初中数学一次函数课件

合集下载

人教版《一次函数》上课课件PPT初中数学ppt

人教版《一次函数》上课课件PPT初中数学ppt
当自变量x的值为多少时,一次函数y=3x+2的函数值小于0?
在函数 y=kx+b(k≠0)中,当 y<0 时 x 的取值范围.
(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度; 解一元一次不等式:3x+2>0.
因为任何一个以 x 为未知数的一元一次不等式都可以变形为 kx+b>0(k≠0)或 kx+b<0(k≠0)的形式,所以解一元一次不等式可以看作是求一次函数 y=kx+b 的函数值大于 0
解一元一次不等式:3x+2>0.
当自变量x的值为多少时,一次 函数y=3x+2的函数值大于0?
解一元一次不等式:3x+2<0.
当自变量x的值为多少时,一次 函数y=3x+2的函数值小于0?
解一元一次不等式:kx+b>0(k≠0), kx+b<0(k≠0).
当自变量x的值为多少时,一次函数 y=kx+b的函数值大于0,小于0?
课堂练习
1.如图,直线y=ax+b过点A(0,2)和点B(-3,0), 则方程ax+b=0的解是( D) A.x=2 B.x=0 C.x=-1 D.x=-3
2.一次函数y=kx+b(k,b为常数,k≠0)的图象如图所示, 根据图象信息可求得关于x的方程kx+b=3的解为__x_=__2_.
3.如图是函数y=kx+b(k,b是常数,且k≠0)的图象,利用图象直接写出: (1)方程kx+b=0的解; (2)方程kx+b=-2的解; (3)方程kx+b=-3的解. 解:(1)x=2 (2)x=0 (3)x=-1
(2)从第几个月开始小丽的存款数可以超过小华?
解:(1)y1=62+12x,y2=20x (2)由 20x>62+12x 解得 x>734 , 从第 8 个月开始小丽的存款数可以超过小华

初中数学 八年级下册 19-2-2-2一次函数的图像与性质(课件)

初中数学 八年级下册 19-2-2-2一次函数的图像与性质(课件)

y=-
1
连线.
0.5x+1 - O
我们用同样的方法也可以画出 1 -
函数y=-0.5x+1的图象:
1
点(0,1)
y=2x-1 12 x
点(1,0.5)
x
0
1
y=2x-1
-1
1
y=-0.5x+1
1
0.5
两点确定了一条直线, 那函数上的其它点是不 是都在这条直线上呢?
y=-
y
0.5x+1 1
点(0,1)
对函数图象有什么影响?
知识点 2 一次函数的性质
分别画出下面四个函数的图象.
y=x+1
y=-x+1
y=2x+1
y=-2x+l
观 察 观察图象,填写表格.
y=kx+b
b>0 k>0 b=0
b<0 b>0 k<0 b=0 b<0
图象经过的象限
一、二、三
一、三 一、三、四 一、二、四
二、四 二、三、四
y=2x-1
-O 1 2 x
11 点(1,0.5)
x
0
1
y=2x-1
-1
1
y=-0.5x+1
1
0.5
①y=2x-1
y=-
y 点(0.5,
0)
令x=-0.5,此时y= -2 点的坐标为 (-0.5,-2)
0,;.5x+1
1
y=2x-1
令x=0.5,此时y= 0 , 点的坐标为 (0.5,0) .
-O 1 2 x
y和x的变化
y随x的增大 而增大
y随x的增大 而减小

人教版初中数学《一次函数》_课件-完美版

人教版初中数学《一次函数》_课件-完美版

C.y=2x-3 D.y=-x+3
4.根据表中一次函数的自变量x与函数y的对应值,可得p的值为
(A ) A.1 B.-1 C.3 D.-3
x -2 0 1 y 3 p0
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
第11题图
第12题图轴交于点B, 若AB= ,则5 函数的解析式为_____y_=__-__2_x_+__2____.
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
5.(练习 1 变式)设一次函数 y=kx+b(k≠0)的图象经过点 A(1,3), B(0,-2)两点,试求 k,b 的值.
解:把 A,B 的坐标代入 y=kx+b 得kb+=b-=23,,解得kb==5-,2,即 k,b 的值分别为 5,-2
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
10.(2016·温州)如图,一直线与两坐标轴的正半轴分别交于A,B 两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂 线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是 ( C)
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载

人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)

人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)

