人教版高中数学基础知识总结

合集下载

人教版高中数学有哪些知识点

人教版高中数学有哪些知识点

人教版高中数学有哪些知识点作为我国数学教学领域中的经典教材之一,人教版高中数学绵延五十多年的历史,无论在教学质量、内容丰富度、教学水平以及影响力上都具有举足轻重的地位。

因此,本文旨在总结并介绍人教版高中数学所包含的主要知识点及其重要性,帮助读者更好地了解该教材。

一、函数(1)函数的概念和性质函数是数学上最基本的概念之一,它的研究成果应用广泛。

人教版高中数学的第一章就是函数,它阐述了函数的定义、符号、表示法、性质、图像与分类等;其次,介绍了初等函数及其图像,并进一步延伸到函数的分类与性质。

此知识点是理解高中数学的核心,是其他知识点的基础。

(2)三角函数三角函数也是数学中的重要概念之一,它是数学、物理、工程、计算机科学等领域中不可或缺的基础知识。

人教版高中数学的第二章就是三角函数,它涉及三角函数的定义、基本性质、图像、周期以及初等变形等。

三角函数的应用范围十分广泛,常用于分析周期性现象,如电波等。

(3)指数和对数函数指数和对数函数是人教版高中数学的重要组成部分。

指数函数是数学中一种最基础的函数类型,它在实际应用中常用于表示利率、增长率和衰减率等;而对数函数是指数函数的逆运算,具有很强的解方程能力和简化计算的作用。

人教版高中数学的第三章介绍了指数函数和对数函数的基本概念、性质、计算以及应用等知识点。

二、数列数列是数学中的一个经典概念,也是高中数学中的重要知识点之一。

人教版高中数学的第四章重点讲解数列及其相关内容,包括数列的基本概念、性质、递推公式、通项公式、求和公式、等差数列与等比数列等。

在实际应用中,数列经常用于模型建立、统计、计算机算法等方面,因此掌握数列知识对日常生活和职业发展大有裨益。

三、解析几何解析几何是几何学的一个重要分支,它是分析几何的基础,是实用性较强的数学知识之一。

人教版高中数学的第五章主要包括直线、平面及其相关内容。

学习解析几何可帮助学生正确理解平面曲线、三维图形以及空间关系等概念,然后运用这些知识点解决实际的几何问题。

人教版高中数学知识点汇总(全册版)

人教版高中数学知识点汇总(全册版)
(3)求函数的定义域时,一般遵循以下原则:
① f (x) 是整式时,定义域是全体实数. ② f ( x) 是分式函数时,定义域是使分母不为零的一切实数. ③ f ( x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于 1.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个 最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是
提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数 的值域或最值.
对象 a 与集合 M 的关系是 a M ,或者 a M ,两者必居其一.
(4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{ x | x 具有的性质},其中 x 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
人教版高中数学知识点(必修+选修)
高中数学 必修 1 知识点
第一章 集合与函数概念 【1.1.1】集合的含义与表示
(1)集合的概念 集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
N 表示自然数集, N 或 N 表示正整数集, Z 表示整数集, Q 表示有理数集, R 表示实数集.

人教版高一数学知识点总结(优秀8篇)

人教版高一数学知识点总结(优秀8篇)

人教版高一数学知识点总结(优秀8篇)高一数学知识点总结最新篇一集合一、集合有关概念1、集合的含义2、集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3、集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N或N+整数集Z有理数集Q实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R|x-32},{x|x-32}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}关于集合的概念:(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

集合可以根据它含有的元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

非负整数全体构成的集合,叫做自然数集,记作N;在自然数集内排除0的集合叫做正整数集,记作N+或N;整数全体构成的集合,叫做整数集,记作Z;有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

