冀教版九年级数学上册期末综合检测试卷(有答案)

合集下载

冀教版九年级数学(上册)期末综合检测试卷(有答案)

冀教版九年级数学(上册)期末综合检测试卷(有答案)

冀教版九年级数学上册期末综合检测试卷一、单项选择题(共10 题;共 30 分)1. 假如∠α 是等边三角形的一个内角,那么cos α的值等于()A. B.C.D. 12. 在反比率函数图象的每一支曲线上,y 都随 x 的增大而减小,则k 的取值范围是A. k> 3B. k>0 C. k<3 D. k< 03. 正方形网格中,如图搁置,则 tan 的值是()A. B.C.D. 24. 在 Rt△ABC中,∠ C=90°, AB=13, AC= 12,则 sinB 的值是A. B.C.D.5.以下图,已知△ ABC 中, BC=12,BC边上的高 h=6,D 为 BC上一点, EF∥BC,交 AB于点 E,交 AC于点F,设点 E 到边 BC的距离为x.则△ DEF 的面积 y 对于 x 的函数图象大概为()A. B.C. D.6. 在半径为A. 6π. 4π12 的⊙O中, 60°圆心角所对的弧长是()BC.2π D.π7. 某住所小区六月份中 1 日至 6 日每日用水量变化状况以下图,那么这 6 天的均匀用水量是()A. 30 吨B. 31 吨C. 32 吨D. 33 吨8. 对于对于x 的一元二次方程x2+x-2=0 的根的状况是()A.有两个不相等的实数根B.有两个相等的实数根9. 以下说法正确的选项是()C.无实数根D.没法判断A.长度相等的弧是等弧 B.圆既是轴对称图形,又是中心对称图形C.弧是半圆D.三点确立一个圆10.某小组 5 名同学在一周内参加家务劳动的时间以下表所示,对于“劳动时间”的这组数据,以下说法正确的选项是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A.中位数是 4,均匀数是3.75 B.众数是4,均匀数是 3.75C.中位数是 4,均匀数是3.8 D.众数是2,平均数是 3.8二、填空题(共10 题;共 30 分)11. 方程的解为 ________.12. △ABC的三边分别为、、2,△A′B′C′的两边长分别为2和 2 ,假如△ ABC∽△ A′B′C′,那么△ A′B′C′的第三边的长是________.13.若方程 x2﹣ bx+2=0 的一个根为 1,则另一个根为 ________ .14. 如图,在Rt△ABC内画有边长为9, 6, x 的三个正方形,则x 的值为 ________.15. 如图, PA、 PB 是⊙0的切线, A、 B 为切点, AC是⊙O的直径,∠ P=40°,则∠ BAC=________.16. 在△ ABC中,∠ A=120°, AB= 4,AC= 2,则 sinB 的值是 ________ .17. 已知 y 是 x 的反比率函数,当 x=3 时, y=8,则这个函数关系式为 ________ .18.如图,已知 ? ABCD,∠ A=45°, AD=4,以 AD为直径的半圆 O与 BC相切于点 B,则图中暗影部分的面积为 ________(结果保存π).19. 如图,,DE=2AE,CF=2BF,且DC=5,AB=8,则EF=________.20. 如图,⊙O 的半径为2,AB, CD是相互垂直的两条直径,点P 是⊙O上随意一点( P 与 A,B, C,D 不重合),过点P 作 PM⊥AB 于点 M,PN⊥CD于点 N,点 Q是 MN的中点,当点 P 沿着圆周转过45°时,点Q走过的路径长为________.三、解答题(共8 题;共 60 分)21.求以下 x 的值:( 1)x2﹣25=0(2)(x+5)2=16.22.以下图.在△ ABC 中, EF∥BC,且 AE: EB=m,求证: AF: FC=m.23. 如图,以O为位似中心,在网格内作出四边形ABCD的位似图形,使新图形与原图形的相像比为2:1,并以 O为原点,写出新图形各点的坐标.24.某校举行黑板报评选,由参加评选的10 个班各派一名同学担当评委,每个班的黑板报得分取各个评委所给分值的均匀数,下边是各评委给八年级(6)班黑板报的分数:该班的黑板报的得分是多少?此得分可否反应其设计水平?25. 如图,小明一家自驾到古镇至地,再沿北偏东游乐,抵达地后,导航显示车辆应沿北偏西方向行驶一段距离抵达古镇,小明发现古镇恰幸亏方向行驶12 千米地的正北方向,求两地的距离 . (结果保存根号)26. 如图,半圆O的直径AB=8,半径OC⊥AB, D为弧AC上一点, DE⊥OC,DF⊥OA,垂足分别为E、 F,求EF 的长.27. ( 2017? 吉林)如图,一枚运载火箭从距雷达站 C 处 5km的地面 O处发射,当火箭抵达点A, B 时,在雷达站 C 处测得点A,B 的仰角分别为34°, 45°,此中点O,A,B在同一条直线上.求A,B 两点间的距离(结果精准到0.1km).(参照数据: sin34 °=0.56 ,cos34°=0.83 ,tan34 °=0.67 .)28. 某商铺经营小孩益智玩具,已知成批购进时的单价是20 元.检查发现:销售单价是30 元时,月销售量是 230 件,而销售单价每上升 1 元,月销售量就减少10 件,但每件玩具售价不可以高于40 元.设每件玩具的销售单价上升了 x 元时( x 为正整数),月销售收益为y 元.( 1)求 y 与 x 的函数关系式并直接写出自变量x 的取值范围.( 2)每件玩具的售价定为多少元时,月销售收益恰为2520 元?( 3)每件玩具的售价定为多少元时可使月销售收益最大?最大的月收益是多少?答案分析部分一、单项选择题1.【答案】 A2.【答案】 A3.【答案】 D4.【答案】 B5.【答案】 D6.【答案】 B7.【答案】 C8.【答案】 A9.【答案】 B10.【答案】 C二、填空题11.【答案】12.【答案】13.【答案】 214.【答案】 415.【答案】 20°16.【答案】17.【答案】18.【答案】 6﹣π19.【答案】 720.【答案】三、解答题21.【答案】解:( 1)∵x2﹣ 25=0,2∴x=25,∴x=±5.(2)∵( x+5)2=16,∴x+5=±4,∴x=﹣ 1 或﹣ 9.22.【答案】证明:∵ EF∥BC,∴ AF: FC=AE: EB,∵AE: EB=m,23.【答案】解:以下图,新图形为四边形A′B′C′D′,新图形各点坐标分别为A′( 2, 4), B′( 4, 8), C′( 8, 10), D′( 6, 2).24.【答案】解答:解:该班的黑板报的得分是= 8.36 (分),∴该班的黑板报的得分是8.36 分;不可以反应其设计水平,由于有两个评委给出了异样分.25.【答案】解:过点 B 作 BH⊥AC 于点 H∴∠ BHC=∠AHB=90°依据题意得:∠ CBH=45°,∠ BAH=60°,AB=12∴B H=ABsin60°=∴故答案为:26.【答案】解:连结 OD.∵OC⊥AB DE⊥OC,DF⊥OA,∴∠AOC=∠DEO=∠DFO=90°,∴四边形 DEOF是矩形,∴EF=OD.∵OD=OA∴E F=OA=4.27.【答案】解:由题意可得:∠ AOC=90°, OC=5km.在 Rt△AOC中,∵tan34 °=,∴O A=OC? tan34 °=5×0.67=3.35km,在 Rt△BOC中,∠ BCO=45°,∴O B=OC=5km,∴A B=5﹣3.35=1.65 ≈1.7km,答: A, B两点间的距离约为 1.7km .28.【答案】解:( 1)依据题意得:2y=( 30+x﹣20)( 230﹣ 10x) =﹣ 10x +130x+2300 ,(2)当 y=2520 时,得﹣ 10x2+130x+2300=2520,解得 x1=2, x2=11(不合题意,舍去)当 x=2 时, 30+x=32(元)答:每件玩具的售价定为32 元时,月销售收益恰为2520 元.( 3)依据题意得:y=﹣ 10x 2+130x+2300=﹣ 10( x﹣6.5 )2+2722.5 ,∵a=﹣ 10<0,∴当 x=6.5 时, y 有最大值为2722.5 ,∵0<x≤10 且 x 为正整数,∴当 x=6 时, 30+x=36, y=2720(元),当 x=7 时, 30+x=37, y=2720(元),答:每件玩具的售价定为36 元或 37 元时,每个月可获取最大收益,最大的月收益是2720 元.。

