射频识别技术等方面有重要应用。
四、干涉与衍射的区别干涉和衍射是波的两种重要现象,它们之间存在一些区别:(1)干涉是在波的传播方向上相交的两个或多个波相互作用,衍射是波通过障碍物边缘或有限孔径时发生的波的弯曲与变形。
光的干涉与衍射规律的推导与应用
![光的干涉与衍射规律的推导与应用](https://img.taocdn.com/s3/m/0d04a0d7dbef5ef7ba0d4a7302768e9950e76e6d.png)
光的干涉与衍射规律的推导与应用在物理学中,光的干涉与衍射是重要的现象,它们揭示了光的波动性质以及光与物质相互作用的规律。
本文将通过推导与应用的方式来讨论光的干涉与衍射规律,帮助读者更好地理解这一领域的知识。
一、干涉与衍射现象的基本原理光的干涉与衍射是由光波的波动性质引起的。
当光波遇到障碍物或通过多条光程不同的路径传播时,波的叠加效应会导致干涉与衍射现象的产生。
干涉是指两个或多个光波相遇产生的波的叠加现象。
当两个光波处于相位相同的状态时,它们会互相增强,产生干涉增强区域;而当两个光波处于相位相反的状态时,它们会互相抵消,产生干涉减弱区域。
干涉现象常见的实例有杨氏双缝干涉和杨氏单缝干涉。
衍射是指光波通过一道狭缝或一个物体的边缘时发生偏转和扩散的现象。
当光波遇到狭缝或物体边缘时,波的传播方向会发生偏转,从而使光波呈现出衍射的特征。
衍射现象的实例包括单缝衍射、双缝衍射以及圆孔衍射等。
二、光的干涉与衍射规律的数学推导1. 双缝干涉的推导考虑一片平行入射的光波照射到一对等宽、等间距的缝隙上,设缝宽为d,两缝间隔为D。
当观察点处的两束光波相遇时,它们会发生干涉。
根据几何光学的原理,观察点处的干涉条纹可以看做是两束光波相干后形成的等距离等宽度的亮暗条纹。
我们可以利用相干光的叠加原理来推导出双缝干涉的数学公式。
根据叠加原理,观察点处的总光强可以表示为两束光波的幅度平方和的形式:I = I1 + I2 + 2√(I1I2)cos(δ)其中,I1和I2分别表示两束光波的光强,δ表示两束光波的相位差。
根据几何关系和三角函数的性质,我们可以得到相位差的表达式:δ = 2πd sinθ / λ其中,θ表示光波在观察点处与缝隙法线的夹角,λ表示光波的波长。
通过上述推导,我们可以得到双缝干涉的数学公式,它描述了观察点处的干涉条纹的强度分布规律。
2. 单缝衍射的推导类似地,我们可以推导出单缝衍射的数学公式。
考虑一束平行入射的光波通过一个宽度为a的狭缝,当观察点处的光波通过狭缝后,会发生衍射。
波的干涉与衍射实验探究
![波的干涉与衍射实验探究](https://img.taocdn.com/s3/m/d1f22fbffbb069dc5022aaea998fcc22bcd143b0.png)
波的干涉与衍射实验探究波的干涉与衍射是物理学中非常重要的现象,它们揭示了波动性质的奇妙特点。
通过实验研究,我们可以更深入地理解波的行为并应用于各个领域。
本文将探究波的干涉与衍射实验,并分析其原理和应用。
一、干涉实验波的干涉是指两个或多个波同时作用于同一区域产生相互干涉现象的过程。
最经典的干涉实验是杨氏双缝实验。
1. 实验装置杨氏双缝实验的装置主要包括一个光源、一块屏幕、两个狭缝、一个观察屏幕和一个测量仪器。
2. 实验过程首先,将光源置于适当位置,使其射出光线照射到一个屏幕上。
在此屏幕上开两个狭缝,并调整其距离和宽度。
然后,观察在观察屏幕上的干涉图案。
3. 实验结果观察屏幕上的干涉图案将呈现出亮和暗的条纹。
这是由于光波经过狭缝后,根据波的性质产生了相互干涉,导致波峰和波谷相遇时叠加或相消。
最终,形成明暗交替的条纹。
