E_切线长定理练习题
切线长定理练习题
切线长定理练习题一、填空1.已知:如图 7- 143,直线 BC切⊙ O于 B点, AB=AC, AD=BD,那么∠ A=____.2.已知:如图 7- 144,直线 DC与⊙ O相切于点 C, AB为⊙ O直径, AD⊥ DC于D,∠ DAC=28°侧∠ CAB=____ .3.已知:直线 AB与圆 O切于 B点,割线 ACD与⊙ O交于 C和D4.已知:如图 7- 145, PA切⊙ O于点 A,割线 PBC交⊙ O于 B和 C两点,∠ P=15∠ ABC=47°,则∠ C= ____.5.已知:如图7-146,三角形ABC的∠C=90°,内切圆O与△ABC的三边分别切于D,E,F三点,∠ DFE=56°,那么∠ B=____.6.已知:如图 7 -147,△ ABC内接于⊙ O,DC切⊙ O于 C点,∠1=∠ 2,则△ ABC为____ 三角形.7.已知:如图 7-148,圆 O为△ ABC外接圆, AB为直径, DC切⊙ O于C点,∠A=36°,那么∠ ACD= .8.一个边长为4cm 的等边三角形ABC 与⊙ O 等高,如图放置,⊙O 与 BC 相切于点 C ,⊙ O 与AC 相交于点 E,则 CE 的长为_________cm.9.如图,⊙ O 的半径为 3,P 是 CB 延长线上一点, PO=5 ,PA 切⊙ O 于 A 点,则 PA= _________.10.如图, AB 是⊙ O 的直径, BD ,CD 分别是过⊙ O 上点 B,C 的切线,且∠ BDC=110 °.连接 AC 则∠ A 的度数是 _________ °.11.如图, AB 是⊙ O 的直径,点 C 在 AB 的延长线上, CD 切⊙ O 于点 D,连接 AD .若∠ A=25 °,则∠ C= _________ 度.(9 题)(10题)(11题)12.如图,两圆圆心相同,大圆的弦AB 与小圆相切, AB=8 ,则图中阴影部分的面积是_________.(结果保留π)13.如图,⊙ I △ABC的内切圆,点D,E分别为边AB,AC上的点,且DE为⊙ I 的切线,若△ABC 的周长为21, BC 边的长为6,则△ ADE 的周长为14 已知:PA、PB 分别切⊙ O 于点 A 和 B,C 为弧 AB 上一点,过 C 与⊙ O 相切的直线分别交 PA、 PB 点 D 和 E,若 PA=2cm,∠ APB=60 °则 (1) △ PDE 的周长 =(2) ∠DOE=.二、选择1.下列说法正确的是()A.相切两圆的连心线经过切点B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦D.相等的圆心角所对的弦相等2.如图, AB 是⊙ O 的弦, AC 是⊙ O 的切线, A 为切点, BC 经过圆心.若∠B=25 °,则∠ C 的大小等于()A. 20° B. 25° C. 40° D. 50°3.如图, AB 是⊙ O 的直径, CD 是⊙ O 的切线,切点为D, CD 与 AB 的延长线交于点C,∠ A=30 °,给出下面 3 个结论:①AD=CD ;② BD=BC ;③ AB=2BC ,其中正确结论的个数是()A.3B.2C.1D.04.如图, AB、AC 是⊙ O 的两条弦,∠ BAC=25 °,过点 C 的切线与OB 的延长线交于点D,则∠ D的度数为()A. 25° B.30° C.35° D.45.如图,△ABC 的边 AC 与⊙ O 相交于 C 、D 两点,且经过圆心O ,边 AB 与⊙ O 相切,切点为 B.已知∠ A=30 °,则∠ C 的大小是()A. 30° B. 45° C . 60° D . 40°6.如图, Rt△ ABC 中,∠ ACB=90 °, AC=4 , BC=6 ,以斜边 AB 上的一点O 为圆心所作的半圆分别与 AC 、BC 相切于点D、E,则 AD 为()A. 2.5 B.1.6 C.1.5 D.1(5 题)(6题)(7题)7.如图,∠ ACB=60 °,半径为 2 的⊙ O 切 BC 于点 C,若将⊙ O 在 CB 上向右滚动,则当滚动到⊙O与 CA 也相切时,圆心O 移动的水平距离为()A. 2πB. 4π C . 2 D . 48.如图,⊙ O 与 Rt△ ABC 的斜边 AB 相切于点D,与直角边AC 相交于点E,且 DE ∥ BC.已知AE=2, AC=3,BC=6,则⊙ O的半径是()A.3B.4C.4D.2A. 1 个; B. 2个; C.4个; D.5个.11.已知如图 7- 150,四边形 ABCD为圆内接四边形, AB是直径, MN切⊙ O于C点∠BCM=38°,那么∠ ABC的度数是()A. 38°; B. 52°; C. 68°; D.42°.12.已知如图 7- 151,PA切⊙ O于点 A,PCB交⊙ O于 C, B两点,且 PCB过点 O,⊥BP交⊙ O于E,则图中与∠ CAP相等的角的个数是()A. 1个; B.2个; C.3个; D.4个.三、计算1.已知:如图 7-152,PT与⊙ O切于 C,AB为直径,∠ BAC=60°, AD为⊙ O 一弦.求∠ADC与∠ PCA的度数.2.已知:如图 7- 155,⊙ O内接四边形 ABCD,MN切⊙ O于C,∠ BCM=38°,AB为⊙ O直径∠ADC的度数.(8题)(10题)9.已知:△ ABC内接于⊙ O,∠ ABC=25°,∠ ACB= 75°,过 A点作⊙ O的切线交 BC的延长线于 P,则∠ APB等于()A.62.5 °; B.55°; C.50°; D.40°.10.已知:如图 7 -149,PA,PB切⊙ O于A,B两点, AC为直径,则图中与∠ PAB相等的角的个数为()3.已知:如图 7-159,PA切圆于 A,BC为圆直径,∠BAD=∠ P,PA=15cm,PB=5cm.求 BD6.已知;如图 7- 166,PA为△ ABC外接圆的切线, A 为切点, DE∥AC, PE=PD.AB=7的长.AD=2cm.求 DE的长.4.已知:如图 7- 160,AC是⊙ O直径,PA⊥AC于 A,PB切⊙ O于B,BE⊥ AC于E.若 AE=6cm,EC=2cm,求 BD的长.5.已知:在图 7- 165中,PA切⊙ O于 A,AD平分∠ BAC,PE平分∠ APB,AD=4cm,PA=6cm.求EP的长.7.已知:如图 7 -172,△ ABC内接于⊙ O, EA切⊙ O于 A,过 B作BD∥ AE交AC延长线于D.若 AC=4cm,CD= 3cm,求 AB的长.8.已知:如图 7-174,PC为⊙ O直径,MN切⊙ O于A,PB⊥MN于 B.若PC=5cm,PA=2cm.求PB的长.9.已知:如图 7-177, AB,AC切⊙ O于B,C,OA交⊙ O于F,E,交 BC于 D.9.已知:如图,△ABC.求作:△ABC的内切圆⊙O.(1)求证: E为△ ABC内心;(2)若∠ BAC=60°, AB=a,求 OB与 OD的长.11.已知:如图,⊙ O 是 Rt△ABC 的内切圆,∠ C=90°.(1)若 AC=12cm,BC=9cm,求⊙ O 的半径 r;(2)若 AC=b,BC=a, AB= 10、如图,正方形ABCD的边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,再过A点作半圆的切线,与半圆相切于 F 点,与 DC相交于 E 点.求:△ADE的面积.求⊙ O 的半径 r.。
3.7 切线长定理(练习)(解析版)
第三章 圆第七节 切线长定理精选练习一、单选题1.(2021·北京九年级专题练习)如图,PA ,PB 为⊙O 的两条切线,点A ,B 是切点,OP 交⊙O 于点C ,交弦AB 于点D .下列结论中错误的是( )A .PA =PBB .AD =BDC .OP ⊥ABD .∠PAB =∠APB【答案】D【分析】利用切线长定理、等腰三角形的性质即可得出答案.【详解】解:由切线长定理可得:∠APO =∠BPO ,PA =PB ,从而AB ⊥OP ,AD =BD .因此A .B .C 都正确.无法得出∠PAB =∠APB ,可知:D 是错误的.综上可知:只有D 是错误的.故选:D .【点睛】本题考查了切线长定理、等腰三角形的性质,关键是利用切线长定理、等腰三角形的性质解答.2.(2021·全国九年级课时练习)如图,AB 是⊙O 的直径,点P 在BA 的延长线上,PA =AO ,PD 与⊙O 相切于点D ,BC ⊥AB 交PD 的延长线于点C ,若⊙O 的半径为1,则BC的长是( )A .1.5B .2CD 【答案】D【分析】连接OD ,根据切线的性质求出∠ODP =90°,根据勾股定理求出PD ,证明BC 是⊙O 的切线,根据切线长定理得出C D =BC ,再根据勾股定理求出BC 即可.【详解】连接OD ,如图所示∵PC 切⊙O 于D ∴∠ODP =90°∵⊙O 的半径为1,PA =AO ,AB 是⊙O 的直径 ∴PO =1+1=2,PB =1+1+1=3,OD =1∴由勾股定理得:PD ==∵BC ⊥AB ,AB 过O ∴BC 切⊙O 于B ∵PC 切⊙O 于D ∴CD =BC设CD =CB =x 在Rt △PBC 中,由勾股定理得:PC 2=PB 2+BC 2即222)3x x +=+ 解得:x 即BC故选:D【点睛】本题考查了切线的性质和判定,及切线长定理,切线的性质定理为:圆的切线垂直于过切点的半径,切线长定理为:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.同时考查了利用勾股定理解直角三角形.3.(2021·湖北武汉市·九年级一模)如图,经过A 、C 两点的⊙O 与△ABC 的边BC 相切,与边AB 交于点D ,若∠AD C =105°,BC =CD =3,则AD 的值为( )A .B .CD 【答案】A【分析】连接OC 、OD ,作OE AB ^于点E .易求出75CBD CDB Ð=Ð=°,30BCD Ð=°.再由切线的性质,即可求出60OCD Ð=°,即三角形OCD 为等边三角形.得出结论60ODC Ð=°,3OC OD CD ===.从而即可求出45ADO Ð=°,即三角形OED 为等腰直角三角形,由此即可求出DE 的长,最后根据垂径定理即可求出AD 的长.【详解】如图,连接OC 、OD ,作OE AB ^于点E .∵BC CD =,∴CBD CDB Ð=Ð,∵105ADC Ð=°,∴75CBD CDB Ð=Ð=°,∴18027530BCD Ð=°-´°=°.由题意可知OC BC ^,即90OCB Ð=°,∴903060OCD OCB BCD Ð=Ð-Ð=°-°=°,∵OD =OC ,∴三角形OCD 为等边三角形.∴60ODC Ð=°,3OC OD CD ===.∴1056045ADO ADC ODC Ð=Ð-Ð=°-°=°,∴三角形OED 为等腰直角三角形,∴3DE ===∴22AD DE ===故选:A .本题考查切线的性质,等腰三角形的性质,三角形外角的性质,等腰直角三角形与等边三角形的判定和性质以及垂径定理,综合性强.正确的连接辅助线是解答本题的关键.4.如图,直线AB,BC,CD分别与⊙O相切于E,F,G,且AB//CD,若OB=3cm,OC=4cm,则四边形EBCG的周长等于( )A.5cm B.10cm C.745cm D.625cm【答案】C【分析】连接OF,利用切线性质和切线长定理可证明BE=BF,CG=CF,∠OBE=∠OBF,∠OCG=∠OCF,OF⊥BC,再根据平行线的性质证得∠BOC=90°,进而由勾股定理求得BC长,根据三角形的面积公式求得OF,进而可求得四边形的周长.【详解】解:连接OF,∵直线AB,BC,CD分别与⊙O相切于E,F,G,∴BE=BF,CG=CF,∠OBE=∠OBF,∠OCG=∠OCF,OF⊥BC,∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠OBF+∠OCF=90°,即∠BOC=90°,∴在Rt△BOC中,OB=3cm,OC=4cm,由勾股定理得:BC==,由1122OB OC BC OF××=××得:OF=341255´=cm,∴OE=OG=OF= 125cm,∴四边形EBCG的周长为BE+BC+CG+EG=2OE+2BC=2×125+2×5=745cm,【点睛】本题考查切线的性质、切线长定理、平行线的性质、勾股定理、三角形的面积公式,熟练掌握切线长定理的运用,证得∠BOC =90°和利用等面积法求出OF 是解答的关键.5.(2021·山西吕梁市·九年级月考)如图,四边形ABCD 内接于⊙O ,AB =BC .AT 是⊙O 的切线,∠BAT =55°,则∠D 等于( )A .110°B .115°C .120°D .125°【答案】A【分析】连接AC ,OA ,OB ,先结合切线的性质以及圆的性质求得ACB BAT Ð=Ð,再结合等腰三角形的性质以及圆的内接四边形的性质求得2D ACB Ð=Ð即可.【详解】如图所示,连接AC ,OA ,OB ,则()11802AOB OBA OAB =°-ÐÐÐ=,∵2AOB ACB Ð=Ð,∴90ACB OAB =°-ÐÐ,∴90ACB OAB Ð=°-Ð,∵AT 是⊙O 的切线,∴90BAT OAB Ð=°-Ð,∴55ACB BAT Ð=Ð=°,∵AB BC =,∴1802ABC ACB Ð=°-Ð,根据圆的内接四边形可得:180D ABC Ð=°-Ð,∴2110D ACB Ð=Ð=°,故选:A .【点睛】本题考查圆的综合问题,理解圆的切线的性质以及内接四边形的性质是解题关键.6.(2021·浙江九年级专题练习)如图,⊙O 的弦AB =8,M 是弦AB 上的动点,若OM 的最小值是3,则⊙O 的半径是( )A .4B .5C .6D .7【答案】B【分析】过O 点作OH ⊥AB 于H ,连接OA ,如图,根据垂径定理得到AH =BH =4,利用垂线段最短得到OH =3,然后利用勾股定理计算出OA 即可.【详解】解:过O 点作OH ⊥AB 于H ,连接OA ,如图,∵OH ⊥AB ,∴AH =BH =12AB =12×8=4,∵OM 的最小值是3,∴OH =3,在Rt △OAH 中,OA =5,即⊙O 的半径是5.故选:B .【点睛】本题考查了垂径定理:直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.7.(2020·聊城市茌平区实验中学九年级月考)如图,P 为O 外一点,PA 、PB 分别切O 于点A 、B ,CD 切O 于点E 且分别交PA 、PB 于点C ,D ,若PA =4,则△PCD 的周长为( )A .5B .7C .8D .10【答案】C【分析】根据切线长定理求解即可【详解】解:∵PA 、PB 分别切O 于点A 、B ,CD 切O 于点E ,PA=4,∴PA=PB=4,AC=CE ,BD=DE ,∴△PCD 的周长为PC+CE+DE+PD=PC+AC+BD+PD=PA+PB=4+4=8,故选:C .【点睛】本题考查切线长定理,熟练掌握切线长定理及其应用是解答的关键.8.(2021·北京九年级专题练习)如图,ABC D 的内切圆O e 与A B ,BC ,CA 分别相切于点D ,E ,F ,且2AD =,ABC D 的周长为14,则BC 的长为( )A .3B .4C .5D .6【答案】C 【分析】根据切线长定理得到AF =AD =2,BD =BE ,CE =CF ,由△ABC 的周长为14,可求BC 的长.【详解】解:O Qe 与A B ,BC ,CA 分别相切于点D ,E ,F2AF AD \==,BD BE =,CE CF =,ABC D Q 的周长为14,14AD AF BE BD CE CF \+++++=2()10BE CE \+=5BC \=故选:C .【点睛】本题考查了三角形的内切圆与内心,切线长定理,熟练掌握切线长定理是解题的关键.