冀教版九年级数学上册期末测试卷及答案【全面】

冀教版九年级数学上册期末测试卷及答案【全面】

冀教版九年级数学上册期末测试卷及答案【全面】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.比较2 )A .2<B .2<<C 2<<D 2<2.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 3.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-14.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >59.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣110.如图,在平行四边形ABCD 中,E 是DC 上的点,DE :EC=3:2,连接AE 交BD 于点F ,则△DEF 与△BAF 的面积之比为( )A .2:5B .3:5C .9:25D .4:25二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________. 2.分解因式:2x 3﹣6x 2+4x =__________.3.函数2y x =-中,自变量x 的取值范围是__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为__________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.(1)解方程:31122x x x --=-+ (2)解不等式组:()3241213x x x x ⎧--<⎪⎨+≥-⎪⎩2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =-.3.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、C4、D5、B6、A7、D8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)12、2x (x ﹣1)(x ﹣2).3、2x ≥4、﹣2<x <25、5.6、①③④.三、解答题(本大题共6小题,共72分)1、(1)x =0;(2)1<x ≤42、22mm -+ 1.3、(1)略;(24、(1)略;(2)略.5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.6、(1)120件;(2)150元.。

冀教版九年级上册数学期末测试卷及含答案

冀教版九年级上册数学期末测试卷及含答案

冀教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,AB为O的直径,弦DC垂直AB于点E,∠DCB=30°,EB=3,则弦AC的长度为( )A.3B.4C.5D.62、用配方法解方程x2+4x+2=0,配方后的方程是()A.(x+2)2=0B.(x-2)2=4C.(x-2)2=0D.(x+2)2=23、方程x2﹣5=0的实数解为()A. B. C. D.±54、为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7 h, 7 hB.8 h, 7.5 hC.7 h, 7.5 hD.8 h, 8 h5、如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()A.BD⊥ACB.AC 2=2AB•AEC.△ADE是等腰三角形D.BC=2AD6、若3是关于方程x2-5x+c=的一个根,则这个方程的另一个根是()A.-2B.2C.-5D.57、如图,AB是⊙O的直径,BC是⊙O的切线.点D、E在⊙O上,若∠CBD=110°,则∠E的度数是()A.90°B.80°C.70°D.60°8、已知、两点在反比例函数的图象上,下列三个命题:①若,则;②若,,则;③过A、B两点的直线与x轴、y轴分别交于C、D两点,连接OA、OB,则.其中真命题个数是()A.0B.1C.2D.39、关于x的一元二次方程ax2+bx=2(a,b是常数,且a≠0),( )A.若a>0,则方程可能有两个相等的实数根B.若a>0,则方程可能没有实数根C.若a<0,则方程可能有两个相等的实数根D.若a<0,则方程没有实数根10、已知反比例函数的图象经过点P(1,-2),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限11、若一元二次方程x2﹣2x﹣m=0无实数根,则反比例函数y=的图象所在的象限是( )A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限12、在某幅地图上,AB两地距离8.5cm,实际距离为170km,则比例尺为()A.1:20B.1:20000C.1:200000D.1:200000013、如图,以点O为位似中心,把△ABC放大为原图形的2倍得到,以下说法错误的是()A.S△ABC ∶S△A’B’C=1∶2 B.AB∶=1∶2 C.点A,O,A’三点在同一条直线上 D.BC∥14、如图,矩形ABCD 中,AB>AD,AB=a,AN 平分∠DAB,DM⊥AN 于点M,CN⊥AN于点N.则DM+CN 的值为(用含a 的代数式表示)( )A. aB. aC.D.15、下列说法正确的是()A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比 D.位似图形的周长之比等于位似比的平方二、填空题(共10题,共计30分)16、方程-4x+c=0有两个不相等的实数根,则c的取值范围是________.17、如图,△ABC 中,∠C=90°,CA=CB,D 为 AC 上的一点,AD=3CD,AE⊥AB交 BD 延长线于 E,记△EAD,△DBC 的面积分别为 S1, S2,则S 1:S2=________.18、已知关于的一元二次方程有两个相等的实数根,则的值是________.19、若反比例函数的图象过点(3,﹣2),则其函数表达式为________.20、若关于x的一元二次方程有两个不相等的实数根,则点在第________象限.21、如图,某景区门口的柱子上方挂着一块景点宣传牌CD,宣传牌的一侧用绳子AD和BC牵引着两排小风车,经过测量得到如下数据:AM=2米,AB=4米,∠MAD=45°,∠MBC=30°,则CD的长度约为________米.(≈1.73,结果精确到0.1米)22、如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是________.23、如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为________.24、甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;=8,则这两人5次射击命中的环数的方差S甲2________S乙2(填“>”“<”或“=”).25、已知 a+b=-3,a2b+ab2=-30,则 a2-ab+b2+11=________.26、先化简,再求值:,其中a是方程x2+x=6的一个根.27、(1)用配方法解方程:.(2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.28、关于x的一元二次方程mx2+(3m-2)x-6=0,当m为何值时,方程总有两个不相等的实数根.29、如图,⊙A、⊙B、⊙C两两不相交,且半径都是2cm,图中的三个扇形(即三个阴影部分)的面积之和是多少?弧长的和为多少?30、汽车正在行驶可车轮突然陷入无盖井,骑车人正在快速前行却因突然出现在面前的凸起井盖被摔伤,夜间出门时被一个没有井盖的窖井吞噬…全国各地因为井盖缺失而造成事故的情形不绝于耳,井盖吞人事件更是频频发生,为了保障市民的人身安全,合肥市政部门开始更换质量更好的井盖(如图所示).小明想知道井盖的半径,在⊙O上,取了三个点A、B、C,测量出AB=AC=50,BC=80,请你帮助小明求出井盖的半径,写出计算过程.参考答案1、D2、D3、C4、C5、D6、B7、C8、D9、C10、C11、C12、D13、A14、C15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、28、29、30、。

冀教版九年级上册数学期末测试卷(参考答案)

冀教版九年级上册数学期末测试卷(参考答案)

冀教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、若,则的值为()A. B. C.1 D.2、小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了1 00个成年人,结果其中有15个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是()A.调查的方式是普查B.本地区只有85个成年人不吸烟C.样本是15个吸烟的成年人D.本地区约有15%的成年人吸烟3、如图,已知,,,则的度数为( )A.68ºB.88ºC.90ºD.112º4、如图,若△ACD∽△ABC ,以下4个等式错误的是().A. B. C. CD2= AD• DB D. AC2= AD• AB5、某班7个学习小组人数如下:5,5,6,x,7,7,8。

已知这组数据的平均数为6,则下列说法错误的是()A.x=4B.众数是5和7C.中位数是6D.众数是76、如图,将⊙O沿弦折叠,恰好经过圆心O,若⊙O的半径为6,则的长为()A. B.π C. D.7、计算:cos245°+sin245°=()A. B.1 C. D.8、如图所示,在直角平面坐标系Oxy中,点A、B、C为反比例函数y=(k >0)上不同的三点,连接O A、O B、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记△AO D、△BOM、四边形CMEF的面积分别为S1、S2、S3,则()A. S1=S2+ S3B. S1>S2=S3C. S3>S2>S1D.S1S2<S329、如图,在中,点为内一点.连接将绕点按逆时针方向旋转,使与重合.点的对应点为点连接交于点则的长为()A. B. C. D.10、在Rt ABC中,∠C=90°,,AC= ,则AB的长可以表示为()A. B. C. D.11、如图,正方形中,是上一点,,交的延长线于点.若,,则的长为()A.18B.C.D.12、如图,点A在函数y= (x>0)的图象上,过点A作x轴、y轴的垂线分别交函数y= (x>0,k>2)的图象于点B、C,过点C作x轴的垂线交y= (x>0)的图象于点D,连结BC、OC、OD.若点A、C的横坐标分别为1和2,则△ABC与△OCD的面积之和为( )A.2B.3C.4D.613、(如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°14、如图所示双曲线y= 与分别位于第三象限和第二象限,A是y 轴上任意一点,B是上的点,C是y= 上的点,线段BC⊥x轴于D,且4BD=3CD,则下列说法:①双曲线y= 在每个象限内,y随x的增大而减小;②若点B的横坐标为-3,则C点的坐标为(-3, );③k=4;④△ABC的面积为定值7.正确的有()A.I个B.2个C.3个D.4个15、如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值为()A.1B.2C.3D.二、填空题(共10题,共计30分)16、已知方程x2+mx+3=0的一个根是1,则它的另一个根是________ , m的值是________ .17、若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=________.18、已知:如同,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为________.19、两个图形关于原点位似,且一对对应点的坐标分别为(3,﹣6)、(﹣2,b),则b=________ .20、如果反比例函数在各自象限内y随x的增大而减小,那么m的取值范围是________.21、已知a、b是一元二次方程x2+x-2021=0的两个不相等的实数根,则a2+2a+b的值为________.22、如图,在x轴上方,平行于x轴的直线与反比例函数y=和y=的图象分别交于A、B两点,连接OA、OB,若△AOB的面积为6,则k1﹣k2=________.23、如图,在平行四边形ABCD中,F是AD延长线上一点,连接BF分别交AC、CD于P、E,则图中的位似三角形共有________对.24、已知菱形ABCD的边长为6,对角线AC与BD相交于点O,OE⊥AB,垂足为点E,AC=4,那么sin∠AOE=________.25、若关于x的一元二次方程9x2-6x+c=0有两个不相等的实数根,则c的取值范围是________.三、解答题(共5题,共计25分)26、计算:﹣2sin60°+|1﹣|+20190.27、一个花坛,直径5米,在它的周围有一条宽1米的环形小路,小路的面积是多少平方米?28、已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为5时,求k的值.29、在△ABC中,∠C=90°,AB=13,BC=5,求∠A的正弦值、余弦值和正切值.30、如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:, AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414,1.732)参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、C5、D6、A7、B8、B9、B10、A11、B12、A13、C15、E二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