二、衍射实验波的衍射是指波在传播过程中遇到障碍物出现弯曲或扩散的现象。
衍射实验的经典实例是菲涅耳衍射。
1. 实验装置菲涅耳衍射实验的装置包括一个光源、一个狭缝、一个透镜和一个观察屏幕。
2. 实验过程首先,将光源置于适当位置,使其经过一个狭缝形成平行光。
当光线通过狭缝后,经过透镜使光线发生弯曲和扩散。
最后,通过观察屏幕观察到衍射图案。
3. 实验结果观察屏幕上将出现衍射图案,通常呈现出交替的明暗区域。
这是由于波传播过程中遇到障碍物产生的弯曲和扩散效应,导致波的干涉和相位差的变化。
三、应用波的干涉与衍射实验在各个领域中有广泛的应用。
以下是一些应用案例:1. 光学技术干涉与衍射实验为光学技术的发展提供了理论基础。
例如,干涉测量技术可以用于精确测量长度、角度和形状。
此外,衍射技术还可以应用于激光刻蚀、图像处理和光学信息存储等领域。
2. 材料科学通过干涉与衍射实验,可以研究物质的结晶形态、晶格结构和光学性质。
这对于新材料的研发和应用具有重要意义。
3. 声波与水波干涉与衍射实验不仅适用于光波,也适用于声波和水波。
理解光的干涉与衍射的相互关系
![理解光的干涉与衍射的相互关系](https://img.taocdn.com/s3/m/7988ac9777a20029bd64783e0912a21614797f1f.png)
理解光的干涉与衍射的相互关系光是一种电磁波,它在传播过程中会发生干涉和衍射现象。
干涉和衍射是光学中非常重要的现象,对于我们理解光的性质和特点具有重要的作用。
本文将介绍光的干涉和衍射的基本概念以及它们之间的相互关系。
一、光的干涉干涉是指两个或多个光波相互叠加时产生的明暗交替的干涉条纹。
干涉现象是光波的波动性质的体现,需要有至少两束光波相互叠加才能产生。
1. 干涉的条件干涉现象的产生需要满足两个基本条件:一是光源应为相干光源,即光源发出的两束光波具有相同的频率,相同的波长和恒定的相位差;二是光波传播过程中要存在至少两个相干光束的叠加。
2. 干涉的分类根据光波的相位差变化情况,干涉可以分为相干光源干涉、单色光干涉和白光干涉三种。
相干光源干涉是指来自同一波源的两个相干光波的叠加现象,如两个由同一波长的光源发出的光波相互干涉。
单色光干涉是指来自不同波源的两束单色光波的叠加现象,如两个波长不同的光源发出的光波叠加。
白光干涉是指来自不同波源的多束光波在叠加时,由于各个波长的光波相位差的不同而形成的干涉现象。
3. 干涉的应用干涉现象在科学研究和技术应用中有很广泛的应用。
例如,干涉测量可用于光学仪器的制造和精密测量;干涉光谱可用于分析物质的光谱特性;干涉衰减可用于实现光学器件的调制和开关等。
二、光的衍射衍射是指光波在通过障碍物或绕过边缘时发生的波动现象。
衍射现象是光波的波动性质的体现,需要有一道障碍物或边缘来改变光波的传播方向才能产生。
1. 衍射的条件衍射现象的产生需要满足两个基本条件:一是光波传播过程中存在绕过边缘或障碍物的情况;二是光波的波长与障碍物或边缘的尺寸相当。
2. 衍射的分类根据光波的传播方式和障碍物的尺寸,衍射可以分为菲涅尔衍射和菲拉格朗日衍射两种。
菲涅尔衍射是指光波传播到远离障碍物或光源的地方,近似为平面波的衍射现象。
菲涅尔衍射的特点是障碍物和观察点相对于光源较远,衍射角较大。
菲拉格朗日衍射是指光波通过尺寸与波长相近的障碍物或光源发生的衍射现象。
物理干涉衍射知识点总结
![物理干涉衍射知识点总结](https://img.taocdn.com/s3/m/1c52a6892dc58bd63186bceb19e8b8f67c1cefd9.png)
