奥数三升四学习全资料
【三升四】小学数学奥数第8讲:变化中的数-教案
备课教员:×××第八讲变化中的数一、教学目标:理解和掌握和、差的变化规律,能根据和、差的变化规律进行简便运算;经历和、差变化规律的探究过程,学会比较概括的思想方法。
二、教学重点:理解和、差的变化规律。
三、教学难点:能根据和、差的变化规律进行简便运算。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、游戏导入(5分)师:在上课前,老师要和大家玩一个小游戏大家愿意吗?生:愿意。
师:今天我们要玩的游戏为“拍七令”。
规则:多人参加,从1-99报数,当有人数到含有“7”的数字或“7”的倍数时,不许报数,要拍下一个人的后脑勺,下一个人继续报数。
如果有人报错数或拍错人则罚表演节目。
【师生参与】师:刚才我们玩的游戏是不是有一定的规律?生:是的。
师:其实在数学中有很多有规律的数学知识,大家知道加法与减法计算也可以有规律吗?生:不知道。
师:今天我们要学习的就是加法与减法的变化规律。
(板书:变化中的数)二、探索发现授课(42分)(一)例题一:(14分)两个数相加,一个加数减少10,另一个加数增加10,和是否有变化?【出示课件】师:先读题,再观察,后思考,从题中找出已知条件。
师:题中告诉我们什么已知条件。
生:一个加数减少10。
生:一个加数增加10。
师:还有吗?你们还忘了什么?生:问题,问题是“和是否有变化?”师:题目是:两个数相加,一个加数减少10,另一个加数增加10,和是否有变化?怎样来判断?怎么求呢?两个加数都有变化。
一个减少,一个增加。
生:可以求出一个加数,再求另一个加数。
生:先求出一个加数,看下和是否有变化,然后又去求另一个加数,同样要知道和的变化。
最后解答问题。
师:说得很棒,我们可以先求出一个加数减少10时,和是否有变化,接着求另一个加数增加10时,和是否有变化。
最后求出当一个加数减少10,另一个加数增加10,和的变化。
我们可以采用假设法,假设这两个加数分别是什么,然后一个加上10,一个减去10。
小学奥数三升四(暑假)-盈亏问题讲义
盈亏问题【例题】给幼儿园小朋友分苹果,若每人分 3 个就余 11 个;若每人分 4 个就少 1 个。
问有多少小朋友?有多少个苹果?解:按照“参加分配的总人数=(盈+亏)÷分配差”的数量关系:(1)有小朋友多少人?(11+1)÷(4-3)=12(人)(2)有多少个苹果? 3×12+11=47(个)答:有小朋友 12 人,有 47 个苹果。
【例1】一批新苗,如果每人种树苗8棵,则少3棵;如果每人种7棵,则有4棵没人种。
求参加种树的人数是多少?这批新苗共有多少棵?【练一练】一个兴趣班给小朋友们分水果,如果每个人分3个则还剩下3个水果,如果每个人分4个那还差2个水果。
这个班一共有多少个小朋友?一共有多少个水果?【练一练】学校安排新生住宿,若每间宿舍住6人,则多出34人;若每间宿舍住7人,则多出4间宿舍,求住宿的学生和宿舍各有多少?【例2】妞妞给小兔子们喂胡萝卜,如果每只兔子分6根,则少10根;每只兔子分4根,还要少2根。
一共有几只兔子?有几根胡萝卜?【练一练】工程队修一条路,如果每天修150米,则可以提前两天完成任务;如果每天修180米,则可以提前5天完成任务。
这条路全长多少米?【练一练】学校规定早上8点到校,小米去上学,如果每分钟走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小米几时几分离家刚好8点到校?家与学校间的距离是多少米?【例3】学校组织春游,如果每辆车坐 40 人,就余下 30 人;如果每辆车坐 45人,就刚好坐完。
问有多少车?多少人?【练一练】小米做蛋糕,如果每个蛋糕用3个鸡蛋则多了8个鸡蛋,如果每个蛋糕用4个鸡蛋则刚好用完。
问小米要做几个蛋糕?有多少个鸡蛋?【练一练】一个工人要在一定时间内加工一批零件,他如果每小时做10个,就还差3个零件完成任务;每小时做11个恰好在规定时间完成任务。
他加工的零件是多少个?规定时间是多少个小时?。
奥数三升四暑假班讲义
第一讲巧用方法算得快预习:5×2=25×4=125×8=625×16=19×25×4=37×125×8=45×2×125×4×8×25×5=125×72=例2.19×25×64×125=例1.(1)123×15÷5 (2) 125×16÷25 = =(3)5600÷(25×7)(4)450÷54×6 = =例7.1÷(2÷3)÷(3÷4) ÷(4÷5)÷(5÷6)=补充:2000÷(100÷99)÷(99÷98)÷(98÷97)÷……÷(3÷2)÷(2÷1) =补充:5÷(7÷11)÷(11÷15)÷(15÷21)=*例9.(2×3×5×7×11×13×17×19)÷(38×51×65×77)=*补充.(11×10×9×8×7×6×5×4×3×2×1)÷(22×24×25×27)=*例3.88×22+55×73-44×44-33×55 =例8.12345×2345+2469×38275=例4.2009×-2007×=补充:×-×=例5.1997×-2000×=补充:123×1001=123×1001001=1234×10001=补充:1997×-3000×=补充:3553××=补充:3142×2468-2468×3=例6.÷3030303=例11.345345×788+690×105606 =例10.(123456+234561+345612+456123+561234+612345)÷7=补充:+9971997+971997+71997+1997+997+97+7=补充:1+11+111 + …… + 1……+111(100个1)的和的末三位是多少?补充:(56789+67895+78956+89567+95678)÷7=作业:1. (1)220×35÷7 (2)720×12÷9= =(3)2250÷15÷15 (4)120÷(10÷8)= =2.53×46+71×54+82×54=3. (1)1000001×999999=(2)132132÷12012=4. 1÷(3÷5)÷(5÷7)÷(7÷9)=5. 2375×3987+9207×6013+3987×6832=第二讲巧求周长和面积例1. 两个大小相同的正方形拼成了一个长方形,长方形的周长比原来的两个正方形周长的和减少了6厘米,原来一个正方形的周长是多少厘米?例2.阳阳用四块小长方形恰好拼成了一个大长方形,如图所示,现在知道其中三块长方形的面积分别为48平方厘米、24平方厘米和30平方厘米,那么阴影部分的面积是多少?48 2430补充:如图所示,四块小长方形恰好拼成了一个大长方形,A、B、C、D分别为四个长方形的面积,请证明A×D=B×C。
