振动习题答案分解
大学物理振动习题含答案
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为: (A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'[ ]6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
11.振动 大学物理习题答案
由上述方程可解得:
( 2)
k 2 m J / R2 , T 2 k m J / R2 mg k mg , 。 x cos( t ) k k m J / R2
( 3) t 0 , v 0 0 , A x 0
11-4 一质量为 m 的小球在一个光滑的半径为 R 的球形碗底作微小振动, 如图 11-4 所示。 设 t=0 时, =0, 小球的速度为 v0,并向右运动。求在振幅很小的情况下,小球的运动方程。 解:在切向应用牛顿定律
- -
11-6 质量为 0.01kg 的物体,以振幅 1.010 2m 作简谐运动,其最大加速度为 4.0m·s 2。求: (1)振动的周 期; (2)物体通过平衡位置时的总能量和动能; (3)当物体的位移大小为振幅的一半时,动能和势能 各占总能量的多少? 解: (1) a m A ,
2 2 , , x 0.12 cos( t ) 3 T 2 3 dx dv ( 2) v 0.12 sin( t ) , a 0.12 2 cos( t ) dt 3 dt 3
t 0.5 s , x 0.1039 m , v 0.1885 m/s , a 1.03 m/s 2
大学物理练习册—振动
11-1 一物体作简谐运动的曲线如图 11-1 所示,试求其运动方程。 解:设振动方程为 x A cos( t ) , A 4 10 由旋转矢量法知 ,
2
x /cm 4 O
2 2
m
3 4
/4 , 0.5 2
0.5
t /s
mg 。 k
m 图 11-3
分别取重物、滑轮和弹簧为研究对象,则有
《振动力学》习题集(含问题详解)
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
机械振动习题详解
习题四一、选择题1.两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为1cos()x A t ωα=+。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处,则第二个质点的振动方程为 [ ] (A ))π21cos(2++=αωt A x ; (B ))π21cos(2-+=αωt A x ; (C ))π23cos(2-+=αωt A x ; (D ))cos(2π++=αωt A x 。
答案:B解:由题意,第二个质点相位落后第一个质点相位π/2,因此,第二个质点的初相位为π21-α,所以答案应选取B 。
2.劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为[](A )21212)(2k k k k m T +π=;(B ))(221k k mT +π=;(C )2121)(2k k k k m T +=π;(D )2122k k mT +π=。
答案:C解:两根弹簧串联,其总劲度系数2121k k k k k +=,根椐弹簧振子周期公式,k mT π2=,代入2121k k k k k +=可得答案为C 。
3.一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J =,此摆作微小振动的周期为[] (A )g l π2;(B )g l 22π;(C )g l 322π;(D )gl 3π。
答案:C解:由于是复摆,其振动的周期公式为glmgl J T 322222πππ===ω,所以答案为C 。
4.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[] 答案:B解:根椐题意,此简谐振动的初相位为3π-,或35π,所以答案为B 。
5.一物体作简谐振动,振动方程为)21cos(π+=t A x ω.则该物体在t = 0时刻的动能与t = T /8(T 为振动周期)时刻的动能之比为[](A )1:4;(B )1:2;(C )1:1;(D )2:1。
振动习题答案
振动习题答案振动习题答案振动是物体在固定轴线附近做往复运动的现象。
它在我们的日常生活中随处可见,比如钟摆的摆动、弹簧的振动等等。
振动习题是学习振动理论的重要一环,通过解答习题可以加深对振动原理的理解和应用。
下面是一些常见的振动习题及其答案,希望对大家的学习有所帮助。
1. 一个质点沿直线做简谐振动,振幅为2cm,周期为4s,求该质点的速度和加速度。
解答:简谐振动的速度和加速度与位置的关系可以通过振动的位移方程得到。
位移方程为:x = A * sin(ωt + φ),其中A为振幅,ω为角频率,t为时间,φ为初相位。
根据周期和角频率的关系,可知ω = 2π / T,其中T为周期。
根据题目中的数据,振幅A = 2cm,周期T = 4s。
代入上述公式可得ω = 2π /4 = π / 2。
因此,位移方程可写为:x = 2 * sin(π/2 * t + φ)。
速度v = dx / dt,加速度a = dv / dt。
对位移方程求一次导数得到速度和加速度的表达式:v = d(2 * sin(π/2 * t + φ)) / dt = 2 * (π/2) * cos(π/2 * t + φ) = π * cos(π/2 * t + φ),a = d(π * cos(π/2 * t + φ)) / dt = - (π/2)^2 * sin(π/2 * t + φ) = - (π^2 / 4) *sin(π/2 * t + φ)。
2. 一个弹簧的振动周期为2s,振幅为5cm,求该弹簧的角频率和振动频率。
解答:角频率ω = 2π / T,振动频率f = 1 / T,其中T为周期。
根据题目中的数据,周期T = 2s。
代入上述公式可得角频率ω = 2π / 2 = π,振动频率f = 1 / 2 = 0.5Hz。
3. 一个质点的振动方程为x = 3sin(2πt + π/4),求该质点的振幅、周期、角频率、初相位、速度和加速度。
振动力学习题集含答案
解:
利用动量矩定理得:
,
,
,
,
面积为S、质量为m的薄板连接于弹簧下端,在粘性流体中振动,如图所示。作用于薄板的阻尼力为 ,2S为薄板总面积,v为速度。若测得薄板无阻尼自由振动的周期为 ,在粘性流体中自由振动的周期为 。求系数 。
图
解:
平面在液体中上下振动时:
,
,
图所示系统中,已知m,c, , , 和 。求系统动力学方程和稳态响应。
(2)
若取下面为平衡位置,求解如下:
,
图T 2-17所示的系统中,四个弹簧均未受力,k1=k2=k3=k4=k,试问:
(1)若将支承缓慢撤去,质量块将下落多少距离?
(2)若将支承突然撤去,质量块又将下落多少距离?