人教版高一数学知识点总结

人教版高一数学知识点总结

人教版高一数学知识点总结一、集合与函数1.集合的概念及表示方法,包括集合元素的特点和集合关系的运算。

2.不等式解集的概念、表示及应用。

3.函数的概念及表示方法,包括函数的定义域、值域、图像和性质。

4.复合函数与反函数的概念及相关性质,包括复合函数的性质和反函数的求法。

5.函数的运算及函数方程的应用,包括函数的加、减、乘、除、求逆等运算,以及函数方程的解法。

二、数列与数学归纳法1.数列的概念及表示方法,包括等差数列、等比数列和锐角三角函数数列的性质与应用。

2.数列的通项公式及相关性质,包括等差数列通项公式、等差数列前n项和公式、等差数列求和等,以及等比数列通项公式和前n项和公式。

3.数学归纳法的原理及应用,包括数学归纳法的基本原理和应用题的解题思路。

三、函数的极限与连续1.函数的极限的概念、性质与运算法则,包括函数极限的定义、极限运算法则、无穷小量与无穷大量等。

2.无穷极限的概念、性质与运算法则,包括无穷大量的性质、无穷大量的运算法则等。

3.函数的连续性的概念、判定条件与性质,包括函数连续性的定义、连续性的判定条件及连续函数的性质等。

四、导数与函数的应用1.导数的概念、运算法则及几何意义,包括导数的定义、导数的四则运算法则、导数的几何意义等。

2.函数的导数及导数的应用,包括函数的导数、函数单调性、函数极值、函数图像等。

3.特殊函数的导数及应用,包括幂函数的导数、指数函数的导数、对数函数的导数、三角函数等的导数。

4.中值定理与泰勒公式的概念和应用,包括罗尔中值定理、拉格朗日中值定理、柯西中值定理和泰勒公式等。

五、平面向量1.平面向量的概念、表示方法及运算法则,包括平面向量的定义、向量的运算法则(加法、数乘等)。

2.向量的线性相关与线性无关的概念与判定方法,包括向量组的线性相关与线性无关的定义、方法与判定法则。

3.平面向量的数量积的概念、性质及相关运算法则,包括向量的数量积的定义、性质和运算法则,如数量积的坐标表示、数量积的几何意义等。

高中数学(新人教版)必修一知识点归纳

高中数学(新人教版)必修一知识点归纳

高中数学(新人教版)必修一知识点归纳
本文将归纳高中数学(新人教版)必修一的主要知识点。

以下是
各个主题的简要概述:
1. 数与式
- 数的分类:自然数、整数、有理数、实数等。

- 代数式:基本概念、多项式、公式等。

- 幂与乘方:指数、乘方、幂等运算。

- 整式的加减法:同类项、整式的加减法规则。

- 分式:基本概念、分式的性质与化简等。

2. 一元一次方程与不等式
- 一元一次方程:基本概念、解方程的方法、应用问题等。

- 一元一次不等式:基本概念、解不等式的方法、应用问题等。

3. 函数及其图像
- 函数与自变量、函数与因变量的关系。

- 函数的表示与性质:映射、函数图像、奇偶性等。

- 一次函数:定义、性质、图像、方程等。

- 反函数与复合函数:定义、性质、求反函数、求复合函数等。

4. 等差数列
- 等差数列的定义与性质。

- 等差数列的前n项和与通项公式。

- 应用问题:等差数列应用于数学与生活中的实际问题。

5. 平面向量
- 向量的基本概念与表示法。

- 向量的运算:加法、数乘等。

- 向量共线与共面的判定。

- 向量的数量积与模的概念与性质。

6. 不等式与线性规划
- 不等式的基本性质与解法。

- 一元一次不等式组:基本概念、解法、应用问题等。

- 线性规划的基本概念与常见问题。

以上是高中数学(新人教版)必修一的主要知识点的简要归纳。

详细内容可以参考相关教材或课堂讲义。

希望这份归纳对你有帮助!。

新课标人教版高中数学全册考点及题型归纳总结

新课标人教版高中数学全册考点及题型归纳总结

新课标人教版高中数学全册考点及题型归纳总结新课标人教版高中数学全册的考点及题型如下:一、函数与方程1.函数的基本概念和性质:定义域、值域、图像、增减性、奇偶性等。

2.一次函数:函数的表示方式及性质、函数的图像与应用、函数的图像性质与参数关系。

3.二次函数:函数的表示方式及性质、函数的图像与应用、函数的图像性质与参数关系。

4.指数函数:函数的表示方式及性质、函数的图像与应用、指数函数的性质与指数关系。

5.对数函数:函数的表示方式及性质、函数的图像与应用、对数函数的性质与底数关系。

6.三角函数:函数的表示方式及性质、函数的图像与应用、三角函数的性质与周期关系。

二、数列与数学归纳法1.数列的基本概念与表示:公式、通项、前n项和、数列的性质等。

2.等差数列:公差、前n项和、等差数列的性质及应用。

3.等比数列:公比、前n项和、等比数列的性质及应用。

4.通项公式及求和公式的推导与应用。

5.数学归纳法的基本概念和使用。

三、三角函数基本关系式与证明1.正弦函数与余弦函数的关系。

2.正切函数与余切函数的关系。

3.正割函数与余割函数的关系。

4.辅助角公式及证明。

5.万能角公式及证明。

6.统一化问题的求解及应用。

四、解析几何基本定理与推理1.重矢量的定义与性质。

2.数量积的基本性质与运算规则。

3.向量的线性相关性与线性独立性。

4.解析几何定理的证明与推理。

五、概率与统计1.基本概念与方法:样本空间、随机事件、概率、频率、统计量等。

2.概率的基本性质:加法原理、乘法原理、条件概率等。

3.随机变量和概率分布的基本概念与性质。

4.离散型随机变量与连续型随机变量的概率分布。

5.正态分布的基本性质和应用。

以上是新课标人教版高中数学全册的考点及题型的总结,希望对你有帮助。

人教版高中数学知识点提纲

人教版高中数学知识点提纲

人教版高中数学知识点提纲人教版高中数学知识点提纲
人教版高中数学教材是国内一线的数学教材,其教学内容深入浅出、重点突出,在学习过程中为高中学生提供了一个系统化的学习平台。

下面是对人教版高中数学知识点的概要提纲,希望对大家的学习有所帮助。

一. 高中数学的基础知识 1. 集合论概念与运算 2. 映射
与函数 3. 数列与极限
二. 解析几何 1. 平面向量的基本概念 2. 空间向量的基
本概念 3. 直线与平面的交点
三. 线性代数 1. 矩阵与矩阵运算 2. 行列式及其性质 3.
矩阵特征及其应用
四. 微积分 1. 函数基本概念 2. 导数及其应用 3. 积分
及其应用
五. 三角函数 1. 三角函数及其性质 2. 三角函数的图像
与解析式 3. 三角函数的应用
六. 数学分析 1. 极值与最值 2. 微分学基本定理 3. 积
分学基本定理
七. 微分方程 1. 微分方程及其解法 2. 常微分方程的解
析式 3. 微分方程的应用
总之,人教版高中数学知识点涵盖了集合论、解析几何、线性代数、微积分等几个方面,覆盖了大部分高中数学的内容。

通过系统的学习,高中学生不仅可以掌握常用的数学工具和方法,而且还能够培养思维能力和独立解决问题的能力。

在考研或找工作等方面都非常有帮助。

(完整版)人教版高中数学知识点汇总,推荐文档

(完整版)人教版高中数学知识点汇总,推荐文档
-8-
人教版高中数学
当型循环结构、直到型循环结构 5、基本算法语句: ①赋值语句:“=”(有时也用“←”) ②输入输出语句:“INPUT” “PRINT” ③条件语句:
If … Then … Else … End If ④循环语句: “Do”语句 Do
… Until … End
“While”语句 While … … WEnd ⑹算法案例:辗转相除法—同余思想 第二章:统计 1、抽样方法: ①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显) 注意:在 N 个个体的总体中抽取出 n 个个体组成样本,每个个体被抽到的机会(概率)均为 n 。
过定点 (1, 0)
减函数
增函数
减函数
增函数
x (, 0)时,y (1, x) (, 0)时,y (0,1) x (0,1)时,y (0, ) x (0,1)时,y (, 0) x (0, )时,y (0,1)x (0, )时,y (1, x) (1, )时,y (, 0x) (1, )时,y (0, ) 性 质

log
a
M N
log a
M
loga
N;
⑶ log a
Mn
n loga
M
.
5、换底公式: log a
b
log c log c
b a
a
0, a
1, c
0, c
1, b
0.
a 0, a 1, b 0, b 1.
-3-
6、
log a
b
1 log b
a
人教版高中数学
§2..2.2、对数函数及其性质
ab
表2
p q