三升四奥数暑假班
(三升四暑假班.03)1、小红有30支铅笔,小兰有45支铅笔,小兰给小红几支后,小红的支数是小兰的2倍?2、姐姐有320元钱,弟弟有180元钱、弟弟给姐姐多少钱后,姐姐的钱比弟弟的钱多3倍?3、有两层书架,共有书173本。
从第一层拿走38本书后,第二层的书是第一层的2倍还多6本,则第二层有多少本书?4、小明和小强共有画片200-张,小明的张数比小强的张数的2倍还多20张,则小强有几张画片?5、一堆苹果共有1 30个,第二堆的苹果数是第一堆的3倍,第三堆的苹果数是第二堆的2倍多10个,问三堆苹果各有多少个?6、甲仓所存面粉是乙仓的3倍,从甲仓运走8500千克,从乙仓运走500千克,后,两仓所剩的千克数相等。
问两仓原有面粉多少千克?7、姐妹两人买东西,姐姐带的钱数是妹妹的2倍,姐姐用去180元,妹妹用去30元,这时二人剩下的钱数相等。
问姐妹各带了多少元?8、有大小两个整千数,大数是小数的3倍,这两个数最高位上的数字的差是6,问这两个整千数各是多少?9、用9辆汽车和18辆大车送一批货物,每辆汽车的载重量相当于大车的3倍,结果汽车比大车一共多运18吨,汽车和大车每辆各运多少吨?10、少先队一、二、三中队共植树200棵,二中队植树的棵数是一中队的2倍多5棵,三中队植树的棵数比一、二中队之和多4棵,三个中队各植树多少棵?11、小明、小丽做题,如果小明再做4道就和小丽做的一样多,如果小丽再做6道就是小明的3倍,小明做( )道,小丽做( )道。
12、仓库存有面粉和大米,己知面粉比大米多4500千克,面粉的斤数比大米的3倍多700千克,大米()千克,面粉()千克。
13、一块长方形木板,长是宽的2倍,周长是54厘米。
这个长方形木板的面积是( )平方厘米。
(长方形面积=长×宽)14、甲乙两个冷藏库原来共存肉92吨,从甲库运出28吨后,乙库存肉比甲库的4倍少6吨,甲库原来存肉()吨,乙库原来存肉( )吨。
15、两个粮仓共存粮2200千克,由乙仓运出210千克:甲仓存的粮食是乙仓的2倍少380千克,甲仓库原来存粮食()千克,乙仓库原来存粮食( )千克。
奥数三升四暑假班讲义
第一讲巧用方法算得快预习:5×2=25×4=125×8=625×16=19×25×4=37×125×8=45×2×125×4×8×25×5=125×72=例2.19×25×64×125=例1.(1)123×15÷5 (2) 125×16÷25 = =(3)5600÷(25×7)(4)450÷54×6 = =例7.1÷(2÷3)÷(3÷4) ÷(4÷5)÷(5÷6)=补充:2000÷(100÷99)÷(99÷98)÷(98÷97)÷……÷(3÷2)÷(2÷1) =补充:5÷(7÷11)÷(11÷15)÷(15÷21)=*例9.(2×3×5×7×11×13×17×19)÷(38×51×65×77)=*补充.(11×10×9×8×7×6×5×4×3×2×1)÷(22×24×25×27)=*例3.88×22+55×73-44×44-33×55=例8.12345×2345+2469×38275=例4.2009×20082007-2007×20082009=补充:20082009×20092008-20082008×20092009 =例5.1997×20002000-2000×19971997=补充:123×1001=123×1001001=1234×10001=补充:1997×30003000-3000×19971997=补充:3553×14621462-1462 ×35533553=补充:3142×246824682468-2468×314231423142 =例6.12121212÷3030303=例11.345345×788+690×105606=例10.(123456+234561+345612+456123+561234+612345)÷7=补充:19971997+9971997+971997+71997+1997+997+97+7=补充:1+11+111 + …… + 1……+111(100个1)的和的末三位是多少?补充:(56789+67895+78956+89567+95678)÷7=作业:1. (1)220×35÷7 (2)720×12÷9= =(3)2250÷15÷15 (4)120÷(10÷8)= =2.53×46+71×54+82×54=3. (1)1000001×999999=(2)132132÷12012=4. 1÷(3÷5)÷(5÷7)÷(7÷9)=5. 2375×3987+9207×6013+3987×6832=第二讲巧求周长和面积例1. 两个大小相同的正方形拼成了一个长方形,长方形的周长比原来的两个正方形周长的和减少了6厘米,原来一个正方形的周长是多少厘米?例2.阳阳用四块小长方形恰好拼成了一个大长方形,如图所示,现在知道其中三块长方形的面积分别为48平方厘米、24平方厘米和30平方厘米,那么阴影部分的面积是多少?补充:如图所示,四块小长方形恰好拼成了一个大长方形,A、B、C、D分别为四个长方形的面积,请证明A×D=B×C。
三升四火箭班奥数暑假讲义
3.下面竖式里的“兴”和“趣”两个汉字个代表什么数
兴兴1 1趣趣6 6
兴兴兴2兴11 1 2 1趣趣4 3 5趣66 4 3 5 6
兴兴1 1 3 9趣3 9 6
兴兴1 1 3 9趣3 9 6
兴兴1 1 3 9趣3 9 6
.讲与练,下式中,相同汉字代表相同的数,不同汉字代表不同的数。问:各汉字分别代表什么数。
北大因为积的百位和十位都是京,多以北不能大于4.否则要进位,两个京
×好好就不同了,又因为北大×好=北北北(相同数)想:37×3=111,37×6=222
北北北经过计算确定37×99 37×9=333
北北北北=3,大=7,好=9,京=6.
(6)(6)5 6(8)
×3 5×(2)4
3 3(0)(2)(2)7 2
1(9)8(1)1 3(6)
(2)(3)(1)(0)1 3 6 3(2)
2.在里填上适当的数字。
8(8)(1)(1)
(5)0 4(4)(0)0(7)(6)8 3 6
(4)(0)(0)7 (6)
4 0 0 7 6
(4)(0)(0)7 6
(3) 2, 5, 11, 23, 47, (95), (191).