图T 2-17
解:
(1) ,
(2) ,
如图T 2-19所示,质量为m2的均质圆盘在水平面上可作无滑动的滚动,鼓轮绕轴的转动惯量为I,忽略绳子的弹性、质量及各轴承间的摩擦力,求此系统的固有频率。
因此有:
图所示阶梯杆系统中已知m,ρ,S,E和k。求纵向振动的频率方程。
图
解:
模态函数的一般形式为:
题设边界条件为:
,
边界条件可化作:
,
导出C2= 0及频率方程:
,其中
长为l、密度为ρ、抗扭刚度为GIp的的等直圆轴一端有转动惯量为J的圆盘,另一端连接抗扭刚度为k的弹簧,如图所示。求系统扭振的频率方程。
《振动力学》习题集(含答案)
质量为m的质点由长度为l、质量为m1的均质细杆约束在铅锤平面内作微幅摆动,如图所示。求系统的固有频率。
图
解:
系统的动能为:
其中I为杆关于铰点的转动惯量:
大学物理第九章振动学基础习题答案
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。
江西理工大学大学物理(下)习题册及答案详解
班级_____________ 学号___________姓名________________ 简谐振动1. 一质点作谐振动, 振动方程为X=6COS (8πt+π/5) cm, 则t=2秒时的周相为:π5116, 质点第一次回到平衡位置所需要的时间为:s 0375.0.2. 一弹簧振子振动周期为T 0, 若将弹簧剪去一半, 则此弹簧振子振动周期T 和原有周期T 0之间的关系是:022T T =.3. 如图为以余弦函数表示的谐振动的振动曲线, 则其初周相φ=3π-,P 时刻的周相为:0.4. 一个沿X 轴作谐振动的弹簧振子, 振幅为A , 周期为T , 其振动方程用余弦函数表示, 如果在t=0时, 质点的状态分别是:(A) X 0=-A; (B) 过平衡位置向正向运动;(C) 过X=A/2 处向负向运动; (D) 过A x 22-= 处向正向运动.2 1 0 P t(s) X(m)试求出相应的初周相之值, 并写出振动方程.)2cos()(ππ+=t TA x A ; )22cos()(ππ-=t T A x B)32cos()(ππ+=t T A x C ; )452cos()(ππ+=t T A x D5.一质量为0.2kg 的质点作谐振动,其运动议程为:X=0.60 COS(5t -π/2)(SI)。
求(1)质点的初速度;(2)质点在正向最大的位移一半处所受的力。
解(1))5sin(00.32π--==t dtdxv 10.00.3,0-==s m v t(2)x x dtdv a 2520-=-==ω 22.5.7,30.0--===s m a m x AN ma F 5.1-==班级_____________ 学号___________姓名________________简谐振动的合成1. 两个不同的轻质弹簧分别挂上质量相同的物体1和2, 若它们的振幅之比A 2 /A 1=2, 周期之比T 2 / T 1=2, 则它们的总振动能量之比E 2 / E 1 是( A )(A) 1 (B) 1/4 (C) 4/1 (D) 2/11)()(;)(2222221122112=⋅==A A T T E E T A m E π2.有两个同方向的谐振动分别为X 1=4COS(3t+π/4)cm ,X 2 =3COS(3t -3π/4)cm, 则合振动的振幅为:cm A 1=, 初周相为:4πφ=. 3. 一质点同时参与两个同方向, 同频率的谐振动, 已知其中一个分振动的方程为X 1=4COS3t cm, 其合振动的方程为分振动的振幅为A 2 =cm 44. 动方程分别为X 1=A COS(ωt+π/3), X 2 =A COS (ωt+5π/3), X 3 =A COS(ω程为:)6cos(3πω+=t A x5. 频率为v 1和v 2的两个音叉同时振动时,可以听到拍音,可以听到拍音,若v 1>v 2,则拍的频率是(B )(A)v 1+v 2 (B)v 1-v 2 (C)(v 1+v 2)/2 (D)(v 1-v 2)/26.有两个同方向,同频率的谐振动,其合成振动的振幅为0.20m ,周相与第一振动周相差为π/6。
(完整版)大学机械振动课后习题和答案(1~4章总汇)
1.1 试举出振动设计、系统识别和环境预测的实例。
1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。
两个串联的轴的扭转刚度分别为1t k ,2t k 。
解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。
解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。
大学物理第九章振动学基础习题答案
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略 9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x m F G G mx x πρπρ=-=- 令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x =1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭ (3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭ (4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。
振动力学习题答案
请打双面习题与综合训练 第一章2-1 一单层房屋结构可简化为题2-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。
求该房屋作水平方向振动时的固有频率。
解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。
等效弹簧系数为k则 mg k δ=其中δ为两根杆的静形变量,由材料力学易知δ=324mgh EJ =则 k =324EJ h设静平衡位置水平向右为正方向,则有 "m x kx =-所以固有频率3n 24mh EJ p =2-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题2-2图所示。
试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ2aθ=h α2F =mg由动量矩定理: ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12c o s s i n ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθ g h a l ga h l p T n 3π23π2π222=== 2-3 求题2-3图中系统的固有频率,悬臂梁端点的刚度分别是1k 和3k ,悬臂梁的质量忽略不计。
解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。
k 1ˊ与k 3并联,设总刚度为k 2ˊ。
k 2ˊ与k 4串联,设总刚度为k 。
即为21211k k k k k +=',212132k k kkk k++=',4241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++=)(42412132314214324212k k k k k k k k k k m k k k k k k k k k p ++++++=2-4 求题2-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。
燕山大学振动理论习题答案
k123
k1k23 k1 k23
2k 3
k1234
k123k4 k123 k4
1k 2
(1) mg
k1234 x0 , x0
2mg k
(2)
xt
x0
cosnt
,
xm a x
2x0
4mg k
2-7 图 2-7 所示系统,质量为 m2 的均质圆盘在水平面上作无滑动的滚动,鼓轮 绕轴的转动惯量为 I,忽略绳子的弹性、质量及各轴承间的摩擦力。试求此系统 的固有频率。
2π l a
h 3g
2-3 一半圆薄壁筒,平均半径为 R, 置于粗糙平面上做微幅摆动,如图 2-3 所示。 试求
其摆动的固有频率。
图 2-3
图 2-4
2-4 如图 2-4 所示,一质量 m 连接在一刚性杆上,杆的质量忽略不计,试求下 列情况
系统作垂直振动的固有频率: (1)振动过程中杆被约束保持水平位置; (2)杆可以在铅垂平面内微幅转动; (3)比较上述两种情况中哪种的固有频率较高,并说明理由。
n
ke m
2-5 试求图 2-5 所示系统中均质刚性杆 AB 在 A 点的等效质量。已知杆的质量为 m,A
端弹簧的刚度为 k。并问铰链支座 C 放在何处时使系统的固有频率最高?