新知探究
例1:一个水库的水位在最近 5h 内持续上涨 . 表中记录了这 5h 内6个时间点的水位高度 , 其中t表示时间 , y表示水位高度 . (1)在平面直角坐标系中描出表中数据对应的点 , 这些点 是否在一条直线上 ? 由此你能发现水位变化有什么规律吗 ?
t/h 0 1 2 3 4
5
y/m 3 3.3 3.6 3.9 4.2 4.5
x … 0.5 1 1.5 2 2.5 3 3.5 4 5
y … 12 6 4 3 2.4 2
1.5
6… 1…
新知探究
例3:下图反映的过程是小明从家去食堂吃早餐 , 接着去图书馆读报 , 然后回家 . 其中x 表示时间 , y 表示小明离家的距离 , 小明家、 食堂、图书馆在同一直线上 .
y/km
500 x/分
O 10 20 30 40 50
500 x/分
O 10 20 30 40 50
A
B
C
D
课堂小测
4.1~6个月的婴儿生长发育得非常快 , 他们的体重y(克)和月龄x(月) 之间的关系可以用y=a+700x表示 , 其中a是婴儿出生时的体重 . 若 一个婴儿出生时的体重是4000克 , 请用表格表示在1~6个月内 , 这 个婴儿的体重y与x之间的关系 :
离家500米的地方吃早餐 , 吃早餐用了20分 ; 再用10分赶到
离家1000米的学校参加考试 . 下列图象中 , 能反映这一过
程的是
(D)
y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500

初中数学八年级下册 19.2《一次函数》一次函数图像与性质应用课件

初中数学八年级下册 19.2《一次函数》一次函数图像与性质应用课件
ox
性质 应用
k>0时,在Ⅰ, Ⅲ象限; k<0时,在Ⅱ, Ⅳ象限.
k>0,b>0时在Ⅰ, Ⅱ,Ⅲ象限; k>0,b<0时在Ⅰ, Ⅲ, Ⅳ 象限 k<0, b>0时,在Ⅰ,Ⅱ, Ⅳ象限.
正比例函数是特殊的一次函数
k<0, b<0时,在Ⅱ, Ⅲ, Ⅳ象限
当k>0时,y随x的增大而增大; 当k平<行0时于 y,y=随k xx,可的由增它大平移而而减得 小.
如果y关于x的函数图象如图2所示,则当x=9时,点R应运动
到( )
A.N处 B.P处
C.Q处 D.M处 C
Q
P
y
R
M (图1)
N
O
4
9
x
(图2)
一个一次函数的图象是经过原点的直线, 并且这条直线过第四象限及点(2,-3a)与点 (a,-6),求这个函数的解析式。
b 40
k 5
分别代入上式,得 22.5 3.5k b 解得 b 40 图象是包括
解析式为:Q=-5t+40 (0≤t≤8) Q (2)取点A(0,40),B(8,0), 40
点然评后:连画成函数线图段象AB时,即,是应所根求据的函图数形自。变量的
取值范围来确定图象的范围,比如此题中, 因为自变量0≤t≤8,所以图像是一条线段。
3.一个函数图像过点(-1,2),且y随x增大而减少, 则这个函数的解析式是___ y=-x+1
1、直线y=2x+1与y=3x-1的交点P的坐标为(_2_,_5_),点P到x轴的距 离为____5___,点P到y轴的距离为___2___。 2.一次函数的图象过点(0,3) ,且与两坐标轴围成的三角形面 积3.为如图9,/4将,直一线次O函A数向的上解平析移式1个为单__位_y_,=_±__2_x_+_3_______。

初中数学一次函数课件

初中数学一次函数课件

一次函数的表达式
表达式
特殊的 当

正比例函数
正比例函数是特殊的一次函数
第四 ,共34 。
一次函数的 像


的候,像与y 的交点

的候,像与x 的交点
正比例函数: 原点
第五 ,共34 。
一次函数的性
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。
第七 ,共34 。
正比例函数性
当k>0 ,y随x的增大而增大,
且 像 一、三象限;
当k<0 ,y随x的增大而减小,
且 像 二、四象限。
第八 ,共34 。
两直 位置关系
平行
相交
第九 ,共34 。
求函数的解析式
直接求
第十 ,共34 。
*根据 像求
第十一 ,共34 。
初中数学一次函数 件
第一 ,共34 。
函数的定
一般的在一个 化 程中,如果有两个 量x与y,并且 于x的每一个确定的,y都有唯一确定的 与其 ,那么 我就x是自 量,y是x的函数。
第二 ,共34 。
函数的表示方式
像法 表法 解析式法
第三 ,共34 。
当b>0时,函数的图像与y轴交与正半轴; 当b<0时,函数的图像与y轴交于负半轴。
第六 ,共34 。
当k>0且b>0,函数的像一、二、三象限;
当k>0且b<0,函数的像一、三、四象限; 当k<0且b>0 ,函数的 像 一、二、四象限; 当k<0且b<0 ,函数的 像 二、三、四象限。
第十二 ,共34 。
*两点式
第十三 ,共34 。