冀教版九年级上册数学期末测试卷及含答案(实用)

冀教版九年级上册数学期末测试卷及含答案(实用)

冀教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A. B. C. D.2、一次英语测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据众数是()A.91B.78C.98D.853、已知反比例函数y= ,当1<x<2时,y的取值范围是()A.0<y<5B.1<y<2C.5<y<10D.y>104、如图,AB是 O的直径,点C在圆上,且.则()A.50°B.40°C.30°D.20°5、如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为()A. B. C. D.6、若数据8、4、x、2的平均数是4,则这组数据的众数和中位数分别是()A.3和4B.2和4C.2和3D.3和27、如图,是的弦,是的切线,A为切点,经过圆心,若,则的大小等于()A. B. C. D.8、用计算器求0.35,0.27,0.39,0.21,0.42,0.37,0.41,0.25的平均数(结果保留到小数点后第3位)为().A.0.334B.0.333C.0.335D.0.333759、为了某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量4 5 6 9(吨)户数 3 4 2 1则关于这10户家庭的约用水量,下列说法错误的是()A.中位数是5吨B.极差是3吨C.平均数是5.3吨D.众数是5吨10、若双曲线位于第二、四象限,则k的取值范围是()A.k<1B.k≥1C.k>1D.k≠111、如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A (0,1),过点P(0,﹣7)的直线l与⊙B相交于C,D两点.则弦CD长的所有可能的整数值有()A.1个B.2个C.3个D.4个12、下列函数中,满足y的值随x的值增大而增大的是()A.y=﹣2xB.y=3x﹣1C.y=D.y=x 213、如图,AB和CD都是⊙O的直径,∠AOC=50°,则∠C的度数是()A.50°B.30°C.25°D.20°14、如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2 ﹣2.A.2B.3C.4D.515、把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A、A′的余弦值的关系为()A.cosA=cosA′B.cosA=3cosA′C.3cosA=cosA′D.不能确定二、填空题(共10题,共计30分)16、在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AD=1cm,DB=2cm,则AC=________ cm.17、如图①是山东舰航徽的构图,采用航母45度破浪而出的角度,展现山东舰作为中国首艘国产舰母横空出世的气势,将舰徽中第一条波浪抽象成几何图形,则是一条长为的弧,若该弧所在的扇形是高为12的圆锥侧面展开图(如图②),则该圆锥的母线长为________.18、已知关于x的方程x2﹣3x+m=0的一个根是1,则m=________.19、已知点在线段上,且,那么________.20、如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于________.21、如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2cm/s的速度向点C移动,点Q从点C出发,以1cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为t s,当t=________时,△CPQ与△CBA相似.22、为选派诗词大会比赛选手,经过三轮初赛,甲、乙、丙、丁四位选手的平均成绩都是86分,方差分别是s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,若要从中选一位发挥稳定的选手参加决赛你认为派________去参赛更合适(填“甲”或“乙”或“丙”或“丁”)23、过圆内一点(非圆心)有________ 条弦,有________ 条直径.24、甲、乙、丙、丁参加体育训练,近期10次跳绳的平均成绩每分钟175个,其方差如下表所示:选手甲乙丙丁方差0.023 0.017 0.021 0.019则这10次跳绳中,这四个人中发挥最稳定的是________.25、如果点C是线段AB靠近点B的黄金分割点,且AC=2,那么AB≈________(精确到0.01).三、解答题(共5题,共计25分)26、计算:.27、如图,在某建筑物AC上,挂着一宣传条幅BC,站在点F处,测得条幅顶端B的仰角为30°,往条幅方向前行20米到达点E处,测得条幅顶端B的仰角为60°,求宣传条幅BC的长.(,结果精确到0.1米)28、长安塔,又名天人长安塔,位于西安世园会园区制高点小终南山上,是西安世园会的标志,也是园区的观景塔,游人可登塔俯瞰,全园美景尽收眼底。

最新冀教版九年级数学上册期末考试卷(及参考答案)

最新冀教版九年级数学上册期末考试卷(及参考答案)

最新冀教版九年级数学上册期末考试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的倒数是( )A .B .C .12-D .122.已知x+1x=6,则x 2+21x =( )A .38B .36C .34D .323.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣344.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=5.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( ) A .k<4B .k ≤4C .k<4且k ≠3D .k ≤4且k ≠36.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为( ) A .±1B .1-C .1D .27.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为( )A .14B .16C .90α-D .44α-8.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,CB =CA ,∠ACB =90°,点D 在边BC 上(与B ,C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC =FG ;②S △FAB ∶S 四边形CBFG =1∶2;③∠ABC =∠ABF ;④AD 2=FQ ·AC ,其中正确结论的个数是( )A .1个B .2个C .3个D .4个10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADGBGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)116__________. 2.分解因式:222m -=____________.3.若x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,则代数式x 12﹣2x 1+2x 2的值等于__________.4.如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=__________厘米.5.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是__________.6.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =kx(k ≠0)的图象经过其中两点,则m 的值为__________.三、解答题(本大题共6小题,共72分)1.解方程:11322xx x-=---2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根. (1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.已知:如图,点A 、D 、C 、B 在同一条直线上,AD=BC ,AE=BF ,CE=DF ,求证:AE ∥BF .4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某商店以每件40元的价格进了一批商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时销售此商品每月的利润可达到4000元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、D5、B6、B7、A8、C9、D 10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、2(1)(1)m m +-.3、20284、35、.6、-1三、解答题(本大题共6小题,共72分)1、无解2、(1)6m <且2m ≠;(2)12x =-,243x =- 3、略.4、(1)2(2)略5、()117、20;()22次、2次;()372;()4120人.6、(1)20%;(2)60元。

学生专用冀教版九年级上册数学期末测试卷及含答案完整版

学生专用冀教版九年级上册数学期末测试卷及含答案完整版

冀教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若x=2是方程x2-x+a=0的一个根,则( )A.a=1B.a=2C.a=-1D.a=-22、在Rt△ABC中,∠C=90°,a=4,b=3,则cosA的值是()A. B. C. D.3、如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9B.2:5C.2:3D. :4、下列等式:①sin30°+sin30°=sin60°;②sin25°=cos65°;③cos45°=sin45°;④cos62°=sin18°.其中正确的个数是()A.1B.2C.3D.45、如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB 方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为()A. B.2 C.2 D.36、如图,以某点为位似中心,将△OAB进行位似变换得到△DFE,若△OAB与△DFE的相似比为k,则位似中心的坐标与k的值分别为()A.(2,2),2B.(0,0),2C.(2,2),D.(0,0),7、某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x,则下面列出的方程中正确的是().A.1185X 2=580B.1185(1-X) 2=580C.1185(1-X2)=580 D.580(1+X) 2=11858、一元二次方程的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根 D.以上都不对9、关于x的一元二次方程有两个不相等的实数根,则的取值范围是()A. B. C. D.10、甲、乙、丙、丁四名射击运动员参加了预选赛,他们射击成绩的平均环数及方差s2如表所示.甲乙丙丁8 9 9 8s2 1 1 1.2 1.3如果选出一个成绩较好且状态稳定的运动员去参赛,那么应选()A.甲B.乙C.丙D.丁11、一元二次方程x2-2x+1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根12、方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.15C.12或15D.17或1113、下列各点中,在反比例函数y=图象上的点是()A.(1,6)B.(2,3)C.(-2,-3)D.(-3,2)14、函数y=的图象经过点(2,8),则下列各点不在y=图象上的是()A.(4,4)B.(-4,-4)C.(8,2)D.(-2,8)15、如图,AC是⊙O的直径,弦BD⊥AO于点E,连结BC,过点O作OF⊥BC于点F,若BD=8cm,AE=2cm,则OF的长度是()A. cmB. cmC.2.5cmD.3cm二、填空题(共10题,共计30分)16、一个物体重 100N,物体对地面的压强 P(单位:Pa)随物体与地面的接触面积 S(单位:㎡)变化而变化的函数关系式是________.17、关于x的方程mx2﹣2x+1=0有实数解,则m需满足________.18、要从甲,乙两名运动员中选出一名参加市运会射击项目比赛,对这两名运动员进行了10次射击测试,经过数据分析,甲,乙两名运动员的平均成绩均为8(环),甲的方差为1.2(环2),乙的方差为1(环2),则这10次测试成绩比较稳定的运动员是________(填“甲”、“乙”).19、如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于________.20、如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=________度.21、从-2,-1,0,1,2这5个数中随机抽取一个数记为a,则使直线与双曲线有1个交点的概率为________.22、已知关于x的方程x2+mx﹣6=0的一个根为2,则m=________,另一个根是________.23、如图,在直角三角形中,是斜边上的高,,则的值为________.24、在矩形中,,点在边上,连接将沿折叠,若点的对称点到的距离为,则的长为________.25、某中学组织初二学生开展篮球比赛,以班为单位单循环形式(每两班之间赛一场),现计划安排15场比赛,则共有多少个班级参赛?设有x个班级参赛,根据题意,可列方程为________.三、解答题(共5题,共计25分)26、解方程:4(x+1)2=9(2x-1)227、如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC=,OE=3;求:(1)⊙O的半径;(2)阴影部分的面积。