人教版高中数学必修五《数列》基础知识要点总结

人教版高中数学必修五《数列》基础知识要点总结
②根据数列项的大小变化分——递增数列、递减数列、常数列、摆动数列
5、数列的递推公式
如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式。
6、数列前n项和的定义
一般地,我们称 为数列 的前 项和,用 表示,即
二、等差数列与等比数列
已知三个数成等比数列,且已知三个数之积时,一般设此三个数分别为 , , ,其中 为公比。
若已知四个数成等比数列及这个四个数的积时,一般不设为 , , , ,因为这种设法使得四个数的公比为 ,就漏掉了公比为负数的情形,造成漏解。
2、求数列最大(小)值的方法
一般方法——解不等式 ;或
特别地,若 为等差数列, 为它的前n项的和时,求 的最大(小)值可以利用①二次函数的性质;② 中项的符号。
3、求数列通项的常用方法
①观察法:根据数列的前几项归纳出数列的通项公式;
②公式法:利用 求通项公式
③根据递推公式求通项公式:
(1)迭代法:对于形如 型的递推公式,采取逐次降低“下标”数值的反复迭代方式,最终使 与初始值 (或 )建立联系的方法就是迭代法.
(2)累加法:形如 的递推公式可用 求出通项;






4、等差(比)数列的通项公式


③ ,其中 、 是常数



5、性质1
在等差数列 中,若已知 与 ,其中 ,则该数列的公差 。
若等比数列 中,公比是 ,则 。
6、性质2
在等差数列 中,若 且 、 、 、 ,则 。
特别地、在等差数列 中,若 且 、 、 ,则 。
在等比数列 中,若 ( , , , ),则 。

最新人教版高中数学知识点总结

最新人教版高中数学知识点总结

最新人教版高中数学知识点总结Sets and Concepts高中数学知识点总结第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。

a、列举法:将集合中的元素一一列举出来{a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。

记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ⊆/B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

高中数学教材人教版知识点总结

高中数学教材人教版知识点总结

高中数学教材人教版知识点总结高中数学教材人教版知识点总结必修1第一章集合与函数概念1.1.1 集合集合是由一些元素组成的总体,元素是研究对象的统称。

集合具有确定性、互异性和无序性。

两个集合中的元素相同,则这两个集合相等。

常见的集合有正整数集合、整数集合、有理数集合和实数集合。

集合可以用列举法和描述法表示。

1.1.2 集合间的基本关系对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集,记作A⊆B。

如果集合A是集合B的子集,但存在一个元素x属于B而不属于A,则称集合A是集合B的真子集,记作A⊂B。

空集是不含任何元素的集合,记作∅,是任何集合的子集。

如果集合A 中含有n个元素,则集合A有2^n个子集。

1.1.3 集合间的基本运算集合A与B的并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。

集合A与B的交集是由所有属于集合A且属于集合B的元素所组成的集合,记作A∩B。

全集是指包含所有元素的集合,补集是指一个集合中不属于另一个集合的元素组成的集合。

集合的运算可以用XXX示。

1.2.1 函数的概念函数是两个非空数集之间的一种对应关系,对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应。

函数可以用解析式、图像和映射表示。

函数的定义域、值域和象集是函数的重要概念。

函数的基本性质有奇偶性、单调性、周期性和分段定义。

x) (a>0,a≠1)相关性质:⑴对数函数y=loga(x)的定义域为(0,+∞),值域为(-∞,+∞);⑵y=loga(x)与y=logb(x)的图象在x轴上的交点为x=a^1/(loga(b));⑶对数函数y=loga(x)的反函数为y=a^x;⑷对数函数y=loga(x)的导数为y'=(1/x)ln(a)。

2.3.1、幂函数及其性质1、记住图象:y=x^a (a为常数)相关性质:⑴当a>0时,幂函数y=x^a的定义域为(0,+∞),值域为(0,+∞);⑵当a<0时,幂函数y=x^a的定义域为(0,+∞),值域为(0,1/∞)U(1,+∞);⑶幂函数y=x^a的导数为y'=ax^(a-1)。

高中数学基本知识点大全

高中数学基本知识点大全

高中数学基本知识点大全高中数学基本知识点是构建数学学科体系的关键,以下是对高中数学基本知识点的总结:一、代数部分1、集合与函数:集合是数学中最基本的概念,包括集合的基本概念、集合的运算、函数的概念、函数的性质等。