二、填空题9.如图,PA 、PB 、CD 是⊙O 的切线,A 、B 、E 是切点,CD 分别交PA 、PB 于C 、D 两点,若∠COD =70°,则∠AP B =_______.【答案】40°【分析】先利用切线长定理,得出∠BDO =∠CDO ,∠ACO =∠DCO ,再利用三角形内角和求出∠CDO +∠DCO 后得到∠BDC+∠A CD 的值,最后利用三角形外角的性质得到关于∠P 的方程,解方程即可得出答案.【详解】解:∵PA 、PB 、CD 是⊙O 的切线,∴∠BDO =∠CDO ,∠ACO =∠DCO ,∵∠COD =70°,∴∠CDO +∠DCO =180°-70°=110°,∴∠BDC +∠ACD =2(∠CDO +∠DCO )=2 ×110°=220°,∵∠BDC =∠DCP +∠P ,∠ACD =∠CDP +∠P ,∴∠DCP +∠P +∠CDP +∠P =220°,即180°+∠P =220°,∴∠P =40°,即∠APB =40°,故答案为:40°.【点睛】本题综合考查了圆的切线长定理、三角形的内角和定理、三角形外角的性质等,解决本题的关键是要牢记各定理与性质的内容,能灵活运用它们进行不同的角之间的转化,考查了学生推理分析的能力.10.(2021·浙江九年级其他模拟)如图,已知AD 是BAC Ð的平分线,以线段AB 为直径作圆,交BAC Ð和角平分线于C ,D 两点.过D 向AC 作垂线DE 垂足为点E .若24DE CE ==,则直径AB =_______.【答案】10【分析】连接CD 、OD 、OC 、BD ,运用勾股定理求得CD 的长,再证明DE 是圆O 的切线,运用全等三角形的判定与性质以及余角的性质得出∠CDE =∠BAD ,易得BD =CD ,然后再根据正切函数求得AD ,最后根据勾股定理解答即可.【详解】解:如图:连接CD 、OD 、OC 、BD∵AE ⊥DE , 24DE CE ==∴CD =∵OA =OD∴∠OAD =∠ODA∴∠BOD =∠OAD +∠ODA = 2∠OAD∵∠ODA =∠OAD∴∠EAD =∠ODA∴OD //AE∴OD ⊥DE ,即DE 是圆O 的切线∴∠CDE +∠ODC =90°∵AB是直径∴∠BAD+∠B=90°在△BOD和△DOC中OC=OB,DO=DO,BD=CD ∴△BOD≌△DOC∴∠ODC=∠OBD∴∠CDE=∠BAD∵∠BAD=∠DAC∴∠COD=∠BOD∴BD=CD=∵tan∠BAD=BDAD= tan∠CDE=12CEDE=,∴AD=∴AB10=.故填10.【点睛】本题主要考查了三角形的性质、圆的切线的判定与性质、勾股定理、三角函数等知识点,灵活应用相关知识成为解答本题的关键.11.(2020·湖北孝感市·九年级月考)如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=108°,则∠B+∠D=_____.【答案】216°【分析】连接AB,根据切线得出PA=PB,求出∠PBA=∠PAB=36°,根据圆内接四边形的对角互补得出∠D+∠CBA=180°,再求出答案即可.【详解】解:连接AB,∵PA、PB是⊙O的切线,A、B为切点,∴PA=PB,∴∠PAB=∠PBA,∵∠APB=108°,∴∠PBA=∠PAB=12×(180°﹣∠APB)=36°,∵A、D、C、B四点共圆,∴∠D+∠CBA=180°,∴∠PBC+∠D=∠PBA+∠CBA+∠D=36°+180°=216°,故答案为:216°.【点睛】本题考查了切线长定理,圆周角定理,等腰三角形的性质,三角形内角和定理,圆内接四边形等知识点,能综合运用知识点进行推理和计算是解此题的关键.12.(2021·河北石家庄市·石家庄外国语学校九年级月考)已知△ABC中,⊙I为△ABC的内切圆,切点为H,若B C=6,AC=8,AB=10,则点A到圆上的最近距离等于_____.-【答案】2【分析】连接IA,IA与⊙I半径的差即为点A到圆上的最近距离,只需求出IA和⊙I半径即可得答案.【详解】解:连接IA,设AC、BC分别切⊙I于E、D,连接IE、ID,如图:∵BC=6,AC=8,AB=10,∴BC2+AC2=AB2∴∠C=90°∵⊙I为△ABC的内切圆,∴∠IEC=∠IDC=90°,IE=ID,∴四边形IDCE是正方形,设它的边长是x,则IE=EC=CD=ID=IH=x,∴AE=8﹣x,BD=6﹣x,由切线长定理可得:AH=8﹣x,BH=6﹣x,而AH+BH=10,∴8﹣x+6﹣x=10,解得x=2,∴AH=6,IH=2,∴IA,∴点A到圆上的最近距离为﹣2,故答案为:﹣2.【点睛】本题考查勾股定理、切线长定理、三角形的内切圆等知识,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题13.(2021·浙江温州市·九年级一模)如图,点C ,D 在以AB 为直径的半圆O 上, AD BC=,切线DE 交AC 的延长线于点E ,连接OC .(1)求证:∠ACO =∠ECD .(2)若∠CDE =45°,DE =4,求直径AB 的长.【答案】(1)证明见详解;(2)【分析】(1)由 AD BC=,可得∠A =∠B ,内接四边形可得出∠ECD=∠B ,进而得出∠ACO =∠ECD ;(2))连接OD ,由切线的性质可得出∠ODE =90°,进而得出∠CDO =∠DCO=45°,再根据已知条件计算出∠E=∠ECD ,得到CD=DE =4,再利用勾股定理求出半径,进而得出答案;【详解】(1)证明:∵ AD BC=,∴∠A =∠B ;∵ABDC 是内接四边形∴∠ECD=∠B∴∠ECD=∠A∵AO =CO ;∴∠ACO =∠A∴∠ACO =∠ECD(2)连接OD∵DE 是圆的切线∴∠ODE =90°,∵∠CDE =45°,OC=OD∴∠CDO =∠DCO =45°,∴∠COD =90°,∵ AD BC=,∴ AC DC=,∴∠AOC =∠DOB=45°,∴AO =OC ,∴∠ACO =∠A=1804567.52°-°=° ;∵∠DCO =45°,∴∠ECD =180°-45°-67.5°=67.5°,∵∠E=180°-∠CDE -∠ECD =180°-45°-67.5°=67.5°,∴∠E=∠ECD∴CD=DE =4,∵∠COD =90°,∴222CD OC OD =+∴2216OC OD +=,即28OC =∴OC= 故⊙O 的半径为∴直径AB 的长,【点睛】本题属于圆综合题,考查了圆周角定理,内接四边形,切线性质定理,等腰三角形的判定与性质,勾股定理等知识,熟练掌握性质及定理是解决本题的关键.14.(2021·江苏无锡市·九年级期中)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,与BA 的延长线交于点D ,DE ⊥P O 交PO 延长线于点E ,连接PB ,∠EDB =∠EPB .(1)求证:PB 是⊙O 的切线.(2)若PB =3,tan ∠PDB =34,求⊙O 的半径.【答案】(1)见解析;(2)32【分析】(1)根据三角形的内角和定理可证E PBO Ð=Ð,然后根据垂直定义可得90E Ð=°,从而得出半径CB PB ^,根据切线的判定定理即可证出结论;(2)连接OC ,根据题意求出45BD PD ==,,再结合切线长定理得到3PC =,2CD =,从而设O e 的半径是r ,利用勾股定理求解即可.【详解】(1),EDB EPB DOE POB Ð=ÐÐ=ÐQ ,E PBO \Ð=Ð,DE PO ^Q ,90E \Ð=°,90PBO \Ð=°,\半径CB PB ^,PB \是O e 的切线.(2)如图,连接OC ,33tan 904PB PDB PBD =Ð=Ð=°Q ,,tan 45BD PB PDB PD \=Ð===g ,.PB Q 和PC 是O e 的切线,3PC PB \==,2CD PD PC \=-=,设O e 的半径是r ,则4OD DB OB r =-=-,PD Q 切O e 于点C ,OC PD \^,222CD OC OD \+=,()22224r r \+=-,32r \=.【点睛】本题考查圆的综合问题,理解切线的判定与性质定理以及正切函数的定义是解题关键.15.(2021·天津九年级学业考试)已知AB 为O e 的直径,点C ,D 为O e 上的两点,AD 的延长线于BC 的延长线交于点P ,连接CD ,30CAB Ð=°.(Ⅰ)如图①,若 2=CBCD ,4AB =,求AD 的长;(Ⅱ)如图②,过点C 作O e 的切线交AP 于点M ,若6CD AD ==,求CM 的长.【答案】(1)AD =;(2)CM = .【分析】(1)根据弧、圆周角之间的关系可求得∠BAD =45°,连接BD ,可得△ABD 为等腰直角三角形,求解即可;(2)根据弦、圆心角之间关系、等边对等角以及三角形外角的性质可求得∠PDM =60°,OC //AP ,再根据切线的性质定理易得△CDM 为直角三角形,解直角三角形即可.【详解】解:(1)∵ 2=CBCD ,30CAB Ð=°,∴1152CAD CAB Ð=Ð=°,∴∠BAD =45°,连接BD ,∵AB 为直径,∴∠BDA =90°,∴cos45AD AB =×°=(2)连接OD 、OC ,∵30CAB Ð=°,∴∠COB =60°,∠AOC =120°,∵6CD AD ==,∴∠AOD =∠COD =60°,∴∠ACD =∠CAD =30°,∠BAP =∠CAD +∠CAB =60°=∠COB ,∴OC //AP ,∠CDP =∠ACD +∠CAD =60°,∵CM 为O e 的切线,∴∠OCM =90°,∴∠AMC =180°-∠OCM =90°,在Rt △CDM 中,sin 60CM CD =×°=.【点睛】本题考查切线的性质定理,等腰三角形等边对等角,弧、圆心角、圆周角、弦之间的关系,解直角三角形.正确作出辅助线是解题关键.。
【单点训练】切线长定理
【单点训练】切线长定理【单点训练】切线长定理一、选择题(共15小题)1.(2011•台湾)如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()2.如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,0C=8cm,则BE+CG的长等于()3.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于().C D4.以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点F,交AB边于点E,若△CDE的周长为12,则直角梯形ABCE周长为()5.(2001•嘉兴)已知⊙O的半径是4,P是⊙O外的一点,且PO=8,从点P引⊙O的两条切线,切点分别是A,B,C D..C.7.(2000•金华)如图,圆外切等腰梯形ABCD的中位线EF=15cm,那么等腰梯形ABCD的周长等于()8.(2007•大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为()9.(2004•云南)如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为()10.如图,PA、PB是⊙O的两条切线,A、B为切点,连接OP交AB于点C,连接OA、OB,则图中等腰三角形、直角三角形的个数分别为()11.如图所示,PA,PB是⊙O的切线,且∠APB=40°,下列说法不正确的是()12.如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是()13.(2008•凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P 的度数为()14.(2005•杭州)如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为()15.如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积()二、填空题(共15小题)(除非特别说明,请填准确值)16.PA、PB是⊙O的切线,切点是A、B,∠APB=50°,过A作⊙O直径AC,连接CB,则∠PBC=_________.17.已知⊙O与△ABC的三边AB、BC、AC分别相切于点D、E、F,如果BC边的长为10cm,AD的长为4cm,那么△ABC的周长为_________cm.18.一位小朋友在不打滑的平面轨道上滚动一个半径为5cm的圆环,当滚到与坡面BC开始相切时停止.其AB=40cm,BC与水平面的夹角为60°.其圆心所经过的路线长是_________cm(结果保留根号).19.如图,PA、PB、CD分别切⊙O于A、B、E,CD交PA、PB于C、D两点,若∠P=68°,则∠PAE+∠PBE的度数为_________.20.如图:PA、PB切⊙O于A、B,过点C的切线交PA、PB于D、E,PA=10cm,则△PDE的周长为_________.21.如图,PA、PB是⊙O的切线,A、B是切点,已知∠P=60°,OA=3,那么AB的长为_________.22.如图,在Rt△ABC中,∠C=90°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC分相切于点D、E、F,若⊙O 的半径r=2,则Rt△ABC的周长为_________.23.圆外切四边形ABCD中,AB=a,BC=b,CD=c,则AD=_________.24.(1999•辽宁)如图,PA、PB分别切⊙O于A、B.PA=5,在劣弧上取点C,过C作⊙O的切线,分别交PA,PB于D,E,则△PDE的周长等于_________.25.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E,若AB=CD=2,则CE=_________.26.(1999•昆明)已知:如图,圆外切等腰梯形的中位线长为12cm,则梯形的周长=_________cm.27.半径分别是3cm和2cm的两圆的圆心距为13cm,则一条内公切线的长度是_________.28.如图,PA、PB分别切⊙O于A、B,∠APB=50°,则∠AOP=_________度.29.(2009•庆阳)如图,两个等圆⊙O与⊙O′外切,过点O作⊙O′的两条切线OA、OB,A、B是切点,则∠AOB= _________度.30.如图:PA、PB切⊙O于A、B,过点C的切线交PA、PB于D、E,PA=8cm,则△PDE的周长为_________ cm.【单点训练】切线长定理参考答案与试题解析一、选择题(共15小题)1.(2011•台湾)如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()2.如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,0C=8cm,则BE+CG的长等于()OBC=∠OCB==103.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于().C D=CN==4.以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点F,交AB边于点E,若△CDE的周长为12,则直角梯形ABCE周长为()5.(2001•嘉兴)已知⊙O的半径是4,P是⊙O外的一点,且PO=8,从点P引⊙O的两条切线,切点分别是A,B,C D.AP==4.C.,AD=AF+DF=2+x=,即等腰梯形的腰长为7.(2000•金华)如图,圆外切等腰梯形ABCD的中位线EF=15cm,那么等腰梯形ABCD的周长等于()8.