观察相邻项可发现:前项×2+1=后项。即2×2+1=5,5×2+1=11,……。因为47×2+1=95,95×2+1=191
练:找规律,填上合适的数。
(1)56,49,42,35,(28),(21),后项比前项少7
(2)11,15,19,23,(27),(31),后项比前项多4
(8)(3)(7)完成左边计算。
0
练:在下面的○里有填上一个合适的数,使算式成立。
据商的最高位位置可知除数十位数必大于4,第一次商与除数的积的个位是2,那么商的最高可能是7或2,计算可知是7,由此推算,除数的十位数是6.到此,可通过计算完成左边算式。
3升4奥数拓展:和差倍问题-数学四年级上册
3升4奥数拓展:和差倍问题-数学四年级上册一、选择题1.观察下面的线段图,算式(105-15)÷2求的是()。
A.文艺书的本数B.科技书的本数C.一共的本数D.科技书比文艺书多的本数2.一个等腰三角形的顶角是底角的3倍,这个三角形的顶角是()。
A.36° B.120° C.108° D.148°3.妈妈买了一套衣服,上衣比裤子贵160元,上衣的价钱是裤子的3倍。
裤子的价钱是()元。
A.60 B.75 C.804.一辆卡车要运260吨货物,已经运了8趟,每趟运输的货物同样多,已经运的比没有运的少20吨,这5.张阿姨买一套衣服用了88元,上衣比裤子贵12元,上衣()元。
A.50 B.38 C.766.全班共有学生45人,男生比女生多3人,问男生有()人。
A.42 B.21 C.24 D.48二、填空题7.停车场有小轿车和面包车共54辆,其中面包车比小轿车少14辆,停车场有小轿车( )辆,面包车( )辆。
8.如果甲数+乙数=72,甲数-乙数=12,那么甲数是( ),乙数是( )。
9.琪琪和乐乐一共收集了74枚邮票,已知琪琪比乐乐少收集8张邮票。
乐乐收集了( )张邮票。
10.一根长50cm的铁丝围成长方形,如果宽增加3cm,可以围成一个正方形,那么原来的长方形的宽是( )cm 。
11.在一个直角三角形中,锐角∠A 比锐角∠B 大30°,∠A =( ),∠B =( )。
12.一个数扩大10倍后得到的新数与这个数的和为132,这个数是( )。
13.甲、乙两桶水共重100千克,如果从甲桶倒出15千克水给乙桶,那么此时甲桶水的质量是乙桶水的3倍。
原来乙桶有水( )千克。
14.已知200a b +=,且120a b −=,那么()20a b ++=( )。
三、解答题 15.小林和小丽一共有邮票56枚,小丽给小林6枚后两人一样多,小林和小丽各有多少枚邮票?16.长方形和正方形的面积一共是600平方厘米,长方形的面积比正方形的面积多180平方厘米,长方形的面积是多少平方厘米?17.某养殖专业户养了鸡和鸭一共1980只,鸭比鸡少780只。
三升四学年奥数讲义
目录第一讲速算与巧算 (2)第二讲应用题综合(一) (9)第三讲应用题综合(二) (14)第四讲行程问题初步 (18)第五讲奇数与偶数 (23)第六讲计数问题 (28)第七讲体育比赛中的数学 (33)第八讲期中测试 (37)第九讲余数与周期 (40)第十讲简单的抽屉原理 (45)第十一讲巧求周长 (50)第十二讲数字谜 (55)第十三讲趣题巧解 (60)第十四讲逻辑推理 (64)第十五讲期末测试 (68)第一讲速算与巧算亲爱的同学们,你想一见到算式就能张口说出得数吗?你想让自己变得更聪明吗?学了今天的速算技巧后你就可以梦想成真了!还等什么?来吧,一起出发!你还记得吗?1.加法交换律:两个数相加,交换加数的位置,它们的和不变.2.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变.3.乘法交换律:两个数相乘,交换两个数的位置,其积不变,即a×b=b×a,其中a,b为任意数.4.乘法结合律:三个数相乘,可以先把前两个数相乘后,再与后一个数相乘,或先把后两个数相乘后,再与前一个数相乘,积不变,即a×b×c=(a×b)×c=a×(b×c).【例1】计算:378+26+609分析:原式=(378+22)+(600+9)+(26-22)=400+600+9+4=1013.[拓展] 计算:1998+198+18分析:原式=(2000-2)+(200-2)+(20-2)=2220-6=2214.【例2】计算:1000-90-80-20-10分析:原式=1000-(90+80+20+10)=1000-200=800.【例3】计算:1)63×11 ;2)852×11分析:在这个数的首尾之间添上相邻两数依次相加的和(和满10要进1). 即“两边一拉,中间相加”. 1)63×11=693 (其中9是6+3),2)852×11=9372(7=5+2 3=5+8末尾9=8+1).【例4】计算:15×15 ;25×25 ;35×35分析:建议教师先介绍个位数字为5的数的平方速算规律:首数加1的和乘以首数,尾数相乘,两积连起来即为所求的积.15×15=225 ;25×25=625 ;35×35=1225.暑假精讲1.商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.在连除时,可以交换除数的位置,商不变,即a÷b÷c=a÷c÷b2.乘除法混合运算的性质(1)在乘除混合运算中,被乘数、乘数或除数可以连同数字前面的运算符号一起交换位置,例如a×b÷c=a÷c×b=b÷c×a(2)在乘除混合运算中,去掉括号的规则以及去括号的情形a×(b×c)=a×b×ca×(b÷c)=a×b÷ca÷(b÷c)=a÷b×c(3)两个数之积除以两个数之积,可以分别相除后再相乘,即(a×b)÷(c×d)=(a÷c)×(b÷d)=(a÷d)×(b÷c).在乘除运算中,要做到既正确又迅速,首先要熟练地掌握乘除的各种运算定律,性质和运算中积商的变化规律,其次要了解题目的特点,创造条件,选用合理,灵活的计算方法,下面我们通过一些例题介绍一些运算的速算和巧算的方法.【例1】计算:25×9×125×4×8分析:解题关键是观察题目可以发现25×4得100,125×8得1000,将它们分别合并便可达到速算原式=(25×4)×(125×8)×9=100×1000×9=900000.【例2】计算:456×2×125×25×5×4×8分析:原式=456×(2×5)×(25×4)×(125×8)=456×10×100×1000=456000000.[巩固] 计算:19×25×64×125分析:原式=(25×4)×(125×8)×(19×2)= 100×1000×38=3800000.【例3】计算:5400÷25÷4分析:根据除法性质知一个数分别除以两个数,等于除以这两个数的积. 原式=5400÷(25×4)=5400÷100=54.【例4】计算:5÷(7÷11) ÷(11÷15) ÷(15÷21)分析:原式=5÷7×11÷11×15÷15×21=5×(11÷11)×(15÷15)×(21÷7)=5×3=15.【例5】计算:333333÷37÷3-3625÷125+125×50分析:运用a÷b÷c=a÷(b×c) .原式=333333÷(37×3)-29+6250=333333÷111+(6250-29)=3003+6221=9224.【例6】53×46+71×54+82×54分析:可以把53,199拆分.原式=(54-1)×46+71×54+82×54=54×46+71×54+82×54-46=54×(46+71+82)-46=54×199-46=54×(200-1)-46=54×200=54-46=10800-100=10700.【例7】(873×477-198)÷(476×874+199)分析:观察到873与874,476与477的关系,可以考虑把整数进行拆分. 