物理干涉衍射知识点总结一、光的波动性及双缝干涉1. 光的波动性:光是一种电磁波,具有波动性。
光的波动性可以通过一系列干涉、衍射现象来证实。
光的波动性在夫琅禾费衍射和光的双缝干涉中得到了充分的体现。
2. 双缝干涉原理:双缝干涉是指当一束光照射到一组间距相等的狭缝或光栅上时,由于光波的干涉作用,会在远处形成一系列明暗条纹。
这是由于光波的波峰和波谷相遇时发生干涉而形成的。
3. 双缝干涉条件:双缝干涉要求两个狭缝之间的距离不大于光波长的几倍,并且光波在两个狭缝处的入射角相同,才能产生明显的干涉条纹。
4. 双缝干涉公式:双缝干涉实验中,两个狭缝的间距为d,入射光的波长为λ,干涉条纹的角度为θ,则干涉条纹的间距为:d sinθ = mλ其中,m为干涉级数,可以为正整数、负整数或零。
这个公式可以用来确定干涉条纹的位置。
5. 双缝干涉的应用:双缝干涉可以用来测量光的波长,也可以用来研究光的性质,例如光的偏振性等。
双缝干涉也为制造光栅等光学仪器提供了理论基础。
二、夫琅禾费衍射1. 夫琅禾费衍射原理:夫琅禾费衍射是指当光波通过一个狭缝或者一个不规则的障碍物时,会出现衍射现象,即光波会沿着各个方向散射,形成夫琅禾费图样。
夫琅禾费衍射也是光波的波动性的体现之一。
2. 夫琅禾费衍射公式:夫琅禾费衍射的公式为:a sinθ = mλ这个公式描述了夫琅禾费衍射的条件,其中a为狭缝或者障碍物的宽度,θ为衍射角,m 为衍射级数。
夫琅禾费衍射的角度与干涉条纹的角度有所不同,但都是通过波长和衍射结构的特性来描述的。
3. 夫琅禾费衍射的应用:夫琅禾费衍射可以用来测量光的波长,也可以用来研究光的偏振性和衍射结构的特性。
夫琅禾费衍射在光学成像、激光技术等领域有着广泛的应用。
三、单缝衍射1. 单缝衍射原理:单缝衍射是指当光波通过一个宽度较大的狭缝时,会出现衍射现象,即光波会以波纹的形式散射出去。
单缝衍射也是光波的波动性的体现之一。
2. 单缝衍射公式:对于单缝衍射,衍射角θ的计算公式为:a sinθ = mλ其中,a为狭缝的宽度,θ为衍射角,m为衍射级数,λ为光波的波长。
(完整版)《大学物理》习题册题目及答案第17单元 波的干涉 - 副本
![(完整版)《大学物理》习题册题目及答案第17单元 波的干涉 - 副本](https://img.taocdn.com/s3/m/15320c9428ea81c758f578fd.png)
波的干涉、衍射 学号 姓名 专业、班级 课程班序号一 选择题[ D ]1.如图所示,1S 和2S 为两相干波源,它们的振动方向均垂直于图面, 发出波长为λ的简谐波。
P 点是两列波相遇区域中的一点,已知λ21=P S ,λ2.22=P S ,两列波在P 点发生相消干涉。
若1S 的振动方程为)212(cos 1ππ+=t A y ,则2S 的振动方程为 (A))212(cos 2ππ-=t A y (B))2(cos 2ππ-=t A y (C))212(cos 2ππ+=t A y (D))1.02(cos 2ππ-=t A y[ C ]2. 在一根很长的弦线上形成的驻波是(A)由两列振幅相等的相干波,沿着相同方向传播叠加而形成的。
(B)由两列振幅不相等的相干波,沿着相同方向传播叠加而形成的。
(C)由两列振幅相等的相干波,沿着反方向传播叠加而形成的。
(D)由两列波,沿着反方向传播叠加而形成的。