图 2-5
图 2-6
2-6 在图 2-6 所示的系统中,四个弹簧均未受力。已知 m=50kg,k1 9800 N m , k2 k3 4900 N m , k4 19600 N m 。试问: (1)若将支撑缓慢撤去,质量块将下落多少距离?
E P02
2
k (1 2 )2 (2)2
证明
E T c2B2 cos(t )dt cB2 0
(完整版)简谐振动练习题(含详解)
简谐运动练习题一、基础题1.如图所示,是一列简谐横波在某时刻的波形图.若此时质元P正处于加速运动过程中,则此时( )Oy/mQx/mPNA.质元Q和质元N均处于加速运动过程中B.质元Q和质元N均处于减速运动过程中C.质元Q处于加速运动过程中,质元N处于减速运动过程中D.质元Q处于减速运动过程中,质元N处于加速运动过程中2.一质点做简谐运动,先后以相同的速度依次通过A、B两点,历时1s,质点通过B 点后再经过1s又第2次通过B点,在这两秒钟内,质点通过的总路程为12cm,则质点的振动周期和振幅分别为()A.3s,6cm B.4s,6cm C.4s,9cm D.2s,8cm3.一物体置于一平台上,随平台一起在竖直方向上做简谐运动,则A.当平台振动到最高点时,物体对平台的正压力最大B.当平台振动到最低点时,物体对平台的正压力最大C.当平台振动经过平衡位置时,物体对平台的正压力为零D.物体在上下振动的过程中,物体的机械能保持守恒4.一列平面简谐波,波速为20 m/s,沿x轴正方向传播,在某一时刻这列波的图象,由图可知( )A.这列波的周期是0.2 sB.质点P、Q此时刻的运动方向都沿y轴正方向C.质点P、R在任意时刻的位移都相同D.质点P、S在任意时刻的速度都相同5.弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中()A.振子所受回复力逐渐减小 B.振子位移逐渐减小C.振子速度逐渐减小 D.振子加速度逐渐减小6.某物体在O点附近做往复运动,其回复力随偏离平衡位置的位移变化规律如图所示,物体做简谐运动的是F F F F使A 和B 一起在光滑水平面上做简谐运动,如图所示。
振动过程中,A 与B 之间无相对运动,当它们离开平衡位置的位移为x 时,A 与B 间的摩擦力大小为( )A C D .././().kxB mkx M mkx m M 08.如图,一根用绝缘材料制成的轻弹簧,劲度系数为k ,一端固定,另一端与质量为m 、带电荷量为+q 的小球相连,静止在光滑绝缘水平面上的A 点.当施加水平向右的匀强电场E 后,小球从静止开始在A 、B 之间做简谐运动,在弹性限度内下列关于小球运动情况说法中正确的是( )A .小球在A 、B 的速度为零而加速度相同B .小球简谐振动的振幅为kqE 2 C .从A 到B 的过程中,小球和弹簧系统的机械能不断增大D .将小球由A 的左侧一点由静止释放,小球简谐振动的周期增大9.劲度系数为20N/cm 的弹簧振子,它的振动图象如图所示,在图中A 点对应的时刻A .振子所受的弹力大小为5N ,方向指向x 轴的正方向B .振子的速度方向指向x 轴的正方向C .在0~4s 内振子作了1.75次全振动D .在0~4s 内振子通过的路程为0.35cm ,位移为0二、提高题(14、15、19题提高题)10.如图甲所示,弹簧振子以O 点为平衡位置,在A 、B 两点之间做简谐运动。
15机械振动习题解答分析
第十五章机械振动一选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的?( )A. 物体在运动正方向的端点时,速度和加速度都达到最大值;B. 物体位于平衡位置且向负方向运动时,速度和加速度都为零;C. 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;D. 物体处负方向的端点时,速度最大,加速度为零。
解:根据简谐振动的速度和加速度公式分析。
答案选C。
2.下列四种运动(忽略阻力)中哪一种不是简谐振动?()A. 小球在地面上作完全弹性的上下跳动;B. 竖直悬挂的弹簧振子的运动;C. 放在光滑斜面上弹簧振子的运动;D. 浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动。
解:A 中小球没有受到回复力的作用。
答案选A 。
3. 一个轻质弹簧竖直悬挂,当一物体系于弹簧的下端时,弹簧伸长了l 而平衡。
则此系统作简谐振动时振动的角频率为( )A. lg B.lg C. gl D.gl解 由kl =mg 可得k =mg /l ,系统作简谐振动时振动的固有角频率为lg m k ==ω。
故本题答案为B 。
4. 一质点作简谐振动(用余弦函数表达),若将振动速度处于正最大值的某时刻取作t =0,则振动初相ϕ为( )A. 2π- B. 0 C. 2π D. π解 由 ) cos(ϕω+=t A x 可得振动速度为 ) sin(d d ϕωω+-==t A tx v 。
速度正最大时有0) cos(=+ϕωt ,1) sin(-=+ϕωt ,若t =0,则 2π-=ϕ。
故本题答案为A 。
5. 如图所示,质量为m 的物体,由劲度系数为k 1和k 2的两个轻弹簧连接,在光滑导轨上作微小振动,其振动频率为 ( ) A. mk k 21π2=ν B. m k k 21π2+=ν C. 2121π21.k mk k k +=ν D. )k m(k .k k 2121π21+=ν解:设当m 离开平衡位置的位移为x ,时,劲度系数为k 1和k 2的两个轻弹簧的伸长量分别为x 1和x 2,显然有关系x x x =+21此时两个弹簧之间、第二个弹簧与和物体之间的作用力相等。
胡海岩主编机械振动基础课后习题解答第2章习题
胡海岩主编---机械振动基础课后习题解答_第2章习题第2章习题含答案习题2-1 定常力作用下的单自由度系统1. 一个单自由度系统的质量m=2kg,刚度k=1000N/m,阻尼系数c=10N·s/m。
试求该系统的固有频率、阻尼比和振动的稳定性。
解:根据公式,该系统的固有频率可计算为:ωn = √(k/m) = √(1000/2) ≈ 22.36 rad/s阻尼比可计算为:ξ = c/(2√(mk)) = 10/(2√(2×1000)) ≈ 0.158振动的稳定性取决于阻尼比ξ的大小。
当ξ<1时,系统为欠阻尼;当ξ=1时,系统为临界阻尼;当ξ>1时,系统为过阻尼。
2. 一个单自由度系统的质量m=5kg,刚度k=500N/m,阻尼系数c=20N·s/m。
试求该系统的固有频率、阻尼比和振动的稳定性。
解:根据公式,该系统的固有频率可计算为:ωn = √(k/m) = √(500/5) = 10 rad/s阻尼比可计算为:ξ = c/(2√(mk)) = 20/(2√(5×500)) ≈ 0.141振动的稳定性取决于阻尼比ξ的大小。
当ξ<1时,系统为欠阻尼;当ξ=1时,系统为临界阻尼;当ξ>1时,系统为过阻尼。
习题2-2 强迫振动的幅值和相位1. 一个单自由度系统的质量m=3kg,刚度k=2000N/m,阻尼系数c=30N·s/m。
给定的外力F(t) = 10sin(5t)N。
试求该系统在稳态时的振动幅值和相位。
解:首先求解系统的强迫响应,即对外力F(t)进行拉氏变换:F(s) = L{F(t)} = L{10sin(5t)} = 10L{sin(5t)} = 10×(5/(s^2+25))根据公式,系统的强迫响应可计算为:X(s) = F(s)/((s^2+ωn^2)+2ξωns)其中,ωn=√(k/m)为系统的固有频率,ξ=c/(2√(mk))为系统的阻尼比。
大学物理振动习题含答案