原式=[873×(476+1)-198] ÷[476×(873+1)+199]=[873×476+873-198] ÷[476×873+476+199]=[873×476+675] ÷[476×873+675]=1.【例8】1111111111×9999999999分析:原式=1111111111×(10000000000-1)=11111111110000000000-1111111111=11111111108888888889.【例9】99999×26+33333×24分析:原式=99999×26+33333×3×8=99999×26+99999×8=99999×(26+8)=(100000-1)×34=3399966.【例10】计算:1+1×2×2+l×2×3×3+l×2×3×4×4+l×2×3×4×5×5分析:原式=1×(2-1)+l×2×(3-1)+1×2×3×(4-1)+1×2×3×4×(5-1)+l×2×3×4×5×(6-1) =l×2-1+l×2×3-1×2+l×2×3×4-1×2×3+l×2×3×4×5-1×2×3×4+l×2×3×4×5×6-l×2×3×4×5=l×2×3×4×5×6-l=720-l=719.【例11】计算:2006+2005-2004-2003+2002+2001-2000-1999+1998+…+5-4-3+2+1分析:(法1)我们观察可以发现,题目中每4个数一组可以相互抵消,将这些数先分组,简化计算. 原式=2006+(2005-2004-2003+2002)+(2001-2000-1999+1998)+…+(5-4-3+2)+1 =2006+0+0+…+0+1=2007.(法2)根据符号规律,可以4个数一组.原式=(2006+2005-2004-2003)+…+(6+5-4-3)+2+1=4×(2004÷4)+3=2007.[拓展] 计算:1992-1-2+3+4-5-6+7+8-…-1989-1990+1991分析:原式=(1992+1991-1990-1989)+…+(4+3-2-1)=4×(1992÷4)=1992.【例12】计算:9×17+91÷17-5×17+45÷17分析:[前铺]分配律的逆运算是个难点,建议教师先从简单题讲清楚再讲本题.计算1:36×19+64×19=(36+64)×19=1900.计算2:36×19+64×144=36×19+64×(19+125)=(36+64)×19+64×125=1900+8×8×125=1900+8000=9900.例题原式=9×17-5×17+91÷17+45÷17=(9-5)×17+(91+45)÷17=4×17+136÷17=68+8=76.【例13】计算:765×213÷27+765×327÷27分析:原式=765×(213+327)÷27=765×540÷27=765×20=15300.【例14】计算:25×2626-26×2525分析:[前铺]建议教师先给学生讲清楚周期性数字的规律.如123123=123×1001,123123123=123×1001001,…原式=25×26×101-26×25×101=0.[拓展1] 计算:12121212÷3030303分析:原式=12×1010101÷(3×1010101)=(12÷3)×(1010101÷1010101)=4×1=4.[拓展2] 计算:(4545+5353)÷4949分析:原式=(45×101+53×101)÷(49×101)=(45+53)×101÷49÷101=(45+53)÷49=2.【例15】2004×200320032003-2003×200420042004分析:原式=2004×2003×100010001-2003×2004×100010001=0.附加内容【附1】计算:(11×10×9×…×3×2×1)÷(22×24×25×27)分析:原式= (11×2÷22)×(10×5÷25)×(9×6÷27)×(8×3÷24)×7×4 =1×2×2×1×7×4=112.【附2】计算:(123456+234561+345612+456123+561234+612345)÷7 分析:[前铺]建议教师先讲解拆数法:123456=1×100000+2×10000+3×1000+4×100+5×10+6×1,234561=2×100000+3×10000+4×1000+5×100+6×10+1×1,…或者观察竖式发现:每个数位上的和=(1+2+3+4++5+6)×相应的数量单位.讲清楚拆数这个问题,题目就迎刃而解了.原式=(1+2+3+4+5+6)×(100000+10000+1000+100+10+1) ÷7 =21×111111÷7=3×111111=333333.大显身手 123456 234561 345612 456123 561234+)6123451.25×17×32×125分析:原式=(25×4)×17×(8×125)=1700000 .2.1)57×99 ;2)17×999分析:1)原式= 5643 ;2)原式=16983.3.56000÷(14000÷16)分析:原式= 64.4. 15000÷125÷15分析:原式=15000÷15÷125=1000÷125=8.数学迷宫仔细看看图中有几只猴子?第二讲应用题综合(一)春季班同学们已经学习了平均数的应用题,其中包括以两组数的平均数和它们的总平均数间的关系为内容的问题.求解时应恰当选取基准数并注意权重.暑假我们学习的平均数问题包括算术平均数、加权平均数、连续数和求平均数、调和平均数和基准数求平均数.解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数.首先,让我们先回顾一下吧!你还记得吗?1.小强做跳绳练习,第一次跳了67下,第二次跳了76下.她要想三次平均成绩达到80下,第三次至少要跳多少下?分析:80×3-(67+76)=97(下).2.小明家先后买了两批小猪,养到今年10月.第一批的3头每头重66千克,第二批的5头每头重42千克.小明家养的猪平均多重?分析:两批猪的总重量为66×3+42×5=408(千克).两批猪的头数为3+5=8(头),故平均每头猪重408÷8=51(千克).3.甲乙两地相距240千米,一辆汽车从甲地往乙地送货,去时以每小时40千米的速度行驶.返回时由于空载,以每小时60千米的速度行驶.这辆汽车往返的平均速度是每小时多少千米?分析:240×2=480(千米),240÷40=6(小时),240÷60=4(小时),6+4=10(小时),480÷10=48(千米).4.小强为了培养自己的数学解题能力,除了认真读一些书外,还规定自己每周(一周为7天)平均每天做4道数学竞赛训练题.星期一至星期三每天做3道,星期四不做,星期五、六两天共做了13道.那么,星期日要做几道题才能达到自己规定的要求?分析:要先求出每周规定做的题目总数,然后求出星期一至星期六已做的题目数.两者相减就是星期日要完成的题目数.每周要完成的题目总数是4×7=28(道).星期一至星期六已做题目3×3+13=22(道),所以,星期日要完成28-22=6(道).综合列式为4×7-(3×3+13)=6(道).暑假精讲【例1】五个同学期末考试的数学成绩平均94分,而其中有三个同学的平均成绩为92分,另两个同学的平均成绩是多少?分析:(94×5-92×3)÷2=97(分).【例2】一个房间里有9个人,平均年龄是25岁;另一个房间里有11个人,平均年龄是45岁.两个房间的人合在一起,他们的平均年龄是几岁?分析:(25×9+45×11)÷(9+11)=36(岁).【例3】学而思三升四竞赛班50人考试,全班平均分为85分,其中有40的人及格,及格人的平均分是93分,那么不及格人的平均分是多少分?