[ B ]3. 在波长为λ的驻波中,两个相邻波腹之间的距离为 (A) λ/4 (B) λ/2 (C)3λ/4 (D)λ[ A ]4. 某时刻驻波波形曲线如图所示,则a 、b 两点的位相差是 (A)π (B) π21 (C) π45 (D) 0[ B ]5. 如图所示,为一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为A ab 2λλx yc O A -S 1 S 2P[ B ]6. 电磁波的电场强度 E 、磁场强度H 和传播速度u 的关系是:(A) 三者互相垂直,而 E 和H 相位相差 π21(B) 三者互相垂直,而且 E 、H 、u 构成右旋直角坐标系(C) 三者中 E 和H 是同方向的,但都与u 垂直(D) 三者中 E 和H 可以是任意方向的,但都必须与u 垂直二 填空题1. 两相干波源1S 和2S 的振动方程分别是 t A y ωcos 1=和)21(cos 2πω+=t A y 。
大学物理-波的干涉
![大学物理-波的干涉](https://img.taocdn.com/s3/m/f583dcf07c1cfad6195fa777.png)
波的非相干叠加
k = 0,1,2,3,... 相长干涉
k = 0,1,2,3,... 相消干涉
I = I1 + I2
位于A 两点的两个波源, 例题 位于 、B两点的两个波源,振幅相等,频 两点的两个波源 振幅相等, 率都是100赫兹,相位差为π,其A、B相距 米, 赫兹, 相距30米 率都是 赫兹 相位差为π 相距 波速为400米/秒,求:A、B连线之间因相干干涉而 波速为 米 连线之间因相干干涉而 静止的各点的位置。 静止的各点的位置。 点为坐标原点, 联线为X轴 解:如图所示,取A点为坐标原点,A、B联线为 轴, 如图所示, 点为坐标原点 联线为 取A点的振动方程 : 点的振动方程 x X
I = I1 + I2 + 2 I1I2 cos ∆ϕ
其中: 其中:∆ϕ = ( ϕ20 − ϕ10 ) −
2π
对空间不同的位置, 对空间不同的位置,都有恒定的∆ϕ,因而合强 度在空间形成稳定的分布,即有干涉现象 干涉现象。 度在空间形成稳定的分布,即有干涉现象。
λ
( r2 − r1 )
2 A2 = A12 + A2 + 2A1 A2 cos ∆ϕ
二、波的衍射 衍射(绕射) 波动在传播过程中遇到障碍物时 衍射(绕射)--波动在传播过程中遇到障碍物时 能绕过障碍物的边缘继续前进的现象 能够衍射的条件: 能够衍射的条件:缝宽(对缝而言) 对缝而言)
a≤λ
或障碍物的线度
a≤λ
应用程序
三、波的反射和折射 1、反射定律:波在媒质介面上传播时,入射角等于反射 、反射定律:波在媒质介面上传播时, 一平面内。 角,入射线反射线及介面的法线均在同 一平面内。
光的干涉和衍射的区别与联系
![光的干涉和衍射的区别与联系](https://img.taocdn.com/s3/m/fd0173c16f1aff00bed51e28.png)
总之 干涉和衍射在本质上是统一的 都是相干波的叠加 但在形成条件 分布规律以及数学处理方法上略有不同 而又是紧密关联的同一类现象。
对于干涉和衍射的光栅来讲,它们有明显的区别
当缝宽a<<λ时每个小缝相当与一个线光源 其发出次波的振幅可以认为是均匀的 所以每个次波可以认为都是按几何光学模型传播 也就是有限个若干束之间的相干叠加这类问题就是纯干涉效应。纯干涉讨论的是若干个波场的相干跌跤爱 即仪器将光波分割成有限几束或彼此离散的无限多束光 其中每束光可近似按几何光学的规律来描述 或参与干涉的各束光本身没有考虑衍射效应的必要。这样的仪器叫干涉装置。