北师大版初中数学八年级上册课件 4.3 一次函数的图象(共24张PPT)

北师大版初中数学八年级上册课件 4.3 一次函数的图象(共24张PPT)
正比例例函数 y kx的性质: (1)当k>0时,直线经过一、三象限,y的值随x值 的增大而增大;
新知探究
Ⅲ、(1)以下两个函数中,随着x值的增大, y的值分别如何变化?
随着x值的增大, y的值分别减小 y 5
(2)哪条直线与x轴正方
4
向所成的锐角最大?哪
3
条直线与x轴正方向所
2 1
成的锐角最小?
(2) y x;
5 4
yx
3
2
(3) y 2x;
1
(4) y x.
-5 -4 -3 -2 -1 O
-1
-2 -3 -4 -5
1 2 3 4 5x
y x y 2x
二、学习目标
1、会作正比例函数的图象。 2、理解一次函数及其图象的有关性质。
三、学习指导
1、自学内容:课本页的内容。 2、自学要求:
复习旧知
3、一次函数 y kx b 的图象: 一次函数的图象是一条直线。
4、一次函数 y kx b图象的画法: 用两点法画一次函数的图象。
诊断练习
1、在平面直角坐标系中作出函数的图象:
y 1 x 1 2
一、情景引入
在同一直角坐标系内作出正比例函数的图象:
(1) y 3x;
y y 3x
随着x值的增大, y的值分别增大 y 5
(2)哪条直线与x轴正方
4
向所成的锐角最大?哪
3
条直线与x轴正方向所
2 1
成的锐角最小?
-5 -4 -3 -2 -1 O 1
|k|越大, y值的增大得越快
-1
-2
(3)直线在什么位置?
-3
k>0,直线过一、三象限
-4

北师大版八年级数学上册一次函数一次函数的应用优质PPT

北师大版八年级数学上册一次函数一次函数的应用优质PPT

北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
根据图象回答下列问题: (1)哪条线表示B到海岸的距离与追赶时间之间的关系? 当t=0时,B距海岸 0 n mile,即s=0,故 l1表示B到海岸的 距离与追赶时间之间的关系。
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
(3)15min内B能否追上A? 延长 l1,l2,可以看出,当t=15时,l1 上的对应点 在 l2 上对应点的下方,这表明,15min时B尚未追上 A。
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
(2)A,B哪个速度快? t从0增加到10时,l2 的纵坐标增加了2,而 l1 的纵 坐标增加了5,即10min内,A行驶了2 n mile,B 行驶了5n mile,所以B的速度快。
元,销售成本= 元,销售成本=
元;
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
(3)当销售量等于 时,销售收入等于销售成本;
(4)当销售量 时,该公司盈利(收入大于成本);
当销售量 时,该公司亏损(收入小于成本);
(5)l1对应的函数表达式是 式是 .
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
思考:
(1)水库干旱前的蓄水量是多少?
(2)干旱持续10天,蓄水量是多少?干旱持续23天呢?