分析:不及格人的平均分是(85×50-93×40)÷(50-40)=53(分).【例4】甲班51人,乙班49人,某次考试2个班全体同学的平均成绩是81分,乙班平均分比甲班高7分,那么乙班的平均成绩是多少分?分析:甲、乙2班总分为81×(51+49)=8100(分),由于乙班平均分比甲班高7 分,如果甲班每人提高7分,那么2班平均分即为乙班现在的平均分(8100+7×51)÷(51+49)=84.57(分).下面我们要学习一类新的应用题——盈亏问题.盈亏问题就是把一定数量的物品分给若干对象,由两种分配方案产生不同的盈亏数,反过来求被分配的物品数与分配的对象数.解题的关键在于确定两次分配数之差与盈亏总额(盈数+亏数),由此得到求解盈亏问题的公式:分配总人数=盈亏总额÷两次分配数之差.需要注意的是,两种分配方案的结果会出现一盈一亏、两盈、两亏等情况,所以我们要灵活把握.【例5】六一儿童节到了,李老师给同学们准备了一些漂亮的贴画作礼物,如果每人分3张就会多出29张,如果每人分5张则少19张,那么李老师给几个学生发礼物呢?分析:学生的人数:(29+19)÷(5-3)=24(个).【例6】杨老师到新华书店去买书,若买5本则多3元;若买7本则少1.8元.这本书的单价是多少?顾老师共带了多少元钱?分析;买5本多3元,买7本少1.8元.盈亏总额为3+1.8=4.8(元),这4.8元刚好可以买7-5=2(本)书,因此每本书4.8÷2=2.4(元),顾老师共带钱2.4×5+3=15(元).【例7】学校组织四年级师生去参观清华、北大,原计划租用45个座位的客车,但这样有5人没座,如果租用同样数量的55个座位的客车,则正好多出1辆车.那么,原计划租用45座客车几辆?分析:租55个座位的客车,正好多出1辆车,也就是少了一车的人,即55人,所以,原计划租用的客车数量(55+5)÷(55-45)=6(辆).【例8】用绳子量一口井的深度,把绳子折两折来量,多50厘米;折三折来量,还差30厘米,求绳长和井深各是多少?分析:根据题意,(50×2+30×3)÷(3-2)=190(厘米).(190+50)×2=480(厘米)或(190-30)×30=480(厘米).【例9】海尔兄弟约好在动物园门口见面,弟弟从家去动物园,如果每分钟走30米,就要迟到5分钟,如果每分钟走40米,可以提前2分钟到动物园,那么,海尔兄弟家到动物园的距离是几米?分析:迟到5分钟相当于少走了:30×5=150(米),提前2分钟到相当于多走了:40 ×2=80(米),所以,如果不迟到也不早到,弟弟走的时间为:(150+80)÷(40-30)= 23(分钟),家到学校的距离为:30×(23+5)=840(米).【例10】百货商店委托搬运站运送100只花瓶.双方商定每只运费1元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1元,结果搬运站共得运费92元.问:搬运过程中共打破了几只花瓶?分析:假设100只花瓶在搬运过程中一只也没有打破,那么应得运费1×100=100(元).实际上只得到92元,少得100-92=8(元).搬运站每打破一只花瓶要损失1+1=2(元).因此共打破花瓶8÷2=4(只).附加内容【附1】100名学生参加数学竞赛,平均分数是63分,其中参赛男同学平均分为60分,女同学平均分为70分,那么该校参赛男同学比女同学多几人?分析:参赛女同学人数为:[100×(63-60)] ÷(70-60)=30(人).所以参赛男同学比女同学多100-30-30=40(人).【附2】学而思竞赛班举行歌唱比赛,五位评委打分.计分时,先去掉一个最高分和一个最低分,在算出平均分作为该选手的最后得分.下面是嘟嘟同学的得分:79,83,86,81,■(第五个分数被盖上了),最后得分82.请你算算第五位评委打多少分?分析:如果第五位评委的分数是最高分获最低分,那么另一个去掉的分数就是79或86,剩下的3个分数的平均分不等于82,不合题意.所以第五位评委的分数是没有被去掉的,去掉的是79和86,第五位评委的分数是82×3-(83+81)=82(分).【附3】早晨陈奶奶去超市买菜,如果她买6千克鱼肉则还差10元.如果买8千克猪肉则还剩2元.已知每千克鱼肉比猪肉贵5元.那么陈奶奶带了多少钱?分析:由于每千克鱼肉比猪肉贵5元,6千克鱼肉应该比6千克猪肉贵:6×5=30(元),这时,买6千克猪肉应该剩下:30—10=20(元),所以,每千克猪肉的价钱为:(20—2)÷(8—6)=9(元),陈奶奶所带钱数:8×9+2=74(元).【附4】乐乐从家去学校上学,每分钟走50米,走了2分钟后,发觉按这样的速度走下去,到学校就会迟到8分钟.于是乐乐开始加快速度,每分钟比原来多走10米,结果到达学校时离上课还有5分钟.问:乐乐家离学校有多远?分析:乐乐从改变速度的那一点到学校,若每分钟走50米,则要迟到8分钟,也就是到上课时间时,他离学校还有50×8=400(米);若每分钟多走10米,即每分钟走60米,则到达学校时离上课还有5分钟,如果一直走到上课时间,那么他将多走(50+10)×5=300(米).所以盈亏总额,即总的路程相差400+300=700(米).两种走法每分钟相差10米,因此所用时间为700-10=70(分),也就是说,从乐乐改变速度起到上课时间有70分钟.所以乐乐家到学校的距离为50×(2+70+8)=4000(米).【附5】四(2)班在这次的班级评比中,获得了“全优班”的称号.为了奖励同学们,班主任刘老师买了一些铅笔和橡皮.刘老师把这些铅笔和橡皮分成一小堆一小堆,以便分给几位优秀学生.如果每堆有1块橡皮2支铅笔,铅笔分完时橡皮还剩5块;如果每堆有3块橡皮和5支铅笔,橡皮分完时还剩5支铅笔.那么,刘老师一共买了多少块橡皮?多少支铅笔?分析:如果增加10支铅笔,则按1块橡皮、2支铅笔正好分完;而按3块橡皮、5支铅笔分,则剩下10+5=15(支)铅笔,但如果按3块橡皮、6支铅笔分,则正好分完,可以分成:15÷(6—5)=15(堆),所以,橡皮数为:15×3=45(块),铅笔数为:15×6—10=80(支).大显身手1.暑假期间,小强每天都坚持游泳,并对所游的距离作了记录.如果他在暑假的最后一天游670米,则平均每天游495米;如果最后一天游778米,则平均每天游498米;如果他想平均每天游500米,那么最后一天应游多少米?分析:(778-670)÷(498-495)=108÷3=36(天),说明小强一共游了36天.要想平均游500米的话,他最后一天应该游670+36×(500-495)=670+180=850米.2.甲、乙两地相距240千米,一辆汽车从甲地往乙地送货,去时以每小时40千米的速度行驶.返回时由于空载,以每小时60千米的速度行驶.这辆汽车往返的平均速度是每小时多少千米?分析:240×2=480(千米),240÷40=6(小时),240÷60=4(小时),6+4=10(小时),480÷10=48(千米).3.王老师带班里的学生去颐和园春游,他们租了一些船在昆明湖上划船,如果增加1条船,正好每条船坐4人,如果减少1条船,正好每条船坐6人,那么,他们总共有几人去了颐和园?分析:这道题也可以理解为:原来每条船坐4人正好,后来减少了2条船,每条船坐6人.所以,租的船的数量为:6×(1+1)÷(6—4)=6(条),去颐和园的总人数为:6×4=24(人).4.兰兰参加暑假的英语夏令营,老师为她们安排住宿,如果每个房间住5人,则多出18人,如果每个房间住7人,则有2个房间空着.那么,参加英语夏令营的同学有几人?分析:房间数量:(18+7×2)÷(7—5)=16(个),参加夏令营的人数:16×5+18=98(人).