2、不等式:不等式是数学中重要的工具,包括不等式的性质、一元二次不等式的解法、不等式的应用等。

3、数列:数列是数学中研究数量变化的重要工具,包括数列的概念、等差数列、等比数列的性质和通项公式等。

4、三角函数:三角函数是研究角度和边长关系的重要工具,包括正弦函数、余弦函数、正切函数等的基本性质和图像。

5、排列组合:排列组合是数学中研究组合问题的基本工具,包括排列组合的基本概念、公式和定理等。

二、几何部分1、平面几何:平面几何是数学中研究平面图形性质的重要工具,包括三角形、四边形、圆等的基本性质和定理。

2、立体几何:立体几何是数学中研究空间图形性质的重要工具,包括球、柱、锥等的基本性质和定理。

3、解析几何:解析几何是数学中用代数方法研究几何问题的重要工具,包括直线、抛物线、椭圆等的基本方程和性质。

三、概率与统计部分1、概率:概率是数学中研究随机事件发生可能性大小的重要工具,包括概率的基本概念、概率的计算和概率分布等。

2、统计:统计是数学中研究数据收集、整理和分析的重要工具,包括数据的图表展示、数据的描述性统计和推论性统计等。

四、复数部分复数是数学中研究复数域的重要工具,包括复数的概念、复数的运算和复数的性质等。

这些知识点是进一步学习和掌握数学的基础,需要同学们深入理解和掌握。

学习高中数学要注重概念的理解和定理的推导,同时多做练习题,通过练习加深对知识点的理解和掌握。

人教版高中数学知识点

人教版高中数学知识点

人教版高中数学知识点人教版高中数学知识点是高中学生必须掌握的一项重要内容,对于学生在考试中取得好成绩和顺利升学非常有帮助。

下面就让我们来详细了解一下人教版高中数学知识点。

一、高一数学1.函数函数是高中数学的一大重点,是高一数学中最开始的知识点。

在函数的学习中,需要掌握基本的函数概念、函数图像和函数性质等内容。

2.数列与数列的通项式数列与数列的通项式也是高一数学中的重要内容之一,需要掌握数列的概念、等差数列与等比数列的性质、通项公式以及数列求和的方法等内容。

3.三角函数三角函数有正弦函数、余弦函数、正切函数、余切函数等,需要掌握这些函数的定义、性质以及它们之间的关系等内容。

二、高二数学1.向量向量是高二数学中的重点内容,需要掌握向量的定义、加法、减法、数量积、向量积等操作方法以及向量的平面几何应用等内容。

2.平面解析几何平面解析几何是高二数学中比较重要的内容,需要掌握点、直线、圆的方程的推导方法、距离公式以及平面直角坐标系等内容。

3.二次函数二次函数是高二数学中比较重要的内容之一,需要掌握二次函数的定义、图像、性质及其相关变换等内容。

三、高三数学1.导数导数是高三数学中最为重要的知识点,需要掌握导数的定义、基本性质、求导法则、高阶导数以及导数在几何中的应用等内容。

2.不等式不等式也是高三数学中比较重要的内容之一,需要掌握一元一次不等式、二元一次不等式、绝对值不等式等等内容。

3.三角恒等式与三角方程三角恒等式与三角方程也是高三数学中比较重要的内容之一,需要掌握三角函数基本的恒等式、三角方程的一些基本解法、解三角方程的一般步骤等内容。

总结,人教版高中数学知识点涵盖了高中三年的数学知识,其中每个阶段的知识点都非常重要。

学生要仔细学习每个知识点,并且要在学习过程中做好笔记,联系能力和考试技巧,以便在考试中取得好的成绩,能够实现自己的人生理想。

人教高中数学知识点大全

人教高中数学知识点大全

人教高中数学知识点大全一、函数1.函数的概念和性质2.函数的表示方法:映射图、解析式和对应法3.初等函数、初等逆函数和复合函数4.一次函数的性质和应用5.二次函数的性质和应用6.多项式函数的性质和应用7.有理函数的性质和应用8.指数函数和对数函数的性质和应用9.三角函数的性质和应用10.反三角函数的性质和应用11.常用函数图像的绘制和变换二、数列1.数列的概念和性质2.等差数列的通项公式和求和公式3.等比数列的通项公式和求和公式4.求递推数列的通项公式5.特殊数列的性质和应用6.数学归纳法的应用三、排列与组合1.排列和组合的概念和性质2.乘法原理和加法原理3.排列和组合的应用4.二项式的展开和公式的应用5.等比数列求和的应用四、不等式1.不等式的概念和性质2.一元一次不等式的求解3.一元二次不等式的求解4.绝对值不等式的求解5.分式不等式的求解6.对数不等式的求解7.三角不等式的求解五、平面几何1.平面几何的基本概念和公理2.线的性质和应用3.三角形的性质和应用4.三角形的重心、垂心和外心5.相似三角形的性质和应用6.等腰三角形和等边三角形的性质和应用7.直角三角形的性质和应用8.四边形的性质和应用9.平行四边形和矩形的性质和应用10.菱形和正方形的性质和应用11.平面几何的问题解决方法六、立体几何1.立体几何的基本概念和公理2.立体的表面积和体积3.平行面与平行线的性质和应用4.圆锥与圆柱的性质和应用5.立体的投影和剖面6.空间几何的问题解决方法七、概率与统计1.随机事件的概念和性质2.概率的概念和性质3.频率和概率的关系4.概率的计算方法5.随机变量的概念和性质6.离散型随机变量和连续型随机变量的分布律和密度函数7.随机变量的数学期望和方差8.统计的基本概念和性质9.统计数据的处理和分析方法10.抽样方法和推断统计的应用八、数学建模1.数学建模的基本概念和步骤2.模型的建立和评价3.利用数学方法解决实际问题的能力九、立体几何计算问题1.解决立体几何计算问题的方法2.实际问题的建立和求解。

2024年人教版高一数学知识点总结(2篇)

2024年人教版高一数学知识点总结(2篇)

2024年人教版高一数学知识点总结高一数学是高中数学的起点,是一门基础性的学科,是为后续学习数学打下坚实基础的重要阶段。

以下是____年人教版高一数学的知识点总结,包括代数、函数、几何、概率与统计四个模块的内容。

一、代数1. 数的性质和运算- 实数的性质:有序性、稠密性、无理数的性质、根号2的性质等。

- 数的运算:加法、减法、乘法、除法、乘方等。

- 各类数的运算:整数、分数、根式、无理数的四则运算。

- 数的应用:数的几何意义、问题的解答等。

2. 数与式- 数与式的关系:数与式的关系、自然数、整数、有理数、实数、正数、负数之间的转换。

- 各类式的求值:带入、代入、折代等。

3. 方程与不等式- 一元一次方程:解一元一次方程及应用、方程与图象、一次方程的等价变形等。

- 一元二次方程:解一元二次方程及应用、方程与图象、二次方程的根与系数关系等。

- 不等式与不等式求解:一元一次不等式、一元二次不等式、不等式的性质与等价变形等。

4. 函数- 函数的概念和表示:函数的概念、函数的表示、自变量和因变量、定义域和值域等。

- 一次函数和二次函数:一次函数的性质、图象与性质、二次函数的性质、图象与性质等。

- 三角函数:正弦函数、余弦函数、正切函数及其图象与性质。

5. 等差数列与等比数列- 等差数列:等差数列的概念、通项公式、前n项和公式、等差中项、等差数列的性质等。

- 等比数列:等比数列的概念、通项公式、前n项和公式、等比中项、等比数列的性质等。

二、函数1. 三角函数的概念与性质- 弧度制与角度制:弧度制与角度制的转换、弧度制与角度制的应用等。

- 任意角与四类基本角:任意角及其标准位置、四类基本角及其坐标值、公式及其推导等。

- 三角函数的概念:正弦函数、余弦函数、正切函数及其定义、值域、周期、图象等。

- 三角函数的诱导公式:正弦函数、余弦函数、正切函数的诱导公式及其推导等。

2. 三角函数的图象与性质- 正弦函数的图象和性质:正弦函数的图象、正弦函数的性质、图象与函数关系等。

人教版高中数学知识点汇总(全册版)-高中数学知识点总结精华版

人教版高中数学知识点汇总(全册版)-高中数学知识点总结精华版

的最大值,记作 fmax (x) M . ②一般地,设函数 y f (x) 的定义域为 I ,如果存在实数 m 满足:(1)对于任意的 x I ,都有
f (x) m ;(2)存在 x0 I ,使得 f (x0 ) m .那么,我们称 m 是函数 f (x) 的最小值,记作
fmax (x) m .
④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为
三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.
x1
x2
b 2a
{x | x b } 2a
无实根
R
人教版高中数学知识点汇总(全册版)-高中数学知识点总结精华版
ax2 bx c 0(a 0)
的解集
{x | x1 x x2}
〖1.2〗函数及其表示 【1.2.1】函数的概念
(1)函数的概念
①设 A 、 B 是两个非空的数集,如果按照某种对应法则 f ,对于集合 A 中任何一个数 x ,在集合 B 中都有唯一确定的数 f (x) 和它对应,那么这样的对应(包括集合 A , B 以及 A 到 B 的对应法 则 f )叫做集合 A 到 B 的一个函数,记作 f : A B .
人教版高中数学知识点汇总(全册版)-高中数学知识点总结精华版
人教版高中数学知识点(必修+选修)
高中数学 必修 1 知识点
第一章 集合与函数概念 【1.1.1】集合的含义与表示
(1)集合的概念 集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法

