几种运算放大器比较器及经典电路的简单分析

合集下载

运放比较器讲解

运放比较器讲解
角波等波形
模拟电路:运 放比较器在模 拟电路中作为 关键元件,用 于信号的转换
和放大
通信系统:运 放比较器在通 信系统中用于 信号的调制和 解调,实现信 号的传输和接

模拟-数字转换器
简介:运放比较器在模拟-数字转换器中起到关键作用,将模拟信号转换 为数字信号。
应用场景:在数据采集、信号处理和通信等领域广泛应用。
测试方法:使用专业的测试仪器对 运放比较器的输入失调电压进行测 量和标定。
输入失调电流
定义:输入失调 电流是运放比较 器的一个重要参 数,表示运放输 入端之间的直流 电流差。
作用:输入失调 电流对运放比较 器的精度和性能 有着重要影响, 是衡量运放性能 的重要指标之一。
影响因素:输入 失调电流受到多 种因素的影响, 如温度、工艺、 电压等。
工作原理简述
输入信号通过运放 比较器的输入端进 入,与参考电压进 行比较
比较结果通过输出 端输出,用于控制 后续电路的开关状 态
运放比较器具有快 速响应、高精度和 低噪声等优点
常见应用包括信号 处理、自动控制和 测量等领域
分类与特点
添加标题
运放比较器的分类:根据输入信号的类型,运放比较器可以分为模拟比较器和数字比较器;根据比 较器的输出类型,可以分为单限比较器和迟滞比较器。
在电子和通信领域中,信号比较器 广泛应用于模拟和数字信号处理、 自动控制系统和测量仪器中。
运放比较器是一种常用的信号比较 器,它利用运算放大器的原理来实 现信号的比较功能。
波形产生
信号处理:运 放比较器用于 信号的放大、 滤波、整形等 处理,生成所
需的波形
波形产生:运 放比较器可以 用于产生正弦 波、方波、三
运放比较器的应用场景

经典运放电路分析

经典运放电路分析

从虚断,虚短分析基本运放电路运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。

在分析它的工作原理时倘没有抓住核心,往往令人头大。

为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。

遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出及输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。

而运放的输出电压是有限的,一般在 10 V~14 V。

因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

集成运放的分类与特点

集成运放的分类与特点

模拟运放的分类及特点模拟运算放大器从诞生至今,已有40多年的历史了。

最早的工艺是采用硅NPN 工艺,后来改进为硅NPN-PNP 工艺。

在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。

当MOS 管技术成熟后,特别是CMOS 技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。

经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。

按照集成运算放大器的功能和性能来分,集成运算放大器可分为如下几类。

1、通用型运算放大器通用型运算放大器实际就是具有最基本功能的最廉价的运放,是以通用为目的而设计的。

这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。

目前对通用型的定义还不十分明确,此型的性能尚没有明确的标准。

可以大致认为,在不要求有突出参数指标情况下使用的运放就称之为通用型。

但是,由于运放的整体性能普遍提高,通用型的标准也有相对上浮趋势。

即过去的某些高性能运放,现在可能就变成了通用型。

根据实际参数指标,目前下列运放被划分为通用型:单运放系列中的uA709、uA741、MC1456、LM301A 、LF351、TL081等;双运放系列中的LM358、RC4558、MC1458、LF353、TL082等;四运放系列中的LM324、MC3403、LF347、TL084等。

通用型运算放大器因为其自己身的特点,应用面很广。

主要应用在技术要求适中的地方,以能满足工作要用,经济又实用为准。

通用型集成运放适用于放大低频信号。

在实际选用时,应尽量选用通用型运算放大器,因为它们容易购得且性价比高。

但其缺点是不能满足一点技术指标要求高的产品应用,不能满足一些特殊的技术服务只有通用型不能满足要求时,才能选用专用型,这样即可降低成本,又容易保证货源。

在通用型运放中,741A μ(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356等是目前应用最为广泛的集成运算放大器。