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计时;若用余弦函数表示其运动方程,则该单摆振动的初相为A B /2 C 0 D2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同;第一个质点的振动方程为x 1 = A cos t + ;当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处;则第二个质点的振动方程为: A)π21cos(2++=αωt A x B )π21cos(2-+=αωt A x C)π23cos(2-+=αωt A x D )cos(2π++=αωt A x 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为;若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 A 2 B ω2 C 2/ω D /24.3396:一质点作简谐振动;其运动速度与时间的曲线如图所示;若质点的振动规律用余弦函数描述,则其初相应为 A /6 B 5/6C -5/6D -/6E -2/35.3552:一个弹簧振子和一个单摆只考虑小幅度摆动,在地面上的固有振动周期分别为T 1和T 2;将它们拿到月球上去,相应的周期分别为1T '和2T ';则有A 11T T >'且22T T >'B 11T T <'且22T T <'C 11T T ='且22T T ='D 11T T ='且22T T >'6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x SI;从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 A s 81 B s 61 C s 41 D s 31 E s 217.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动;当重物通过平衡位置且向规定的正方向运动时,开始计时;则其振动方程为: A)21/(cos π+=t m k A x B )21/cos(π-=t m k A x C)π21/(cos +=t k m A x D )21/cos(π-=t k m A x E t m /k A x cos =v 213030图 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm,周期T = 2 s,其平衡位置取作坐标原点;若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则质点第二次通过x = -2 cm 处的时刻为A 1 sB 2/3 sC 4/3 sD 2 s9.5501:一物体作简谐振动,振动方程为)41cos(π+=t A x ω;在 t = T /4T 为周期时刻,物体的加速度为 A 2221ωA - B 2221ωA C 2321ωA - D 2321ωA10.5502:一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2T 为周期时,质点的速度为A φωsin A -B φωsin AC φωcos A -φωcos A 11.3030x 1的相位比x 2的相位A 落后/2B 超前C 落后D 超前 12.3042:一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为,T A s B sC sD s 15.5186:已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒;则此简谐振动的振动方程为: A)3232cos(2π+π=t x B )3232cos(2π-π=t x C )3234cos(2π+π=t x D )3234cos(2π-π=t x E)4134cos(2π-π=t x 16.3023:一弹簧振子,当把它水平放置时,它可以作简谐振动;若把它竖直放置或放在固定的光滑斜面上,A 竖直放置可作简谐振动,B 竖直放置不能作简谐振动,C 两种情况都可作简谐振动3270图 竖直放置放在光滑斜面上B x A CA/ -D 两种情况都不能作简谐振动17.3028:一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为A E 1/4B E 1/2C 2E 1D 4E 118.3393:当质点以频率作简谐振动时,它的动能的变化频率为A 4B 2CD ν2119;3560:弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为A kA 2B 221kAC 1/4kA 2D 020.5182:一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 A 1/4 B 1/2 C 2/1 D 3/4 E 2/3 21.5504:一物体作简谐振动,振动方程为)21cos(π+=t A x ω;则该物体在t = 0时刻的动能与t = T /8T 为振动周期时刻的动能之比为:A 1:4B 1:2C 1:1D 2:1E 4:1 22.5505:一质点作简谐振动,其振动方程为)cos(φω+=t A x ;在求质点的振动动能时,得出下面5个表达式: 1 )(sin 21222φωω+t A m 2)(cos 21222φωω+t A m3 )sin(212φω+t kA4 )(cos 2122φω+t kA5 )(sin 22222φω+πt mA T 其中m 是质点的质量,k 是弹簧的劲度系数,T 是振动的周期;这些表达式中A 1,4是对的B 2,4是对的C 1,5是对的D 3,5是对的E 2,5是对的 23.3008:一长度为l 、劲度系数为k 的均匀轻弹簧分割成长度分别为l 1和l 2的两部分,且l 1 = n l 2,n 为整数. 则相应的劲度系数k 1和k 2为 A 11+=n kn k , )1(2+=n k k B n n k k )1(1+=,12+=n k k C n n k k )1(1+=, )1(2+=n k k D 11+=n kn k , 12+=n k k 24.3562:图中所画的是两个简谐振动的振动曲线;若这两个简谐振动可叠加,则合成的余弦振动的初相为 A π23B πC π21D 0二、填空题:1.3009:一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示;若0=t 时,1 振子在负的最大位移处,则初相为______________;2 振子在平衡位置向正方向运动,则初相为__________;3 振子在位移为A /2处,且向负方向运动,则初相为______;2.3390:一质点作简谐振动,速度最大值v m = 5 cm/s,振幅A = 2 cm;若令速度具有正最大值的那一时刻为t = 0,则振动表达式为_________________________;3.3557:一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点;已知周期为T ,振幅为A ;1若t = 0时质点过x = 0处且朝x 轴正方向运动,则振动方程为 x =____________;2若t = 0时质点处于A x 21=处且向x 轴负方向运动,则振动方程为 x =_______________;4.3816:一质点沿x 轴以 x = 0 为平衡位置作简谐振动,频率为 Hz;t = 0时,x = 0.37 cm 而速度等于零,则振幅是___________,振动的数值表达式为_____________________;5.3817:一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m,初速度为0.09 m/s,则振幅A =_____________ ,初相 =________________;6.3818:两个弹簧振子的周期都是 s,设开始时第一个振子从平衡位置向负方向运动,经过 