成长故事永远看得起自己有一天某个农夫的一头驴子,不小心掉进一口枯井里,农夫绞尽脑汁想办法救出驴子,但几个小时过去了,驴子还在井里痛苦地哀嚎着.最后,这位农夫决定放弃,他想这头驴子年纪大了,不值得大费周章去把它救出来,不过无论如何,这口井还是得填起来.于是农夫便请来左邻右舍帮忙一起将井中的驴子埋了,以免除它的痛苦.农夫的邻居们人手一把铲子,开始将泥土铲进枯井中.当这头驴子了解到自己的处境时,刚开始哭得很凄惨.但出人意料的是,一会儿之后这头驴子就安静下来了.农夫好奇地探头往井底一看,出现在眼前的景象令他大吃一惊:当铲进井里的泥土落在驴子的背部时,驴子的反应令人称奇──它将泥土抖落在一旁,然后站到铲进的泥土堆上面!就这样,驴子将大家铲倒在它身上的泥土全数抖落在井底,然后再站上去.很快地,这只驴子便得意地上升到井口,然后在众人惊讶的表情中快步地跑开了!第三讲应用题综合(二)年龄问题和还原问题春季班都学习过基础的知识:年龄问题的解题要点是分析题意从表示年龄间倍数关系的条件入手理解数量关系.关键抓住“年龄差”不变.应用“差倍”、“和倍”或“和差”问题数量关系式解决;还原问题我们学习了用倒推法解单、多个变量的还原问题.今天我们再提高和拓展一下.来吧,我们出发!你还记得吗?1.今年姐姐13岁,弟弟今年10岁,当姐弟年龄之和达101岁时,姐弟各是多少岁?分析:法1:两人年龄和每年增加2岁.算出过多少年两人年龄和达101岁,就可在现在的年龄上各人增加同样多的岁数.101-(13+10)=101-23=78(岁),78÷2=39(年),姐:13+39=52(岁) ,弟:10+39=49(岁) .法2:可以把本题理解为一道“和差问题”,由已知姐姐和弟弟今年分别是13岁和10岁,可求出两人今年的年龄差是:13-10=3(岁).当两人的年龄和是101岁时,两人的年龄差还是3岁.所以,姐姐的年龄为(101+3)÷2=52(岁),弟弟的年龄为52-3=49(岁).2.今年爸爸48岁,儿子20岁,几年前爸爸的年龄是儿子的5倍?分析:今年爸爸与儿子的年龄差为“48—20=28”岁,因为二人的年龄差不随时间的变化而改变,所以当爸爸的年龄为儿子的5倍时,两人的年龄差还是这个数,这样就可以用“差倍问题”的解法.当爸爸的年龄是儿子年龄的5倍时,他们的年龄差是儿子年龄的4倍,所以儿子的年龄是:(48—20)÷(5—1)=7(岁),由20-7=13(岁),推知13年前爸爸的年龄是儿子年龄的5倍3.小新在做一道加法题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的答案是多少?分析:(倒推法)把个位上的5看作9,相当于把正确的和多算了4,求正确的和,应把4减去;把十位上的8看作3,相当于把正确的和少算了50,求正确的和,应把50加上去.所以正确的和是123+50- 4=169.即:123+(80-30)- (9-5)=169.4.一群蚂蚁搬家,原存一堆食物.第一天运出总数的一半少12克.第二天运出剩下的一半少12克,结果窝里还剩下43克.问蚂蚁家原有食物多少克?分析:(倒推法)教师可画线段图帮助学生理解.如果第二天再多运出12克,就是剩下的一半,所以第一天运出后,剩下的一半重量是43-12=3l(克);这样,第一天运出后剩下的重31×2=62(克).那么,一半的重量是62—12=50(克),原有食物50×2=100(克).即[(43-12)×2-12]×2=100(克).暑假精讲【例1】父亲15年前的年龄相当于儿子12年后的年龄.当父亲的年龄是儿子的4倍时,父亲多少岁?分析:父亲比儿子大15+12=27岁.儿子是27÷(4—1)=9岁.父亲是9×4=36岁.【例2】小明一家有4人:爷爷、爸爸、妈妈和小明.爷爷比爸爸大26岁,妈妈比小明也大26岁.已知这家人今年的年龄之和为126岁,而5年前的年龄之和为107岁,那么小明与他爷爷的年龄之差是几岁?分析:5年来,小明家的年龄之和增加了126-107=19岁.这家现有4口人,而19<4×5,这说明小明还不满5岁,他今年只有19-3×5=4岁.于是今年妈妈4+26=30岁,爷爷和爸爸的年龄之和为126-4-30=92岁.又爷爷比爸爸大26岁,因此今年爷爷(92+26)÷2=59岁,他比小明大59-4=55岁.【例3】6年前,母亲的年龄是儿子的5倍.6年后母子年龄和是78岁.问:母亲今年多少岁?分析:母子今年年龄和:78-6×2=66(岁),母子6年前年龄和:66-6×2=54(岁),母亲6年前的年龄:54÷(5+1)×5=45(岁),母亲今年的年龄:45+6=51(岁).【例4】王老师与王平和李刚两位同学的平均年龄是20岁,李老师与王平和李刚两位同学的平均年龄是18岁.王老师今年32岁,李老师今年多少岁?分析:王老师比李老师大20×3—18×3=6(岁).故李老师今年的年龄为32—6=26(岁).【例5】林林1999年上四年级,他出生年份的各位数字之和是最大的一位数的3倍,问他1999年几岁?分析:他出生于1989年,1999年时他10岁.【例6】新天地广场运进一批新款式彩色电视机,第一天售出总数的一半多10台,第二天售出剩下的一半多20台,还剩95台.这批新款彩电有多少台?分析:根据题意可画出线段示意图进行倒推还原.由示意图可知:95台加上20台正好是剩下的一半,所以用(95+20)×2=剩下的台数;剩下的台数加上10台,正好是总数的一半,于是可求出这批彩电的台数.[(95+20)×2+10]×2=480(台).【例7】村姑卖蛋,第一次卖出一篮的一半又二个;第二次卖出余下的一半又二个;第三次卖出再剩下的一半又二个,这时篮里只剩下二十个蛋.这篮鸡蛋有多少个?从上面线段图可以看出:最后剩下20个再加上第三次卖出的再余下的一半以外的2个,就是再余下的一半,由此可求出再余下的是:(20+2)×2=44(个).44个再加上第二次卖出余下的一半以外的2个就是余下的一半,因此可求出余下的是:(44+2)×2=92(个).92个再加上第一次卖出一篮的一半以外的2个就是全篮的一半,因此可求出全篮鸡蛋的个数是(92+2)×2=188(个). 【例8】A ,B ,C 三位小朋友都有若干本图书,如果A 将自己的书给B ,C ,使B ,C 的书各增加一倍然后B 又将现有的图书给A ,C ,使A ,C 现有的图书各增加一倍;最后C 再将自己已有的图书给A ,B ,使A ,B 的图书各增加一倍,这时三人的图书都是240本.A ,B ,C 三位小朋友原来各有图书多少本?分析:如图: 【例9】三人存款不等,只知如果甲给乙40元,乙又给丙30元,丙AB C 第一次 39210120 第二次 60 42240 第三次 12120 480240240240再给甲20元,给乙70元,这时三人都有240元.三人原来各有存款多少元?分析:甲原有:240-20+40=260(元);乙原有:240-70+30-40=160(元);丙原有:240+20+70-30=300(元).附加内容【附1】甲、乙、丙、丁四人现在的年龄和是64岁,甲21岁,乙17岁.甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是多少岁?分析:(法1)当甲18岁时,乙的年龄为17—3=14(岁).丁现在的年龄为(64—18—14)÷(1+3)=32÷4=8(岁).(法2)甲18岁是3年前,所以4人总年龄是64-3×4=52(岁),所以丙丁年龄和为52-18-14=20(岁),丁就是20÷(1+3)=5(岁),现在的年龄是5+3=8(岁).【附2】竹篮内有若干李子,将它的一半又一个给小朋友甲,把剩下的一半又两个给小朋友乙,最后取剩余的一半又三个给小朋友丙,这时竹篮里的李子恰好发完.问竹篮内原来有多少个李子?