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.1一次函数的概念课件

5.(2017湖南邵阳一模)一次函数y=kx+2(k为常数,且k≠0)的图象如图19-
2-2-1-2所示,则k的可能值为
.(写出一个即可)
答案 -2(答案不唯一)
图19-2-2-1-2
解析 观察图象可知,OB<OA,k<0.
当x=0时,y=kx+2=2,∴OA=2,
令OB=1,则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.
4
4
故当k=-1时,直线与x轴交于点
3 4
,
0
.
(4)当
1 2k
3k 1
0, 即
0,
1 3
<k<
1 2
时,直线经过第二、三、四象限.
(5)当1-3k=-3,2k-1≠-5,
即k= 4 时,已知直线与直线y=-3x-5平行.
3
方法归纳 对于一次函数y=kx+b,(1)判断k值符号的方法:①增减性法, 当y随x增大而增大时,k>0;反之,k<0.②直线升降法,当直线从左到右上升 时,k>0;反之,k<0.③经过象限法,直线过第一、三象限时,k>0;直线过第 二、四象限时,k<0.(2)判断b值符号的方法:与y轴交点法,即直线y=kx+b 若与y轴交于正半轴,则b>0;若与y轴交于负半轴,则b<0;若与y轴交于原 点,则b=0.
例3 下列函数图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的 是( )
解析 一次函数y=mx-(m-3)中,x的系数m决定着直线从左至右呈上升或 下降的趋势,-(m-3)即3-m决定着直线与y轴的交点是在正半轴、负半轴 还是原点,这两个方面不得有矛盾之处,应该结合一次函数的图象进行 分析.

人教版初中八年级数学下册第19章《一次函数》复习ppt课件

人教版初中八年级数学下册第19章《一次函数》复习ppt课件

(1)李华出发时与张强相距 千米. (2)李华行驶了一段路后,自行车发生1故0 障,进行修理,
所用的时间是 小时.
(3)李华出发后 小时与张强相遇.
1
C
(4)若李华的自行车不发3生故障,保持出发时的速度前
进, 小时与张强相遇,相遇点离李华的出发点
千米.在图中表示出这个相遇1 点C.
15
探究1
重庆市2013年7月1日开始实行电价阶梯收 y
____.
4
5.直线l1: y1 k与1x直 线b l2:
所示,则关于x的不等式
的解集为 x<,-方2 程组

x 2.
y3
在y同2 一平k面2x直角坐标系中,图象如图 k2xk1xb

的kk 12解x b
y1, y2
如图,l1、l2分别表示张强步行与李华骑车在同一路 上行驶的路程s与时间t的关系.
(2)性质:当k>0时,直线y= kx经过第一,三象限,从左向右上升, 即随着x的增大y也增大;当k<0时,直线y= kx经过第二,四象限,从 左向右下降,即随着 x的增大y反而减小.
5.一次函数的图象及性质. (1)一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的 __________.
第十九章 一次函数
本章知识结构图
某些现实问题中相互联系 建立数学模型 的变量之间
函数
应用
一次函数 y=kx+b(k≠0)
再认识
一元一次方程 一元一次不等式 二元一次方程组
图象:一条直线
性质: k>0,y随x的增大而增大; k<0,y随x的增大而减小.
1. 一次函数的概念.

《一次函数》优质精品课件初中数学6

《一次函数》优质精品课件初中数学6
(我们通常选易算易描的点,一般也可以该选直线与两坐标轴的交点) 一次函数y=kx+b(k≠0) 一次函数y=kx+b(k、b是常数,k≠0)的图象 17 11 5 -1 -7 1、已知函数y=(m-2)x+n的图象经过一、二、三象限.
b>0交y轴于正半轴, 点(5,7)和(m,3)都在一次函数y=2x+b的图象上,
1、一次函数的图象画法:两点法,通常取与x 轴交点(-k/b,0)和与y轴交点(0,b),当然也 可以根据解析式任意取!要学会怎么求与两从 标轴的交点坐标哦!
2、平移规律:一次函数y=kx+b的图象是一条直 线,我们称它为直线y=kx+b,它可以看作由直 线y=kx平移∣ b∣ 个长度单位而得到(当b>0时, 向上平移;当b<0时,向下平移).
解: 函数y=-6x与y=-6x+5中,自变量x的取 k<0时,在Ⅱ, Ⅳ象限.
b>0交y轴于正半轴, 填出你的观察结果:这两个函数的图象形状都是_____,并且倾斜程度_____。
值范围是任意实数,列表表示几对对应值 2、因为一次函数的图象是一直线,所以用两点法最好!
X+1的图象不经过( )
一次函数y=kx+b(k,b是常数,k≠ 0)的性质:
图象与y轴交于点(0,b),b就叫做 由此得出一次函数y=kx+b (k,b是常数,k≠ 0)具有如下性质:
k<0时,在Ⅱ, Ⅳ象限. 2、平移规律:一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移∣ b∣ 个长度单位而得到(当b >0时,向上平移;
图象在y轴上的截距, k<0,b<0