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为____________;7.3819:两质点沿水平x 轴线作相同频率和相同振幅的简谐振动,平衡位置都在坐标原点;它们总是沿相反方向经过同一个点,其位移x 的绝对值为振幅的一半,则它们之间的相位差为___________;8.3820:将质量为 0.2 kg 的物体,系于劲度系数k = 19 N/m 的竖直悬挂的弹簧的下端;假定在弹簧不变形的位置将物体由静止释放,然后物体作简谐振动,则振动频率为__________,振幅为____________;9.3033:一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________; =________________; =_______________;移为,;其振动曲线如图所示;根据此图,它的周期T =___________,用余弦函数描述时初相 =_________________;别为 3033图 3041 t 3046 3398图 -t (s) -3399图 356714.3567:图中用旋转矢量法表示了一个简谐振动;旋转矢量的长度为0.04 m,旋转角速度 = 4 rad/s;此简谐振动以余弦函数表示的振动方程为x=__________________________SI;15.3029:一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的______________;设平衡位置处势能为零;当这物块在平衡位置时,弹簧的长度比原长长l ,这一振动系统的周期为________________________;16.3268一系统作简谐振动, 周期为T ,以余弦函数表达振动时,初相为零;在0≤t ≤T 21范围内,系统在t =________________时刻动能和势能相等;17.3561:质量为m 物体和一个轻弹簧组成弹簧振子,其固有振动周期为T. 当它作振幅为A 自由简谐振动时,其振动能量E = ____________;18.3821:一弹簧振子系统具有 J 的振动能量,0.10 m 的振幅和1.0 m/s 的最大速率,则弹簧的劲度系数为___________,振子的振动频率为_________;19.3401:两个同方向同频率的简谐振动,其振动表达式分别为:)215cos(10621π+⨯=-t x SI , )5cos(10222t x -π⨯=- SI它们的合振动的振辐为_____________,初相为____________;20.3839:两个同方向的简谐振动,周期相同,振幅分别为A 1 = 0.05 m 和A 2 = 0.07 m,它们合成为一个振幅为A = 0.09 m 的简谐振动;则这两个分振动的相位差___________rad;21.5314:一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为)41cos(05.01π+=t x ω SI, )129cos(05.02π+=t x ω SI其合成运动的运动方程为x = __________________________;22.5315:两个同方向同频率的简谐振动,其合振动的振幅为20 cm,与第一个简谐振动的相位差为 –1 = /6;若第一个简谐振动的振幅为310cm = 17.3 cm,则第二个简谐振动的振幅为___________________ cm,第一、二两个简谐振动的相位差1 2为____________;三、计算题:1.3017:一质点沿x 轴作简谐振动,其角频率 = 10 rad/s;试分别写出以下两种初始状态下的振动方程:1 其初始位移x 0 = 7.5 cm,初始速度v 0 = 75.0 cm/s ;2 其初始位移x 0 =7.5 cm,初始速度v 0 =-75.0 cm/s;2.3018:一轻弹簧在60 N 的拉力下伸长30 cm;现把质量为4 kg 的物体悬挂在该弹簧的下端并使之静止,再把物体向下拉10 cm,然 后由静止释放并开始计时;求:1 物体的振动方程;2 物体在平衡位置上方5 cm 时弹簧对物体的拉力;3 物体从第一次越过平衡位置时刻起到它运动到上方5 cm 处所需要的最短时间;3.5191:一物体作简谐振动,其速度最大值v m = 3×10-2 m/s,其振幅A = 2×10-2 m;若t = 0时,物体位于平衡位置且向x 轴的负方向运动;求:1 振动周期T ;2 加速度的最大值a m ;3 振动方程的数值式;4.3391:在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l 0 = 1.2 cm 而平衡;再经拉动后,该小球在竖直方向作振幅为A = 2 cm 的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式;5.3835在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放;已知物体在32 s 内完成48次振动,振幅为5 cm;1 上述的外加拉力是多大2 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少6.3836在一竖直轻弹簧下端悬挂质量m = 5 g 的小球,弹簧伸长l = 1 cm 而平衡;经推动后,该小球在竖直方向作振幅为A = 4 cm 的振动,求:1 小球的振动周期;2 振动能量;7.5506一物体质量m = 2 kg,受到的作用力为F = -8x SI;若该物体偏离坐标原点O 的最大位移为A = 0.10 m,则物体动能的最大值为多少8.5511 如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m,重物的质量m = 6 kg,重物静止在平衡位置上;设以一水平恒力F = 10 N 向左作用于物体不计摩擦,使之由平衡位置向左运动了0.05 m 时撤去力F ;当重物运动到左方最远位置时开始计时,求物体的运动方程;1.3001:C ;2.3002:B ;3C ;5.3552:D ;6.5178:E ; 7.5179:B ;8.5312:B ;9.5501:B ;10.5502:B ;11.3030:B ;12.3042:B ;13.3254:D ;14.3270:B ;15.5186:C ;16.3023:C ;17.3028:D ;18.3393:B ;19.3560:D ;20.5182:D ;21.5504:D ;22.5505:C ;23.3008:C ;24.3562:B ;二、填空题:1.3009: ; - /2;2.3390:)212/5cos(1022π-⨯=-t x 3.3557: )212cos(π-πT t A ;)312cos(π+πT t A 4.3816: 0.37 cm ; )21cos(1037.02π±π⨯=-t x5.3817: 0.05 m ; 或°6.3818:7.3819: 32π±8.3820: Hz ; 0.103 m9.3033: 10 cm /6 rad/s ; /310.3041: 0; 3 cm/s11.3046: /4;)4/cos(1022π+π⨯=-t x SI 12.3398: s ; -2/355065511图13.3399: )cos(1063π+π⨯=-t x a SI ;)2121cos(1063π+π⨯=-t x b SI 14.3567:)214cos(04.0π-πt 15.3029: 3/4; g l /2∆π16.3268: T /8; 3T /817.3561: 222/2T mA π18.3821: 2×102 N/m ; Hz19.3401: 4×10-2 m ; π21 20.3839:21.5314: )1223cos(05.0π+t ω SI 或 )121cos(05.0π-t ω SI22.5315: 10; π-21 三、计算题:1.3017:解:振动方程:x = A cos t +1 t = 0时 x 0 =7.5 cm =A cos ;v 0 =75 cm/s=-A sin解上两个方程得:A =10.6 cm----------------1分; = -/4-------------------1分∴ x =×10-2cos10t -/4 SI------------1分2 t = 0时 x 0 =7.5 cm =A cos ; v 0 =-75 cm/s=-A sin解上两个方程得:A =10.6 cm, = /4-------------------1分∴ x =×10-2cos10t +/4 SI-------------1分2.3018:解: k = f/x =200 N/m , 07.7/≈=m k ω rad/s----------2分(1) 选平衡位置为原点,x 轴指向下方如图所示(2) t = 0时, x 0 = 10A cos,v 0 = 0 = -A sin解以上二式得: A = 10 cm, = 分 ∴ 振动方程x 2 物体在平衡位置上方5 cm 时,弹簧对物体的拉力:f = mg 而: a = -2x = 2.5 m/s 2∴ f =4 - N= N----------------------------------------------3分 3 设t 1时刻物体在平衡位置,此时x = 0,即: 0 = A cos t 1或cos t 1 = 0∵ 此时物体向上运动,v < 0;∴ t 1 = /2,t 1= /2 =s------------------------1分再设t 2时物体在平衡位置上方5 cm 处,此时x = -5,即:-5 = A cos t 1,cos t 1 =-1/2∵ 0, t 2 = 2/3, t 2=2 /3 = s-----------------------------2分t = t 1-t 2 = - s = s-------------------------1分3.5191:解:1 v m = A ∴ = v m / A = s-1∴ T = 2/ s--------------------------------------------3分 2 a m = 2A = v m = ×10-2 m/s 2 ------------------------------2分 3 π=21φ , x = )215.1cos(π+t SI-----------3分 4.3391:解:设小球的质量为m ,则弹簧的劲度系数: 0/l mg k =选平衡位置为原点,向下为正方向.小球在x 处时,根据牛顿第二定律得:220d /d )(t x m x l k mg =+- 将 0/l mg k =,代入整理后得:0//d d 022=+l gx t x ∴ 此振动为简谐振动,其角频率为-------------------3分 π===1.958.28/0l g ω------------------------2分 设振动表达式为:)cos(φω+=t A x由题意:t = 0时,x 0 = A=2102-⨯m,v 0 = 0,解得: = 0--------------------------------------------------1分∴)1.9cos(1022t x π⨯=--------------------------2分 5.3835:解一:1 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则:0)(0=+-+∆x l k mg F解得: F = kx 0-------------------------------2分由题意,t = 0时v 0 = 0;x = x 0 则:02020)/(x x A =+=ωv ----------2分又由题给物体振动周期4832=T s,可得角频率 T π=2ω, 2ωm k =∴444.0)/4(22=π==A T m kA F N --------------------------------------------1分2 平衡位置以下 1cm 处:)()/2(2222x A T -π=v ---------------------------2分 221007.121-⨯==v m E KJ-----------------------------------------------2分2222)/4(2121x T m kx E p π== = ×10-4 J-------------------------1分解二:1 从静止释放,显然拉长量等于振幅A 5 cm,kA F =----------------2分2224νωπ==m m k , =Hz--------------------------------------------2分∴ F =N-------------------------------------------------------1分l 0 mg x kl 0k (l +x ) mg2 总能量:221011.12121-⨯===FA kA E J-------------------2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25---------------2分∴ 21007.1)25/24(-⨯==E E K J,41044.425/-⨯==E E p J------------1分6.3836:解:1 )//(2/2/2l g m k m T ∆π=π=π=ω= s ------------------3分2 22)/(2121A l mg kA E ∆== = ×10-3 J ----------------------------------------2分7.5506:解:由物体受力F = -8x 可知物体作简谐振动,且和F = -kx 比较,知 k = 8 N/m,则:4/2==m k ωrad/s 2--------------------------------------------------2分 简谐振动动能最大值为:2221A m E Km ω== J----------------3分8.5511:解:设物体的运动方程为: )cos(φω+=t A x 恒外力所做的功即为弹簧振子的能量:F × = J---------------------------2分当物体运动到左方最远位置时,弹簧的最大弹性势能为 J,即:5.0212=kA J,∴ A = 0.204 m--------------------------------------------------------------------2分A 即振幅;4/2==m k ω rad/s 2 ⇒ = 2 rad/s---------------------------2分按题目所述时刻计时,初相为 = ------------------------------------------2分∴ 物体运动方程为: )2cos(204.0π+=t x SI----------------2分。
振动理论习题答案汇总
《振动力学》——习题第二章 单自由度系统的自由振动2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。
试求2W 下降的最大距离和两物体碰撞后的运动规律。
解:222221v gW h W =,gh v 22=动量守恒:122122v gW W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+=故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x txt x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=xx 0x 1x 12平衡位置2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。