分析:(倒推法)“剩余的一半又三个恰好发完”说明剩余的一半刚好是3个,即第二次发完后还剩6个,“剩下的一半又两个”,则第一次发完后还剩(6+2)×2=16(个),“将它的一半又一个”,则原来有(16+1)×2=34(个).大显身手1.小樱今年16岁,小桃今年11岁,几年后,小樱和小桃的年龄之和是45岁?分析:小樱和小桃今年年龄和为16+11=27(岁).小樱和小桃经过45—27=18(年) 两人的年龄之和是45岁时.这时,小樱和小红每人经过的年数都为:18÷2=9(年).2.已知明明今年2岁,爸爸今年28岁,那么请问11年后爸爸的年龄是小明的年龄的多少倍?分析:(28+11)÷(2+11)=39÷13=3(倍).3.小龟问老龟:“老爷爷,您今年多少岁?”老龟说:“把我的年龄加上20,再缩小2倍之后减去15,再扩大3倍,正好是105岁.你能算出我今年多少岁吗?”分析:(法1)根据题意,从最后一个条件105岁开始倒推:最后的数扩大3倍是105岁,如果没扩大3倍,应该是105÷3=35(岁);这个35岁是减去15得到的,如果没减去15,应该是35+15=50(岁);这个50岁是缩小2倍后得到的,如果没有缩小2倍,应该是50×2=100(岁);这个100岁是老龟的年龄加上20后得到的,那么老龟的年龄应该是80岁.(法2)设老龟今年x岁.依题意有[(x+20)÷2—15]×3=105.解得x=80.4.小红、小华和小刚各有一些故事书,小红给小华3本,小华给小刚5本后,三个人的书的本数同样多.小华原来比小刚多多少本?分析:(倒推法)5+(5-3)= 7(本).成长故事老鹰和火鸡有一群火鸡看着老鹰张著翅膀自由自在地在天上翱翔,十分的羡慕.于是和老鹰的头头商量是否能够派一个教练来教他们飞行的方法,老鹰头头爽快的答应下来.老鹰教练很有耐心地教导火鸡张开翅膀学飞行:翅膀张开,用力地拍!火鸡们在老鹰教练的大力指导下拼命地张着翅膀、用力地拍,它们好高兴自己会飞了,虽然飞得不是很高,但是它们已经会飞了!太阳西下,该是下课回家的时候了,老鹰教练对它们说:你们今天好棒!你们都飞得很好,你们可以飞了!太阳下山了,我也要回家了!结果呢?老鹰是飞着回家,火鸡仍然是走路回家.第四讲行程问题初步在春季班时我们已经学习了简单的行程问题——相遇问题的基本类型(两人单次直线相遇),同学们,你们还记得做行程问题的基本工具是什么吗?没错,就是画“线段图”.今天我们将学习更加复杂的相遇问题.先来回顾一下相遇问题的基础知识吧!你还记得吗?1.团团和圆圆同时从甲、乙两个书店相对出发,团团每分钟走460米,圆圆每分钟走480米.3分钟后两人相遇.甲、乙两个书店相隔是多少千米?分析:(法1)根据公式:总路程=速度和×相遇时间,所以甲、乙两个书店的路程是(460+480)×3=2820(米).(法2)如图,还可以先分别求两人各走了多少再相加,460×3+480×3=2820(千米).2.胖胖和瘦瘦两家相距255千米,两人同时骑车从家出发相对而行,胖胖每小时行45千米,瘦瘦每小时行40千米.两人相遇时,胖胖和瘦瘦各行了多少千米?分析:255÷(45+40)=3(小时).胖胖:45×3=135(千米),瘦瘦:40×3=120(千米).3.孙悟空在花果山,猪八戒在高老庄,花果山和高老庄中间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?分析:建议教师画线段图.我们可以先求出2小时孙悟空和猪八戒走的路程:(200+150)×2=700(千米),又因为还差500米,所以花果山和高老庄之间的距离:700+500=1200(千米).4.甲乙两辆汽车分别从A、B两地出发相向而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行5O千米,5小时相遇.求A、B两地间的距离.分析:这题不同的是两车不“同时”.(法1 )求A、B两地间的路程就是求甲、乙两车所行的路程和.这样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.48×(1+5)=288(千米),5O×5=25O(千米),288+25O=538(千米).(法2 )还可以先求出甲、乙两车5小时所行的路程和,再加上甲车1小时所行的路程.(48+5O)×5=49O(千米),49O+48=538(千米).暑假精讲。
三年级升四年级数学暑假奥数班第5讲 乘法分配律
第四站乘法分配律月日姓名【知识要点】两个数的和与另一个数相乘,等于这两个数分别与另一个数相乘,再把两个积相加,这叫做乘法分配律。
两个数相乘,如果有接近整百的数,可将其转化成整百数加或减一个数的形式,再运用乘法分配律进行计算,可使计算简便。
【典型例题】例1 一件短袖衫43元,买102件短袖衫,一共要付多少钱?例2 水果店运来苹果28箱,香蕉12箱,两种水果每箱都重25千克。
运来的苹果和香蕉一共重多少千克?(用两种方法解答)例3 79×57+79×13+70×21例4 420×78+220×42 37×120-12×170随堂小测姓名成绩1.在□里填上合适的数,在○里填上运算符号,使等式符合乘法分配律。
(1)(56+18)×24=□×□○□×□(2)37×14+63×14=(□+□)○□(3)127×□-27×19=(□○□)○192.小法官,判一判。
(1)(36+64)×47=36×47+64 ()(2)586×14-586×4=586×10 ()(3)(78+22)×34=78×34+22×78 ()(4)45×(3×2)=45×3+45×2 () 3.用简便方法计算。
59×102 99×6376×24+24×24 38×17-29×17+91×1715×10+85×23-85×13 11×25+55×1536×98+72 999×999+19994.小猫家离游乐场240米,小狗家离游乐场200米,小猫和小狗从家到游乐场需要5分钟。
奥数三升四学习资料
第一讲周长与面积例1、下面是一块地,四周用篱笆围起来,转弯处都是直角,求篱笆一共长多少米?试一试:求下面图形的周长。
例2、把一个边长是20厘米的大正方形分成4个完全一样的小正方形,这4个小正方形的周长的和比原来的大正方形周长增加了多少厘米?试一试:把一边长9厘米的正方形纸,剪成4个完全一样的小正方形,这4个小正方形周长之和比原来的正方形周长增加了多少厘米?例3、三同样大小的长方形拼成一个正方形,正方形周长是60分米,求每个长方形的周长。
试一试3四个完全一样的长方形正好拼成一个正方形,正方形周长是80厘米,求每个长方形的周长。
例4、把一长8厘米,宽5厘米的长方形纸剪成一个面积最大的正方形,这个正方形的面积是多少平方厘米?试一试:把一7分米,宽4分米的长方形剪成一个面积最大的正方形,这个正方形的面积是多少平方厘米?例5求图形的面积。
(单位:厘米)试一试:计算下面图形的面积。
(单位:分米)例6、两边长7厘米的正方形,一部分叠在一起放在桌上(如图),问桌子被盖住的面积是多少?试一试:求阴影部分面积。
(单位:厘米)堂上练习:1.如下图所示,甲、乙两人同时从学校到新华书店,甲沿A路线行走,乙沿B路线行走,如果两人速度一样,谁先到新华书店?为什么?2.把一长方形纸如图剪成4个小长方形,这4个小长方形的周长和比原来的长方形的周长增加了多少厘米?3.如下图,四个完全一样的正方形拼成一个长方形,长方形的周长是90厘米,求每个小正方形的周长。
4.把一块长5米、宽3米的长方形木板剪成一个面积最大的正方形木板,求这个正方形木板的面积。
5.计算下图的面积。
(单位:厘米)6.两个相同的长方形如图叠放,求这个图形的面积。