运算放大器的电路模型和比例电路的分析及有运算放大器的电阻电路概述

运算放大器的电路模型和比例电路的分析及有运算放大器的电阻电路概述

(R、C等),使其工作在闭环状态。
Rf
1
+ ui_
R1 _
1
+
A +
2
RL
+
+
ui _
_uo
R1
Rf
Ri
Ro +
Aun1
2
+ RL uo
_
运放等效电路
2. 电路分析 用结点法分析:(电阻用电导表示)
(G1+Gi+Gf)un1-Gf un2=G1ui
Rf
-Gf un1+(Gf+Go+GL)un2 +
ud> 则 uo= Usat
③反向饱和区:
注意
ud<- 则 uo= -Usat
是一个数值很小的电压,例如
Usat=13V, A =105,则 = 0.13mV。
输入电阻
3. 电路模型
当: u+= 0, 则uo=-Au-
uRi
当: u-= 0, 则uo=Au+ u+
4. 理想运算放大器
输出电阻

x1
x2 x3
a1 a2
-y -1
y
a3
②非倒向比例器
Ri
iu+ i+
_
+
+
+ ui _
uR2 R1
结论
① uo与ui同相
根据“虚短”和“虚断”
u+= u-= ui i+= i-= 0
+ uo
(uo-u-)/R1= u-/R2
_ uo =[(R1 + R2)/R2 ] ui
=(1+ R1/R2) ui

运算放大器和比较器的区别

运算放大器和比较器的区别

所有的运算放大器都可用作电压比较器的芯片。

常见的有LM324 LM358 uA741 TL081\2\3\4 OP07 OP27,这些都可以做成电压比较器(不加负反馈)。

LM339、LM393是专业的电压比较器,切换速度快,延迟时间小,可用在专门的电压比较场合,其实它们也是一种运算放大器。

1.最主要的区别是输出结构。

比较器往往是集电极开路输出,这样可以多个比较器的输出并联,构成与门,这叫“线与”。

而运放通常是推挽输出,输出端不能并联。

2.比较器的输出要加上拉电阻,运放的输出不需要加。

3.比较器工作在开环或者正反馈状态,一般不会自激。

运放工作一般工作在负反馈状态,而开环或正反馈的时候需要加补偿电路,否则容易自激。

4.精密运放的开环增益很高,120dB左右。

普通运放和比较器则不是很高,60dB左右。

5.运放工作一般工作在线性状态,内部结构决定了它非线性失真比较小。

比较器工作在开关状态,如果用做线性放大的话,不能保证失真度。

比较器和运放虽然在电路图上符号相同,但这两种器件确有非常大的区别,一般不可以互换,区别如下:1、比较器的翻转速度快,大约在ns数量级,而运放翻转速度一般为us数量级(特殊的高速运放除外)。

2、运放可以接入负反馈电路,而比较器则不能使用负反馈,虽然比较器也有同相和反相两个输入端,但因为其内部没有相位补偿电路,所以,如果接入负反馈,电路不能稳定工作。

内部无相位补偿电路,这也是比较器比运放速度快很多的主要原因。

3、运放输出级一般采用推挽电路,双极性输出。

而多数比较器输出级为集电极开路结构,所以需要上拉电阻,单极性输出,容易和数字电路连接。

补充:比较器工作在非线性条件下,强调的是翻转速度,放大器用于放大,比较注重的是线性.当用比较器作放大时会发现放大输出失真,即使放大负反馈较深也非常明显,而用运放做比较器时,会发现翻转速度不够.运放可以做比较器,同时也可以作为放大器,比较器只能做比较器。

十一种经典运放电路分析

十一种经典运放电路分析

十一种经典运放电路分析从虚断,虚短分析基本运放电路由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。

而运放的输出电压是有限的,一般在10 V~14 V。

因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

1)反向放大器:传输文件进行[薄膜开关] 打样图1图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。

流过R1的电流:I1 = (Vi - V-)/R1 ………a流过R2的电流:I2 = (V- - Vout)/R2 ……bV- = V+ = 0 ………………cI1 = I2 ……………………d求解上面的初中代数方程得Vout = (-R2/R1)*Vi这就是传说中的反向放大器的输入输出关系式了。

常用运算放大器16个基本运算电路

常用运算放大器16个基本运算电路

5. 微分运算电路
微分运算电路如图 5 所示,
XFG1
R2 15kΩ
C2
22nF
V3
R1
C1
4
12 V
2
1kΩ
22nF
U1A
1
3
T L082CD
8
V2 12 V
XSC1
A +_
B +_
Ext Trig +
_
图5
电路的输出电压为 uo 为:
uo = −R2C1 dui dt
式中, R2C1 为微分电路的时间常数。若选用集成运放的最大输出电压为UOM ,
式中,Auf = 1+ RF / R1 为同相比例放大电路的电压增益。同样要求 Auf 必须小于 3, 电路才能稳定工作,当 f = fo 时,带通滤波器具有最大电压增益 Auo ,其值为:
Auo = Auf / (3 − Auf )
10. 二阶带阻滤波电路
二阶带阻滤波电路如图 10 所示,
C1
1nF R1
_
图 15 全波整流电路是一种对交流整流的电路,能够把交流转换成单一方向电 流,最少由两个整流器合并而成,一个负责正方向,一个负责负方向,最典 型的全波整流电路是由四个二极管组成的整流桥,一般用于电源的整流。 全波整流输出电压的直流成分(较半波)增大,脉动程度减小,但变压器需 要中心抽头、制造麻烦,整流二极管需承受的反向电压高,故一般适用于要 求输出电压不太高的场合。
R1 10kΩ
4 2
12 V
U1A 1
3
8 TL082CD
R3 9kΩ
V2 12 V
D2 1N4148
XSC1
A +_