冀教版九年级数学上册期末测试卷及答案【完整版】

冀教版九年级数学上册期末测试卷及答案【完整版】

冀教版九年级数学上册期末测试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( ) A .2B .12C .﹣2D .12-2.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( ) A .y=(x ﹣4)2+7 B .y=(x+4)2+7 C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.若正多边形的一个外角是60︒,则该正多边形的内角和为( ) A .360︒B .540︒C .720︒D .900︒4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( ) A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.用配方法解方程2x 2x 10--=时,配方后所得的方程为( )A .2x 10+=()B .2x 10-=()C .2x 12+=()D .2x 12-=()7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADGBGHS S △△的值为( )A .12B .23 C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2﹣|18|+(﹣12)﹣3=_____. 2.因式分解:a 3-ab 2=____________.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解方程:12133x x x-+=--2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x . (1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF∠的度数.=时,求BEF4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、B6、D7、D8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-72、a(a+b)(a﹣b)3、k<44、12 5.5、406、24 5三、解答题(本大题共6小题,共72分)1、1x=2、(1)k﹥34;(2)k=2.3、()1略;()2BEF67.5∠=.4、(1)略;(2)45°;(3)略.5、(1)34;(2)1256、(1)120件;(2)150元.。

冀教版九年级上数学期末试卷(含解析答案)

冀教版九年级上数学期末试卷(含解析答案)

冀教版九年级(上)数学期末试卷一一、选择题(共10小题,每小题2分,计20分)1.﹣2的绝对值是()A .2B .12C .12-D .2-2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是()A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.下列说法正确的是()A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.用配方法将二次函数y =x 2﹣2x 化为y =a (x ﹣h )2+k 的形式为()A .y =﹣(x ﹣1)2+1B .y =(x +1)2﹣1C .y =(x +1)2+1D .y =(x ﹣1)2﹣15.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S 2(单位:千克2)如表所示:甲乙丙丁24242320S 2 2.1 1.92 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A .甲B .乙C .丙D .丁6.如图,若△ABC 与△A 1B 1C 1是位似图形,则位似中心的坐标为()A .(1,0)B.(0,1)C .(﹣1,0)D .(0,﹣1)7.如图,在⊙O 中,已知=,则AC 与BD 的关系是()A .AC =BDB .AC <BDC .AC >BDD .不确定8.在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.9.如图,圆锥体的高h=2cm,底面圆半径r=2cm,则圆锥体的全面积为()cm2.A.12πB.8πC.4πD.(4+4)π10.直线y=23x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0)B.(-6,0)C.(-52,0)D.(-32,0)二、填空题(共9小题,每空2分,计22分)11.(2的平方根是.12.(2分)因式分解:x3﹣4x=.13.(2分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=.14.(4分)已知二次函数y=﹣x2+bx+c中函数y与自变量x之间部分对应值如表所示,点A(x1,y1),B(x2,y2),在函数图象上.x…0123…y…m n3n…则表格中的m=;当﹣1<x1<0,3<x2<4时,y1和y2的大小关系为.15.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=3.点D是AB上一动点,以DC为斜边向右侧作等腰直角三角形CDE,使∠CED=90°,连接BE.(1)若点E恰好落在AB上,则AD的值为;(2)线段BE的最小值为.16.(2分)已知线段a=4cm,b=9cm,则线段a,b的比例中项为cm.17.(2分)如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1S2.(填“>”或“<”或“=”)18.(2分)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于.19.(2分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.三、计算题(共2小题,计8分)20.(1)(2分)解方程:x2﹣1=2(x+1)(2)(2分)计算:2cos30°﹣tan45°﹣.21.(4分)先化简,再求值:2443(1)11m m mm m-+÷----,其中2m=-.四、解答题(共5小题,计50分)22.(10分)钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,尽量呆在家,勤洗手,多运动,多看书,少熬夜.”重庆实验外国语学校为鼓励学生抗疫期间在家阅读,组织八年级全体同学参加了疫期居家海量读书活动,随机抽查了部分同学读书本数的情况统计如图所示.(1)本次共抽查学生人,并将条形统计图补充完整;(2)读书本数的众数是本,中位数是本.(3)在八年级2000名学生中,读书15本及以上(含15本)的学生估计有多少人?(4)在八年级六班共有50名学生,其中读书达到25本的有两位男生和两位女生,老师要从这四位同学中随机邀请两位同学分享读书心得,试通过画树状图或列表的方法求恰好是两位男生分享心得的概率.23.(8分)如图,已知反比例函数(k1>0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2.(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?24.(12分)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.25.(8分)如图,在矩形ABCD中,AB=6,AD=11.直角尺的直角顶点P在AD上滑动时(点P 与A,D不重合),一直角边始终经过点C,另一直角边与AB交于点E.(1)△CDP与△PAE相似吗?如果相似,请写出证明过程;(2)当∠PCD=30°时,求AE的长;(3)是否存在这样的点P,使△CDP的周长等于△PAE周长的2倍?若存在,求DP的长;若不存在,请说明理由.26.(12分)如图,在四边形ABCD中,AB=20,AD=8,AD⊥AB,DC⊥BC,sin B=,P是AD 上一点,以点P为圆心的圆切BC于点T,分别交AB,AD的延长线于点M,N,设AP=x.(1)当x=0时,求扇形PMN的面积;(2)求BC的长;(3)若⊙P上的点到点A,D的距离均不小于8,求x的取值范围.冀教版九年级(上)数学期末试卷一参考答案与试题解析一、选择题1.A2.B3.D4.【解答】解:y=x2﹣2x=x2﹣2x+1﹣1=(x﹣1)2﹣1,故选:D.5.【解答】解:因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选:B.6.【解答】解:如图所示:位似中心的坐标为(0,﹣1).故选:D.7.【解答】解:∵=,∴,∴,∴AC=BD.故选:A.8.【解答】解:(1)当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:A.9.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:A.10.C二、填空题11.±2.12.x(x+2)(x﹣2)13.【解答】解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.14.【解答】解:由表可知,抛物线的对称轴为直线x=2,∴函数解析式为y=﹣(x﹣2)2+3,当x=0时,m=﹣1,∵a=﹣1,∴函数图象开口向下,∵﹣1<x1<0,3<x2<4,∴y1<y2.故答案为﹣1;y1<y2.15.【解答】解:(1)若点E恰好落在AB上时,∵∠CED=90°,∴CE⊥AB,在△ABC中,∠ACB=90°,∠A=30°,BC=3,∴AB=2BC=6,AC=BC=3,∵CE=DE=,∴AD=AE﹣DE=,故答案为;(2)解:以AC为斜边在AC右侧作等腰直角三角形AE1C,边E1C与AB交于点G,连接E1E延长与AB交于点F,连接CF,作BE2⊥E1F于点E2.∵Rt△DCE与Rt△AE1C为等腰直角三角形,∴∠DCE=∠CDE=∠ACE1=∠CAE1=45°,∴∠ACD=∠E1CE,∵==,∴△ACD∽△E1CE,∴∠CAD=∠CE1E=30°,∵D为AB上的动点,∴E在直线E1E上运动,当BE2⊥E1F时,BE最短,即为BE2的长.在△AGC与△E1GF中,∠AGC=∠E1GF,∠CAG=∠GE1F,∴∠GFE1=∠ACG=45°,∴∠BFE2=45°,∵∠CAD=∠CE1F=30°,∴点A、C、F、E1四点共圆,∴∠AE1C=∠AFC=90°,且∠ABC=60°,则∠BCF=30°,∴BF=BC=3=,∴BE2=BF=×=,故答案为.16.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则x2=4×9,x=±6,(线段是正数,负值舍去),故填6.17.【解答】解;设P(a,b),Q(m,n),则S△ABP=AP•AB=a(b﹣n)=ab﹣an,S△QMN=MN•QN=(m﹣a)n=mn﹣an,∵点P,Q在反比例函数的图象上,∴ab=mn=k,∴S1=S2.18.【解答】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:×2π×5+×2π×5=5π,故答案为:5π.19.12 7三、计算题20.【解答】解:(1)x2﹣1=2(x+1),移项,得x2﹣1﹣2x﹣2=0,即x2﹣2x﹣3=0,分解因式,得(x﹣3)(x+1)=0,解得x1=3,x2=﹣1.(2)原式=2×﹣1﹣=﹣1﹣(﹣1)=0.21.22mm-+1-.四、解答题22.【解答】解:(1)本次共抽查学生14÷28%=50(人),读书10本的学生有:50﹣9﹣14﹣7﹣4=16(人),补全的条形统计图如右图所示,故答案为:50;(2)读书本数的众数是10本,中位数是(10+15)÷2=12.5(本),故答案为:10,12.5;(3)2000×=1000(人),即读书15本及以上(含15本)的学生估计有1000人;(4)树状图如下图所示,一共有12种可能性,其中恰好是两位男生可能性有2种,故恰好是两位男生分享心得的概率是.23.【解答】解:(1)在Rt△OAC中,设OC=m.∵tan∠AOC==2,∴AC=2×OC=2m.∵S△OAC=×OC×AC=×m×2m=1,∴m2=1.∴m=1,m=﹣1(舍去).∴m=1,∴A点的坐标为(1,2).把A点的坐标代入中,得k1=2.∴反比例函数的表达式为.把A点的坐标代入y2=k2x+1中,得k2+1=2,∴k2=1.∴一次函数的表达式y2=x+1;(2)B点的坐标为(﹣2,﹣1).当0<x<1或x<﹣2时,y1>y2.24.(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m的值为,1,2.25.【解答】(1)△CDP∽△PAE.证明:∵四边形ABCD是矩形,∴∠D=∠A=90°,CD=AB=6,∴∠PCD+∠DPC=90°,又∵∠CPE=90°,∴∠EPA+∠DPC=90°,∴∠PCD=∠EPA,∴△CDP∽△PAE.(2)在Rt△PCD中,由tan∠PCD=,∴,∴,解法1:由△CDP∽△PAE知:,∴,解法2:由△CDP∽△PAE知:∠EPA=∠PCD=30°,∴;(3)假设存在满足条件的点P,设DP=x,则AP=11﹣x,∵△CDP∽△PAE,根据△CDP的周长等于△PAE周长的2倍,得到两三角形的相似比为2,∴即,解得x=8,此时AP=3,AE=4.26.【解答】解:(1)如图,连接PT,则PT⊥BC,当x=0时,点P与点A重合,此时PB=AB=20,∠MPN=∠MAN=90°,∵∠PTB=90°,sin B=,∴PT=AB•sin B=20×=16,∵∠MPN=∠MAN=90°,∴扇形PMN的面积为;(2)如图,过点A作AE∥BC于点E,过点D作DF⊥AE于点F,则四边形CDFE是矩形,∠BAE+∠B=90°,∴CE=DF,CD=EF,在Rt△ABE中,AE=AB•sin B=20×=16,∴BE===12,∵∠BAD=90°,即∠BAE+∠DAE=90°,∴∠DAE=∠B,∴sin∠DAE=sin B=,在Rt△ADF中,AD=8,∴DF=AD•sin∠DAE=8×=,∴AF===,∴CE=DF=,EF=AE﹣AF=16﹣=,∴CD=EF=,∴BC=BE+CE=12+=,即BC的长是;(3)如图,连接TP并延长交BA的延长线于点G,则∠APG+∠G=90°,∠B+∠G=90°,∴∠APG=∠B,∴sin∠APG=sin B=,∴,设AG=4k,则PG=5k,则AP=3k,∵AP=x,∴,∴,,,在Rt△BGT中,,∴圆的半径,由题意,得,,即,,解得,∴x的取值范围为.。