(2007•大连)如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为()9.(2004•云南)如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为()10.如图,PA、PB是⊙O的两条切线,A、B为切点,连接OP交AB于点C,连接OA、OB,则图中等腰三角形、直角三角形的个数分别为()11.如图所示,PA,PB是⊙O的切线,且∠APB=40°,下列说法不正确的是()12.如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是()13.(2008•凉山州)如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P 的度数为()14.(2005•杭州)如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为()15.如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积()二、填空题(共15小题)(除非特别说明,请填准确值)16.PA、PB是⊙O的切线,切点是A、B,∠APB=50°,过A作⊙O直径AC,连接CB,则∠PBC=155°.OBC=∠17.已知⊙O与△ABC的三边AB、BC、AC分别相切于点D、E、F,如果BC边的长为10cm,AD的长为4cm,那么△ABC的周长为28cmcm.18.一位小朋友在不打滑的平面轨道上滚动一个半径为5cm的圆环,当滚到与坡面BC开始相切时停止.其AB=40cm,BC与水平面的夹角为60°.其圆心所经过的路线长是40﹣cm(结果保留根号).,19.如图,PA、PB、CD分别切⊙O于A、B、E,CD交PA、PB于C、D两点,若∠P=68°,则∠PAE+∠PBE的度数为56°.AEB=20.如图:PA、PB切⊙O于A、B,过点C的切线交PA、PB于D、E,PA=10cm,则△PDE的周长为20cm.21.如图,PA、PB是⊙O的切线,A、B是切点,已知∠P=60°,OA=3,那么AB的长为3.AB×,AB=2AC=322.如图,在Rt△ABC中,∠C=90°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC分相切于点D、E、F,若⊙O 的半径r=2,则Rt△ABC的周长为30.23.圆外切四边形ABCD中,AB=a,BC=b,CD=c,则AD=a+b﹣c.24.(1999•辽宁)如图,PA、PB分别切⊙O于A、B.PA=5,在劣弧上取点C,过C作⊙O的切线,分别交PA,PB于D,E,则△PDE的周长等于10.25.如图,AB是⊙O的直径,C是AB延长线上的一点,CD是⊙O的切线,D为切点,过点B作⊙O的切线交CD于点E,若AB=CD=2,则CE=.,=,=CE=故答案为26.(1999•昆明)已知:如图,圆外切等腰梯形的中位线长为12cm,则梯形的周长=48cm.27.半径分别是3cm和2cm的两圆的圆心距为13cm,则一条内公切线的长度是12cm.==12cm28.如图,PA、PB分别切⊙O于A、B,∠APB=50°,则∠AOP=65度.APO=29.(2009•庆阳)如图,两个等圆⊙O与⊙O′外切,过点O作⊙O′的两条切线OA、OB,A、B是切点,则∠AOB= 60度.30.如图:PA、PB切⊙O于A、B,过点C的切线交PA、PB于D、E,PA=8cm,则△PDE的周长为16cm.。
切线长定理及弦切角
切线长定理及弦切角练习题7- 143,直线 BC 切O O 于 B 点,AB=AC , AD=BD ,那么7 — 144,直线DC 与。
O 相切于点C , AB 为。
O 直径, AD 丄 DC 于 D ,/ DAC=28。
侧/ CAB= ____3 •已知:直线 AB 与圆0切于B 点,割线ACD 与。
O 交于C 和D两点,BD =160° ? BC = 60" ?则 ZA=_4. 已知:如图7— 145,PA 切。
O 于点A ,割线PBC 交。
O 于B 和C 两 点,/ P=15。
,/ ABC=47。
,则/ C= ______ .(一)填空1 •已知:如图 2•已知:如图5. 已知:如图7- 146,三角形ABC的/ C=90 °,内切圆0与厶ABC的三边分别切于D, E, F三点,/ DFE=56 °,那么/ B=6. 已知:如图7 —147,△ ABC内接于。
0,DC切。
0于C点,/仁/ 2,则厶ABC为_____ 三角形.7. 已知:如图7 —148,圆0 ABC外接圆,AB为直径,DC切。
0于 C 点,/ A=36。
,那么/ ACD=图7-148(二)选择8 .已知:△ ABC 内接于O O,/ ABC=25。
,/ ACB= 75。
,过A 点作OO的切线交BC的延长线于P,则/ APB等于A. 62.5 ° ;B. 55 ° ;C . 50°;D. 409. 已知:如图7 —149 , PA, PB切。
O于A , B两点,AC为直径,则图中与/ PAB相等的角的个数为的TT49A. 1 个;B. 2 个;C . 4 个;D. 5 个.10. 已知如图7 —150,四边形ABCD为圆内接四边形,AB是直径,MN 切。
O于C点,/ BCM=38。
,那么/ ABC的度数是S 7-ISOA. 38 ° ;B. 52 ° ; C . 68°; D. 4211. 已知如图7- 151 ,PA切。
切线长定理-三角形的内切圆(巩固篇)-2022-2023学年九年级数学下册基础知识专项讲练(浙教版)
专题2.9 切线长定理 三角形的内切圆(巩固篇)(专项练习)一、单选题1.直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是( ) A .12B .14C .16D .182.如图,C 与AOB ∠的两边分别相切,其中OA 边与⊙C 相切于点P .若90AOB ∠=︒,4OP =,则OC 的长为( )A .8B .2C .42D .23.如图,在ABC ∆中,52AB AC BC +=,AD BC ⊥于D ,⊙O 为ABC ∆的内切圆,设⊙O 的半径为R ,AD 的长为h ,则Rh的值为( )A .12B .27C .13D .344.如图,O 是正方形ABCD 的对角线BD 上一点,⊙O 与边AB ,BC 都相切,点E ,F 分别在AD ,DC 上,现将⊙DEF 沿着EF 对折,折痕EF 与⊙O 相切,此时点D 恰好落在圆心O 处.若DE =2,则正方形ABCD 的边长是( )A .3B .4C .22D .225.如图,点E 是ABC 的内心,AE 的延长线和ABC 的外接圆相交于点D ,与BC 相交于点G ,则下列结论:⊙BAD CAD ∠=∠;⊙若60BAC ∠=︒,则120∠=︒BEC ;⊙若点G 为BC 的中点,则90BGD ∠=︒;⊙BD DE =.其中一定正确的个数是( )A .1B .2C .3D .46.如图,已知△ABC 内接于⊙O ,∠ABC =45°,∠C =65°,点D 是BC 的中点,则∠OAD 的大小为( )A .5°B .10°C .15°D .20°7.如图,点A ,B ,C ,D 都在半径为2的O 上,若直径,30AD BC D ⊥∠=︒,则弦BC 的长为( )A .4B .22C 3D .38.如图,已知AT 切O 于点T ,点B 在O 上,且60BOT ∠=︒,连结AB 并延长交O 于点C ,O 的半径为2,设AT m =,⊙当m 23BOC ∆是等腰直角三角形; ⊙若2m =,则62AC ⊙当23m =AB 与O 相切.以上列选项正确的有( ) A .⊙B .⊙C .⊙⊙D .⊙⊙9.如图,经过A 、C 两点的⊙O 与△ABC 的边BC 相切,与边AB 交于点D ,若⊙ADC =105°,BC =CD =3,则AD 的值为( )A .2B .2C 52D 7210.如图,在⊙O 中,点C 在优弧AB 上,将弧BC 沿BC 折叠后刚好经过AB 的中点D .若⊙O 5AB =4,则BC 的长是( )A .3B .2C .2D .3二、填空题11.如图,P A ,PB 是O 的切线,A ,B 为切点.若60APB ∠=︒,则AOP ∠的大小为______.12.如图,⊙O 是△ABC 的内切圆,与AB ,BC ,CA 的切点分别为D ,E ,F ,若⊙BDE +⊙CFE =110°,则⊙A 的度数是________︒.13.如图,矩形ABCO 的顶点A ,C 分别在x 轴、y 轴上,点B 的坐标为()4,3,⊙M 是AOC △的内切圆,点N ,点P 分别是⊙M ,x 轴上的动点,则BP PN +的最小值是______.14.如图,圆O 是四边形ABCD 的内切圆,若⊙BOC =118°,则⊙AOD =__.15.如图,在平面直角坐标系中,点()0,6A ,点()8,0B ,I 是OAB 的内心,则(1)AB=______;(2)点I关于x轴对称的点的坐标是______.16.如图,点I是⊙ABC的内心,连接AI并延长交⊙ABC的外接圆于点D,若⊙ACB=70°,则⊙DBI=_____°.17.如图,已知O的半径为m,点C为直径AB延长线上一点,BC m=.过点C任作一直线l,若l上总存在点P,使过P所作的O的两切线互相垂直,则ACP∠的最大值等于__.18.如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则AMN周长的最小值为________.三、解答题19.已知ABC 的三边长分别为,,BC a AC b AB c ===,⊙为ABC 的内心,且⊙在ABC的边 BC AC AB 、、上的射影分别为D E F 、、. (1)若5,4,3a b c ===,求ABC 内切圆半径r ; (2)求证:2b c aAE AF +-==.20.已知关于x 的方程x 2﹣(k +1)x +14k 2+1=0的两根是一个直角三角形两直角边的长.(1)k 取何值时,方程有两个实数根;(2)若直角三角形的内切圆半径为12,求k 值.21.如图,四边形ABCD 内接于O ,AB 是O 的直径,过点D 作O 的切线交BC 的延长线于点E ,交BA 的延长线于点F ,且DE BE ⊥,过点A 作O 的切线交EF 于点G ,连接AC .(1) 求证:AD 平分GAC ∠;(2) 若AD =5,AB =9,求线段DE 的长.22.如图,在Rt △ABC 中,⊙ABC =90°,以AB 的中点O 为圆心,AB 为直径的圆交AC 于D ,E 是BC 的中点,DE 交BA 的延长线于F .(1) 求证:FD 是圆O 的切线; (2) 若BC =4,FB =8,求AB 的长.23.在O 中,弦CD 与直径AB 相交于点P ,16ABC ∠=︒. (1)如图⊙,若52BAD =︒∠,求APC ∠和CDB ∠的大小;(2)如图⊙,若CD AB ⊥,过点D 作O 的切线,与AB 的延长线相交于点E ,求E ∠的大小.24.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的“好角”.(1)如图1,⊙E 是ABC 中⊙A 的“好角”,若A α∠=,则E ∠=______;(用含α的代数式表示)(2)如图2,四边形ABCD 内接于O ,点D 是优弧ACB 的中点,直径BF ⊥弦AC ,BF 、CD 的延长线于点G ,延长BC 到点E .求证:⊙BGC 是ABC 中⊙BAC 的“好角”.(3)如图3,ABC 内接于O ,⊙BGC 是ABC 中⊙A 的“好角”,BG 过圆心O 交O 于点F ,O 的直径为8,45A ∠=︒,求FG .参考答案1.B 【分析】⊙I 切AB 于E ,切BC 于F ,切AC 于D ,连接IE ,IF ,ID ,得出正方形CDIF 推出CD=CF =1,根据切线长定理得出AD=AE ,BE=BF ,CF=CD ,求出AD+BF=AE+BE=AB =6,即可求出答案.解:如图,⊙I 切AB 于E ,切BC 于F ,切AC 于D ,连接IE ,IF ,ID ,则⊙CDI =⊙C =⊙CFI =90°,ID=IF =1,⊙四边形CDIF是正方形,⊙CD=CF=1,由切线长定理得:AD=AE,BE=BF,CF=CD,⊙直角三角形的外接圆半径为3,内切圆半径为1,⊙AB=6=AE+BE=BF+AD,即⊙ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,故选:B.【点拨】本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.2.C【分析】如图所示,连接CP,由切线的性质和切线长定理得到⊙CPO=90°,⊙COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.解:如图所示,连接CP,⊙OA,OB都是圆C的切线,⊙AOB=90°,P为切点,⊙⊙CPO=90°,⊙COP=45°,⊙⊙PCO=⊙COP=45°,⊙CP=OP=4,⊙2242=+=,OC CP OP故选C.【点拨】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.3.B【分析】O 分别与ABC ∆的三边切于P ,Q ,T ,连接OA OB OC OP OQ OT ,,,,,,利用ABC OAB OAC OBC S S S S ∆∆∆∆=++求出7142R h =,进一步得出结论. 解:如图,令O 分别与ABC ∆的三边切于P ,Q ,T ,连接OA OB OC OP OQ OT ,,,,,⊙,,OP AB OQ AC OT BC ⊥⊥⊥⊙ABC OAB OAC OBC S S S S ∆∆∆∆=++=111222AB OP AC OQ BC OT ⋅+⋅⋅+⋅⋅ =111222AB R AC R BC R ⋅+⋅⋅+⋅⋅ 1()2R AB AC BC =++ 又⊙52AB AC BC +=⊙17()2524ABC S R BC BC R BC ∆=+=⋅ 又⊙,AD BC AD h ⊥=⊙1122ABC S BC AD h BC ∆=⋅⋅=⋅⋅ ⊙7142R BC h BC ⋅=⋅⋅ ⊙7142R h = ⊙122774Rh == 故选:B .【点拨】此题主要考查了三角形的内切圆与内心,解答的关键是,充分利用已知条件将问题转化为求几个三角形面积的和.4.C【分析】延长FO 交AB 于点G ,根据折叠对称可以知道OF ⊙CD ,所以OG ⊙AB ,即点G 是切点,OD 交EF 于点H ,点H 是切点.结合图形可知OG =OH =HD =EH ,等于⊙O 的半径,先求出半径,然后求出正方形的边长.解:如图:延长FO 交AB 于点G ,则点G 是切点,OD 交EF 于点H ,则点H 是切点,⊙ABCD 是正方形,点O 在对角线BD 上,⊙DF =DE ,OF ⊙DC ,⊙GF ⊙DC ,⊙OG ⊙AB ,⊙OG =OH =HD =HE =AE ,且都等于圆的半径.在等腰直角三角形DEH 中,DE =2,⊙EH =DH 2AE .⊙AD =AE +DE 2+2.故选C .【点拨】本题考查的是切线的性质,利用切线的性质,结合正方形的特点求出正方形的边长.5.D【分析】根据点E 是ABC 的内心,可得BAD CAD ∠=∠,故⊙正确;连接BE ,CE ,可得⊙ABC +⊙ACB =2(⊙CBE +⊙BCE ),从而得到⊙CBE +⊙BCE =60°,进而得到⊙BEC =120°,故⊙正确; BAD CAD ∠=∠,得出BD CD =,再由点G 为BC 的中点,则90BGD ∠=︒成立,故⊙正确;根据点E 是ABC 的内心和三角形的外角的性质,可得()12BED BAC ABC ∠=∠+∠,再由圆周角定理可得()12DBE BAC ABC ∠=∠+∠,从而得到⊙DBE =⊙BED ,故⊙正确;即可求解.