集成运算放大器比较器电路分析

集成运算放大器比较器电路分析

集成运算放大器比较器电路分析1.LM358比较器通过图3.13测试,可以看到当输入电压u i小于1V时,输出电压uo 约为5V左右;当输入电压在1-3V时,输出电压uo约为-5V。

即当U i<U R时,u o输出高电平;当u i>U r时,u o输出低电平。

将u i和U R互相调换位置,重复上述过程,记录输出电压u o,可观察到结果刚好相反。

在实验中为何会出向上述现象?分析一下其中的原因。

在图3.13(a)电路中,同相输入端接基准电位(或称参考电位)U R。

被比较信号由反相输入端输入。

集成运放LM358处于开环状态。

当u i>U R时,由于LM358 的电压放大倍数足够大,所以,输入端只要有微小的电压差,电压即饱和输出,在第一种情况下,输出电压为负饱和值为-U om;同理当u i<U R时,输出电压为正饱和值为+Uom。

其传输特性如图6.8 所示。

可见,只要输入电压在基准电压U R处稍有正负变化,输出电压u o就在负最大值到正最大值处变化。

通过上述分析可知,图3.13所示电路的功能是将一个输入电压与另一个输入电压或基准电压进行比较,判断它们之间的相对大小,比较结果由输出状态反映出来,该电路称为单限电压比较器,其特性如图3.14所示。