(新一套)冀教版九年级上册数学期末测试卷及含答案(适用考试)

(新一套)冀教版九年级上册数学期末测试卷及含答案(适用考试)

冀教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC. 若∠A=60°,∠ADC=90°,则∠C的度数是()A.25°B.27.5°C.30°D.35°2、已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A.−2B.2C.−4D.43、如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30°B.35°C.40°D.50°4、某市一中初三年级要组织一场篮球联赛,每两队之间都赛2场,计划安排90场比赛,应邀请多少个球队参加比赛()A.9B.10C.11D.85、若关于的一元二次方程有两个不相等的实数根,则实数的取值范围是()A. 且B.C. 且D.6、如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,那么的值为A. B. C. D.7、如图,已知直线y=﹣x+4与两坐标轴分别相交于点A,B两点,点C是线段AB上任意一点,过C分别作CD⊥x轴于点D,CE⊥y轴于点E.双曲线与CD,CE分别交于点P,Q两点,若四边形ODCE为正方形,且,则k 的值是()A.4B.2C.D.8、如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4B.1:3C.2:3D.1:29、对于一组数据 3,3,2,3,6,3,10,3,6,3,2,下列结论正确的有().①这组数据的众数是3;②这组数据的众数与中位数的数值相等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.A.1个B.2个C.3个D.4个10、已知正五边形ABCDE与正五边形的面积比为1:2,则它们的相似比为()A.1:2B.2:1C.D.11、已知下列方程:①;②;③;④;其中是一元二次方程的有()A.1个B.2个C.3个D.4个12、如图,已知AB∥CD∥EF,那么下列结论中,正确的是()A. B. C. D.13、如图,在直角坐标系中,点P为菱形OACB的对角线AB、OC的交点,其中点B、P在双曲线y=(x>0)上.若点P的坐标为(1,2),则点A的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,) D.(﹣3,)14、一元二次方程x2﹣3x+2=0 的两根分别是x1、x2,则x1+x2的值是()A.3B.2C.﹣3D.﹣215、如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则NM∶MC等于 ( )A.1∶2B.1∶3C.1∶4D.1∶5二、填空题(共10题,共计30分)16、图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的序号是________.①当x=3时,EC<EM;②当y=9时,EC>EM③当x增大时,EC⋅CF的值增大;④当y增大时,BE⋅DF的值不变。

冀教版九年级数学上册期末测试卷(加答案)

冀教版九年级数学上册期末测试卷(加答案)

冀教版九年级数学上册期末测试卷(加答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<2.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.正十边形的外角和为( )A .180°B .360°C .720°D .1440° 7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,在平行四边形ABCD 中,E 是DC 上的点,DE :EC=3:2,连接AE 交BD 于点F ,则△DEF 与△BAF 的面积之比为( )A .2:5B .3:5C .9:25D .4:25二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:2ab a -=_______.3.若代数式32x x +-有意义,则实数x 的取值范围是__________. 4.在Rt ABC ∆中,90C =∠,AD 平分CAB ∠,BE 平分ABC ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC =__________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:12211x x x +=-+2.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.=,D是AB边上一点(点D与A,3.如图,在ABC中,ACB90∠=,AC BCB不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.1()求证:ACD≌BCE;()当AD BF2∠的度数.=时,求BEF4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、B5、B6、B7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、a(b+1)(b﹣1).3、x≥-3且x≠24、55、5.6、 1三、解答题(本大题共6小题,共72分)x=1、32、(1)y=﹣x2﹣2x+3;(2)抛物线与y轴的交点为:(0,3);与x轴的交点为:(﹣3,0),(1,0);(3)15.∠=.3、()1略;()2BEF67.5.4、(1)DE与⊙O相切,理由略;(2)阴影部分的面积为2π﹣25、(1)30;(2)①补图见解析;②120;③70人.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m2、50m2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。