解:⊙点E 是ABC 的内心,⊙BAD CAD ∠=∠,故⊙正确;如图,连接BE ,CE ,⊙点E 是ABC 的内心,⊙⊙ABC =2⊙CBE ,⊙ACB =2⊙BCE ,⊙⊙ABC +⊙ACB =2(⊙CBE +⊙BCE ),⊙⊙BAC =60°,⊙⊙ABC +⊙ACB =120°,⊙⊙CBE +⊙BCE =60°,⊙⊙BEC =120°,故⊙正确;⊙点E 是ABC 的内心,⊙BAD CAD ∠=∠,⊙BD CD =,⊙点G 为BC 的中点,⊙线段AD 经过圆心O ,⊙90BGD ∠=︒成立,故⊙正确;⊙点E 是ABC 的内心,⊙11,22BAD CAD BAC ABE CBE ABC ∠=∠=∠∠=∠=∠, ⊙⊙BED =⊙BAD +⊙ABE ,⊙()12BED BAC ABC ∠=∠+∠, ⊙⊙CBD =⊙CAD ,⊙⊙DBE =⊙CBE +⊙CBD =⊙CBE +⊙CAD ,⊙()12DBE BAC ABC ∠=∠+∠, ⊙⊙DBE =⊙BED ,⊙BD DE =,故⊙正确;⊙正确的有4个.故选:D【点拨】本题主要考查了三角形的内心问题,圆周角定理,三角形的内角和等知识,熟练掌握三角形的内心问题,圆周角定理,三角形的内角和等知识是解题的关键.6.B【分析】连接OB ,根据圆周角定理求出⊙AOB ,得到⊙OAB 的度数,根据三角形内角和定理求出⊙BAC ,根据圆周角定理求出⊙BAD ,结合图形计算,得到答案.解:连接OB ,由圆周角定理得,⊙AOB=2⊙C=130°,⊙OA=OB ,⊙⊙OAB=12×(180°-130°)=25°,⊙⊙ABC=45°,⊙C=65°,⊙⊙BAC=180°-45°-65°=70°,⊙点D 是BC 的中点,⊙⊙BAD=⊙CAD=35°,⊙⊙OAD=⊙BAD -⊙OAB=10°,故选:B .【点拨】本题考查的是三角形的外接圆与外心,掌握圆周角定理、三角形内角和定理是解题的关键.7.D【分析】AD BC ⊥交BC 于点E ,连接OC ,由题意得==30DCO D ∠∠︒,根据三角形内角和定理得120COD ∠=︒,即60COE ∠=︒,可得30OCE ∠=︒,根据直角三角形的性质得112EO OC ==,在Rt CEO 中,根据勾股定理得3CE 解:如图所示,令AD BC ⊥交BC 于点E ,连接OC ,⊙=2OC OD =,=30D ∠︒,⊙==30DCO D ∠∠︒,⊙180=1803030=120COD DCO D ∠=︒-∠-∠︒-︒-︒︒,即180=180120=60COE COD ∠=︒-∠︒-︒︒,⊙180=180609030OCE COE OEC ∠=︒-∠-∠︒-︒-︒=︒,⊙112EO OC ==, 在Rt CEO 中,根据勾股定理得,2222213CE CO OE -=-=⊙直径AD BC ⊥,⊙BE CE =,即223BC CE ==故选:D .【点拨】本题考查了直角三角形的性质,勾股定理,垂径定理,解题的关键是掌握这些知识点.8.C【分析】根据题目所给条件,结合圆的性质,证明90∠=︒ABO 即可判断⊙⊙,根据等腰直角三角形的性质并结合圆的性质,应用勾股定理即可判断⊙解:如图,连接TB 、OA ,TB 、OA 相较于点G当23AT m ==2333tan 2AT AOT OT ∠===⊙30AOT ∠=︒⊙OA 垂直平分TB⊙30AOT AOB OAT OAB ∠=∠=︒∠=∠,又⊙AT 与O 相切⊙90ATO ∠=︒⊙60BOT ∠=︒⊙30ATB ∠=︒⊙60OAT OAB ∠=∠=︒⊙90AOB OAB ∠+∠=︒⊙90∠=︒ABO⊙AB 与O 相切则⊙错误;⊙正确;当2AT m ==时,OT AT =⊙AB 与O 相切45AOT OAT ∠=∠=︒∴60BOT ∠=︒∵604515AOB BOT AOT ∠=∠-∠=︒-︒=︒∴30ATB AT BT ∠=︒=∵,()1180752BAT ATB ∠=︒-∠=︒∴ 754530OAB BAT TAO ∠=∠-∠=︒-︒=︒∴153045OBC AOB OAB ∠=∠+∠=︒+︒=︒∴22222222BC OC OB =+=+∴作OE BC ⊥,则122OE CE BE BC ====22222222OA AT OT ++=∵()22222226AE OA OE --∴62AC AE CE =+=∴故⊙正确;故选:C【点拨】本题主要考查圆的性质,等边三角形的性质,以及勾股定理,掌握以上知识,并正确做出辅助线是解题的关键.9.A【分析】连接OC 、OD ,作OE AB ⊥于点E .易求出75CBD CDB ∠=∠=︒,30BCD ∠=︒.再由切线的性质,即可求出60OCD ∠=︒,即三角形OCD 为等边三角形.得出结论60ODC ∠=︒,3OC OD CD ===.从而即可求出45ADO ∠=︒,即三角形OED 为等腰直角三角形,由此即可求出DE 的长,最后根据垂径定理即可求出AD 的长.解:如图,连接OC 、OD ,作OE AB ⊥于点E .⊙BC CD =,⊙CBD CDB ∠=∠,⊙105ADC ∠=︒,⊙75CBD CDB ∠=∠=︒,⊙18027530BCD ∠=︒-⨯︒=︒.由题意可知OC BC ⊥,即90OCB ∠=︒,⊙903060OCD OCB BCD ∠=∠-∠=︒-︒=︒,⊙OD =OC ,⊙三角形OCD 为等边三角形.⊙60ODC ∠=︒,3OC OD CD ===.⊙1056045ADO ADC ODC ∠=∠-∠=︒-︒=︒,⊙三角形OED 为等腰直角三角形, ⊙22323DE === ⊙322232AD DE ===故选:A .【点拨】本题考查切线的性质,等腰三角形的性质,三角形外角的性质,等腰直角三角形与等边三角形的判定和性质以及垂径定理,综合性强.正确的连接辅助线是解答本题的关键.10.B【分析】连接OD 、AC 、DC 、OB 、OC ,作CE ⊙AB 于E ,OF ⊙CE 于F ,利用垂径定理得到OD ⊙AB ,则AD =BD =2,于是根据勾股定理可计算出OD =1,再利用折叠的性质可判断AC 和CD 所在的圆为等圆,则根据圆周角定理得到AC CD =,所以AC =DC ,利用等腰三角形的性质得AE =DE =1,接着证明四边形ODEF 为正方形得到OF =EF =1,然后计算出CF 后得到CE =BE =3,于是可得到BC 的长.解:如图,连接OD 、AC 、DC 、OB 、OC ,作CE ⊙AB 于E ,OF ⊙CE 于F ,⊙D 为AB 的中点,⊙OD ⊙AB ,⊙AD =BD =12AB =2,在Rt △OBD 中,OD 22541OB BD --=,⊙将BC 沿BC 折叠,⊙AC 和CD 所在的圆为等圆,⊙AC CD =,⊙AC =DC ,⊙AE =DE =1,⊙⊙ODE =⊙OFE =⊙DEF =90°,⊙四边形ODEF 是矩形,⊙DE =OD =1,⊙四边形ODEF 是正方形,⊙OF =EF =1,在Rt △OCF 中,CF 22512OC OF ,⊙CE =CF +EF =2+1=3,而BE =BD +DE =2+1=3,⊙BC 223332+=故选:B .【点拨】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆周角定理,垂径定理,勾股定理及正方形的判定和性质等.11.60°##60度【分析】先由切线的性质及切线长定理求出90,30PAO APO ∠=︒∠=︒,再根据直角三角形两锐角互余求解即可. 解: P A ,PB 是O 的切线,A ,B 为切点190,2PAO APO PAB ∴∠=︒∠=∠ 90APO AOP ∴∠+∠=︒60APB ∠=︒30APO ∴∠=︒60AOP ∴∠=︒故答案为:60°.【点拨】本题考查了切线的性质及切线长定理、直角三角形两锐角互余,熟练掌握知识点是解题的关键.12.40【分析】根据切线长定理,等腰三角形的性质以及三角形内角和定理推出⊙BDE +⊙BED +⊙B =180°,⊙CFE +⊙CEF +⊙C =180°,得到2(⊙BDE +⊙CFE )+⊙B +⊙C =360°,据此求解即可.解:⊙⊙O 是△ABC 的内切圆,与AB ,BC ,CA 的切点分别为D ,E ,F ,⊙BD =BE ,CE =CF ,⊙⊙BDE =⊙BED ,⊙CFE =⊙CEF ,⊙⊙BDE +⊙BED +⊙B =180°,⊙CFE +⊙CEF +⊙C =180°,即2⊙BDE +⊙B =180°,2⊙CFE +⊙C =180°,⊙2(⊙BDE +⊙CFE )+⊙B +⊙C =360°,⊙⊙BDE +⊙CFE =110°,⊙2×110°+⊙B +⊙C =360°,⊙⊙B +⊙C =140°,⊙⊙A =180°-(⊙B +⊙C )= 40°.故答案为:40.【点拨】本题考查了切线长定理,等腰三角形的判定和性质,三角形内角和定理,熟记各图形的性质并准确识图是解题的关键.13.4【分析】作点B 关于x 轴的对称点B ′,连接MB ′,交⊙M 于点N ,交x 轴于点P ,此时BP +PN 取得最小值,然后结合勾股定理及三角形的面积公式分析计算.解:作点B关于x轴的对称点B′,连接MB′,交⊙M于点N,交x轴于点P,过点M作MQ⊙x轴,交x轴于点E,过点B′作B′Q⊙MQ,⊙点B与点B′关于x轴对称,⊙PB+PN=PB′+PN,当N、P、B’在同一直线上且经过点M时取最小值.在Rt△ABC中,AC22OA OC,由⊙M是△AOC的内切圆,设⊙M的半径为r,⊙S△AOC=12(3r+4r+5r)=12×3×4,解得r=1,⊙ME=MN=1,⊙QB′=4-1=3,QM=3+1=4,⊙MB′=5,⊙PB′+PN=5-1=4,即PB+PN最小值为4,故答案为:4.【点拨】本题考查轴对称—最短路线问题,三角形内切圆,理解“两点之间,线段最短”,掌握轴对称的性质,通过添加辅助线构建直角三角形是解题关键.14.62°【分析】先根据切线长定理得到⊙1=12⊙ABC,⊙2=12⊙BCD,⊙3=12⊙ADC,⊙4=12⊙BAD,再利用三角形内角和计算出⊙1+⊙2=62°,则⊙ABC +⊙BCD =124°,然后利用四边形内角和得出⊙BAD +⊙ADC =236°,再求⊙3+⊙4=118°即可.解:⊙圆O 是四边形ABCD 的内切圆,⊙OA 平分ABC ,OC 平分⊙BCD ,OD 平分⊙ADC ,OA 平分⊙BAD ,⊙⊙1=12⊙ABC ,⊙2=12⊙BCD ,⊙3=12⊙ADC ,⊙4=12⊙BAD ,⊙⊙1+⊙2=180°﹣⊙BOC =180°﹣118°=62°,⊙⊙ABC +⊙BCD =2(⊙1+⊙2)=2×62°=124°,⊙⊙BAD +⊙ADC =360°﹣(⊙ABC +⊙BCD )=360°﹣124°=236°,⊙⊙3+⊙4=12(⊙BAD +⊙ADC )=12×236°=118°, ⊙⊙AOD =180°﹣(⊙3+⊙4)=180°﹣118°=62°.故答案为:62°.【点拨】本题考查了四边形的内切圆.切线的性质和切线长定理,三角形内角和,掌握四边形的内切圆性质.切线的性质和切线长定理,三角形内角和是解题关键.15. 10 (2,-2)【分析】(1)利用勾股定理解答即可;(2)根据I 是OAB 的内心,利用OM =ON ,BM =BE ,AE =AN ,得出AE +BE =6-x +8-x =10,求解即可.解:(1)⊙点()0,6A ,点()8,0B ,⊙OA =6,OB =8,在Rt △OAB 中,AB 22226810OA OB ++;(2)连接OI ,BI ,AI ,过I 作IM ⊙OB ,IN ⊙OA ,IE ⊙AB ,⊙I 是OAB 的内心,⊙OM=ON,BM=BE,AE=AN,设OM=ON=x,则BM=BE=8-x,AN=AE=6-x,⊙AE+BE=6-x+8-x=10,解得:x=OM=ON=2,⊙I的坐标为(2,2),⊙点I关于x轴对称的点的坐标是(2,-2).【点拨】本题考查了勾股定理及三角形的内心,解题的关键是灵活运用性质解决实际问题.16.55【分析】由三角形的内心的性质可得⊙BAD=⊙CAD,⊙ABI=⊙CBI,由外角的性质和圆周角的性质可得⊙BID=⊙DBI,由三角形内角和定理可求解.解:⊙点I是⊙ABC的内心,⊙⊙BAD=⊙CAD,⊙ABI=⊙CBI,⊙⊙CAD=⊙CBD,⊙⊙BAD=⊙CBD,⊙⊙BID=⊙BAD+⊙ABI,⊙IBD=⊙CBI+⊙CBD,⊙⊙BID=⊙DBI,⊙⊙ACB=70°,⊙⊙ADB=70°,⊙⊙BID=⊙DBI=180702︒︒-=55°故答案为:55.【点拨】本题考查了三角形的内切圆与圆心,圆周角的定理,等腰三角形的性质等知识,证明⊙BID=⊙DBI是本题的关键.17.45︒【分析】根据切线的性质和已知条件先证得四边形PMON是正方形,从而求得2=,以OOP m为圆心,2m长为半径作大圆⊙O,然后过C点作大⊙O的切线,切点即为P点,此时⊙ACP 有最大值,作出图形,根据切线的性质得出OP⊙PC,根据勾股定理求得PC的长,从而证得⊙OPC是等腰直角三角形,即可证得⊙ACP的最大值为45°.解:PM、PN是过P所作的O的两切线且互相垂直,∴∠=︒,MON90∴四边形PMON是正方形,根据勾股定理求得2OP m=,∴点在以O2m长为半径作大圆O上,P以O为圆心,2m长为半径作大圆O,然后过C点作大O的切线,切点即为∠有最大值,如图所示,P点,此时ACPPC是大圆O的切线,∴⊥,OP PC2=,2OC m=,OP m222PC OC OP m∴-,∴=,OP PC∴,∠=︒45ACP∴∠的最大值等于45︒,ACP故答案为45︒.【点拨】本题考查了切线的性质,正方形的判定和性质,勾股定理的应用,解题的关键是求得P点的位置.18.4【分析】由正方形的性质,知点C 是点A 关于BD 的对称点,过点C 作CA ′⊙BD ,且使CA ′=1,连接AA ′交BD 于点N ,取NM =1,连接AM 、CM ,则点M 、N 为所求点,进而求解.解:⊙O 的面积为2π222BD =,则=AC ,由正方形的性质,知点C 是点A 关于BD 的对称点,过点C 作CA ′⊙BD ,且使CA ′=1,连接AA ′交BD 于点N ,取NM =1,连接AM 、CM ,则点M 、N 为所求点,理由:⊙A ′C ⊙MN ,且A ′C =MN ,则四边形MCA ′N 为平行四边形,则A ′N =CM =AM ,故⊙AMN 的周长=AM +AN +MN =AA ′+1为最小,则A ′A 22(22)1=+=3,则⊙AMN 的周长的最小值为3+1=4,故答案为:4.【点拨】本题考查了圆的性质、点的对称性、平行四边形的性质等,确定点M 、N 的位置是本题解题的关键.19.(1)1;(2)见分析【分析】(1)先得到⊙ABC 为直角三角形,再根据面积相等求出⊙ABC 内切圆的半径;(2)利用切线的判定与性质以及切线长定理得出AF=AE ,BF=BD ,CD=EC ,进而求出即可.解:(1)⊙5,4,3a b c ===,⊙⊙ABC 是直角三角形, 设⊙ABC 内切圆的半径为r ,由⊙ABC 的面积可得:()12AB BC AC r ⨯++=12AC AB ⨯⨯, 即()13452r ⨯++=1342⨯⨯, 解得:r=1,⊙⊙ABC 的内切圆半径为1;(2)⊙I 为⊙ABC 的内心,且I 在⊙ABC 的边BC ,AC ,AB 上的射影分别为D ,E ,F ,⊙D 、E 、F 分别是⊙I 的三边切点,⊙AF=AE ,BF=BD ,CD=EC ,设AE=AF=x ,则EC=b -x ,BF=c -x ,故BC=a=b -x+c -x ,整理得出:x=2b c a +-, 即AE=AF=2b c a +-. 【点拨】此题主要考查了三角形的内切圆与内心,利用切线长定理得出是解题关键.20.(1)k ≥32;(2)22+ 【分析】(1)根据一元二次方程根的判别式,方程有两个正实数根,则判别式⊙0,且两根的和与积都是正数,得出关于k 的不等式组,求出k 的取值范围.