新苏科版八年级数学上册第6章一次函数《6.3 一次函数的图像》优质课件

新苏科版八年级数学上册第6章一次函数《6.3 一次函数的图像》优质课件
归纳概括
y
B( 0,3
4
)3
2
y2=2x+3 y1=2x y3=2x-3
1 A( 0,0 )
-4 -3 -2 -1 o
-1
1
23
4x
-2
-3 C( 0,-3 )
-4
当 b>0时, 图像与 y 轴的交点在 x 轴的上方. 当 b<0时, 图像与 y 轴的交点在 x 轴的下方.
6.3 一次函数的图像(2)
6.3 一次函数的图像(1)
课堂练习
2. 在同一坐标系中,画一次函数y=2x+2、y=2x-1、
y=2x-2的图像.
y
4
x
0
3
y=2x+2
0
2 1
x
0
y=2x-1
0
x
0
y=2x-2
0
-4 -3 -2 -1 0 1 2 3 4 x -1 -2 -3
y=2x+2 -4
y=2x-1 y=2x-2
观察这3个函数的图像,你有什么发现?
从数量关系上看,对于同一个自变量的值,
一次函数y3=2x-3的值与正比例函数y1=2x的值有 什么差异?
6.3 一次函数的图像(2)
探索活动
(2)在同一直角坐标系中,画出这3个函数的图像.
y2=2x+3 y1=2x y3=2x-3
6.3 一次函数的图像(2)
探索活动
y y2=2x+3
4 3
y1=2x
6.3 一次函数的图像(1)
交流
y=2x+1
y
(2) 描点:
(-2,-3)、(-1,-1)、(0,1) (1,3)、(2,5).
4
3• 2•
1•

初中数学课件《一次函数的图像与性质》

初中数学课件《一次函数的图像与性质》


新知探究一: 一次函数y=kx+b的图象与直线y=kx的关系
画一次函数 y =2x-3 的图象. 列表 描点 连线
x … -2 -1 0 1 2 …
y=2x-3 … -7 -5 -3 -1 1 … y
y=2x … -4 -2 0 2 4 … 2
1.观察:函数y=2x-3的图象
它可以看作由直线 y=2x向下 平
新知探究二: 一次函数y=kx+b的性质
一次函数y=kx+b有下列性质: 1.当k>0时,y随x的增大而__增_大__ 这时函数
的图象从左到右__上_升__
(2) 当k<0时,y随x的增大而_减__小__,这
时函数的图象从左到右_下__降__.
新知探究二: 一次函数y=kx+b的性质
当k>0时,y随x的增大而增大
例:在同一坐标系中画出函数 y=2x-1 与 y=-0.5x+1的图象.
x y=2x-1
x
y= -0.5x+1
y 6
5
4
3
2
1
- - - - - - o1 2 3 4 5 6x 6 5 4 3 2 1-
1 2 3 4 5-6
例:用两点法在同一坐标系中画出函数y=2x-1 与y=-0.5x+1的图象.
数学思想:类比、数形结合、从特殊到一般。
归纳
对于一次函数y=kx+b(k,b为常数,k≠0) (1)判断k值符号的方法
①增减性法:当y随x的增大而增大时k > 0;反之k < 0 ②直线升降法:当直线从左到右上升时,k > 0; 反之k < 0 ③经过象限法:直线经过一、三象限时k > 0;

最新人教版初中八年级下册数学【第十九章一次函数 19.2.1 正比例函数】教学课件

最新人教版初中八年级下册数学【第十九章一次函数 19.2.1 正比例函数】教学课件

回答
按道理来说,只要落在函数图象上的任意两点都能确定这条直线.但是为了便捷,我们一般选用原点 (0,0),另一个点可以选择在坐标系中容易标记的.
y1x 3
x …0 3… y …0 1…
y 6
5
4
3
y1x
2
3
1
–4 –3 –2 –1 O –1 –2 –3 –4 –5 –6
1 2 3 4 5x
回答
自变量的取值范围一旦不是全体实数,那函数图象就不是整一条直线,我们就要根据自变量的取值范 围来确定函数图象了.
解:(1)因为函数图象经过一、三象限;
y
所以3a-6>0
解得 a>2
Ox
1.已知正比例函数y=(3a-6)x. (2)当a为何值时,该函数图象经过点(2,6);
解:(2) 函数图象经过点(2,6) 即当x=2时,y=6, 因此6=2(3a-6) 解得a=3
1.已知正比例函数y=(3a-6)x.
(3)图象上有两点(1,y1),(-2,y2),且y1<y2 ,求a的取值范围.
方法一:图象法
y
从图象观察可得,
y2
y随x的增大而减小
所以3a-6<0
1
-2
O
y1
解得 a<2
方法二:代数法 点(1,y1),(-2,y2)在函数图象上 所以y1=3a-6,y2=-2(3a-6)
x
又因为y1<y2 所以3a-6<-2(3a-6)
解得 a<2
2.一个长方体的长为2cm,宽为1.5cm,高为xcm, 体积为ycm3. (1)求体积y与高x之间的函数关系式; (2)写出自变量x的取值范围; (3)画出函数的图象.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其他函数图像
指数函数
其他函数图像
对数函数
谢谢!
一次函数
路程=速度×时间,当速度为60千米/小时,行驶路程s(千 米)与行驶时间t(小时)的对应关系如下:
t(时) s(千米)
1
60
2
120
3
180
4
240
当 时间t 确定一个值时, 路程S 随之确定一个值。