冀教版数学九年级上册期末试卷及答案

冀教版数学九年级上册期末试卷及答案

冀教版数学九年级上册期末测试卷1一、单选题1.已知关于x的方程x2-kx-3=0的一个根为3,则k的值为()A. 1B. -1C. 2D. -22.下列命题中,不正确的命题是()A. 平分一条弧的直径,垂直平分这条弧所对的弦B. 平分弦的直径垂直于弦,并平分弦所对的弧C. 在⊙O中,AB、CD是弦,则AB CDD. 圆是轴对称图形,对称轴是圆的每一条直径.3.一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分 81 79 ■ 80 82 ■80那么被遮盖的两个数据依次是()A. 80,2B. 80,C. 78,2D. 78,4.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元.下列所列方程中正确的是()A. 168(1+a)2=128B. 168(1﹣a%)2=128C. 168(1﹣2a%)=128D. 168(1﹣a2%)=1285.如图,△ABC内接于⊙O,作OD⊥BC于点D,若∠A=60°,则OD:CD的值为()A. 1:2B. 1:C. 1:D. 2:6.若反比例函数y= 的图象经过点(2,3),则它的图象也一定经过的点是()A. (﹣3,﹣2)B. (2,﹣3)C. (3,﹣2)D. (﹣2,3)7.下列四条线段中,不能成比例的是()A.a=3,b=6,c=2,d=4B.a=1,b= ,c= ,d=4C.a=4,b=5,c=8,d=10D.a=2,b=3,c=4,d=58.如图,已知⊙O的半径等于1cm,AB是直径,C,D是⊙O上的两点,且==,则四边形ABCD的周长等于()A. 4cmB. 5cmC. 6cmD. 7cm9.如图,△ADE∽△ABC,若AD=1,BD=2,则△ADE与△ABC的相似比是().A. 1:2B. 1:3C. 2:3D. 3:210.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A. ∠C=2∠AB. BD平分∠ABCC. S△BCD=S△BODD. 点D为线段AC的黄金分割点二、填空题11.若,则的值为________.12.已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是________.13.墙壁CD上D处有一盏灯(如图),小明站在A站测得他的影长与身长相等都为1.5m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=________m.14.三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是________.15.如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=________.16.若关于x的一元二次方程x2+4x﹣k=0有实数根,则k的最小值为________.17.点A(-2,5)在反比例函数(k≠0)的图象上,则k的值是________.18.在△ABC中,∠C=90°,AC=4,点G为△ABC的重心.如果GC=2,那么sin∠GCB的值是________.19.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=________度.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题21.计算:.22.如图所示,在△ABC中,CE,BD分别是AB,AC边上的高,求证:B,C,D,E四点在同一个圆上.23.如图,在Rt△ABC中,∠A=90º,AB=6,BC=10,D是AC上一点,CD=5,DE⊥BC于E.求线段DE的长.24.如图,在⊙O中,AB为直径,点B为的中点,直径AB交弦CD于E,CD=2,AE=5.(1)求⊙O半径r的值;(2)点F在直径AB上,连接CF,当∠FCD=∠DOB时,求AF的长.25.已知:关于x的方程x2+4x+(2﹣k)=0有两个不相等的实数根.(1)求实数k的取值范围.(2)取一个k的负整数值,且求出这个一元二次方程的根.26.已知:如图,AB为⊙O的直径,CE⊥AB于E,BF∥OC,连接BC,CF.求证:∠OCF=∠ECB.27.如图,一艘轮船以18海里/时的速度由西向东方向航行,行至A处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,求轮船与灯塔的最短距离.(精确到0.1,≈1.73)28.李明对某校九年级(2)班进行了一次社会实践活动调查,从调查的内容中抽出两项.调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上为“优秀毕业生”,小聪、小亮的三项成绩如右表:(单位:分)综合素质考试成绩体育测试满分 100 100 100小聪 72 98 60小亮 90 75 95调查二:对九年级(2)班50名同学某项跑步成绩进行调查,并绘制了一个不完整的扇形统计图,请你根据以上提供的信息,解答下列问题:(1)小聪和小亮谁能达到“优秀毕业生”水平?哪位同学的毕业成绩更好些?(2)升入高中后,请你对他俩今后的发展给每人提一条建议.(3)扇形统计图中“优秀率”是多少?(4)“不及格”在扇形统计图中所占的圆心角是多少度?29.如图,D在AB上,且DE∥BC交AC于E,F在AD上,且AD2=AF•AB.求证:EF∥CD.30.如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,⊙P的半径为2.(1)写出A、B、C、D四点坐标;(2)求过A、B、D三点的抛物线的函数解析式,求出它的顶点坐标.(3)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式参考答案一、单选题1.【答案】C∵方程x2-kx-3=0的一个根为3,∴将x=3代入方程得:9-3k-3=0,解得:k=2.故选C2.【答案】C在圆内的弦不一定平行,故C选项错误.3.【答案】C解:根据题意得:80×5﹣(81+79+80+82)=78,方差= [(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]=2.故答案为:C4.【答案】B解:当商品第一次降价a%时,其售价为168﹣168a%=168(1﹣a%);当商品第二次降价a%后,其售价为168(1﹣a%)﹣168(1﹣a%)a%=168(1﹣a%)2.∴168(1﹣a%)2=128.故选B.5.【答案】C解:连接OB,OC,∵∠A=60°,∴∠BOC=2∠A=120°.∵OB=OC,OD⊥BC,∴∠COD= ∠BOC=60°,∴=cot60°= ,即OD:CD=1:.故选C.6.【答案】A根据题意得k=2×3=6,所以反比例函数解析式为y= ,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y= 的图象上.故答案为:A.7.【答案】DA、2×6=3×4,能成比例,不符合题意;B、4×1= ×2 ,能成比例,不符合题意;C、4×10=5×8,能成比例,不符合题意;D、2×5≠3×4,不能成比例,符合题意.故答案为:D.8. 【答案】B解:如图,连接OD、OC.∵==(已知),∴∠AOD=∠DOC=∠COB(在同圆中,等弧所对的圆心角相等);∵AB是直径,∴∠AOD+∠DOC+∠COB=180°,∴∠AOD=∠DOC=∠COB=60°;∵OA=OD(⊙O的半径),∴△AOD是等边三角形,∴AD=OD=OA;同理,得OC=OD=CD,OC=OB=BC,∴AD=CD=BC=OA,∴四边形ABCD的周长为:AD+CD+BC+AB=5OA=5×1cm=5cm;故选:B.9.【答案】B∵AD=1,BD=2,∴AB=AD+BD=3.∵△ADE∽△ABC,∴AD:AB=1:3.∴△ADE与△ABC的相似比是1:3.故选B.10. 【答案】CA、∵∠A=36°,AB=AC,∴∠C=∠ABC=72°,∴∠C=2∠A,正确,故本选项错误。