(2)根据切线性质得出直角三角形的内切圆半径与直角三角形三边的关系:2a b c r +-=,再结合勾股定理和根与系数的关系可求k 的值. 解:(1)设方程的两根为1x ,2x ,则⊙221(1)4(1)234k k k =+-+=-,方程有两个实数根,∴⊙0,即230k -,∴综上可知32k , ∴当32k ,方程有两个实数根; (2)如图,设直角三角形两直角边为BC =a ,AC =b ,斜边为AB =c ,其内切圆半径r ,⊙AB 、AC 、BC 是圆的切线,⊙90OEC OFC ∠=∠=︒,又⊙OE OF r ==,90C ∠=︒,⊙四边形OECF 是正方形,⊙==CE CF r ,又⊙AG AF =,BG BE =,⊙AC BC AB CE CF +=++,即2b a c r +=+,⊙12r =, ⊙1c a b =+-,即:又⊙222=c a b +,⊙222(-1)a b a b ++=,化简得:22()10ab a b -++=,又121a b x x k +=+=+,2121(1)4ab x x k ==+,⊙212(1)2(1)104k k +-++=,解得22=k 3222k =(舍去), k ∴的值为22【点拨】本题考查了三角形的内切圆与内心,根的判别式,根与系数的关系,解决本题的关键是首先利用判别式是非负数确定k 的取值范围,然后利用一元二次方程根与系数的关系和勾股定理以及内切圆的半径公式,把问题转化为解方程求得k 的值.21.(1)见分析1014【分析】(1)根据切线长定理得到GA =GD ,则⊙GAD =⊙GDA ,根据圆周角定理推出AC ⊙DE ,则⊙CAD =⊙GDA ,进而得到⊙GAD =⊙CAD ,据此即可得解;(2)连接OD,交AC于点H,根据切线的性质、平行线的性质推出OH是△ABC的中位线,AH=CH=12AC,则OH=12BC,设OH=x,则DH=92−x,BC=2x,解直角三角形得到AH1014(1)证明:⊙GA、GD是⊙O的切线,⊙GA=GD,⊙⊙GAD=⊙GDA,⊙AB是⊙O的直径,⊙⊙ACB=90°,⊙AC⊙BE,⊙DE⊙BE,⊙AC⊙DE,⊙⊙CAD=⊙GDA,⊙⊙GAD=⊙CAD,⊙AD平分⊙GAC;(2)解:连接OD,交AC于点H,⊙DE是⊙O的切线,⊙OD⊙DE,⊙⊙ODE=90°,由(1)知,AC⊙DE,⊙OD⊙AC,⊙AH=CH=12AC,⊙AHD=⊙CHD=90°,⊙OA=OB,⊙OH是△ABC的中位线,⊙OH =12BC , ⊙AB =9,⊙OD =92, 设OH =x ,则DH =92−x ,BC =2x , ⊙2222814AC AB BC x --==,⊙222814AH x -()=,⊙22814AH x -=, ⊙222AH AD DH -=,AD =5,⊙222819542x x ⎛⎫ -⎝--⎪⎭=, ⊙x =3118, ⊙AH 28110144x -= ⊙⊙HCE =180°−⊙ACB =90°=⊙ODE =⊙CHD ,⊙四边形CHDE 是矩形,⊙DE =CH =AH 1014 【点拨】此题考查了切线长定理、切线的判定与性质,熟记切线的判定定理与性质定理并作出合理的辅助线是解题的关键.22.(1)见分析171【分析】(1)连接OD ,BD ,根据直径所对的圆周角是直角,可得90ADB ∠=︒根据直角三角形斜边上的中线可得BE ED =,进而根据,OBD ODB EBD EDB ∠=∠∠=∠,等量代换可得90ODE ∠=︒,即可证明FD 是圆O 的切线;(2)利用勾股定理求得EF 的长,进而根据切线长定理求得ED ,即可求得FD ,在Rt ODF 中,勾股定理建立方程求得半径,进而求得AB 的长.解:(1)连接OD ,BD ,AB 是O 的直径,∴90ADB ∠=︒.OB OD =. OBD ODB ∴∠=∠. E 是BC 的中点,BE ED ∴=.EBD EDB ∴∠=∠.90ABC ∠=︒,90OBD EBD ∴∠+∠=︒. 90ODB EDB ∴∠+∠=. 即90ODE ∠=︒.OD 是半径,FD ∴是圆O 的切线;(2)如图,连接OD ,90,ABC E ∠=︒为BC 的中点,BC =4,FB =8, 2BE ∴=,BC 是O 的切线, ,EF BC 是O 的切线, 2ED EB ∴==.在Rt FBE △中,2,8BE FB ==,2282217EF ∴+=2172FD EF ED ∴=-=,设O 的半径为r ,则OA OD r ==,在Rt OFD 中,8,,172OF BF OB r OD r DF =-=-==,222OF OD DF ∴=+,即()()22282172r r -=+,解得171r -= 171AB ∴=.【点拨】本题考查了切线的性质与判定,勾股定理解直角三角形,切线长定理,掌握切线的性质与判定是解题的关键.23.(1)68APC ∠=︒;74CDB ∠=︒(2)58°【分析】(1)由同弧所对圆周角相等求得C ∠,进而求得APC ∠;连接AC ,求得BAC ∠,进而由同弧所对的圆周角相等求得CDB ∠.(2)连接OD ,求得PCB ∠,进而求得其所对圆心角BOD ∠,再由三角心外角和内角的关系求得E ∠.(1)解:⊙=BD BD⊙52C BAD ∠=∠=︒⊙68APC C ABC ∠=∠+∠=︒如图,连接AC ,⊙AB 为O 直径⊙90ACB ∠=︒⊙18074BAC ACB ABC ∠=︒-∠-∠=︒⊙=BC BC⊙74CDB BAC ∠=∠=︒(2)解:如图,连接OD⊙CD AB ⊥⊙90CPB ∠=︒⊙9074PCB PBC ∠=︒-∠=︒⊙在O 中,2BOD BCD ∠=∠⊙148BOD ∠=︒⊙DE 是O 的切线⊙OD DE ⊥即90ODE ∠=︒⊙90=58E BOD ∠=∠-︒︒.【点拨】本题考查圆与三角形的综合问题,熟练掌握三角形和圆的相关性质定理是解题的关键.24.(1)12α(2)见分析(3)FG =2 【分析】(1)根据角平分线的性质以及三角形外角定理,可知⊙A =⊙ACD -⊙ABC ,⊙E =⊙ECD -⊙EBC =12ACD ∠-12ABC ∠,由此可知⊙E =12A ∠=12α; (2)根据圆内接四边形的性质可知⊙DCB +⊙BAD =180°,可知⊙BAD =⊙DCE ,根据圆周角的定理可知⊙ACD =⊙DCE ,进而证得⊙ABF =⊙CBF ,根据“好角”的定义即可得出结论;(3)连接CF,根据“好角”的定义可知⊙G=12⊙A,即⊙G=12⊙BFC,由外角定理可知⊙G=⊙GCF,可知FG=CF,利用三角函数求得CF即可求得结果.(1)解:由题意得,⊙ABE=⊙CBE=12ABC∠,⊙ACE=⊙ECD=12ACD∠,⊙⊙ACD=⊙A+⊙ABC,⊙ECD=⊙E+⊙EBC,⊙⊙A=⊙ACD-⊙ABC,⊙E=⊙ECD-⊙EBC=12ACD∠-12ABC∠,⊙⊙E=12A∠=12α;(2)如图,⊙四边形ABCD内接于⊙O,⊙⊙DCB+⊙BAD=180°,又⊙⊙DCB+⊙DCE=180°,⊙⊙BAD=⊙DCE,⊙点D是优弧ACB的中点,⊙AD BD=,⊙⊙ACD=⊙BAD,⊙⊙ACD=⊙DCE,⊙CG是⊙ABC的外角平分线,⊙直径BF⊙弦AC⊙⊙AF CF=,⊙⊙ABF=⊙CBF,⊙BG是⊙ABC的平分线,⊙⊙BGC是⊙ABC中⊙BAC的“好角”;(3)如图3,连接CF⊙⊙⊙A=45°,⊙⊙BFC=45°.⊙BG过圆心O⊙⊙⊙BCF=90°.⊙⊙BGC是⊙ABC中⊙A的“好角”,⊙⊙G=12⊙A⊙⊙ ⊙A=⊙BFC;⊙⊙G=12⊙BFC⊙⊙⊙G=⊙GCF ⊙⊙FG=CF⊙⊙cos⊙BFC=CF BF,⊙CF=cos45°×BF2=2,⊙FG=2【点拨】本题考查的是圆的有关知识、全等三角形的判定和性质、等腰直角三角形的性质,掌握圆周角定理、三角形外角性质、全等三角形的判定定理和性质定理是解题的关键.。
切线长定理 浙教版九年级数学下册一课一练(含答案)
2021-2022学年浙教版九年级数学下册课课练一课一练2.2切线长定理(含答案)一、单选题1.如图,PA,PB为⊙O的两条切线,点A,B是切点,OP交⊙O于点C,交弦AB于点D.下列结论中错误的是()A.PA=PB B.AD=BDC.OP⊙AB D.⊙PAB=⊙APB2.如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA=5,则PB=().A.2B.3C.4D.53.如图,AB是⊙O的直径,点P在BA的延长线上,PA=AO,PD与⊙O相切于点D,BC⊙AB交PD的延长线于点C,若⊙O的半径为1,则BC的长是()A.1.5B.2C.√2D.√34.如图,AB、AC、BD是⊙O的切线,切点分别是P、C、D.若AB=5,AC=3,则BD的长是()A.4B.3C.2D.15.下列命题中,正确有()①平分弦的直径垂直于弦;②三角形的三个顶点确定一个圆;③圆内接四边形的对角相等;④圆的切线垂直于过切点的半径;⑤过圆外一点所画的圆的两条切线长相等.A.1个B.2个C.3个D.4个6.如图,⊙ABC是一张周长为18cm的三角形纸片,BC=5cm,⊙O是它的内切圆,小明用剪刀在⊙O 的右侧沿着与⊙O相切的任意一条直线MN剪下⊙AMN,则剪下的三角形的周长为()A.13cm B.8cmC.6.5cm D.随直线MN的变化而变化7.如图PA、PB分别与⊙O相切于A.B两点,点C为⊙O上一点,连接AC.BC,若⊙ACB=60°,则∠P的度数为()A.60°B.65°C.50°D.55°8.如图,PA和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知⊙P=50°,则⊙ACB的大小是()A.65°B.60°C.55°D.50°二、填空题9.PA、PB分别切⊙O于点A、B,若PA=3cm,那么PB=cm.10.如图,P是⊙O外一点,PA、PB分别和⊙O切于A、B,C是弧AB上任意一点,过C作⊙O的切线分别交PA、PB于D、E,若⊙PDE的周长为20cm,则PA长为.11.如图,⊙ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则⊙ABC 的周长为.12.如图,⊙O的半径为4,点P到圆心的距离为8,过点P画⊙O的两条切线PA和PB,A,B为切点,则阴影部分的面积是.(结果保留π)13.如图,AB、AC、BD是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为.14.如图,PA、PB分别切⊙O于点A、B,点E是⊙O上一点,且⊙AEB=60°,则⊙P=度.15.如图,PA,PB分别切⊙O于A,B,并与⊙O的切线,分别相交于C,D,已知⊙PCD的周长等于10cm,则PA=cm.三、解答题⌢上任意一点,过点C画⊙ O的16.如图,PA和PB是⊙ O的两条切线,A,B是切点.C是AB切线,分别交PA和PB于D,E两点,已知PA=PB=5cm,求△PDE的周长.17.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,求∠P的度数.18.如图所示,⊙O分别切△ABC的三边AB、BC、CA于点D、E、F,若BC=8,AC=10,AB=6.(1)求AD的长;(2)求⊙O的半径长.19.已知:如图,PA,PB,DC分别切⊙O于点A,B,E点.(1)若∠P=40°,求∠COD;(2)若PA=10cm,求△PCD的周长.四、综合题20.如图,⊙ABC中,⊙ACB=90°,点O在边AC上,经过点C的⊙O与斜边AB相切于点D,交AC边于点E.(1)求证:⊙ACD= 12⊙B;(2)若BC=6,AC=8,求AD和CD的长.21.如图,AB,BC,CD分别与⊙O相切于E,F,G,且AB ∥CD,BO=6cm.CO=8cm,(1)求证:BO⊙CO;(2)求⊙O的半径.答案解析部分1.D2.D3.D4.C5.C6.B7.A8.A9.310.10cm11.1412.16√3−16π313.214.6015.516.解:⊙DA、DC是圆O的切线,⊙DA=DC,同理可得EC=EB,⊙C⊙PDE=PD+PE+DE=PD+PE+DC+CE=PD+PE+DA+EB=PA+PB=10cm.17.解:∵PA、PB是⊙O切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∵∠P+∠PAO+∠AOB+∠PBO=360°,∴∠P=180°−∠AOB,∵∠ACB=65°,∴∠AOB=2∠ACB=130°,∴∠P=180°−130°=50°.18.(1)解:设AD=x,∵⊙O分别切△ABC的三边AB、BC、CA于点D、E、F,∴AF=AD=x,∵BC=8,AC=10,AB=6,∴BD=BE=AB−AD=6−x,CE=CF=AC−AF=10−x,∴BE+CE=6−x+10−x=BC=8,即16−2x=8,得x=4,∴AD的长为4(2)解:如图,连接OD、OE、OF、OA、OB、OC,则OD⊙AB,OE⊙BC,OF⊙AC,且OD=OE=OF=2,⊙ BC=8,AC=10,AB=6,⊙AB2+BC2=AC2,⊙⊙ABC是直角三角形,且⊙B是直角,⊙⊙ABC的面积= 12⋅AB⋅OD+12⋅AC⋅OF+12⋅BC⋅OE=12⋅BC⋅AB,⊙ 12(6+8+10)OD=12×6×8,⊙OD=2,即⊙O的半径长为2.19.(1)解:连接OA、OB和OE⊙点A和点B均为圆O的切点⊙⊙PAO=⊙PBO =90°⊙⊙AOB=360°-⊙P-⊙PAO-⊙PBO=140°又CA和CE均为圆的切线⊙⊙ACO=⊙ECO,⊙OAC=⊙OEC=90°⊙⊙AOC=⊙EOC= 12∠AOE同理可得⊙EOD= 12⊙EOB⊙⊙COD=⊙EOC+⊙EOD= 12∠AOE+12∠EOB=12∠AOB=70°(2)解:⊙PA、PB和CD分别切圆O于点A、B和E点⊙CE=CA,DE=DB,PA=PB⊙⊙PCD的周长=PC+PD+CD=PC+AC+PD+DB=PA+PB=2PA=20cm 20.(1)证明:如图,连接OD.⊙AB为切线,⊙OD⊙AB,⊙⊙ODB=90°.⊙⊙ACB=90°,⊙⊙ABC+⊙COD=180°.⊙⊙AOD+⊙COD=180°,⊙⊙AOD=⊙ABC.⊙⊙AOD=2⊙ACD,⊙⊙ACD= 12⊙ABC.(2)解:在Rt⊙ABC中,AB= √62+82=10⊙OC⊙CB,⊙BC为切线,⊙BD=BC=6,⊙AD=4.设⊙O的半径为r,则OD=OC=r,OA=8﹣r,在Rt⊙AOD中,r2+42=(8﹣r)2,解得r=3,⊙OC=3.如图,连接OB交CD于H.⊙OC=OD,BC=BD,⊙OB垂直平分CD.在Rt⊙OCB中,OB= √32+62=3√5∵12OB·CH=12OC·BC,∍CH=3√5=6√55⊙CD=2CH= 12√5521.(1)证明:连接OF;根据切线长定理得:BE=BF,CF=CG,⊙OBF=⊙OBE,⊙OCF=⊙OCG;⊙AB ∥CD,⊙⊙ABC+⊙BCD=180°,⊙⊙OBE+⊙OCF=90°,⊙⊙BOC=90°,⊙BO⊙CO;(2)解:由(1)知,⊙BOC=90°.⊙OB=6cm,OC=8cm,⊙由勾股定理得到:BC=√82+62=10cm,⊙OF⊙BC,=4.8cm.⊙OF=BO⋅OCBC11/ 11。
浙教版九年级数学下册2.2:切线长定理 同步练习题(含解析)