人教版高中数学知识点提纲

人教版高中数学知识点提纲

人教版高中数学知识点提纲一.集合与函数 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二.不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.三.数列24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

人教版高中数学知识点

人教版高中数学知识点

人教版高中数学知识点人教版高中数学知识1多面体1、棱柱棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质(1)侧棱都相等,侧面是平行四边形(2)两个底面与平行于底面的截面是全等的多边形(3)过不相邻的两条侧棱的截面(对角面)是平行四边形2、棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥棱锥的性质:(1)侧棱交于一点。

侧面都是三角形(2)平行于底面的截面与底面是相似的多边形。

且其面积比等于截得的棱锥的高与远棱锥高的比的平方3、正棱锥正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。

各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。

且顶点在底面的射影为底面三角形的垂心。

两个平面的位置关系(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°](3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与常用逻辑用语第1课时集合的概念与运算1.集合与元素(1)某些指定的对象集在一起就成为一个集合.其中每个对象叫做集合中的元素.集合中的元素具有确定性、互异性、无序性三个特性.(2)集合的两种表示法:其中列举法指的是将集合中的元素一一列举出来写在大括号内;描述法指的是将集合元素的公共属性写在大括号内.2.集合间的基本关系(1)子集:A中任意一个元素均为B中的元素,记为A⊆B或B⊇A.(2)真子集:A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素,记为A B或B A.(3)空集:空集是任何集合A的子集(∅⊆A),是任何非空集合B的真子集(∅B(B≠∅)).3.集合的基本运算(1)并集:由属于A或属于B的所有元素构成的集合,记为A∪B.(2)交集:由既属于A又属于B的所有元素构成的集合,记为A∩B.(3)补集:若全集为U,A是U的子集,则由属于U但不属于A的所有元素构成的集合,记为∁U A.1.必明辨的2个易错点(1)在求集合或进行集合运算时,容易忽视集合元素的互异性而出错.(2)在运用B⊆A,A∩B=B,A∪B=A往往会忽视B=∅的情况.2.解集合问题常用的方法(1)集合是由元素构成的,认清集合的元素对于处理集合之间的关系及进一步认识集合是非常重要的.(2)用好韦恩图,韦恩图是集合特有的,它是集合中将抽象问题转化为具体问题的重要工具.第2课时命题及其关系、充分条件与必要条件1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题若原命题为“若p,则q”,则其逆命题是若q,则p;否命题是若綈p,则綈q;逆否命题是若綈q,则綈p.(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件(1)“若p,则q”为真命题,记作:p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果既有p⇒q,又有q⇒p,记作:p⇔q,则p是q的充要条件,q也是p的充要条件.1.必明辨的2个易错点(1)充分条件与充分不必要条件及必要条件与必要不充分条件的区别与联系.(2)在探求充分条件或必要条件时要注意所判断命题的类别.2.求解充要条件问题常用的4种方法(1)利用原命题及逆命题:若仅原命题成立,则原命题的条件是结论的充分不必要条件;若仅逆命题成立,则原命题的条件是结论的必要不充分条件;若原命题与逆命题都成立,则原命题的条件是结论的充要条件;若原命题与逆命题都不成立,则原命题的条件既不是结论的充分条件也不是必要条件.(2)利用逆否命题及否命题:由于原命题与逆否命题等价、逆命题与否命题等价;因而在第一条途径失效时,要选择逆否命题及否命题.(3)利用“⇒,⇔”,若A⇒B,则A是B的充分条件,B是A的必要条件;若A⇔B,则A 是B的充要条件.(4)利用集合之间的包含关系:设M={x|A(x)成立},N={x|B(x)成立};显然,A⇒B 当且仅当M⊆N;即当且仅当M⊆N时,A是B的充分条件,B是A的必要条件;M=N时,A 是B的充要条件.第3课时简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(2)用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(3)对一个命题p全盘否定记作綈p,读作“非p”或“p的否定”.2.全称量词与存在量词(1)全称量词与全称命题①短语“对所有的”、“对任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称命题.②全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x),读作“对任意x属于M,有p(x)成立.”(2)存在量词与特称命题①短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题,叫做特称命题.②特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为:∃x0∈M,p(x0),读作“存在一个x0属于M,使p(x0)成立”.3.含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)∃x0∈M,綈p(x0)∃x0∈M,p(x0)∀x∈M,綈p(x)1.必明辨的2个易错点(1)否命题与含有一个量词的命题的否定.后者是以含有量词且仅含一个为前提的命题,否则,就不谈否定.显然,并非所有的命题都可以写否定.但任何一个命题存在否命题.(2)书写命题的否定时,要结合全称量词与特称量词的特点进行.2.解逻辑联结词及命题的否定常用的方法(1)利用命题的等价性对命题进行转化,即若綈p⇒q,则綈q⇒p.(2)书写含有一个量词的命题的否定时,有两个步骤:即转换量词与否定结论.第二章基本初等函数、导数及其应用第1课时函数及其表示1.函数的概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、值域和对应关系.2.函数的表示方法表示函数的常用方法有:解析法、列表法、图象法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.1.必明辨的2个易错点(1)函数与映射的区别与联系,函数是特殊的映射,二者区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集.(2)两函数在什么条件下为同一函数?定义域、对应关系分别相同,两函数即为同一函数.2.理解函数概念中的2个关键词理清函数定义中的“任意x”与“唯一y”的含义.3.掌握求函数解析式的4种常见方法凑配法、换元法、消元法及待定系数法第2课时函数的单调性与最值1.函数的单调性(1)一般地,设函数f(x)的定义域为I.如果对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.(2)单调性、单调区间的定义:若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间.2.