冀教版数学九年级上册期末测试卷及答案

冀教版数学九年级上册期末测试卷及答案

冀教版数学九年级上册期末测试卷注意事项:1.答卷前,先将密封线左侧的项目填写清楚.2.答卷时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上. 题号 一 二 三总分 20 21 22 23 24 25 26 得分一、选择题:(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2cos 45°的值等于……………………………………………【 】 (A )2(B )22 (C )42(D )222.一元二次方程x 2 – 2x = 0的解是……………………………………………………【 】(A )0 (B )0或2 (C )2 (D )此方程无实数解3.数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB =c ,一条直角边BC =a ,小明的作法如图1,你认为这种作法中判断∠ACB 是直角的依据是………………【 】 (A ) 勾股定理 (B ) 勾股定理是逆定理 (C ) 直径所对的圆周角是直角 (D ) 90°的圆周角所对的弦是直径4.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图2的统计图.在每天所走的步数这组数据中,众数和中位数分别是…………………………………………………【 】 (A )1.2,1.3 (B )1.4,1.3 (C )1.4,1.35 (D )1.3,1.35.如图3,在平面直角坐标系中,已知点O (0,0),A (6,0),B (0,8),以某点为位似中心,作出与△AOB 的位似比为k 的位似△CDE ,则位似中心的坐标和k 的值分别为………………………………………………………………………………【 】 (A )(0,0),2 (B )(2,2),2 (C )(2,2),21 (D )(1,1),21得 分 评卷人图2 图1 图3A N DBC EM 图7 6.已知二次函数y=ax 2+bx +c 的x 、y 的部分对应值如下表:x ﹣1 0 1 2 3 y51﹣1﹣11则该二次函数图象的对称轴为…………………………………………………【 】(A )y 轴 (B )直线x =25 (C )直线x =1 (D )直线x =237.在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形又是轴对称图形的概率是……………………………【 】(A ) 1 (B ) (C ) (D ) 8.如图4,函数y=xk的图象经过点A (1,﹣3),AB 垂直x 轴 于点B ,则下列说法正确的是………………………【 】 (A )k =3 (B )x <0时,y 随x 增大而增大 (C )S △AOB =3 (D )函数图象关于y 轴对称9.如图5,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =35°,则∠OAC 的度数是…【 】(A )35°(B )70° (C )65° (D )55° 10.某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电………………………………………………………………【 】 (A )41度 (B )42度 (C )45.5度 (D )46度11.如图6,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是………………【 】 (A )32 cm(B )3 cm(C )332 cm (D )1cm 12.如图7,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则NM ∶MC等于……………………………………………………………………【 】 (A )1∶2 (B )1∶3 (C )1∶4 (D )1∶513.某厂前年缴税30万元,今年缴税36.3万元,若该厂缴税的年平均增长率为x ,则可列方程…………………………………………………………………………………【 】 (A ) 30x 2=36.3 (B ) 30(1-x )2=36.3 (C ) 30+30(1+x )+30(1+x )2=36.3 (D ) 30(1+x )2=36.3 14. 如图8,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53cos =α, AB = 4, 则AD 的长为…………………………………………………………………………【 】图6 图5 图4(A )316 (B )320 (C )3 (D )51615.如图9为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是…………【 】 (A )△ACD 的外心(B )△ABC 的内心 (C )△ACD 的内心 (D )△ABC 的外心 16.如图10,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac <b 2; ②方程ax 2+bx+c =0的两个根是x 1=﹣1,x 2=3;③3a +c >0; ④当y >0时,x 的取值范围是﹣1≤x <3;⑤当x <0时,y 随x 增大而增大;其中结论正确的个数是……………………………………………………【 】 (A )4个 (B )3个 (C )2个 (D )1个二、填空题:(本大题共3个小题,17-18每小题3分,19每空2分,共10分.把答案写在题中横线上)17.二次函数y =2(x ﹣3)2﹣4的最小值为 . 18.如图11,在△ABC 中,∠ACB =90°,AC =1,AB =2,以 A 为圆心,以AC 为半径画弧,交AB 于D ,则扇形CAD 的周长是 .(结果保留 )19.如图12,已知∠AOB =30°,在射线OA 上取点O 1,以 O 1为圆心的圆与OB 相切;在射线O 1A 上取点O 2,以O 2为圆心,O 2O 1为半径的圆与OB 相切;在射线O 2A 上取点O 3,以O 3为圆心,O 3O 2为半径的圆与OB 相切;…;在射线O 2017A 上取点O 2018,以O 2018为圆心,O 2018O 2017为半径的圆与OB 相切.若⊙O 1的半径为1,则⊙O 2的半径长是 ;⊙O 2018的半径长是 .三、解答题(本大题共6个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 得 分 评卷人得 分评卷人图10A B C D E 图8 图9 图12图1120. (本题满分9分)已知关于x 的一元二次方程x 2+3x +1﹣m =0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为负整数,求此时方程的根.21. (本题满分9分)为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成图13-1的条形统计图和图13-2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图13-1的条形统计图.(2)在图13-2扇形统计图中,m 的值为_____,表示“D 等级”的扇形的圆心角为_____度; (3)组委会决定从本次比赛获得A 等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.22. (本题满分9分)如图14,某学校的围墙CD 到教学楼AB 的距离CE =22.5米,CD =3米.该学校为了纪念校庆准备彩旗连接线AC ,∠ACE =22°.(1)求彩旗的连接线AC 的长(精确到0.1m );(2)求教学楼高度AB .(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.4)得 分 评卷人得 分评卷人A BC DE 22°图13-1 图13-223. (本题满分9分)如图15,在平面直角坐标系中, 的边AB =2,顶点A 坐标为(1,b ),点D 坐标为(2,b +1).(1)点B 的坐标是_____,点C 的坐标是_____(用b 表示);(2)若双曲线ky x=过 ABCD 的顶点B 和D ,求该双曲线的表达式;(3)若 与双曲线4(0)y x x=>总有公共点, 求b 的取值范围.24. (本题满分10分)如图16,△ABC ∽△DEC ,CA =CB ,且点E 在AB 的延长线上.(1)求证:AE =BD ;(2)求证:△BOE ∽△COD .(3)已知:CD =10,BE =5,求OE 的长.得 分 评卷人得 分评卷人B图16 A CD E O图1525. (本题满分10分)经研究表明,某市跨河大桥上的车流速度V (单位:千米/时)是车流密度x (单位:辆/千米)的函数,函数图像如图17所示.(1)求当28≤x ≤188时,V 关于x 的函数表达式;(2)求车流量P (单位:辆/时)与车流密度x 之间的函数关系式.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度) (3)若车流速度V 不低于50千米/时,求当车流密度x 为多少时,车流量P 达到最大,并求出这一最大值.26. (本题满分12分)如图18-1,以边长为8的正方形纸片ABCD 的边AB 为直径作⊙O ,交对角线AC 于点E .(1)线段AE =____________;(2)如图18-2,以点A 为端点作∠DAM =30°,交CD 于点M ,沿AM 将四边形ABCM 剪掉,得 分 评卷人得 分 评卷人 图18-1 图18-2 图18-3 V (千米/时) 图17使Rt△ADM绕点A逆时针旋转(如图18-3),设旋转角为α(0°<α<150°),旋转过程中AD与⊙O 交于点F.①当α=30°时,请求出线段AF的长;②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;③当α=___________°时,DM与⊙O相切.备用图备用图第一学期期末教学质量检测九年级数学答案一、选择题: 题号 1 2 3 4 5 6 7 8 答案 A B C B C D C B 题号 9 10 11 12 13 14 15 16 答案DCABDADB二、填空题: 题号 17 18 19 答案 -42+32,22017三、解答题:20.解:(1)∵关于x 的一元二次方程x 2+3x +1﹣m =0有两个不相等的实数根,∴△=b 2﹣4ac =32﹣4(1﹣m )>0,………………………………………2分 即5+4m >0,解得:m >﹣. ………………………………………4分 ∴m 的取值范围为m >﹣.(2)∵m 为负整数,且m >﹣,∴m =﹣1 …………………………………………………………………………6分 将m =﹣1代入原方程得:x 2+3x +2=0,解得:x 1=﹣1,x 2=﹣2. ………………………………………………………9分 故当m =﹣1时,此方程的根为x 1=﹣1和x 2=﹣2.21.解:(1)根据题意得:3÷15%=20(人)∴参赛学生共20人……………………………………………………………2分B 等级人数5人图略…………………………………………………………3分 (2)40,72 ………………………………………………………………………5分(3)列表如下:男 女 女 男(男,女)(男,女)女 (男,女) (女,女)女(男,女)(女,女)……………………………………………………………………………………8分 所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种, 则P 恰好是一名男生和一名女生==………………………………………………………9分 22.解:(1)在Rt △ACE 中,cos 22°=ACCE………………………………………………2分 ∴AC =22cos CE=93.05.22≈24.2 m ………………………………………………………4分 答:彩旗的连接线AC 的长是24.2m. (2) 在Rt △ACE 中, tan 22°=CEAE…………………………………………………………………6分 ∴AE =CE ·tan 22° =22.5×0.4=9 m ……………………………………………………………………8分 ∴AB =AE +BE =9+3=12m ………………………………………………………9分 23.解:(1)B (3,b ),C (4,b +1) …………………………………………………2分(2)∵双曲线ky x=过点B (3,b )和D (2,b +1) ∴3b =2(b +1) …………………………………………………………… 3分 解得b =2, …………………………………………………………………4分 ∴B 点坐标为(3,2),D 点坐标(2,3) ………………………………5分 把B 点坐标(3,2)代入ky x=,解得k =6;……………………………6分 (3)∵ ABCD 与双曲线4(0)y x x=>总有公共点 ∴当点A (1,b )在双曲线y x =,得到b =4……………………………7分当点C (4,b +1)在双曲线4y x=,得到b =0…………………………8分∴b 的取值范围0≤b ≤4 ……………………………………………………9分24.证明(1)∵△ABC ∽△DEC ,CA =CB ,∴CE =CD ,∠ACB =∠ECD ,……………………………………………1分 ∴∠ACE =∠BCD在△ACE 和△BCD 中,CA =CB ,CE =CD ,∠ACE =∠BCD ,∴△ACE ≌△BCD .…………………………………………………………3分 ∴AE =BD . …………………………………………………………………4分 (2)∵△ACE ≌△BCD . ∴∠AEC =∠BDC∵∠DOC =∠EOB ,∴△COD ∽△BOE . ………………………………………………………6分(3)∵△BOE ∽△COD . ∴EOCOBE CD =………………………………………………………………7分 ∵CD =10,BE =5 ∴EO CO =510即12=EO CO …………………………………………………8分∵CE =CD=10∴320103232=⨯==CE CO …………………………………………10分 25.解:(1)由图像可知,当28≤x ≤188时,V 是x 的一次函数,设函数解析式为V =kx +b ……………………………1分则⎩⎨⎧=+=+01888028b k b k ……………………………………………………………2分解得⎪⎪⎨⎧=−=9421b k所以当x =88时,P 取得最大为4400.………………………………………10分11 26.解:(1)24 ………………………………………2分 (2)①连接OA 、OF ,由题意得,∠NAD =30°,∠DAM =30°,故可得∠OAM =30°,则∠OAF =60°,又∵OA =OF ,∴△OAF 是等边三角形,∵OA =4,∴AF =OA =4;……………………………5分②连接B 'F ,此时∠NAD =60°,∵AB '=8,∠DAM =30°,∴AF =AB 'cos ∠DAM =34238=⨯; ……………………………………………7分此时DM 与⊙O 的位置关系是相离;过点O 作OE ⊥DM ,∴OE =OM cos ∠MOE∵AM =331623830cos 0==AD∴OE =OM cos ∠MOE =43282343316>−=⨯⎪⎪⎭⎫⎝⎛− ………………………9分∴DM 与⊙O 的位置关系是相离…………………………………………………10分 ③90° …………………………………………………………………………12分图18-3 备用图 E备用图。