试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。
解:给杆一个微转角θ2aθ=h α2F =mg由动量矩定理:ah a mg a mg Fa M ml I M I 822cos sin 12122-=-≈⋅-====αθαθ其中12cossin ≈≈θααh l ga p ha mg ml n 22222304121==⋅+θθ g h a l ga h l p T n 3π23π2π222===2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。
试求其摆动的固有频率。
图2-3 图2-42-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:(1)振动过程中杆被约束保持水平位置;(2)杆可以在铅垂平面内微幅转动;(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
图T 2-9 答案图T 2-9解:(1)保持水平位置:m kk n 21+=ω(2)微幅转动:mglllF2112+=mgl1l2xx2xx'mglll2121+=k2k1ml1l2()()()()()()()()()mgk k l l k l k l mgk k l l k l l k l l l k l mg k k l l k l k l l l l k l l mg l mgk l l l k l l l l l l k l l mg l l l l x x k F x x x 2122122212121221221121212221212211211121212122211211121221112111 ++=+-++=+-⋅+++=⎥⎦⎤⎢⎣⎡+-++++=+-+='+=故:()22212121221k l k l k k l l k e++=mk en =ω 2-5 试求图2-5所示系统中均质刚性杆AB 在A 点的等效质量。
大学物理机械振动习题含答案
t (s )v (m.s -1)12m v m vo1.3题图题图 第三章 机械振动一、选择题1.质点作简谐振动,距平衡位置2。
0cm 时,加速度a=4.0cm 2/s ,则该质点从一端运动到另一端的时间为(一端运动到另一端的时间为( C )A:1.2s B: 2.4s C:2.2s D:4.4s 解:解:s T t T xax a 2.2422,2222,22===\=====p pw pw w2.一个弹簧振子振幅为2210m -´,当0t =时振子在21.010m x -=´处,且向正方向运动,则振子的振动方程是:[ A ] A :2210cos()m3x t p w -=´-;B :2210cos()m 6x t pw -=´-;C :2210cos()m 3xt pw -=´+ ;D :2210cos()m 6x t pw -=´+;解:由旋转矢量可以得出振动的出现初相为:3p-3.用余弦函数描述一简谐振动,若其速度与时间(v —t )关系曲线如图示,则振动的初相位为:[ A ] A :6p ;B :3p ;C :2p ;D :23p ;E :56p解:振动速度为:max 0sin()v v t w j =-+0t =时,01sin2j =,所以06p j =或056p j = 由知1.3图,0t =时,速度的大小是在增加,由旋转矢量图知,旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加的,旋转矢量在第二象限内,对应质点的运动是由平衡位置向负最大位移运动,速度是逐渐减小的,所以只有06pj =是符合条件的。
符合条件的。
4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。
1秒,则此钟摆的摆长为(长为( B )A:15cm B:30cm C:45cm D:60cm 解:单摆周期解:单摆周期 ,2glT p=两侧分别对T ,和l 求导,有:求导,有:cm m m T dT dl l l dl T dT 3060)1.0(2121,21=-´-==\= 1.2题图题图xyoxy二、填空题1.有一放置在水平面上的弹簧振子。
《振动力学》习题集(含答案解析)
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
《大学物理》振动练习题及答案解析
《大学物理》振动练习题及答案解析一、简答题1、如果把一弹簧振子和一单摆拿到月球上去,它们的振动周期将如何改变? 答案:弹簧振子的振动周期不变,单摆的振动周期变大。
2、完全弹性小球在硬地面上的跳动是不是简谐振动,为什么?答案:不是,因为小球在硬地面上跳动的运动学方程不能用简单的正弦或余弦函数表示,它是一种比较复杂的振动形式。
3、简述符合什么规律的运动是简谐运动答案:当质点离开平衡位置的位移`x`随时间`t`变化的规律,遵从余弦函数或正弦函数()ϕω+=t A x cos 时,该质点的运动便是简谐振动。
或:位移x 与加速度a 的关系为正比反向关系。
4、怎样判定一个振动是否简谐振动?写出简谐振动的运动学方程和动力学方程。
答案:物体在回复力作用下,在平衡位置附近,做周期性的线性往复振动,其动力学方程中加速度与位移成正比,且方向相反:x dtxd 222ω-=或:运动方程中位移与时间满足余弦周期关系:)cos(φω+=t A x 5、分别从运动学和动力学两个方面说明什么是简谐振动?答案:运动学方面:运动方程中位移与时间满足正弦或余弦函数关系)cos(φω+=t A x 动力学方面:物体在线性回复力作用下在平衡位置做周期性往复运动,其动力学方程满足 6、简谐运动的三要素是什么? 答案: 振幅、周期、初相位。
7、弹簧振子所做的简谐振动的周期与什么物理量有关?答案: 仅与振动系统的本身物理性质:振子质量m 和弹簧弹性系数k 有关。
8、如果弹簧的质量不像轻弹簧那样可以忽略,那么该弹簧的周期与轻弹簧的周期相比,是否有变化,试定性说明之。
答案:该振子周期会变大,作用在物体上的力要小于单纯由弹簧形变而产生的力,因为单纯由形变而产生的弹力中有一部分是用于使弹簧产生加速度的,所以总体的效果相当于物体质量不变,但弹簧劲度系数减小,因此周期会变大。
9、伽利略曾提出和解决了这样一个问题:一根线挂在又高又暗的城堡中,看不见它的上端而只能看见其下端,那么如何测量此线的长度?答案:在线下端挂一质量远大于线的物体,拉开一小角度,让其自由振动,测出周期T ,便可依据单摆周期公式glT π2=计算摆长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m
l1 l2
l3
k
c
m
m l1
O
c l3
k l2
图 T 2-26
解: 受力如答案图 T 2-26。对 O 点取力矩平衡,有:
答案图 T 2-25
ml1 l1 cl3 l3 kl2 l2 0
ml12 cl32 kl22 0
m 1 c 1 k 0 16 4
n2
1 4
k m
36
n
kb2 ml 2
b l
k m
ca 2 ml 2
2 n ,
ca2 2ml 2n
ca2 2mlb
m k
d n
12 b l
k m
1
c2a4 4m2l 2b2
m kLeabharlann 1 2ml 24kml2b2 c2a4
由
1 c
2bl a2
mk
2-9 图 2-9 所示的系统中,m=1kg,k=224N/m,c=48N.s/m,l1=l=0.49m,l2
(2)若将支撑突然撤去,质量块又将下落多少距离?