浙教版九年级下册2.2 切线长定理同步练习一.选择题(共16小题)1.如图,P A、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为()A.40°B.140°C.70°D.80°2.如图,P A,PB分别是⊙O的切线,A,B分别为切点,点E是⊙O上一点,且∠AEB=60°,则∠P为()A.120°B.60°C.30°D.45°3.如图,⊙O内切于四边形ABCD,AB=10,BC=7,CD=8,则AD的长度为()A.8B.9C.10D.114.如图,P A、PB分别切⊙O于A、B,P A=10cm,C是劣弧AB上的点(不与点A、B重合),过点C的切线分别交P A、PB于点E、F.则△PEF的周长为()A.10cm B.15cm C.20cm D.25cm5.如图,AD、AE、CB均为⊙O的切线,D、E、F分别为切点,AD=8,则△ABC的周长为()A.8B.10C.12D.166.如图,⊙O是四边形ABCD的内切圆,切点依次是E、F、G、H,下列结论一定正确的有()个①AF=BG②CG=CH③AB+CD=AD+BC④BG<CG.A.1B.2C.3D.47.如图,AB、AC是⊙O的切线,B、C为切点,∠A=50°,点P是圆上异于B、C,且在上的动点,则∠BPC的度数是()A.65°B.115°C.115°或65°D.130°或65°8.如图,已知P A,PB分别切⊙O于点A、B,∠P=60°,P A=8,那么弦AB的长是()A.4B.8C.4D.89.如图所示,P A,PB是⊙O的切线,且∠APB=40°,下列说法不正确的是()A.P A=PB B.∠APO=20°C.∠OBP=70°D.∠AOP=70°10.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A.20B.30C.40D.5011.如图,从圆O外一点P引圆O的两条切线P A,PB,切点分别为A,B.如果∠APB=60°,P A=8,那么弦AB的长是()A.4B.8C.D.12.如图,圆O的圆心在梯形ABCD的底边AB上,并与其它三边均相切,若AB=10,AD =6,则CB长()A.4B.5C.6D.无法确定13.如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为()A.50B.52C.54D.5614.如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为()A.5B.10C.7.5D.415.已知⊙O的半径是4,P是⊙O外的一点,且PO=8,从点P引⊙O的两条切线,切点分别是A,B,则AB=()A.4B.C.D.16.如图,P A、PB分别切⊙O于A、B两点,如果∠P=60°,P A=2,那么AB的长为()A.1B.2C.3D.4二.填空题(共4小题)17.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=15,则四边形ABCD的周长为.18.如图,菱形ABCD,∠B=60°,AB=4,⊙O内切于菱形ABCD,则⊙O的半径为.19.如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.20.如图,四边形ABCD外切于圆,AB=16,CD=10,则四边形的周长是.三.解答题(共7小题)21.如图,P A、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=20°,求∠P 的度数.22.如图,P A、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:(1)P A的长;(2)∠COD的度数.23.如图,P A、PB是⊙O的切线,切点分别是A、B,直线EF也是⊙O的切线,切点为Q,交P A、PB于点E、F,已知P A=12cm,∠P=40°①求△PEF的周长;②求∠EOF的度数.24.如图,P A、PB、DE切⊙O于点A、B、C、D在P A上,E在PB上,(1)若P A=10,求△PDE的周长.(2)若∠P=50°,求∠O度数.25.如图,P A,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.(1)求∠BAC的度数;(2)当OA=2时,求AB的长.26.已知:如图,P A、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O 的切线,交P A、PB于E、F点,已知P A=12cm,求△PEF的周长.27.如图,已知AB为⊙O的直径,P A,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求P A的长(结果保留根号).参考答案一.选择题(共16小题)1.如图,P A、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为()A.40°B.140°C.70°D.80°【分析】连接OA,OB根据切线的性质定理,切线垂直于过切点的半径,即可求得∠OAP,∠OBP的度数,根据四边形的内角和定理即可求的∠AOB的度数,然后根据圆周角定理即可求解.【解答】解:∵P A是圆的切线.∴∠OAP=90°,同理∠OBP=90°,根据四边形内角和定理可得:∠AOB=360°﹣∠OAP﹣∠OBP﹣∠P=360°﹣90°﹣90°﹣40°=140°,∴∠ACB=∠AOB=70°.故选:C.2.如图,P A,PB分别是⊙O的切线,A,B分别为切点,点E是⊙O上一点,且∠AEB=60°,则∠P为()A.120°B.60°C.30°D.45°【分析】连接OA,BO,由圆周角定理知可知∠AOB=2∠E=120°,P A、PB分别切⊙O 于点A、B,利用切线的性质可知∠OAP=∠OBP=90°,根据四边形内角和可求得∠P =180°﹣∠AOB=60°.【解答】解:连接OA,BO;∵∠AOB=2∠E=120°,∴∠OAP=∠OBP=90°,∴∠P=180°﹣∠AOB=60°.故选:B.3.如图,⊙O内切于四边形ABCD,AB=10,BC=7,CD=8,则AD的长度为()A.8B.9C.10D.11【分析】根据圆外切四边形的性质对边和相等进而得出AD的长.【解答】解:∵⊙O内切于四边形ABCD,∴AD+BC=AB+CD,∵AB=10,BC=7,CD=8,∴AD+7=10+8,解得:AD=11.故选:D.4.如图,P A、PB分别切⊙O于A、B,P A=10cm,C是劣弧AB上的点(不与点A、B重合),过点C的切线分别交P A、PB于点E、F.则△PEF的周长为()A.10cm B.15cm C.20cm D.25cm【分析】根据切线长定理由P A、PB分别切⊙O于A、B得到PB=P A=10cm,由于过点C的切线分别交P A、PB于点E、F,再根据切线长定理得到EA=EC,FC=FB,然后三角形周长的定义得到△PEF的周长=PE+EF+PF=PE+EC+FC+PF,用等线段代换后得到三角形PEF的周长等于P A+PB.【解答】解:∵P A、PB分别切⊙O于A、B,∴PB=P A=10cm,∵EA与EC为⊙的切线,∴EA=EC,同理得到FC=FB,∴△PEF的周长=PE+EF+PF=PE+EC+FC+PF=PE+EA+FB+PF=P A+PB=10+10=20(cm).故选:C.5.如图,AD、AE、CB均为⊙O的切线,D、E、F分别为切点,AD=8,则△ABC的周长为()A.8B.10C.12D.16【分析】由AD、AE、CB均为⊙O的切线,D、E、F分别为切点,根据切线长定理,可得CE=CF,BD=BF,AE=AD=8,继而可求得△ABC的周长为AE+AD的和.【解答】解:∵AD、AE、CB均为⊙O的切线,D、E、F分别为切点,∴CE=CF,BD=BF,AE=AD=8,∴△ABC的周长为:AC+BC+AB=AC+CF+BF+AB=AC+CE+BD+AB=AE+AD=16.故选:D.6.如图,⊙O是四边形ABCD的内切圆,切点依次是E、F、G、H,下列结论一定正确的有()个①AF=BG②CG=CH③AB+CD=AD+BC④BG<CG.A.1B.2C.3D.4【分析】根据切线长定理(从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角)对以下选项进行分析.【解答】解:如图,连接OE、OF、OH、OG.①∵⊙O是四边形ABCD的内切圆,切点依次是E、F、G、H,∴BF=BG、AF=AE,只有当点F是边AB的中点时,AF=BF=BG,否则,等式AF=BG不成立;故本选项不一定正确;②根据题意,知,CG、CH都是⊙O的切线,∴CG=CH.故本选项正确;③根据题意,知AF=AE,DH=DE,BF=BG,CG=CH,则AF+BF+CH+DH=AE+BG+CG+DE,即AB+CD=AD+BC.故本选项正确;④当点G是边BC的中点时,BG=CG.故本选项错误;综上所述,正确的说法有2个;故选:B.7.如图,AB、AC是⊙O的切线,B、C为切点,∠A=50°,点P是圆上异于B、C,且在上的动点,则∠BPC的度数是()A.65°B.115°C.115°或65°D.130°或65°【分析】连接OB、OC,根据四边形的内角和定理,求得∠BOC=130°,再由圆周角定理求得∠P的度数即可.【解答】解:如图,连接OB、OC,∵AB、AC是⊙O的切线,∴∠OBA=∠OCA=90°,∵∠A=50°,∴∠BOC=130°,∵∠BOC=2∠P,∴∠BPC=65°;故选:AC.8.如图,已知P A,PB分别切⊙O于点A、B,∠P=60°,P A=8,那么弦AB的长是()A.4B.8C.4D.8【分析】根据切线长定理和等边三角形的判定方法,发现等边三角形即可求解.【解答】解:∵P A,PB分别切⊙O于点A、B,∴P A=PB,又∠P=60°,∴△APB是等边三角形,∴AB=P A=8.故选:B.9.如图所示,P A,PB是⊙O的切线,且∠APB=40°,下列说法不正确的是()A.P A=PB B.∠APO=20°C.∠OBP=70°D.∠AOP=70°【分析】根据切线长定理得A,B是正确的;再根据切线的性质定理以及直角三角形的两个锐角互余得D是正确的;根据切线的性质定理得C错误.【解答】解:∵P A,PB是⊙O的切线,且∠APB=40°,∴P A=PB,∠APO=∠BPO,∠A=∠B=90°,∴∠OBP=∠OAP,∴C是错误的.故选:C.10.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A.20B.30C.40D.50【分析】根据切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,将△ABC 的周长转化为切线长求解.【解答】解:据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=AD+AE=2AD=40.故选:C.11.如图,从圆O外一点P引圆O的两条切线P A,PB,切点分别为A,B.如果∠APB=60°,P A=8,那么弦AB的长是()A.4B.8C.D.【分析】根据切线长定理知P A=PB,而∠P=60°,所以△P AB是等边三角形,由此求得弦AB的长.【解答】解:∵P A、PB都是⊙O的切线,∴P A=PB,又∵∠P=60°,∴△P AB是等边三角形,即AB=P A=8,故选:B.12.如图,圆O的圆心在梯形ABCD的底边AB上,并与其它三边均相切,若AB=10,AD =6,则CB长()A.4B.5C.6D.无法确定【分析】方法1、设圆O的半径是R,圆O与AD、DC、CB相切于点E、F、H,连接OE、OD、OF、OC、OH,则圆的半径R,可以看作△BOC,△COD,△AOD的高,根据S梯形ABCD=S△BOC+S△COD+S△DOA,以及梯形的面积公式即可求解.方法2、利用切线的性质得出∠ADO=∠ODC,进而得出∠ADO=∠AOD,即可得出OA =6,即:OB=4,同理:BC=OB即可得出结论.【解答】解:方法1、设圆O的半径是R,圆O与AD、DC、CB相切于点E、F、H,连接OE、OD、OF、OC、OH.设CD=y,CB=x.设S梯形ABCD=S则S=(CD+AB)R=(y+10)R﹣﹣﹣﹣(1)S=S△BOC+S△COD+S△DOA=xR+yR+×6R﹣﹣﹣﹣(2)联立(1)(2)得x=4;方法2、连接OD.OC∵AD,CD是⊙O的切线,∴∠ADO=∠ODC,∵CD∥AB,∴∠ODC=∠AOD,∴∠ADO=∠AOD∴AD=OA∵AD=6,∴OA=6,∵AB=10,∴OB=4,同理可得OB=BC=4,故选:A.13.如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为()A.50B.52C.54D.56【分析】根据切线长定理,可以证明圆外切四边形的性质:圆外切四边形的两组对边和相等,从而可求得四边形的周长.【解答】解:由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2(16+10)=52.故选:B.14.如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为()A.5B.10C.7.5D.4【分析】由切线长定理,可知:AF=AD,CF=CE,BE=BD,用未知数设AF的长,然后表示出BD、CF的长,即可表示出BE、CE的长,根据BE+CE=5,可求出AF的长.【解答】解:设AF=x,根据切线长定理得AD=x,BD=BE=9﹣x,CE=CF=CA﹣AF =6﹣x,则有9﹣x+6﹣x=5,解得x=5,即AF的长为5.故选:A.15.已知⊙O的半径是4,P是⊙O外的一点,且PO=8,从点P引⊙O的两条切线,切点分别是A,B,则AB=()A.4B.C.D.【分析】在Rt△POA中,用勾股定理,可求得P A的长,进而可根据∠APO的正弦值求出AC的长,即可求出AB的长.【解答】解:如图所示,P A、PB切⊙O于A、B,因为OA=4,PO=8,则AP==4,∠APO=30°,∵∠APB=2∠APO=60°故△P AB是等边三角形,AB=AP=4故选:C.16.如图,P A、PB分别切⊙O于A、B两点,如果∠P=60°,P A=2,那么AB的长为()A.1B.2C.3D.4【分析】由切线长定理知P A=PB,根据已知条件即可判定△P AB是等边三角形,由此可求得AB的长.【解答】解:∵P A、PB分别切⊙O于A、B,∴P A=PB;∵∠P=60°,∴△P AB是等边三角形;∴AB=P A=2,故选B.二.填空题(共4小题)17.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=15,则四边形ABCD的周长为50.【分析】根据切线长定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=25,根据四边形的周长公式计算,得到答案.【解答】解:∵四边形ABCD是⊙O的外切四边形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=25,∴四边形ABCD的周长=AD+BC+AB+CD=25+25=50,故答案为:50.18.如图,菱形ABCD,∠B=60°,AB=4,⊙O内切于菱形ABCD,则⊙O的半径为.【分析】作辅助线,构建直角△AOB,分别计算OA、OB的长,根据面积法可得OE的长.【解答】解:设AB和BC上的切点分别为E、F,连接OA、OE、OB、OF,则OE⊥AB,OF⊥BC,∵⊙O内切于菱形ABCD,∴OE=OF,∴OB平分∠ABC,∵∠ABC=60°,∴∠ABO=30°,同理得∠BAO=60°,∴∠AOB=90°,∴AO=AB=2,OB=2,∴S△AOB=AB•OE=AO•OB,4OE=2×,OE=,故答案为:.19.如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=76°.【分析】由切线的性质得出P A=PB,P A⊥OA,得出∠P AB=∠PBA,∠OAP=90°,由已知得出∠PBA=∠P AB=90°﹣∠OAB=52°,再由三角形内角和定理即可得出结果.