当缝宽a不是很小时 即a可以与波长λ相比较时 从每一小缝发出的波明显地不是等振幅的 它可以看成连续的无限多个波的相干叠加 即单缝衍射现象。这种无限多个次波叠加是一种纯衍射效应。纯衍射他论的是一个波场本身的传播行为 是连续分布在波面上的无限多个次波源所发出的次波的相干叠加 这些次波不服从几何光学的传播规律。 但干涉和衍射有密切的联系 干涉和衍射决不是两个对立的效应 它们可以看作一个统一的现象。干涉是优先的若干各分立波的相干叠加 在数学上表现为相加问题 衍射是连续的无限多个次波的相干叠加 在数学形式上表现为一个积分的问题。从现象上看干涉图样是明暗相间的光强分布上间距较君宇 衍射图样是条纹的光强分布相对比较集中。所以 可以说衍射是复杂的干涉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、波的干涉
相干条件:
频率相同、振动方向相同、相位差恒定。
S1 y01 A1 cos(t 1)
S2 y02 A2 cos(t 2 )
P
y1
A1
cos(t
2π
r1
1)
r1
P
y2
A2
cos(t
2π
r2
2 )
S1
S2
r2
根据叠加原理可知,P 点处振动方程为
合振动的振幅
y y1 y2 Acos(t )
π 2π
14π π r1
(2k 1)π
r1 14 (2k 1) k 0,1,2,7
干涉相消
(在 A,B 之间距离A 点为 r1 =1,3,5,…,29 m 处出现静止点)
干涉相长
Amin 0
Imin 0
干涉相消
从能量上看,当两相干波发生干涉时,在两波交叠的区,合成波在空间各处的 强度并不等于两个分波强度之和,而是发生重新分布。这种新的强度分布是时 间上稳定的、空间上强弱相间具有周期性的一种分布。
例
A、B 为两相干波源,距离为 30 m ,振幅相同, 相同,初相差为 400 m/s, f =100 Hz 。
二、叠加原理
波传播的独立性
当几列波在传播过程中在某一区域相遇后再行分开,各波的传播情况与未相 遇一样,仍保持它们各自的频率、波长、振动方向等特性继续沿原来的传播 方向前进。
叠加原理
在波相遇区域内,任一质点的振动, 为各波单独存在时所引起的振动的合 振动。
v1
v2
y y1 y2
注意 波的叠加原理仅适用于线性波的问题
§8.5 波的干涉和衍射
一、惠更斯原理
惠更斯提出:
波前上任意一点都 可看作是新的子波源;所 有子波源各自向外发出许多子波;各个子波所 形成的包络面,就是原波面在一定时间内所传 播到的新波面。
已知某一时刻波前, 可用几何方法决定下 一时刻波前;
S1
S2
r ut
t t t
t
S1
O
R1
S2 R2
惠 更 斯 原 理 解 释 衍 射 现 象
A2
A12
A22
2A1A2 cos[2
1
2π
r2
r1 ]
P 点处波的强度
I I1 I2 2 I1I2 cos
相位差
(2
1)
2π
r2
r1
空间点振动的情况分析
当
(2
1)
2π
r2
r1
2kπ
k 0,1,2,
Amax A1 A2 Imax I1 I2 2 I1I2
干涉相长
当
(2
,u =
求
A、B 连线上因干涉而静止的各点位置。
解 r2 r1 30 m u 4m
f
r2
r1
30m
P
A
B
π
2π
π
2π 4
30
16π 14π
(P 在B 右侧) (P 在A 左侧)
I Imax
(即在两侧干涉相长,不会出现静止点)
P 在A、B 中间
r2 r1 r1 r2 2r1 30 2r1
1 )
2π
r2
r1
(2k
1)π
k 0,1,2,
Amin | A1 A2 |
干涉相消
Imin I1 I2 2 I1I2
讨论
若
1 2
r1 r2 k,
r1
r2
(2k
1) ,
2
若 A1 A2 A
k 0,1,2, k 0,1,2,
Amax 2 A
Imax 4I0
干涉相长 干涉相消