{2.17} 图 T 2-17 所示的系统中,四个弹簧均未受力,k1= k2= k3= k4= k,试问: (1)若将支承缓慢撤去,质量块将下落多少距离? (2)若将支承突然撤去,质量块又将下落多少距离?
k1
k2
k3
m
k4
解:
图 T 2-17
k23 k2 k3 2k
v12 n
sin
nt
2-2 一均质等直杆,长为 l,重量为 w,用两根长 h 的相同的铅垂线悬挂成水平 位置,如图 2-2 所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程, 并求出振动固有周期。
解:给杆一个微转角
a
2 =h
2F=mg
由动量矩定理: I M
I 1 ml 2 12
M Fasin cos mg a mg a2 a
解: 系统动能为:
图 2-7
T
1 2
m1
x
2
1 2
I
x R2
2
1
2
m2 x2
1 1 22
m2r
2
x 2
r
1 2
m1
I R22
3 2
m2
x 2
1 2
me x2
系统动能为:
V
1 2
k2
x
2
1 2
k1
R1 R2
x 2
1 2
k2
k1
R12 R22
x 2
1 2
ke x2
《振动力学》——习题
第二章 单自由度系统的自由振动
2-1 如图 2-1 所示,重物W1 悬挂在刚度为 k 的弹簧上并处于静止平衡位置,另 一重物W2 从高度为 h 处自由下落到W1 上且无弹跳。试求W2 下降的最大距离和两 物体碰撞后的运动规律。
解: 动量守恒: 平衡位置: 故:
故:
x1
x12 x0
2-4 如图 2-4 所示,一质量 m 连接在一刚性杆上,杆的质量忽略不计,试求下 列情况
系统作垂直振动的固有频率: (1)振动过程中杆被约束保持水平位置; (2)杆可以在铅垂平面内微幅转动; (3)比较上述两种情况中哪种的固有频率较高,并说明理由。
x1
k1 l1
k2 m
l2
F1
l1
l2
l2
mg
图 T 2-9
=l/2,l3=l/4,不计钢杆质量。试求系统的无阻尼固有频率n 及阻尼 。
图 2-9 {2.26} 图 T 2-26 所示的系统中,m = 1 kg,k = 144 N / m,c = 48 N•s / m,l1 = l = 0.49
m,l2 = 0.5 l, l3 = 0.25 l,不计刚杆质量,求无阻尼固有频率n 及阻尼 。
根据:
Tmax Vmax , xmax n xmax
n2
k2 m1
k1
R12 R22
I R22
3 2 m2
2-8 如图 2-8 所示的系统中,钢杆质量不计,建立系统的运动微分方程,并求临 界阻尼
系数及阻尼固有频率。
图 2-8
a
ca
b
k b
ml
l
解:
ml l ca a kb b 0 ml2 ca2 kb2 0
平衡位置 x
W2h
1 2
W2 g
v22
, v2
2gh
W2 g
v2
W1
W2 g
v12 , v12
W2 W1 W2
2gh
W1
k x1
,
x1
W1 k
W1
W2
kx12 ,
x12
W1
W2 k
x0
x12
x1
W2 k
n
k
W1 W2
g
kg W1 W2
x
x0
cosnt
x 0 n
sin
nt
x0
cosnt
k123
k1k23 k1 k23
2k 3
k1234
k123k4 k123 k4
1k 2
(1) mg
k1234 x0 , x0
2mg k
(2)
xt
x0
cosnt
,
xm a x
2x0
4mg k
2-7 图 2-7 所示系统,质量为 m2 的均质圆盘在水平面上作无滑动的滚动,鼓轮 绕轴的转动惯量为 I,忽略绳子的弹性、质量及各轴承间的摩擦力。试求此系统 的固有频率。
端弹簧的刚度为 k。并问铰链支座 C 放在何处时使系统的固有频率最高?
图 2-5
图 2-6
2-6 在图 2-6 所示的系统中,四个弹簧均未受力。已知 m=50kg,k1 9800 N m , k2 k3 4900 N m , k4 19600 N m 。试问: (1)若将支撑缓慢撤去,质量块将下落多少距离?
n 6 rad / s
1
c
16 m
2n
c 1 0.25 16m 2n
第三章 单自由度系统的强迫振动
3-1 如图 3-1 所示弹簧质量系统中,两个弹簧的连接处有一 激振力 P(t) P0 sin t 。试求质量块的振幅。
2
2
8h
其中
sin cos 1 2
1 ml 2 mg a2 0
12
4h
p
2 n
3ga2 l2h
T 2π 2π
l 2h 2π l
h
pn
3ga2 a 3g
2-3 一半圆薄壁筒,平均半径为 R, 置于粗糙平面上做微幅摆动,如图 2-3 所示。 试求
其摆动的固有频率。
图 2-3
图 2-4
l2
l1k1
l1
l2k2
l2 k1k2
mg
l2k2
l1
l2 l12k1 l1l2k2 l1 l2 2 k1k2
mg
l12k1 l1 l2
l22k2 2 k1k2
mg
ke
l1 l2 2 k1k2 l12k1 l22k2
n
ke m
2-5 试求图 2-5 所示系统中均质刚性杆 AB 在 A 点的等效质量。已知杆的质量为 m,A
解:
(1)保持水平位置:n
k1 k2 m
(2)微幅转动:
x
l1
l2
x2
x
mg 答案图 T 2-9
F2
l1
l1
l2
mg
故:
x
x1
x
F1 k1
x2 x1l1
l1 l2
l2mg
l1 l2 k1
l1
l1 l2
l1
l1
l2 k2
l1
l2 l2
k1
mg
l2mg
l1 l2 k1
l1
l1