图3.14 单限电压比较器传输特性2.电压比较器LM393/LM339LM393是低功耗低失调电压两比较器,LM339是低功耗低失调电压四比较器。

两种比较器,原理图一样,功能参数一样。

(1) LM393/LM339工作原理LM339集成块采用C-14型封装,图3.15为外型及管脚排列图。

图3.15 比较器LM339LM339类似于增益不可调的运算放大器。

每个比较器有两个输入端和一个输出端。

两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。

用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。

运算放大器11种经典电路

运算放大器11种经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。

在分析它的工作原理时倘没有抓住核心,往往令人头大。

特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。

遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。

今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。

而运放的输出电压是有限的,一般在 10 V~14 V。

因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

几种运算放大器比较器及电路的简单分析

几种运算放大器比较器及电路的简单分析

几种运算放大器比较器及电路的简单分析运算放大器和比较器是两种常见的电子元件,它们在电路中具有不同的功能。

本文将对这两种电子元件进行简单的分析和比较。

一、运算放大器运算放大器是一种用于放大电压信号的电子设备。

它具有高放大倍数和低失真的特点,常被用于放大微弱的输入信号。

运算放大器一般由多级放大电路组成,其中包括差动输入级、差动放大级、共射放大级和输出级。

运算放大器具有以下几个特点:1.高放大倍数:运算放大器通常具有很高的开环放大倍数,可以放大微小的输入信号。

2.低失真:运算放大器的差分输入电阻和输入容量很低,从而减小了输入信号的失真。

3.稳定性好:运算放大器具有很好的直流稳定性和交流稳定性,使其能够在不同的负载条件下稳定工作。

4.大信号驱动能力:运算放大器能够输出较大的电流和电压,可以驱动各种负载。

5.可调增益:运算放大器通常具有可调的增益,可以通过调节电阻、电容或反馈电阻等元件来改变放大倍数。

运算放大器常被应用于放大、滤波、积分、微分和开关等电路中,常见的应用有示波器、滤波器和反馈电路等。

二、比较器比较器是一种用于比较两个电压的电子元件。

它具有高增益和快速响应的特点,常被用于判断输入信号的大小关系。

比较器通常由不同类型的放大电路和判决电路组成,常见的比较器有有限增益比较器、开环比较器和比率比较器等。

比较器具有以下几个特点:1.高增益:比较器通常具有很高的增益,可以放大微小的输入差异。

2.快速响应:比较器的响应时间很短,可以快速判断输入信号的大小关系。

3.可调阈值:比较器可以通过调节电阻、电容或反馈电阻等元件,改变阈值的位置。

4.高输入阻抗:比较器的输入阻抗很高,可以减小输入电路对比较器的影响。

比较器常被应用于开关、报警、触发器和AD转换等电路中,常见的应用有电压比较器、窗口比较器等。

三、运算放大器与比较器的比较虽然运算放大器和比较器都是电路中常用的电子元件,但它们在功能和特性上有一些不同之处。

1.功能:运算放大器的主要功能是放大信号,而比较器的主要功能是比较电压。

运算放大器11种经典电路

运算放大器11种经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。

在分析它的工作原理时倘没有抓住核心,往往令人头大。

特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。

遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。

今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。

而运放的输出电压是有限的,一般在 10 V~14 V。

因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

运算放大器的8种应用电路

运算放大器的8种应用电路

运算放大器8种应用电路1.电压跟随器电压跟随器(也称为缓冲器)不会放大或反相输入信号,而是在两个电路之间提供隔离。

输入阻抗很高,而输出阻抗很低,避免了电路内的任何负载效应。

当输出直接连接回输入之一时,缓冲器的总增益为+1且Vout = Vin。

2.放大器反相器反相器,也称为反相缓冲器,与先前的电压跟随器相反。

如果两个电阻相等,则反相器不会放大,但会反相输入信号。

输入阻抗等于R,增益为-1,给出Vout = -Vin。

同相放大器不会对输入信号进行反相或产生反相信号,而是以(RA+ RB)/RB或通常为1+(RA/RB)的比率进行放大。

输入信号连接到同相(+)输入。

4.反相放大器反相放大器同时以-RA/RB的比率对输入信号进行反相和放大。

放大器的增益由使用反馈电阻RA的负反馈控制,输入信号被馈送到反相(-)输入。

上面的反相和同相放大器电路可以连接在一起以形成桥式放大器配置。

输入信号是两个运放共用的,输出电压信号跨接在负载电阻R L两端,该电阻在两个输出之间浮动。

如果两个运放增益A1和A2的大小彼此相等,则输出信号将加倍,因为它实际上是两个单独的放大器增益的组合。

6.电压加法器加法器,也称为求和放大器,产生与输入电压V1和v2之和成比例的反相输出电压。

可以汇总更多输入。

如果输入电阻的值相等(R1=R2=R),则总输出电压为给定值,增益为+1。

如果输入电阻不相等,则输出电压为加权和,并变为:Vout =-(V1(RA / R1)+ V2(RA / R2)+等)7.电压减法器减法器也称为差分放大器,它使用反相和同相输入来产生输出信号,该信号是两个输入电压V1和V2之差,从而允许一个信号与另一个信号相减。