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意x∈I,都有f(x)≤M 且存在x0∈I,使得f(x0)=M,M为最大值.(2)对于任意x∈I,都有f(x)≥M且存在x0∈I,使得f(x0)=M,M为最小值.1.必明辨的2个易错点(1)函数f(x)在区间[a,b]上单调递增,与函数f(x)的单调递增区间为[a,b]含义不同.(2)函数的最值与函数值域的关系. 2.牢记2种方法(1)借助图象求函数的单调区间.(2)用“同增异减”求复合函数的单调区间.第3课时 函数的奇偶性与周期性1.函数的奇偶性(1)如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数.(2)如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数.2.周期性(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.3.对称性(1)偶函数关于y 轴对称. (2)奇函数关于原点对称.(3)若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线x =a 对称.4.单调性与奇偶性的关系(1)偶函数在原点两侧的增减性相反. (2)奇函数在原点两侧的增减性一致.1.必明辨的2个易错点(1)奇、偶函数的定义域的特点若函数f (x )具有奇偶性,则f (x )的定义域关于原点对称.反之,若函数的定义域不关于原点对称,则该函数无奇偶性.(2)并非所有的周期函数都有最小正周期. 2.求解奇偶性与周期性问题应注意以下2点 (1)关注函数的定义域.(2)若函数f (x )满足f ⎝ ⎛⎭⎪⎫x +T 2=-f (x )或f ⎝ ⎛⎭⎪⎫x +T 2=1f x 或f ⎝ ⎛⎭⎪⎫x +T 2=-1f x ,T ≠0,则f (x )是周期函数,且周期为T .第4课时 二次函数与幂函数1.二次函数的解析式的几种常用表达形式(1)一般式:f (x )=ax 2+bx +c (a ≠0);(2)顶点式:f (x )=a (x -h )2+k (a ≠0),(h ,k )是顶点;(3)标根式(或因式分解式):f (x )=a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2分别是f (x )=0的两实根.(4)重要性质(设f (x )=ax 2+bx +c (a ≠0)①对称轴方程为x =-b2a;②a >0时,抛物线开口向上,函数在⎝ ⎛⎦⎥⎤-∞,-b 2a 上递减,在⎣⎢⎡⎭⎪⎫-b2a ,+∞上递增,f (x )min =4ac -b24a ;③a <0时,抛物线开口向下,函数在⎝ ⎛⎦⎥⎤-∞,-b 2a 上递增,在⎣⎢⎡⎭⎪⎫-b2a ,+∞上递减,f (x )max =4ac -b24a;④f (x )=ax 2+bx +c (a ≠0)的顶点坐标为⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a .2.幂函数的定义(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中x 是自变量,α为常数. (2)五种常见幂函数的图象与性质函数特征 性质y =x y =x 2 y =x 3 y =x 12y =x -1图象定义域 R R R {x |x ≥0} {x |x ≠0} 值域 R {y |y ≥0} R {y |y ≥0} {y |y ≠0} 奇偶性 奇 偶奇 非奇非偶奇单调性 增(-∞,0)减 (0,+∞)增增 增(-∞,0)和 (0,+∞)减公共点 (1,1)1.必明辨的2个易错点(1)求闭区间上二次函数的最值要结合图象,不可直接代入区间端点产生.(2)幂函数y =x α,当α=0或α=1时的图象都是一条直线的说法是不正确的;因为幂函数f (x )=x 0(x ≠0)的图象,是直线除去一个点.2.求解二次函数与幂函数问题时常用方法(1)二次函数y =ax 2+bx +c (a ≠0)中三个字母的各自使命.a 决定了开口方向;a ,b 共同决定对称轴位置;c 决定与y 轴的交点位置.(2)用待定系数法求二次函数解析式.(3)幂函数在第一象限的单调性决定了幂指数的符号,反之亦然第5课时 指数函数1.根式的概念如果x n=a ,那么x 叫做a 的n 次方根.当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数;当n 为偶数时,正数的n 次方根有两个,它们互为相反数.2.有理指数幂(1)分数指数幂的表示①正数的正分数指数幂是:a mn =na m (a >0,m ,n ∈N *,n >1).②正数的负分数指数幂是:a -mn =1a mn=1na m(a >0,m ,n ∈N *,n >1).(2)有理指数幂的运算性质 ①a r a s =a r +s(a >0,r ,s ∈Q ).②(a r )s =a rs(a >0,r ,s ∈Q ).③(ab )r =a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象及其性质a >10<a <1图象定义域 R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1; 当x <0时,0<y <1 当x >0时,0<y <1; 当x <0时,y >1 在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数温馨提示:指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按0<a <1和a >1进行分类讨论.第6课时 对数函数1.对数的概念及运算法则(1)对数的定义,如果a x=N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.(2)对数的常用关系式①对数恒等式:a log a N =N (a >0且a ≠1,N >0);②换底公式:log a b =log c blog c a(b >0,a 、c 均大于0且不等于1).(3)对数的运算法则如果a >0,且a ≠1,M >0,N >0,那么 ①log a (M ·N )=log a M +log a N ;②log a M N =log a M -log a N ; ③log a M n=n log a M (n ∈R );④log am M n=n mlog a M (n ∈R ,m ≠0).2a >10<a <1图象定义域(0,+∞) 值域R性质过定点(1,0)当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y >0在(0,+∞)上是增函数在(0,+∞)上是减函数温馨提示:解决与对数函数有关的问题时易漏两点:(1)函数的定义域;(2)对数底数的取值范围.3.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.1.必明辨的3个易错点(1)对数恒等式是有条件的等式.(2)与对数函数复合的复合函数求单调区间时,容易忽略定义域.(3)忽略对底数的讨论.2.比较两个对数大小的3种方法(1)底数大于1,真数大于1,或底数大于0小于1,真数大于0小于1称为相同,此时,函数值大于0.否则为不同,函数值小于0.简记为“相同大于零,不同小于零”.(2)在比较真数相同,底数不同的两个对数大小时,若底数大于1,称“递增”(大于0小于1,称“递减”).真数大于1(或大于0小于1),称“真底同(异)向”,此时符合“递增又同向”便有“底小值居上”.注意若出现“增”与“同”改一个字,结论中的“上”要改为“下”.改两个字则结论不变.(3)利用对数函数的图象及图象性质解题.第7课时函数的图象及其应用1.作图作函数的图象有两条基本途径:(1)描点法:其基本步骤是列表、描点、连线.