【解答】解:∵P A,PB是⊙O的切线,∴P A=PB,P A⊥OA,∴∠P AB=∠PBA,∠OAP=90°,∴∠PBA=∠P AB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.20.如图,四边形ABCD外切于圆,AB=16,CD=10,则四边形的周长是52.【分析】利用圆外切四边形的性质定理可以得出,四边形的周长是对边和的2倍,即可得.【解答】解:由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2(16+10)=52.故答案为:52.三.解答题(共7小题)21.如图,P A、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=20°,求∠P 的度数.【分析】根据切线长定理得等腰△P AB,运用三角形内角和定理求解即可.【解答】解:根据切线的性质得:∠P AC=90°,所以∠P AB=90°﹣∠BAC=90°﹣20°=70°,根据切线长定理得P A=PB,所以∠P AB=∠PBA=70°,所以∠P=180°﹣70°×2=40°.22.如图,P A、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:(1)P A的长;(2)∠COD的度数.【分析】(1)可通过切线长定理将相等的线段进行转换,得出三角形PDE的周长等于P A+PB的结论,即可求出P A的长;(2)根据三角形的内角和求出∠ADC和∠BEC的度数和,然后根据切线长定理,得出∠EDO和∠DEO的度数和,再根据三角形的内角和求出∠DOE的度数.【解答】解:(1)∵CA,CE都是圆O的切线,∴CA=CE,同理DE=DB,P A=PB,∴三角形PDE的周长=PD+CD+PC=PD+PC+CA+BD=P A+PB=2P A=12,即P A的长为6;(2)∵∠P=60°,∴∠PCE+∠PDE=120°,∴∠ACD+∠CDB=360°﹣120°=240°,∵CA,CE是圆O的切线,∴∠OCE=∠OCA=∠ACD;同理:∠ODE=∠CDB,∴∠OCE+∠ODE=(∠ACD+∠CDB)=120°,∴∠COD=180﹣120°=60°.23.如图,P A、PB是⊙O的切线,切点分别是A、B,直线EF也是⊙O的切线,切点为Q,交P A、PB于点E、F,已知P A=12cm,∠P=40°①求△PEF的周长;②求∠EOF的度数.【分析】①根据切线长定理得出P A=PB,EB=EQ,FQ=F A,由PE+EF+PF=PE+EQ+FQ+PF即可求出答案.②连接OE,OF,求出∠OEF+∠OFE的度数,即可得出∠EOF的度数.【解答】解:①∵P A、PB是⊙O的切线,∴P A=PB,又∵直线EF是⊙O的切线,∴EB=EQ,FQ=F A,∴△PEF的周长=PE+PF+EF=PE+PF+EB+F A=P A+PB=2P A=24cm;②连接OE,OF,则OE平分∠BEF,OF平分∠AFE,则∠OEF+∠OFE=(∠P+∠PFE)+∠(P+∠PEF)=(180°+40°)=110°,∴∠EOF=180°﹣110°=70°.24.如图,P A、PB、DE切⊙O于点A、B、C、D在P A上,E在PB上,(1)若P A=10,求△PDE的周长.(2)若∠P=50°,求∠O度数.【分析】(1)于P A、PB、DE都是⊙O的切线,可根据切线长定理将切线P A、PB的长转化为△PDE的周长;(2)连接OA、OC、0B,利用切线长定理即可得到∠O=∠AOB,根据四边形的内角和可得∠AOB+∠P=180°,进而求出∠O的度数.【解答】解:(1)∵P A、PB、DE分别切⊙O于A、B、C,∴P A=PB,DA=DC,EC=EB;∴C△PDE=PD+DE+PE=PD+DA+EB+PE=P A+PB=10+10=20;∴△PDE的周长为20;(2)连接OA、OC、0B,∵OA⊥P A,OB⊥PB,OC⊥DE,∴∠DAO=∠EBO=90°,∴∠P+∠AOB=180°,∴∠AOB=180°﹣50°=130°∵∠AOD=∠DOC,∠COE=∠BOE,∴∠DOE=∠AOB=×130°=65°.25.如图,P A,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.(1)求∠BAC的度数;(2)当OA=2时,求AB的长.【分析】(1)根据切线长定理推出AP=BP,根据等腰三角形性质和三角形的内角和定理求出∠P AB=60°,求出∠P AO=90°即可;(2)根据直角三角形性质求出OP,根据勾股定理求出AP,根据等边三角形的判定和性质求出即可.【解答】解:(1)∵P A,PB是⊙O的切线,∴AP=BP,∵∠P=60°,∴∠P AB=60°,∵AC是⊙O的直径,∴∠P AC=90°,∴∠BAC=90°﹣60°=30°.(2)连接OP,则在Rt△AOP中,OA=2,∠APO=30°,∴OP=4,由勾股定理得:,∵AP=BP,∠APB=60°,∴△APB是等边三角形,∴.26.已知:如图,P A、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O 的切线,交P A、PB于E、F点,已知P A=12cm,求△PEF的周长.【分析】根据切线长定理得出P A=PB,EB=EQ,FQ=F A,代入PE+EF+PF=PE+EQ+FQ+PF即可求出答案.【解答】解:∵P A、PB是⊙O的切线,切点分别是A、B,∴P A=PB=12,∵过Q点作⊙O的切线,交P A、PB于E、F点,∴EB=EQ,FQ=F A,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=PE+EB+PF+F A=PB+P A=12+12=24,答:△PEF的周长是24.27.如图,已知AB为⊙O的直径,P A,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求P A的长(结果保留根号).【分析】(Ⅰ)根据切线的性质及切线长定理可证明△P AC为等边三角形,则∠P的大小可求;(Ⅱ)由(Ⅰ)知P A=PC,在Rt△ACB中,利用30°的特殊角度可求得AC的长.【解答】解:(Ⅰ)∵P A是⊙O的切线,AB为⊙O的直径,∴P A⊥AB,∴∠BAP=90°;∵∠BAC=30°,∴∠CAP=90°﹣∠BAC=60°.又∵P A、PC切⊙O于点A、C,∴P A=PC,∴△P AC为等边三角形,∴∠P=60°.(Ⅱ)如图,连接BC,则∠ACB=90°.在Rt△ACB中,AB=2,∠BAC=30°,∵cos∠BAC=,∴AC=AB•cos∠BAC=2cos30°=.∵△P AC为等边三角形,∴P A=AC,∴P A=.。
(完整版)切线长定理练习题
切线长定理练习题一、选择题1.下列说法中,不正确的是( ) A.三角形的内心是三角形三条内角平分线的交点B.锐角三角形、直角三角形、钝角三角形的内心都在三角形内部C.垂直于半径的直线是圆的切线D.三角形的内心到三角形的三边的距离相等2.给出下列说法:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中正确的有( ) A.1个B.2个C.3个D.4个3.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( ) A.21 B.20 C.19 D.184. 如图,PA、PB分别切⊙O于点A、B,AC是⊙O的直径,连结AB、BC、OP,则与∠PAB相等的角(不包括∠PAB本身)有( ) A.1个B.2个C.3个D.4个4题图5题图6题图5.如图,已知△ABC的内切圆⊙O与各边相切于点D、E、F,则点O是△DEF的( )C.三条角平分线的交点D.三条边的垂直平分线的交点6.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( )A.21 B.20 C.19 D.18二、填空题6.如图,⊙I是△ABC的内切圆,切点分别为点D、E、F,若∠DEF=52o,则∠A的度为________.6题图7题图8题图7.如图,一圆内切于四边形ABCD,且AB=16,CD=10,则四边形ABCD的周长为________.8.如图,已知⊙O是△ABC的内切圆,∠BAC=50o,则∠BOC为____________度.三、解答题9. 如图,AE、AD、BC分别切⊙O于点E、D、F,若AD=20,求△ABC的周长.10. 如图,PA、PB是⊙O的两条切线,切点分别为点A、B,若直径AC= 12,∠P=60o,求弦AB的长.PBAO11. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.(1)求∠APB 的度数;(2)当OA =3时,求AP 的长.12.已知:如图,⊙O 内切于△ABC ,∠BOC =105°,∠ACB =90°,AB =20cm .求BC 、AC 的长.13.已知:如图,△ABC 三边BC =a ,CA =b ,AB =c ,它的内切圆O 的半径长为r .求△ABC 的面积S .14. 如图,在△ABC 中,已知∠ABC=90o ,在AB 上取一点E ,以BE 为直径的⊙O 恰与AC 相切于点D ,若AE=2 cm ,AD=4 cm . (1)求⊙O 的直径BE 的长; (2)计算△ABC 的面积.15.已知:如图,⊙O 是Rt △ABC 的内切圆,∠C =90°.(1)若AC =12cm ,BC =9cm ,求⊙O 的半径r ; (2)若AC =b ,BC =a ,AB =c ,求⊙O 的半径r .四、体验中考16.(2011年安徽)△ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( )A .120°B .125°C .135°D .150°17.(2011年绵阳)一个钢管放在V 形架内,右图是其截面图,O 为钢管的圆心.如果钢管的半径为25 cm ,∠MPN = 60︒,则OP =( ) A .50 cm B .253cm C .3350cm D .503cm 18. (2011年甘肃定西)如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .17题图 18题图 19题图19. (2011年湖南怀化)如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,参考答案◆随堂检测1. C2. B (提示:②④错误)3. 760(提示:连接ID,IF ∵∠DEF=520∴∠DIF=1040∵D、F是切点∴DI ⊥AB,IF⊥AC∴∠ADI=∠AFI=900∴∠A=1800-1040=760)4. 52 (提示:AB+CD=AD+BC)5. 1150(提示:∵∠A=500∴∠ABC+∠ACB=1300∵OB,OC分别平分∠ABC,∠ACB ∴∠OBC+∠OCB=650∴∠BOC=1800-650=1150)◆课下作业1. D (提示:AD=AF,BD=BE,CE=CF ∴周长=821218⨯+⨯=)2. C3. D4. 解:∵AD,AE 切于⊙O 于D,E ∴AD=AE=20 ∵AD,BF 切于⊙O 于D,F ∴BD=BF 同理:CF=CE∴C △ABC =AB+BC+AC=AB+BF+FC+AC=AB+BD+EC+AC=AD+AE=405. 解:连接BC ∵PA,PB 切⊙O 于A,B ∴PA=PB ∵∠P=600 ∴△ABC 是正三角形 ∵∠PAB=600∵PA 是⊙O 切线 ∴CA ⊥AP ∴∠CAP=900 ∴∠CAB=300 ∵直径AC ∴∠ABC=900∴cos300=ABAC∴AB=6. 解:(1)∵在△ABO 中,OA =OB ,∠OAB =30°∴∠AOB =180°-2×30°=120°∵PA 、PB 是⊙O 的切线∴OA ⊥PA ,OB ⊥PB .即∠OAP =∠OBP =90° ∴在四边形OAPB 中,∠APB =360°-120°-90°-90°=60°.(2)如图①,连结OP∵PA 、PB 是⊙O 的切线∴PO 平分∠APB ,即∠APO =12∠APB =30°又∵在Rt △OAP 中,OA =3, ∠APO =30°∴AP =tan 30OA°=7. 解:(1)连接OD ∴OD ⊥AC ∴△ODA 是Rt △解之得:r=3 ∴BE=6(2) ∵∠ABC=900 ∴OB ⊥BC ∴BC 是⊙O 的切线 ∵CD 切⊙O 于D ∴CB=CD 令CB=x∴AC=x+4,BC=4,AB=x ,AB=8 ∵2228(4)x x +=+ ∴6x = ∴S △ABC =186242⨯⨯= ●体验中考 1. C2. A (提示:∠MPN=600可得∠OPM=300 可得OP=2OM=50)3.3(提示:连接OB ,易得:∠ABC=∠AOB ∴cos ∠AOB=cos ∠35=OBOA AO=)4. ∠P=600。
切线长定理习题
切线长定理练习题
1.直角三角形外接圆的圆心(外心)在__________,半径为___________.
2.直角三角形内切圆的圆心(内心)在__________,半径r=___________.
3.Rt △ABC 中,∠C=90°,a=3,b=4,则内切圆的半径是_______.
4.直角三角形的外接圆半径为5cm,内切圆半径为1cm,则此三角形的周长是_______.
5.如图1,一圆内切于四边形ABCD ,且AB =16,CD =10,
则四边形的周长为
6.已知:在△ABC 中,BC =14cm ,AC =9cm ,AB =13cm ,BC ,AC ,AB 分别与⊙O 切于点D 、E 、F ,求AF ,BD 和CE 的长。
7.已知:如图,PA 、PB 是⊙O 的切线,切点分别是A 、B ,Q 为⊙O 上一点,过Q 点作⊙O 的切线,交PA 、PB 于E 、F 点,已知PA=12cm ,∠P=70°,求:△PEF 的周长和∠EOF 的大小。
F B
8.已知:两个同心圆PA 、PB 是大圆的两条切线,PC 、PD 是小圆的两条切线,A 、B 、C 、D 为切点。
求证:AC=BD
9.以正方形ABCD 的一边BC 为直径的半圆上有一个动点K ,过点K 作半圆的切线EF ,EF 分别交AB 、CD 于点E 、F ,试问:四边形AEFD 的周长是否会因K 点的变动而变化?为什么?
10.如图,在梯形ABCD 中,AD //BC ,AB ⊥BC ,以AB 为直径的⊙O 与DC 相切于E .已知AB =8,边BC 比AD 大6,
求边AD 、BC 的长。
P
D B C。
切线长定理
o
B C
.
E
F
P
B
.
例1 已知:P为圆O外一点,PA,PB为圆O的切线,
A,B为切点,BC是直径。 求证:AC∥OP。CLeabharlann AO BP
形成性练习: 1、过P有圆O的两条切线PA、PB,A、B为切点。
①若PO=6,半径长3,求切线长、切线夹角 ∠APB。
②若∠APB=600 ,PO=6,求半径及AP。 ③若AB=6, ∠APB=600 , 求OP. A O B P
圆的外切四边形的两组对边和相等。 已知:四边形ABCD的边 AB,BC,CD, DA和圆O分别相切于L,M,N,P。 探索圆外切四边形边的关系。 D DN=DP N C P AL=AP M O CN=CM
BL=BM
A L B
四边都和圆相切的四边形叫圆外切四边形。
巩固性练习: 1.已知:如图,△ABC 中,∠ABC=90 , AB上一点O,以O为圆心的⊙O交OA于E, 切AC于D,AD=2,AE=1,求CD的长。 A E D
切线长定理
P
A
B
切线长:把圆的切线上某一点 与切点之间的线段的长叫做这 点到圆的切线长。
A O
.
P B
.
切线长定理 从圆外一点引圆的两条切线, 它们的切线长相等,圆心和这一点的连线平 分两条切线的夹角。
A O
.
P B
.