如果需要,可以添加更多的输入以将其减去。

如果电阻相等(R=R3和RA=R4),则输出电压为给定值,电压增益为+1。

如果输入电阻是不相等的电路变得放大器时产生负输出的差分V1高于V2和正输出时V1低于V2。

8.电压比较器比较器有许多用途,但最常见的是将输入电压与参考电压进行比较,如果输入电压高于参考电压,则切换输出。

运算放大器11种经典电路

运算放大器11种经典电路

精心整理运算放大器组成的电路五花八门,令人眼花了乱,是模拟电路中学习的重点。

在分析它的工作原理时倘没有抓住核心,往往令人头大。

特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。

????遍观所有模拟电子技术的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。

???今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

???虚短和虚断的概念???由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。

而运放的输出电压是有限的,一般在10V~14V。

因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

????“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

???由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

???在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

电路中的运算放大器

电路中的运算放大器

电路中的运算放大器电路中的运算放大器是一种重要的电子设备,它具有放大电压信号和进行基本算术运算的功能。

在现代电子技术中,运算放大器常被广泛应用于各种电路中,从而实现对信号的处理和控制。

一、运算放大器的基本原理运算放大器是一种特殊的放大器,它具有多个输入端和一个输出端。

在操作上,运算放大器可以将两个或多个输入信号进行加法、减法乃至乘法、除法等基本算术运算,从而产生一个输出信号。

运算放大器的基本原理是通过差分放大电路和反馈电路的结合实现的。

差分放大电路是运算放大器的核心组成部分,它由一对互补的晶体管、电阻器以及电源构成。

这对晶体管中的一个承担输入信号的放大,另一个负责对放大后的信号进行反相放大。

通过这种差分放大电路,运算放大器能够对输入信号进行放大,同时抵消噪声和共模信号的干扰。

反馈电路是运算放大器实现基本算术运算的关键。

通过将一部分输出信号反馈到输入端,可以实现加法、减法、乘法等运算。

不同的反馈方式会产生不同的运算功能。

例如,正反馈可以实现振荡器,负反馈可以实现比例放大器。

二、运算放大器的应用由于运算放大器具有灵活的运算功能和高增益特性,它在电子领域有着广泛的应用。

1. 模拟运算电路:运算放大器可以用来设计滤波器、积分器、微分器等模拟运算电路。

通过对电压信号的放大和运算,可以实现对信号的处理与控制,例如音频放大器、运算放大器比较器等。

2. 传感器信号处理:运算放大器常被用于传感器信号的处理。

传感器将物理量转化为电信号,而运算放大器可以对这些信号进行放大和运算,以满足不同的应用需求。

例如,温度传感器、加速度传感器等的信号处理。

3. 比较器:基于运算放大器的比较器可以用于比较两个输入信号的大小。

这在电压检测、开关控制等应用中很常见。

4. 模数转换器:通过结合运算放大器和其他模拟电路,可以实现模拟信号到数字信号的转换。

这在数据采集、信号处理等领域有着重要的应用。

5. 电路控制系统:运算放大器可以作为电路控制系统的核心元件,实现对电路的控制和调节。

运算放大器11种经典电路

运算放大器11种经典电路

运算放大器的11钟经典电路虚短和虚断的概念由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。

而运放的输出电压是有限的,一般在 10 V~14 V。

因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。

开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。

因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。

“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。

图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。

流过R1的电流I1 = (Vi - V-)/R1 ……a 流过R2的电流I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ……c I1 = I2 ……d 求解上面的初中代数方程得Vout = (-R2/R1)*Vi 这就是传说中的反向放大器的输入输出关系式了。

几种常用运算放大器举例

几种常用运算放大器举例

运算放大器分类总结报告1、通用型运算放大器通用型运算放大器就是以通用为目的而设计的。

这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。

例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。

它们是目前应用最为广泛的集成运算放大器。

下面就实验室里也常用的LM358来做一下介绍:LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。

它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。

:外观管脚图它的特点如下:·内部频率补偿·直流电压增益高(约100dB)·单位增益频带宽(约1MHz)·电源电压范围宽:单电源(3—30V)双电源(±1.5 一±15V)·低功耗电流,适合于电池供电·低输入偏流·低输入失调电压和失调电流·共模输入电压范围宽,包括接地·差模输入电压范围宽,等于电源电压范围·输出电压摆幅大(0 至Vcc-1.5V)常用性能指标:性能图表:大信号频率响应 大信号电压开环增益电压跟随器对小信号脉冲的响应常用电路: (1)、正向放大器根据虚短路,虚开路,易知:1(1)2R Vo Vi R =+ (2)、高阻抗差分放大器电路左半部分可以看作两个同向放大器,分别对e1,e2放大(a+b+1)倍,右半部分为一个差分放大器放大系数为C ,因此得到结果:0(21)(1)e C e e a b =-++(3)、迟滞比较器将输入电平与参考电平作比较,根据虚短路,虚开路有:121()()O REF IN R R V V V R +=- ,则: 112112()()inL OL REF REFinHOH REF REFR V V V V R R R V V V V R R =-++=-++2、高精度运算放大器所谓高精度运放是一类受温度影响小,即温漂小,噪声低,灵敏度高,适合微小信号放大用的运算放大器。

运放电路分析

运放电路分析

运放电路分析运放电路简介运放电路(Operational Amplifier Circuit)是一种常见的电子电路,由运算放大器(Operational Amplifier)和其他组件组成。