首先①确定函数的定义域,②化简函数解析式,③讨论函数的性质(奇偶性、单调性、周期性、对称性、值域);其次列表(尤其注意特殊性,如最大值、最小值、与坐标轴的交点);最后描点,连线.(2)图象变换法,常见的四种变换:平移变换(左加、右减、上加、下减);伸缩变换;翻折变换;对称变换.2.识图绘图、识图是学习函数、应用函数的一项重要基本功,是数形结合解题方法的基础.识图要首先把握函数的定义域、值域、单调区间、奇偶性或图象的对称特征、周期性、与坐标轴的交点,另外有无渐近线,正、负值区间等都是识图的重要方面,要注意函数解析式中含参数时,怎样由图象提供信息来确定这些参数.3.用图函数图象形象地显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.[做一做]1.(1)函数y =x |x |的图象大致是( )(2)函数y =-e x的图象( )A .与y =e x的图象关于y 轴对称B .与y =e x的图象关于坐标原点对称C .与y =e -x的图象关于y 轴对称D .与y =e -x的图象关于坐标原点对称解析:(1)选A.y =x |x |=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0.(2)选D.由题意知D 项正确.1.必明辨的2个易错点(1)函数y =f (x )的图象关于原点对称与两函数的图象关于原点对称是有区别的.函数y =f (x )的图象关于某直线对称与两函数的图象关于某直线对称也是有区别的.(2)利用图象求解问题很直观、很方便,但要看到有时是不准确的.第8课时 函数与方程1.函数的零点 (1)函数零点的定义对于函数y =f (x )(x ∈D ),把使f (x )=0成立的实数x 叫做函数y =f (x )(x ∈D )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理) 如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系 (1)Δ>0,图象与x 轴有两个交点,则函数有两个零点. (2)Δ=0,图象与x 轴相切,则函数有一个零点. (3)Δ<0,图象与x 轴没有交点,则函数没有零点. 3.二分法的定义 对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.1.必明辨的2个易错点(1)若函数不满足零点存在性定理,则该函数不一定没有零点.(2)用二分法求方程的近似解时,只要区间长度符合精确度的要求,则区间内的任意值都可以作为方程的近似解,为方便,我们将取区间的端点.2.求函数零点的2种方法(1)因式分解是求函数零点的最快的方法. (2)构造函数使其符合零点存在性定理.提醒:零点存在性定理只是判断零点存在的依据,至于有几个零点,零点是多少,不在判断之列.第9课时 函数模型及其应用1.几种常见的函数模型(1)一次函数模型:f (x )=ax +b (a 、b 为常数,a ≠0);(2)二次函数模型:f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0);(3)指数函数模型:f (x )=ba x+c (a ,b ,c 为常数,a >0且a ≠1,b ≠0); (4)对数函数模型:f (x )=b log a x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0);(5)幂函数模型:f (x )=ax n+b (a ,b ,n 为常数,a ≠0,n ≠0). 2.三种函数模型的增长特性(1)指数函数模型,在(0,+∞)上单调递增时,增长速度越来越快,随x 值增大,图象与y 轴接近平行.(2)对数函数模型,在(0,+∞)上单调递增时,增长速度越来越慢,随x 值增大,图象与x 轴接近平行.(3)幂函数模型,在(0,+∞)上单调递增时,增长速度相对平稳,随n 值变化而不同.1.必明辨的2个易错点(1)在借助函数模型处理问题时,容易忽略定义域的取值而出错.(2)在实际问题中模型的准确性不是十分严格,求解时,要因题而异,不可盲目乱套基本模型.2.求解函数模型应用问题常用4法(1)抓常规,乱中找序:模型应用题往往与生活联系密切,无论多么复杂的问题,总存在着生活中的常规现象,抓住它们,就在纷乱的条件中找到了“头序”,问题就能迎刃而解.(2)抓重点,以纲带目:模型应用题的一大特点是:信息量大、文字叙述较长,有时还会出现很多数据,面对这些信息要善于找主要矛盾、抓重点,以纲带目.(3)抓概念,深入理解:模型应用题一般都会伴有新概念、新术语的产生,面对这些新概念、新术语,我们必须抓住它们,通过对它们的全面分析,使我们能准确的把握题意,从而进行正确求解.(4)用草图,显现关系:一个应用问题往往涉及较多数据,面对众多数据及这些数据间错综复杂的制约关系,画个草图,用草图,显现关系,问题会渐趋明朗.第10课时 变化率与导数、导数的计算1.导数(1)函数y =f (x )从x 1到x 2的平均变化率为f x 2-f x 1x 2-x 1,若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为ΔyΔx.(2)函数f (x )在x =x 0处的导数 ①定义称函数f (x )在x =x 0处的瞬时变化率lim Δx →0 ΔyΔx=lim Δx →0 f x 0+Δx -f x 0Δx为函数f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 f x 0+Δx -f x 0Δx. ②几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0).2.导数的运算(1)基本初等函数的导数公式 (C )′=0(C 为常数); (x α)′=αx α-1;(sin x )′=cos_x ;(cos x )′=-sin_x ;(a x )′=a xln_a ;(e x )′=e x;(log a x )′=1x ln a;(ln x )′=1x;(2)导数运算法则①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); ③[f x g x ]′=f ′x g x -f x g ′x [g x ]2(g (x )≠0).1.必明辨的2个易错点(1)f ′(x )与f ′(x 0)的区别与联系.(2)在某点处的切线与过某点的切线的区别与联系. 2.求解变化率与导数的常用方法(1)用导数的定义求导数,注意①分子自变量的增量,②分母,③取极限过程的变量完全一致,简称为“三合一”.(2)用两线重合求切线方程.求下列函数的导数: (1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ;(3)y =ln x x 2+1;(4)y =x tan x .2.求下列函数的导数: (1)y =cos x sin x ;(2)y =e xln x ;(3)y =3x e x -2x+e ;(4)y =x 3e x.第11课时导数与函数的单调性、极值1.函数的单调性与导数在区间(a,b)内,函数的单调性与其导数的正负有如下的关系:(1)如果f′(x)>0,那么函数y=f(x)在这个区间单调递增;(2)如果f′(x)<0,那么函数y=f(x)在这个区间单调递减;(3)如果f′(x)=0,那么函数y=f(x)在这个区间为常数.注:f(x)在(a,b)内可导为此规律成立的一个前提条件.2.函数极值的概念设函数f(x)在点x0附近有定义且在点x0处连续.(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值.(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(3)如果在x0附近的左、右两侧导数值同号,那么f(x0)不是极值.(4)极大值点、极小值点统称为极值点,极大值、极小值统称为极值.注:(1)在函数的整个定义域内,函数的极值不一定唯一,在整个定义域内可能有多个极大值和极小值.