S=60t
圆的周长=2π ×半径,当半径取不同数值时,圆的周长与半 径的对应关系入下表:
大家好!
主讲人:张老师
函数
2015年潍坊中考,直接考查函数的内容共占34分, 包括2道选择题,1道填空题,2道解答题
函数
函数
函数
初中阶段主要学习的函数类型
一次函数: y=kx+b
.
正比例函数:y=kx
.
Hale Waihona Puke 反比例函数:y=k/x.
.
二次函数:y=ax²+bx+c
定义:在一个变化过程中,如果有两个变量x与y,并且对于x的 每一个确定的值,y都有唯 一确定的值与其对应,那么我们就 说y是x的函数。
正比例函数:y=kx(k≠0) 这样的式子叫做函数解析式。 X:自变量 Y:因变量 k、b是常数
例1 分析一下前面例子中的函数类型,并 指出自变量、因变量和常数(k和b) (1)S=60t (2)L=2πr (3)L=10+0.5m
例2 一辆汽车的油箱中现有汽油50L,如果不再加油,那
么油箱中的油量y(单位:L)随行驶里程x(单位:km)的 增加而减少,平均耗油量为0.1L/km。 (1)写出表示y与x的函数关系的式子。 (2)指出自变量x的取值范围; (3)汽车行驶200 km时,油箱中还有多少油?
一次函数的图像
将问题1表格中的数据绘到直角坐标系中
t(时) s(千米) 1 2 3 60 120 180
s/千米
(4,240) ● (3,180) (2,120) ● (1,60)
4 240


t/时
练习: 将问题2和问题3中的数据绘到直角坐标系中,观 察它们的图像
一次函数的图像
我们同样可以得到它们的图像是一条直线
解:(1) 函数关系式为: (2) 由x≥0及0.1x ≤ 50
y = 50-0.1x 得 0 ≤ x ≤ 500
∴自变量的取值范围是: 0 ≤ x ≤ 500
(3)把x = 200代入 y =50 -0.1x得 : y=50-0.1×200=30
因此,当汽车行驶200 km时,油箱中还有油30L。
L=10+0.5m
两个 变 1、每个变化过程中都存在着____ 量。
2、一个变量随着另一个变量的变化而 变化,当其中一个变量确定一个值时, 确定一个值 另一个变量也随之_____________
一次函数
定义 形如y=kx+b(k≠0)的函数,叫做一次函数 ,其中k
与b是常数。特别地,当b=0时,一次函数y=kx也叫做正 比例函数,k叫做比例系数。 一次函数: y=kx+b(k≠0)
结论:
一次函数的图像是一条直线
总结
1、形如y=kx+b(k≠0)的函数,叫做一次函数 ,其 中k与b是常数。特别地,当b=0时,一次函数 y=kx也叫做正比例函数,k叫做比例系数。 2、一次函数的图像是一条直线。
其他函数图像
正比例函数
其他函数图像
反比例函数
其他函数图像
二次函数
其他函数图像
幂函数
半径r
周长L
1

2

3

4

当 半径r 确定一个值时, 周长L 就 随之确定一个值。
L=2πr
用含重物质量m(kg)的式子表示受力后的 弹簧长度 L(cm)为:
重物质量 m(Kg) 弹簧长度 L(cm) 1 10.5 2 11 3 11.5 4 12 5 12.5
弹簧长度L 就 当 重物质量m 确定一个值时, 随之确定一个值。
相关文档
最新文档