P
B
A
O
相等线段:AP=BP,AO=BO,AE=BE ⌒ ⌒ 相等的弧: AF=BF 垂直关系:AO⊥PA,AB ⊥ OP,BO ⊥ BP 相似关系: A O
3.7 切线长定理 课时练习(含答案解析)
北师大版数学九年级下册第3章第7节切线长定理同步检测一、选择题1.如图,一圆内切四边形ABCD,且BC=10,AD=7,则四边形的周长为()A.32 B.34 C.36 D.38答案:B解析:解答:由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选:B.分析:根据切线长定理,可以证明圆外切四边形的性质:圆外切四边形的两组对边和相等,从而可求得四边形的周长.2.如图所示,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=15,则△PCD的周长为()A.15 B.12 C.20 D.30答案:D解析:解答:∵P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,∴AC=EC,BD=DE,AP=BP,∵PA=15,∴△PCD的周长为:PA+PB=30.故选:D.分析:直接利用切线长定理得出AC=EC,BD=DE,AP=BP,进而求出答案.3.如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为()A.20cm B.15cm C.10cm D.随直线MN的变化而变化答案:A解析:解答:如图:∵△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD=10cm,∴设E、F分别是⊙O的切点,故DM=MF,FN=EN,AD=AE,∴AM+AN+MN=AD+AE=10+10=20(cm).故选:A.分析:利用切线长定理得出DM=MF,FN=EN,AD=AE,进而得出答案.4.如图,⊙O内切于四边形ABCD,AB=10,BC=7,CD=8,则AD的长度为()A.8 B.9 C.10 D.11答案:D解析:解答:∵⊙O内切于四边形ABCD,∴AD+BC=AB+CD,∵AB=10,BC=7,CD=8,∴AD+7=10+8,解得:AD=11.故选:D.分析:根据圆外切四边形的性质对边和相等进而得出AD的长.5.圆外切等腰梯形的一腰长是8,则这个等腰梯形的上底与下底长的和为()A.4 B.8 C.12 D.16答案:D解析:解答:∵圆外切等腰梯形的一腰长是8,∴梯形对边和为:8+8=16,则这个等腰梯形的上底与下底长的和为16.故选:D.分析:直接利用圆外切四边形对边和相等,进而求出即可.6.如图,⊙O是△ABC的内切圆,点D、E分别为边AB、AC上的点,且DE为⊙O的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是()A.7 B.8 C.9 D.16答案:A解析:解答:∵AB、AC、BC、DE都和⊙O相切,∴BI=BG,CI=CH,DG=DF,EF=EH.∴BG+CH=BI+CI=BC=9,∴△ADE的周长=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=△ABC的周长-(BG+EH+BC)=25-2×9=7.故选A.分析:根据切线长定理,可得BI=BG,CI=CH,DG=DF,EF=EH,△ADE的周长=AD+AE+DE=AD+AE+DF+EF=AD+DG+EH+AE=AG+AH=△ABC的周长-(BG+EH+BC),据此即可求解.7.如图,从⊙O外一点P引⊙O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB的长是()A.4 B.8 C.4D.8答案:B解析:解答:∵PA、PB都是⊙O的切线,∴PA=PB,又∵∠P=60°,∴△PAB是等边三角形,即AB=PA=8,故选B.分析:根据切线长定理知PA=PB,而∠P=60°,所以△PAB是等边三角形,由此求得弦AB 的长.8.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为()A.35° B.45° C.60° D.70°答案:D解析:解答:根据切线的性质定理得∠PAC=90°,∴∠PAB=90°-∠BAC=90°-35°=55°.根据切线长定理得PA=PB,所以∠PBA=∠PAB=55°,所以∠P=70°.故选D.分析:根据切线长定理得等腰△PAB,运用内角和定理求解.9.如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为()A.130° B.120° C.110° D.100°答案:C解析:解答:∵AB、AC是⊙O的两条切线,B、C是切点,∴∠B=∠C=90°,∠BOC=180°-∠A=110°.故选C.分析:利用切线的性质可得,∠B=∠C=90°,再用四边形的内角和为360度可解.10.如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=23,那么∠AOB等于()A.90° B.100° C.110° D.120°答案:D解析:解答:∵△APO≌△BPO(HL),∴∠AOP=∠BOP.∵sin∠AOP=AP:OP=23:4= 3:2,∴∠AOP=60°.∴∠AOB=120°.故选D.分析:由切线长定理知△APO≌△BPO,得∠AOP=∠BOP.可求得sin∠AOP= 3:2,所以可知∠AOP=60°,从而求得∠AOB的值.A.∠1=∠2 B.PA=PB C.AB⊥OP D.=PC•PO答案:D解析:解答:连接OA、OB,AB,∵PA切⊙O于A,PB切⊙O于B,由切线长定理知,∠1=∠2,PA=PB,∴△ABP是等腰三角形,∵∠1=∠2,∴AB⊥OP(等腰三角形三线合一),故A,B,C正确,根据切割线定理知:=PC•(PO+OC),因此D错误.故选D.分析:由切线长定理可判断出A、B选项均正确.易知△ABP是等腰三角形,根据等腰三角形三线合一的特点,可求出AB⊥OP,故C正确.而D选项显然不符合切割线定理,因此D错误.12.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B,CD切⊙O于点E,分别交PA,PB于点C,D.若PA=5,则△PCD的周长和∠COD分别为()A.5,12(90°+∠P)B.7,90°+12C.10,90°-12∠P D.10,90°+12∠P答案:C解析:解答:∵PA、PB切⊙O于A、B,CD切⊙O于E,∴PA=PB=10,ED=AD,CE=BC;∴△PCD的周长=PD+DE+PC+CE=2PA,即△PCD的周长=2PA=10,;如图,连接OA、OE、OB.由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,易证△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=12∠AOB,∴∠AOB=180°-∠P,∴∠COD=90°-12∠P.故选:C.分析:根据切线长定理,即可得到PA=PB,ED=AD,CE=BC,从而求得三角形的周长=2PA;连接OA、OE、OB根据切线性质,∠P+∠AOB=180°,再根据CD为切线可知∠COD=12∠AOB.13.圆外切等腰梯形的中位线等于8,则一腰长等于()A.4 B.6 C.8 D.10答案:C解析:解答:如图,设圆的外切梯形ABCD,切点分别为E、H、N、中位线为MN,∴MN=12(AB+CD),根据切线长定理得:DE=DH,CF=CH,并且等腰梯形和圆都是轴对称图形,∴CD=DH+CH=DE+CF=12(AB+CD),∴CD=MN,而MN=8,∴CD=8.故选C.分析:如图,设圆的外切梯形ABCD,切点分别为E、H、N、中位线为MN,根据中位线定理可以得到上下底之和,然后利用切线长定理可以得到一腰长等于中位线,由此即可解决问题.14.如图,⊙O为△ABC的内切圆,AC=10,AB=8,BC=9,点D,E分别为BC,AC上的点,且DE为⊙O的切线,则△CDE的周长为()A.9 B.7 C.11 D.8答案:C解析:解答:如图:设AB,AC,BC和圆的切点分别是P,N,M,CM=x,根据切线长定理,得CN=CM=x,BM=BP=9-x,AN=AP=10-x.则有9-x+10-x=8,解得:x=5.5.所以△CDE的周长=CD+CE+QE+DQ=2x=11.故选:C.分析:设AB,AC,BC和圆的切点分别是P,N,M.根据切线长定理得到NC=MC,QE=DQ.所以三角形CDE的周长即是CM+CN的值,再进一步根据切线长定理由三角形ABC的三边进行求解即可.15.已知四边形ABCD是梯形,且AD∥BC,AD<BC,又⊙O与AB、AD、CD分别相切于点E、F、G,圆心O在BC上,则AB+CD与BC的大小关系是()A.大于B.等于C.小于D.不能确定答案:A解析:解答:连接OF,∵AD是切线,∴OF⊥AD,又∵AD∥BC,∴AB≥OF,CD≥OF,又∵AD<BC,∴AB≥OF,CD≥OF最多有一个成立.∴AB+CD>2OF,∵BC=2OF,∴AB+CD>BC.故选A,分析:连接OF,则OF是梯形的高,则AB≥OF,CD≥OF,而两个式子不能同时成立,据此即可证得.二、填空题16.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD 的周长等于10cm,则PA= cm.答案:5解析:解答:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm,故答案为:5.分析:由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解.17.如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O 的切线长为8cm,那么△PDE的周长为答案:16解析:解答:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=8+8=16;∴△PDE的周长为16.故答案为16.分析:由于PA、PB、DE都是⊙O的切线,可根据切线长定理将切线PA、PB的长转化为△PDE的周长.18.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D,若⊙O的半径为r,△PCD的周长等于3r,则tan 12∠APB的值是答案:2 3解析:解答:连接PO,AO,∵PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D,∴∠APO=∠BPO,AC=EC,DE=BD,PA=PB,∴PA+PB=△PCD的周长=3r,∴PA=PB=1.5r,∴tan 12∠APB=AO: PA =r :1.5r =23,故答案为:2 3.分析:利用切线长定理得出PA=PB=1.5r,再结合锐角三角函数关系得出答案.19.如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D、E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为4cm,则Rt△MBN的周长为答案:8cm解析:解答:连接OD、OE,∵⊙O是Rt△ABC的内切圆,∴OD⊥AB,OE⊥BC,∵∠ABC=90°,∴∠ODB=∠DBE=∠OEB=90°,∴四边形ODBE是矩形,∵OD=OE,∴矩形ODBE是正方形,∴BD=BE=OD=OE=4cm,∵⊙O切AB于D,切BC于E,切MN于P,NP与NE是从一点出发的圆的两条切线,∴MP=DM,NP=NE,∴Rt△MBN的周长为:MB+NB+MN=MB+BN+NE+DM=BD+BE=4cm+4cm=8cm,故答案为:8cm.分析:连接OD、OE,求出∠ODB=∠DBE=∠OEB=90°,推出四边形ODBE是正方形,得出BD=BE=OD=OE=4cm,根据切线长定理得出MP=DM,NP=NE,代入MB+NB+MN得出BD+BE,求出即可.20.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是答案:14解析:解答:根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14,故答案为:14.分析:由切线长定理可知:AD=AE,BC=BE,因此梯形的周长=2AB+CD,已知了AB和⊙O 的半径,由此可求出梯形的周长.三、计算题21.已知四边形ABCD外切于⊙O,四边形ABCD的面积为24,周长24,求⊙O的半径.答案:2解析:解答:设四边形ABCD是⊙O的外切四边形,切点分别为:F,G,M,E,连接FO,AO,OG,CO,OM,DO,OE,四边形ABCD的面积为:1 2×EO×AD+12OM×DC+12GO×BC+12FO×AB=12EO(AD+AB+BC+DC)=12EO×24=24,解得:EO=2.故r=2.分析:利用切线的性质进而利用三角形面积求法得出⊙O的半径.22.如图,AB为⊙O的直径,点C在AB的延长线上,CD、CE分别与⊙O相切于点D、E,若AD=2,∠DAC=∠DCA,求CE.答案:2解析:解答:∵CD、CE分别与⊙O相切于点D、E,∴CD=CE,∵∠DAC=∠DCA,∴AD=CD,∴AD=CE,∵AD=2,∴CE=2.故答案为:2.分析:由条件可得AD=CD,再由切线长定理可得:CD=CE,所以AD=CE,问题得解.23.如图,已知PA、PB分别切⊙O于点A、B,∠P=90°,PA=3,求⊙O的半径.答案:3解析:解答:连接OA、OB,则OA=OB(⊙O的半径),∵PA、PB分别切⊙O于点A、B,∴PA=PB,∠OAP=∠OBP=90°,已知∠P=90°,∴∠AOB=90°,∴四边形APBO为正方形,∴OA=OB=PA=3,则⊙O的半径长是3,故答案为:3.分析:连接OA、OB,已知PA、PB分别切⊙O于点A、B,由切线的性质及切线长定理可得:PA=PB,∠OAP=∠OBP=90°,再由已知∠P=90°,所以得到四边形APBO为正方形,从而得⊙O的半径长即PA的长.24.如图,P是⊙O的直径AB的延长线上一点,PC、PD切⊙O于点C、D.若PA=6,⊙O 的半径为2,求∠CPD.答案:60°解析:解答:∵PA=6,⊙O的半径为2,∴PB=PA-AB=6-4=2,∴OP=4,∵PC、PD切⊙O于点C、D.∴∠OPC=∠OPD,∴CO⊥PC,∴sin∠OPC=2: 4 =0.5 ,∴∠OPC=30°,∴∠CPD=60°,故答案为:60°.分析:根据切线的性质定理和切线长定理求出OP=4,∠OPC=∠OPD,再利用解直角三角形的知识求出∠OPC=30°,即可得出答案.25.如图,⊙O与△ABC中AB、AC的延长线及BC边相切,且∠ACB=90°,∠A,∠B,∠C 所对的边长依次为3,4,5,求⊙O的半径.答案:2解析:解答:连接OD、OE,∵⊙O与△ABC中AB、AC的延长线及BC边相切,∴AF=AD,BE=BF,CE=CD,OD⊥AD,OE⊥BC,∵∠ACB=90°,∴四边形ODCE是正方形,设OD=r,则CD=CE=r,∵BC=3,∴BE=BF=3-r,∵AB=5,AC=4,∴AF=AB+BF=5+3-r,AD=AC+CD=4+r,∴5+3-r=4+r,r=2,则⊙O的半径是2.故答案为:2.分析:先连接OD、OE根据⊙O与△ABC中AB、AC的延长线及BC边相切,得出AF=AD,BE=BF,CE=CD,再根据OD⊥AD,OE⊥BC,∠ACB=90°,得出四边形ODCE是正方形,最后设OD=r,列出5+3-r=4+r,求出r=2即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切线长定理练习题
一、选择题
1.下列说法中,不正确的是( ) A.三角形的内心是三角形三条内角平分线的交点
B.锐角三角形、直角三角形、钝角三角形的内心都在三角形内部
C.垂直于半径的直线是圆的切线
D.三角形的内心到三角形的三边的距离相等
2.给出下列说法:
①任意一个三角形一定有一个外接圆,并且只有一个外接圆;
②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;
③任意一个三角形一定有一个内切圆,并且只有一个内切圆;
④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.
其中正确的有( )
A.1个B.2个C.3个D.4个
3.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( ) A.21 B.20 C.19 D.18
4. 如图,PA、PB分别切⊙O于点A、B,AC是⊙O的直径,连结AB、BC、OP,
则与∠PAB相等的角(不包括∠PAB本身)有( )
A.1个B.2个C.3个D.4个
4题图5题图6题图
5.如图,已知△ABC的内切圆⊙O与各边相切于点D、E、F,则点O是△DEF的( ) A.三条中线的交点B.三条高的交点
C.三条角平分线的交点D.三条边的垂直平分线的交点
6.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( )
A.21 B.20 C.19 D.18
二、填空题
P
B
A
O
6.如图,⊙I 是△ABC 的内切圆,切点分别为点D 、E 、F ,若∠DEF=52o ,
则∠A 的度为________.
6题图 7题图 8题图
7.如图,一圆内切于四边形ABCD ,且AB=16,CD=10,则四边形ABCD 的周长为________. 8.如图,已知⊙O 是△ABC 的内切圆,∠BAC=50o ,则∠BOC 为____________度. 三、解答题
9. 如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ABC 的周长.
10. 如图,PA 、PB 是⊙O 的两条切线,切点分别为点A 、B ,若直径AC= 12,∠P=60o ,求弦AB 的长.
11. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.
(1)求∠APB 的度数;
(2)当OA =3时,求AP 的长.
12.已知:如图,⊙O 内切于△ABC ,∠BOC =105°,∠ACB =90°,AB =20cm .求BC 、AC 的长.
13.已知:如图,△ABC三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC的面积S.
14.如图,在△ABC中,已知∠ABC=90o,在AB上取一点E,以BE为直径的⊙O恰与AC相切于点D,
若AE=2 cm,AD=4 cm.
(1)求⊙O的直径BE的长;
(2)计算△ABC的面积.
15.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.
(1)若AC=12cm,BC=9cm,求⊙O的半径r;
(2)若AC=b,BC=a,AB=c,求⊙O的半径r.
四、体验中考
16.(2011年安徽)△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则
∠AIB的度数是()
A.120°B.125°C.135°D.150°
17.(2011年绵阳)一个钢管放在V形架内,右图是其截面图,O为钢管的圆心.如果钢管的半径为25 cm,
∠MPN = 60 ,则OP =( )
A.50 cm B.253cm C.
33
50
cm D.503cm
18. (2011年甘肃定西)如图,在△ABC 中,5cm AB AC ==,cos B 3
5
=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .
17题图 18题图 19题图
19. (2011年湖南怀化)如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且 60=∠AEB ,则=∠P __ ___度.
参考答案
◆随堂检测 1. C
2. B (提示:②④错误)
3. 760 (提示:连接ID,IF ∵∠DEF=520 ∴∠DIF=1040 ∵D 、F 是切点 ∴DI ⊥AB,IF ⊥AC
∴∠ADI=∠AFI=900 ∴∠A=1800-1040=760) 4. 52 (提示:AB+CD=AD+BC)
5. 1150 (提示:∵∠A=500 ∴∠ABC+∠ACB=1300 ∵OB,OC 分别平分∠ABC,∠ACB ∴∠OBC+∠OCB=650
∴∠BOC=1800-650=1150) ◆课下作业 ●拓展提高
1. D (提示:AD=AF,BD=BE,CE=CF ∴周长=821218⨯+⨯=)
2. C
3. D
4. 解:∵AD,AE 切于⊙O 于D,E ∴AD=AE=20 ∵AD,BF 切于⊙O 于D,F ∴BD=BF 同理:CF=CE
∴C △ABC =AB+BC+AC=AB+BF+FC+AC=AB+BD+EC+AC=AD+AE=40
5. 解:连接BC ∵PA,PB 切⊙O 于A,B ∴PA=PB ∵∠P=600 ∴△ABC 是正三角形 ∵∠PAB=600
∵PA 是⊙O 切线 ∴CA ⊥AP ∴∠CAP=900 ∴∠CAB=300 ∵直径AC ∴∠ABC=900
∴cos300=
AB
AC
∴
AB=6. 解:(1)∵在△ABO 中,OA =OB ,∠OAB =30°
∴∠AOB =180°-2×30°=120°
∵PA 、PB 是⊙O 的切线
∴OA ⊥PA ,OB ⊥PB .即∠OAP =∠OBP =90° ∴在四边形OAPB 中,
∠APB =360°-120°-90°-90°=60°.
(2)如图①,连结OP
∵PA 、PB 是⊙O 的切线
∴PO 平分∠APB ,即∠APO =1
2
∠APB =30°
又∵在Rt △OAP 中,OA =3, ∠APO =30°
∴AP =
tan 30OA
°
=
7. 解:(1)连接OD ∴OD ⊥AC ∴△ODA 是Rt △
设半径为r ∴AO=r+2 ∴(r+2)2—r 2=16 解之得:r=3 ∴BE=6
(2) ∵∠ABC=900 ∴OB ⊥BC ∴BC 是⊙O 的切线 ∵CD 切⊙O 于D ∴CB=CD 令CB=x
∴AC=x+4,BC=4,AB=x ,AB=8 ∵2
2
2
8(4)x x +=+ ∴6x = ∴S △ABC =1
86242
⨯⨯= ●体验中考 1. C
2. A (提示:∠MPN=600可得∠OPM=300 可得OP=2OM=50)
3.
OB ,易得:∠ABC=∠AOB ∴cos ∠AOB=cos ∠35=OB
OA =)
4. ∠P=600。