运放电路具有很高的增益、低输出阻抗和很大的输入阻抗,可广泛应用于各种电子设备中。

本文将对运放电路的原理、特性以及一些常见应用进行详细分析。

一、运放电路的原理与特性1. 基本结构与工作原理运放电路的基本结构由输入端、输出端和电源供电端组成。

其中,输入端包括一个非反相输入端(+)和一个反相输入端(-),输出端连接一个相对于地的负载电阻,电源供电端为正负双电源。

运放器通过输入端接收信号,经过放大处理后输出到负载上。

运放电路的工作原理主要依靠基本的放大运算原理和反馈机制。

具体而言,运放器的输入端电压差会引起输出电压的变化,通过适当的反馈电路连接将输出电压进行调整,使输出电压与输入电压之间保持稳定的比例关系。

2. 主要特性(1)增益:运放电路的主要特点是具有很高的电压增益。

通常情况下,运放器的增益可达到几十至几百倍,甚至更高。

这种高增益使得运放器能够有效放大微弱的输入信号。

(2)输入/输出阻抗:运放电路的输入阻抗非常高,输入电流非常小,可以看做无穷大。

而输出阻抗则较低,通常在几十欧姆至几百欧姆之间,这使得运放器能够有效驱动负载。

(3)频率响应:运放电路的频率响应非常宽,通常在几赫兹至数百赫兹之间。

这使得运放电路能够处理较高频率的信号。

(4)运放器的输入/输出电压范围:运放器的输入和输出电压范围通常由电源电压决定,一般假设电源电压为正负15伏。

二、运放电路的常见应用1. 比较器比较器是一种广泛应用的运放电路,其主要作用是将输入信号与参考电平进行比较,并输出高或低电平。

在实际应用中,比较器常用于电压检测、开关控制、触发器等电路中。

2. 放大器运放器最常见的应用就是作为放大器使用。

运放电路可以起到放大信号的作用,将微弱信号放大为可以驱动负载的信号。

三分钟带你搞懂运算放大器与比较器的区别

三分钟带你搞懂运算放大器与比较器的区别

三分钟带你搞懂运算放大器与比较器的区别无论外观或图纸符号都差不多,那么它们究竟有什么区别,在实际应用中如何区分?今天我来图文全面分析一下,夯实大家的基础,让工程师更上一层楼。

先看一下它们的内部区别图:从内部图可以看出运算放大器和比较器的差别在于输出电路。

运算放大器采用双晶体管推挽输出,而比较器只用一只晶体管,集电极连到输出端,发射极接地。

比较器需要外接一个从正电源端到输出端的上拉电阻,该上拉电阻相当于晶体管的集电极电阻。

运算放大器可用于线性放大电路(负反馈),也可用于非线性信号电压比较(开环或正反馈)。

电压比较器只能用于信号电压比较,不能用于线性放大电路(比较器没有频率补偿)。

两者都可以用于做信号电压比较,但比较器被设计为高速开关,它有比运算放大器更快的转换速率和更短的延时。

运算放大器做为线性放大电路,我这里就不多说了(以后有需要单独讨论放大器),这个在主板电路图很常见,一般用于稳压电路,使用负反馈电路它与晶体管配合相当于一个三端稳压器,但使用起来更灵活。

如下图:在许多情况下,需要知道两个信号中哪个比较大,或一个信号何时超出预设的电压(用作电压比较)。

用运算放大器便可很容易搭建一个简单电路实现该功能。

当 V+电压大于 V- 电压时,输出高电平。

当 V+电压小于 V- 电压时,输出低电平。

如下图:分析一下电路,2.5v 经电阻分压得到 1V 输入到 V- 端,当总线电压正常产生 1.2v 时,输入到 V+,此时 V+电压比 V- 电压高,输出一个高电平到 CPU 电源管理芯片的 EN 开启脚。

如果总线电压没输出或不正常少于 1v,此时 V+电压比 V- 电压低,输出低电平。

电压比较器当比较器的同相端电压(V+)低于反相端电压(V-)时,输出晶体管导通,输出接地低电平;当同相端电压高于反相端时,输出晶体管截止,通过上拉电阻的电源输出高电平。

如下图:分析一下该电路,上面的比较器 U8A 当有 VCC 输出时经过分压电阻分压后,输入到同相端(V+),其电压大于 5VSB 经分压后输入到反相端(V-)的电压,内部晶体管截止,输出经上拉电阻的电源 12v(同时下面的比较器 U8B 同相端电压也大于反相端,内部晶体管也是截止),N 沟道场管 Q37 导通,输出 VCC5V。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运算放年夜器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。

在阐发它的工作原理时倘没有抓住核心,往往令人头年夜。

为此自己特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。

遍观所有模拟电子技朮的书籍和课程,在介绍运算放年夜器电路的时候,无非是先给电路来个定性,比方这是一个同向放年夜器,然后去推导它的输出与输入的关系,然后得出V o=(1+Rf)Vi,那是一个反向放年夜器,然后得出Vo=Rf*V i……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾面试过至少100个以上的年夜专以上学历的电子专业应聘者,结果能将我给出的运算放年夜器电路阐发得一点不错的没有超出10个人!其它专业结业的更是可想而知了。

今天,芯片级维修教各位战无不堪的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得入迷入化,就要有较深厚的功底了。