(2)极大值与极小值没有必然关系,极大值可能比极小值还小.1.必明辨的2个易错点(1)若f′(x0)=0,则x0未必是极值点.但x0是极值点,则f′(x0)=0一定成立.(2)对于在(a,b)内可导的函数f(x)来说,f′(x)>0是f(x)在(a,b)上为递增函数的充分不必要条件;f′(x)<0是f(x)在(a,b)上为递减函数的充分不必要条件.例如:f(x)=x3在整个定义域R上为增函数,但f′(x)=3x2,f′(0)=0,所以在x=0处并不满足f′(x)>0,即并不是在定义域中的任意一点都满足f′(x)>0.2.牢记导数应用的2类题型(1)求函数单调性的基本步骤;(2)求函数极值的基本步骤.第12课时导数与函数的最值及在实际生活中的应用1.函数的最值假设函数y=f(x)在闭区间[a,b]上的图象是一条连续不间断的曲线,则该函数在[a,b]上一定能够取得最大值与最小值.若函数在(a,b)内是可导的,该函数的最值必在极值点或区间端点处取得.2.解决优化问题的基本思路1.必明辨的2个易错点 (1)函数的极值与最值的区别极值是指某一点附近函数值的比较.因此,同一函数在某一点的极大(小)值,可以比另一点的极小(大)值小(大);而最大、最小值是指在闭区间[a ,b ]上所有函数值的比较,因而在一般情况下,两者是有区别的,极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值,但如果连续函数在区间(a ,b )内只有一个极值,那么极大值就是最大值,极小值就是最小值.(2)极值与最值的存在性闭区间[a ,b ]上的连续函数不一定存在极值,但一定有最值. 2.求解导数与函数的最值及在实际生活中的应用问题常用的方法 (1)求函数最值的基本步骤;(2)实际应用问题——构建数学模型——转化为数学问题——求解数学问题——回到实际问题之中.第三章三角函数、解三角函数第1课时 任意角和弧度制及任意角的三角函数1.任意角(1)角的概念的推广:按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z )或α+k ·2π(k ∈Z ).2.弧度与角度的互化(1)1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示. (2)角α的弧度数:半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr.(3)角度与弧度的换算①1°=π180 rad ;②1 rad =(180π)°.(4)弧长、扇形面积的公式,设扇形的弧长为l ,圆心角大小为α rad ,半径为r ,则l=r α,扇形的面积为S =12lr =12r 2α.3.任意角的三角函数(1)定义:设角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=y x(x ≠0).(2)几何表示:三角函数线可以看作三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是单位圆与x 轴正半轴的交点.1.必明辨的2个易错点(1)几种角的关系:锐角、小于90°的角、第一象限的角.(2)两个角的顶点重合、始边重合、终边也重合,但两角不一定相等.它们相差360°的整数倍.2.牢记2个结论(1)用“一全正二正弦三正切四余弦”判断三角函数在各个象限内的符号.(2)将各象限均n 等分后,从x 轴正半轴按逆时针方向分别在各区域上标出1,2,3,4,可由α所在的象限迅速判断出αn所在象限的结论.第2课时 同角三角函数的基本关系与诱导公式1.同角三角函数基本关系式(1)平方关系:sin 2α+cos 2α=1,其等价形式为:sin 2α=1-cos 2α,cos 2α=1-sin2α.(2)商数关系:sin αcos α=tan α,其等价形式为:sin α=cos_α·tan_α.2.角的对称相关角的终边 对称性 α与π+α 关于原点对称 α与π-α 关于y 轴对称 α与-α(或2π-α) 关于x 轴对称α与π2-α关于直线y =x 对称3.六组诱导公式(1)α为任意角,分成两类:2k π+α,-α,π±α,与π2±α共六组.(2)利用诱导公式化简或求值的一般步骤:①负角的三角函数化成正角三角函数.②大于2π的化成[0,2π)内的角的三角函数.③钝角的三角函数化成锐角的三角函数.1.必明辨的2个易错点 (1)公式记忆不准确出错. (2)忽视已知角的范围出错. [练一练]2.同角三角函数的基本关系与诱导公式灵活应用及简单记法(1)将教材上的六组诱导公式统一为k π2±α形式,其中k ∈Z .简记为“奇变偶不变符号看象限”.(2)公式可用sin 2α+cos 2α=1,也可用1=sin 2α+cos 2α,需根据题意灵活选用.第3课时 两角和与差的正弦、余弦和正切公式1.两角和与差的正弦、余弦和正切公式(1)cos(α+β)=cos_αcos_β-sin_αsin_β, cos(α-β)=cos_αcos_β+sin_αsin_β;(2)sin(α+β)=sin_αcos_β+cos_αsin_β, sin(α-β)=sin_αcos_β-cos_αsin_β;(3)tan(α+β)=tan α+tan β1-tan αtan β,tan(α-β)=tan α-tan β1+tan αtan β.(α,β,α+β,α-β均不等于k π+π2,k ∈Z )其变形为:tan α+tan β=tan(α+β)(1-tan_αtan_β), tan α-tan β=tan(α-β)(1+tan_αtan_β). 2.二倍角的正弦、余弦和正切公式 (1)sin 2α=2sin_αcos_α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(3)tan 2α=2tan α1-tan 2α(α≠k π2+π4且α≠k π+π2,k ∈Z ).1.必明辨的1个易错点使用公式时必须注意定义域是否改变.2.利用两角和差公式及二倍角公式时常用的2种方法 (1)凑角法的应用;(2)公式的各种变形及应用.第4课时 简单的三角恒等变换1.用cos α表示sin 2α2,cos2α2,tan2α2.(降幂公式)sin2α2=1-cos α2; cos 2α2=1+cos α2; tan 2α2=1-cos α1+cos α. 2.用sin α、cos α表示sin α2,cos α2,tan α2.(半角公式不要求记忆)sin α2=±1-cos α2; cos α2=±1+cos α2; tan α2=±1-cos α1+cos α.1.必明辨的2个易错点(1)易忽视各公式成立的条件致误. (2)注意变换的等价性.2.简单的三角恒等变换问题常用的2种方法(1)“切化弦”即正切转化为正、余弦.(2)化三角函数式为一个角的一个三角函数式.第5课时 三角函数的图象和性质1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). (2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1). 2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数 y =sin x y =cos x y =tan x图 象定 义 域 R R {x |x ∈R ,且x ≠k π+π2}值 域 [-1,1] [-1,1] R 周 期 性 2π2ππ奇 偶 性 奇函数 偶函数 奇函数单 调 性 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 为增;⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 为减[2k π-π,2k π]为增;[2k π,2k π+π]为减 ⎝⎛k π-π2,⎭⎪⎫k π+π2为增对 称 中 心(k π,0)⎝ ⎛⎭⎪⎫k π+π2,0⎝ ⎛⎭⎪⎫k π2,0。

相关文档
最新文档