冀教版九年级数学上册期末测试卷及答案【一套】

冀教版九年级数学上册期末测试卷及答案【一套】

冀教版九年级数学上册期末测试卷及答案【一套】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±13.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .66.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=7.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为( )A.14B.16C.90α-D.44α-8.在同一坐标系内,一次函数y ax b=+与二次函数2y ax8x b=++的图象可能是()A. B.C.D.9.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④10.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5 B.3:5 C.9:25 D.4:25二、填空题(本大题共6小题,每小题3分,共18分)13816-=_____.2.分解因式:x 3﹣16x =_____________.3.若代数式32x x +-有意义,则实数x 的取值范围是__________. 4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2. 6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、C5、B6、A7、A8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、x (x +4)(x –4).3、x ≥-3且x ≠24、125.5、4π6、 1三、解答题(本大题共6小题,共72分)1、32x =-. 2、(1)6m <且2m ≠;(2)12x =-,243x =- 3、(1)略;(2)S 平行四边形ABCD =244、河宽为17米5、(1)50;(2)见解析;(3)16.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。

冀教版九年级数学上册期末测试卷(附答案)

冀教版九年级数学上册期末测试卷(附答案)

冀教版九年级数学上册期末测试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ).A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)123.2.因式分解:a 3-a =_____________.3.函数32y x x =-+x 的取值范围是__________. 4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为________.6.如图是一张矩形纸片,点E在AB边上,把BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=_____,BE=__________.三、解答题(本大题共6小题,共72分)1.解分式方程:24 1x-+1=11xx-+2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G=;(1)求证:EF BC(2)若65∠=︒,求FGC∠的度数.ACBABC∠=︒,285.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、C5、C6、A7、D8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1.2、a (a -1)(a + 1)3、23x -<≤4、140°5、6、 1三、解答题(本大题共6小题,共72分)1、无解.2、123、(1)相切,略;(2).4、(1)略;(2)78°.5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冀教版九年级数学上册期末综合检测试卷
一、单选题(共10题;共30分)
1.如果∠α是等边三角形的一个角,那么cosα的值等于()
A. B. C. D.1
2.在反比例函数图象的每一支曲线上,y都随x的增大而减小,则k的取值围是
A.k>3
B.k>0
C.k<3
D.k<0
3.正方形网格中,如图放置,则tan的值是()
A. B. C. D.2
4.在Rt△ABC中,∠C=90°,AB=13,AC=12,则sinB的值是
A. B. C. D.
5.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC 于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()
A. B. C. D.
6.在半径为12的⊙O中,60°圆心角所对的弧长是()
A.6π
B.4π
C.2π
D.π
7.某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是()
A.30吨
B.31吨
C.32吨
D.33吨
8.关于关于x的一元二次方程x2+x-2=0的根的情况是()
A.有两个不相等的实数根
B.有两个相等的实数根
C.无实数根
D.无法判断
9.下列说确的是()
A.长度相等的弧是等弧
B.圆既是轴对称图形,又是中心对称图形
C.弧是半圆
D.三点确定一个圆
10.某小组5名同学在一周参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说确的是()劳动时间(小时)3 3.5 4 4.5
人数 1 1 2 1
A.中位数是4,平均数是3.75
B.众数是4,平均数是3.75
C.中位数是4,平均数是3.8
D.众数是2,平均数是3.8
二、填空题(共10题;共30分)
11.方程的解为________.
12.△ABC的三边分别为、、2,△A′B′C′的两边长分别为2和2 ,如果△ABC∽△A′B′C′,那么△A′B′C′的第三边的长是________.
13.若方程x2﹣bx+2=0的一个根为1,则另一个根为________.
14.如图,在Rt△ABC画有边长为9,6,x的三个正方形,则x的值为________.
15.如图,PA、PB是⊙0的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC=________.
16.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是________.
17.已知y是x的反比例函数,当x=3时,y=8,则这个函数关系式为________.
18.如图,已知▱ABCD,∠A=45°,AD=4,以AD为直径的半圆O与BC相切于点B,则图中阴影部分的面积为________(结果保留π).
19.如图,,DE=2AE,CF=2BF,且DC=5,AB=8,则EF=________.
20.如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D 不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为________.
三、解答题(共8题;共60分)
21.求下列x的值:
(1)x2﹣25=0(2)(x+5)2=16.
22.如图所示.在△ABC中,EF∥BC,且AE:EB=m,求证:AF:FC=m.
23.如图,以O为位似中心,在网格作出四边形ABCD的位似图形,使新图形与原图形的相似比为2:1,并以O为原点,写出新图形各点的坐标.
24.某校举行黑板报评比,由参加评比的10个班各派一名同学担任评委,每个班的黑板报得分取各个评委所给分值的平均数,下面是各评委给八年级(6)班黑板报的分数:
该班的黑板报的得分是多少?此得分能否反映其设计水平?
25.如图,小明一家自驾到古镇游玩,到达地后,导航显示车辆应沿北偏西方向行驶12 千米至地,再沿北偏东方向行驶一段距离到达古镇,小明发现古镇恰好在地的正
北方向,求两地的距离.(结果保留根号)
26.如图,半圆O的直径AB=8,半径OC⊥AB,D为弧AC上一点,DE⊥OC,DF⊥OA,垂足分别为E、F,求EF的长.
27.(2017•)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).
(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)
28.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值围.
(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?
(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
答案解析部分
一、单选题
1.【答案】A
2.【答案】A
3.【答案】D
4.【答案】B
5.【答案】D
6.【答案】B
7.【答案】C
8.【答案】A
9.【答案】B
10.【答案】C
二、填空题
11.【答案】
12.【答案】
13.【答案】2
14.【答案】4
15.【答案】20°
16.【答案】
17.【答案】
18.【答案】6﹣π
19.【答案】7
20.【答案】
三、解答题
21.【答案】解:(1)∵x2﹣25=0,
∴x2=25,
∴x=±5.
(2)∵(x+5)2=16,
∴x+5=±4,
∴x=﹣1或﹣9.
22.【答案】证明:∵EF∥BC,∴AF:FC=AE:EB,
∵AE:EB=m,
AF:FC=m
23.【答案】解:如图所示,新图形为四边形A′B′C′D′,
新图形各点坐标分别为A′(2,4),B′(4,8),C′(8,10),D′(6,2).
24.【答案】解答:解:该班的黑板报的得分是=8.36(分),∴该班的黑板报的得分是8.36分;不能反映其设计水平,因为有两个评委给出了异常分.
25.【答案】解:过点B作BH⊥AC于点H
∴∠BHC=∠AHB=90°
根据题意得:∠CBH=45°,∠BAH=60°,AB=12
∴BH=ABsin60°=

故答案为:
26.【答案】解:连接OD.
∵OC⊥AB DE⊥OC,DF⊥OA,
∴∠AOC=∠DEO=∠DFO=90°,
∴四边形DEOF是矩形,
∴EF=OD.
∵OD=OA
∴EF=OA=4.
27.【答案】解:由题意可得:∠AOC=90°,OC=5km.
在Rt△AOC中,
∵tan34°= ,
∴OA=OC•tan34°=5×0.67=3.35km,
在Rt△BOC中,∠BCO=45°,
∴OB=OC=5km,
∴AB=5﹣3.35=1.65≈1.7km,
答:A,B两点间的距离约为1.7km.
28.【答案】解:(1)根据题意得:
y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,
自变量x的取值围是:0<x≤10且x为正整数;
(2)当y=2520时,得﹣10x2+130x+2300=2520,
解得x1=2,x2=11(不合题意,舍去)
当x=2时,30+x=32(元)
答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:
y=﹣10x2+130x+2300
=﹣10(x﹣6.5)2+2722.5,
∵a=﹣10<0,
∴当x=6.5时,y有最大值为2722.5,
∵0<x≤10且x为正整数,
∴当x=6时,30+x=36,y=2720(元),
当x=7时,30+x=37,y=2720(元),
答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.。

相关文档
最新文档