虚短和虚断的概念由于运放的电压放年夜倍数很年夜,一般通用型运算放年夜器的开环电压放年夜倍数都在80 dB以上。

而运放的输出电压是有限的,一般在 10 V~14 V。

因此运放的差模输入电压缺乏1 mV,两输入端近似等电位,相当于“短路”。

开环电压放年夜倍数越年夜,两输入真个电位越接近相等。

“虚短”是指在阐发运算放年夜器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。

显然不克不及将两输入端真正短路。

由于运放的差模输入电阻很年夜,一般通用型运算放年夜器的输入电阻都在1MΩ以上。

因此流入运放输入真个电流往往缺乏1uA,远小于输入端外电路的电流。

故通常可把运放的两输入端视为开路,且输入电阻越年夜,两输入端越接近开路。

“虚断”是指在阐发运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。

显然不克不及将两输入端真正断路。

在阐发运放电路工作原理时,首先请各位暂时忘失落什么同向放年夜、反向放年夜,什么加法器、减法器,什么差动输入……暂时忘失落那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。

我们理解的就是理想放年夜器(其实在维修中和年夜大都设计过程中,把实际放年夜器当作理想放年夜器来阐发也不会有问题)。

好了,让我们抓过两把“板斧”“虚短”和“虚断”,开始“庖丁解牛”了。

令狐采学(原文件名:1.jpg)引用图片图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串连的,流过一个串连电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。

流过R 1的电流I1 = (Vi V)/R1 ……a 流过R2的电流I2 = (V Vout) /R2 ……b V = V+ = 0 ……c I1 = I2 ……d 求解上面的初中代数方程得Vout = (R2/R1)*Vi 这就是传说中的反向放年夜器的输入输出关系式了。

(原文件名:2.jpg)引用图片图二中Vi与V虚短,则Vi = V ……a 因为虚断,反向输入端没有电流输入输出,通过R1和R2 的电流相等,设此电流为I,由欧姆定律得:I = Vout/(R1+R2) ……b Vi即是R2上的分压,即:Vi = I*R2 ……c 由abc式得Vout=Vi*(R1+R2)/R2 这就是传说中的同向放年夜器的公式了。

(原文件名:3.jpg)引用图片图三中,由虚短知:V = V+ = 0 ……a 由虚断及基尔霍夫定律知,通过R2与R1的电流之和即是通过R3的电流,故 (V1 – V)/R1 + (V2 – V)/R2 = (Vout –V)/R3 ……b 代入a式,b式变成V 1/R1 + V2/R2 = Vout/R3 如果取R1=R2=R3,则上式变成Vout=V1 +V2,这就是传说中的加法器了。

(原文件名:4.jpg)引用图片请看图四。

因为虚断,运放同向端没有电流流过,则流过R1和R2的电流相等,同理流过R4和R3的电流也相等。

故 (V1 – V+)/R 1 = (V+ V2)/R2 ……a (Vout –V)/R3 = V/R4 ……b 由虚短知:V+ = V ……c 如果R1=R2,R3=R4,则由以上式子可以推导出 V+ = (V1 + V2)/2 V = Vout/2 故 Vout = V1 + V2 也是一个加法器,呵呵!(原文件名:5.jpg)引用图片图五由虚断知,通过R1的电流即是通过R2的电流,同理通过R4的电流即是R3的电流,故有 (V2 –V+)/R1 = V+/R2 ……a (V1 –V)/R4 = (V Vout)/R3 ……b 如果R1=R2,则V+ = V2/2……c 如果R3=R4,则V = (Vout + V1)/2 ……d 由虚短知 V+ = V ……e 所以 Vout=V2V1 这就是传说中的减法器了。

(原文件名:6.jpg)引用图片图六电路中,由虚短知,反向输入真个电压与同向端相等,由虚断知,通过R1的电流与通过C1的电流相等。

通过R1的电流 i=V1/ R1 通过C1的电流i=C*dUc/dt=C*dVout/dt 所以 Vout=((1/(R1*C 1))∫V1dt 输出电压与输入电压对时间的积分红正比,这就是传说中的积分电路了。

若V1为恒定电压U,则上式变换为Vout = U*t /(R1*C1) t 是时间,则Vout输出电压是一条从0至负电源电压按时间变更的直线。

(原文件名:7.jpg)引用图片图七中由虚断知,通过电容C1和电阻R2的电流是相等的,由虚短知,运放同向端与反向端电压是相等的。

则: Vout = i * R2 = (R2*C1)dV1/dt 这是一个微分电路。

如果V1是一个突然加入的直流电压,则输出Vout对应一个标的目的与V1相反的脉冲。

(原文件名:8.jpg)引用图片图八.由虚短知Vx = V1 ……a Vy = V2 ……b 由虚断知,运放输入端没有电流流过,则R1、R2、R3可视为串连,通过每一个电阻的电流是相同的,电流I=(VxVy)/R2 ……c 则: Vo1Vo2=I*(R1+ R2+R3) = (VxVy)(R1+R2+R3)/R2 ……d 由虚断知,流过R6与流过R7的电流相等,若R6=R7,则Vw = Vo2/2 ……e 同理若R4=R5,则Vout – Vu = Vu – Vo1,故Vu = (Vout+Vo1)/2 ……f 由虚短知,Vu = Vw ……g 由efg得 Vout = Vo2 –Vo1 ……h 由dh得 Vout = (Vy –Vx)(R1+R2+R3)/R2 上式中(R1+R2+R3)/R2是定值,此值确定了差值(Vy –Vx)的放年夜倍数。

这个电路就是传说中的差分放年夜电路了。

(原文件名:9.jpg)引用图片阐发一个年夜家接触得较多的电路。

很多控制器接受来自各种检测仪表的0~20mA或4~20mA电流,电路将此电流转换成电压后再送A DC转换成数字信号,图九就是这样一个典范电路。

如图4~20mA电流流过采样100Ω电阻R1,在R1上会产生0.4~2V的电压差。

由虚断知,运放输入端没有电流流过,则流过R3和R5的电流相等,流过R2和R4的电流相等。

故:(V2Vy)/R3 = Vy/R5 ……a (V1Vx)/R2 = (VxVout)/R4 ……b 由虚短知:Vx = Vy ……c 电流从0~20mA变更,则V1 = V2 + (0.4~2) ……d 由cd式代入b式得(V 2 + (0.4~2)Vy)/R2 = (VyVout)/R4 ……e 如果R3=R2,R4=R5,则由ea得Vout = (0.4~2)R4/R2 ……f 图九中R4/R2=22k/10k=2. 2,则f式Vout = (0.88~4.4)V,即是说,将4~20mA电流转换成了0.88 ~ 4.4V电压,此电压可以送ADC去处理。

(原文件名:10.jpg)引用图片电流可以转换成电压,电压也可以转换成电流。

图十就是这样一个电路。

上图的负反响没有通过电阻直接反响,而是串连了三极管Q 1的发射结,年夜家可不要以为是一个比较器就是了。

只要是放年夜电路,虚短虚断的规律仍然是合适的!由虚断知,运放输入端没有电流流过,则 (Vi – V1)/R2 = (V1 –V4)/R6 ……a同理 (V3 –V2)/R5 = V2/R4 ……b由虚短知V1 = V2 ……c如果R2=R6,R4=R5,则由abc式得V3V4=Vi上式说明R7两真个电压和输入电压Vi相等,则通过R7的电流I= Vi/R7,如果负载RL<<100KΩ,则通过Rl和通过R7的电流基秘闻同。

(原文件名:11.jpg)引用图片来一个庞杂的,呵呵!图十一是一个三线制PT100前置放年夜电路。

PT100传感器引出三根材质、线径、长度完全相同的线,接法如图所示。

有2V的电压加在由R14、R20、R15、Z1、PT100及其线电阻组成的桥电路上。

Z1、Z2、Z3、D11、D12、D83及各电容在电路中起滤波和呵护作用,静态阐发时可不予理会,Z1、Z2、Z3可视为短路,D11、D12、D83及各电容可视为开路。

由电阻分压知,V3=2*R20/(R14+20)=200/1100=2/11 ……a 由虚短知,U8B第6、7脚电压和第5脚电压相等V4=V3 ……b 由虚断知,U8A第2脚没有电流流过,则流过R18和R19上的电流相等。

(V2V4)/R19=(V5V2)/R18 ……c 由虚断知,U8A第3脚没有电流流过,V1=V7 ……d 在桥电路中R15和Z1、PT100及线电阻串连,PT100与线电阻串连分得的电压通过电阻R17加至U8A的第3脚,V7=2*(Rx+2R0)/(R15+Rx+2R0) …..e 由虚短知,U8A第3脚和第2脚电压相等,V1=V2 ……f 由abcdef得, (V5V7)/100=(V7V3)/2.2 化简得V5=(102.2*V7100V3)/2.2 即V5=204.4(Rx+2R0)/(1000+Rx+2R0) –200/11 ……g 上式输出电压V5是Rx的函数我们再看线电阻的影响。

Pt100最下端线电阻上产生的电压降经过中间的线电阻、Z2、R22,加至U8C的第10脚,由虚断知,V5=V8=V9=2*R0/(R15+Rx+2R0) ……a (V6V10)/R25=V10/R26 ……b 由虚短知,V10=V5 ……c 由式abc 得V6=(102.2/2.2)V5=204.4R0/[2.2(1000+Rx+2R0)] ……h 由式gh组成的方程组知,如果测出V5、V6的值,就可算出Rx及R0,知道Rx,查pt100分度表就知道温度的年夜小了。

相关文档
最新文档