(单位:分米)课外作业1. 下面是一个楼梯的侧面,如果在阶梯上铺上地毯,要计算地毯的长度,可以怎样测量?2. 把一个边长为15厘米的正方形,如下图剪成6个完全一样的小长方形,这6个小长方形周长之和比原来的正方形的周长增加了多少厘米?第二讲 分数与小数例1、一正方形纸, 你能折出它的41吗?请你将折出的不同图形在下面的正方形中用阴影表示出来。
三升四奥数总复习
三升四总复习替换法1、根据下图,求最大的球的克数2、如下图:仪器架分三层。
上层放1个大瓶和1个中瓶,中间放1个中瓶和4个小瓶,下层放6个小瓶。
已知每层存放的药水量是一样多的。
已知这个仪器架上存放的药水共36升。
大瓶和中瓶中存放的药水共有多少升?练习与思考:1、○+○+○+△+△=14 △=○+○△= ○=2、古代一个国家,1头猪可换3头羊,1头牛可换10头猪。
1头牛可换头羊。
90头羊可换头牛。
3、如下图,1个□= 个○。
4、下图中的天平都是平衡的。
求:一个柿子的重量是多少克?5、○+○+○+☆+☆=23☆+☆+○+○+○+○+○=33○=( ) ☆=( )6、△+□=9△+△+□+□+□=25△=( ) □=( )7、☆+☆+☆+○=22 ☆+☆+☆+○+○+○=30☆=( ) ○=( )8、10个杏子的重量等于一个梨子和2个桔子的重量,4个杏子和1个桔子的重量等于1个梨子的重量,一个梨子的重量等于几个杏子的重量?9、1只狗的重量等于2只猴的重量,2只猴的重量等于4只兔的重量,1只狗重12千克,1只兔多少千克?找规律(1)2000,400,80,( )。
(2)3,1,6,2,12,3,24,4,( ),( );(3)625,125,25,5,( );(4)64,48,40,36,34,( );(5)5,6,11,17,28,( ),( );(6)1,4,13,40,( ),( );(7)1,5,2,10,3,15,4,20,( ),( );(8)1,4,7,10,( ),( ),……(9)64,32,16,( ),( ),2;(10)3,2,5,2,7,2,9,2,( ),( );(11)2,5,14,41,122,( ),( );(12)1,21,31,41, )()(,)()(; (13)1,8,27,64,( ),( );(14)1,2,3,4,5,12,7,48,( ),( );(15)3,4,7,9,15,16,31,25,( ),( );(16)1、4、9、16、( )(17)0、1、0、2、0、3、0、()、()、()(18)0、1、1、2、3、5、8、()、()2、下面各列数中都有一个数与众不同,请找出来。
三升四奥数总复习
三升四总复习(一)巧求周长这个是奥数知识点,主要是根据长方形和正方形周长公式,巧妙运用拆分与平移法进行解题。
正方形周长=长方形周长=(二)面积和单位这个知识点是对三年级的一个复习和四年级的一个提高,主要是对长方形和正方形面积的一个巧算与计算。
紧紧抓住长方形和正方形的面积之间的一个计算公式进行求解。
正方形面积=长方形面积=1、常用的长度单位千米、米、分米、厘米、毫米1米=10分米=100厘米2、常用的面积单位平方千米、平方米、平方分米、平方厘米1平方米=100平方分米=10000平方厘米3、长度单位间的进率是10,面积单位间的进率是100例:学校操场原来长150米,宽90米,现在扩建长增加了20米,宽增加了10米。
现在操场面积是多少?比原来增加了多少?(三)年龄问题这个知识点是小升初的重点问题,主要抓住年龄问题知识点:大小年龄差是个不变的量,而年龄的倍数却年年不同进行计算和求解。
例如:已知两个人或若干个人的年龄问题,求他们年龄之间的某种数量关系等等,年龄问题又往往是和倍问题、差倍问题、和差问题的综合,它有一定的难度,因此抓住解题的重点。
例:爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?(四)鸡兔同笼问题主要抓住鸡和兔特点进行解答。
一般是采用假设法,假设全部是鸡或全部是兔,根据它们之间的数量关系进行求解。
例:鸡兔同笼,头共46,足共128,鸡兔各几只?(五)归一问题归一问题是古代的归除法的演变,包括正归一和反归一。
一般情况下第一步先求出单一量,不同点在第二步,正归一是求几个单一量的多少,反归一是求包含多少个单一量。
(六)植树问题、方阵问题植树问题三要素:总路线长、间距、棵树这部分是对三年级知识的掌握以及四年级知识的进一步问题的拓展,植树问题是小升初的重点,具体问题具体分析。
关于植树的路线,有封闭与不封闭两种路线。
学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
奥数三升四暑假班讲义
第一讲巧用方法算得快预习:5×2=25×4=125×8=625×16=19×25×4=37×125×8=45×2×125×4×8×25×5=125×72=例2.19×25×64×125=例1.(1)123×15÷5 (2) 125×16÷25 = =(3)5600÷(25×7)(4)450÷54×6= =例7.1÷(2÷3)÷(3÷4) ÷(4÷5)÷(5÷6)=补充:2000÷(100÷99)÷(99÷98)÷(98÷97)÷……÷(3÷2)÷(2÷1) =补充:5÷(7÷11)÷(11÷15)÷(15÷21)=*例9.(2×3×5×7×11×13×17×19)÷(38×51×65×77)=*补充.(11×10×9×8×7×6×5×4×3×2×1)÷(22×24×25×27)=*例3.88×22+55×73-44×44-33×55=例8.12345×2345+2469×38275=例4.2009×-2007×=补充:×-×=例5.1997×-2000×=补充:123×1001=123×1001001=1234×10001=补充:1997×-3000×=补充:3553×-1462 ×=补充:3142×2468-2468×3=例6.÷3030303=例11.345345×788+690×105606=例10.(123456+234561+345612+456123+561234+612345)÷7=补充:+9971997+971997+71997+1997+997+97+7=补充:1+11+111 + …… + 1……+111(100个1)的和的末三位是多少?补充:(56789+67895+78956+89567+95678)÷7=作业:1. (1)220×35÷7 (2)720×12÷9= =(3)2250÷15÷15 (4)120÷(10÷8)= =2.53×46+71×54+82×54=3. (1)1000001×999999=(2)132132÷12012=4. 1÷(3÷5)÷(5÷7)÷(7÷9)=5. 2375×3987+9207×6013+3987×6832=第二讲巧求周长和面积例1. 两个大小相同的正方形拼成了一个长方形,长方形的周长比原来的两个正方形周长的和减少了6厘米,原来一个正方形的周长是多少厘米?例2.阳阳用四块小长方形恰好拼成了一个大长方形,如图所示,现在知道其中三块长方形的面积分别为48平方厘米、24平方厘米和30平方厘米,那么阴影部分的面积是多少?补充:为四个长方形的面积,请证明A×D=B×C。
小学数奥暑假班三升四材料4
(三升四暑假班.04)1、某加工厂甲班和乙班共有工人94人,因工作需要从乙班调46人到甲班工作,这时乙班比甲班少12人,问原来两班各有多少人?2、两只盒子里共有15只面包,如果甲盒中放入4只面包,乙盒中取出2只面包,这时乙盒比甲盒多1只面包,问甲、乙两盒原来各有面包多少只?3、一只三层的书架,共放书108本,上层比中层多11本,下层比中层少5本,问上、中、下层各放书多少本?4、一个展览会上,展品中有266件不是A公司的,有178件不是B公司,这两个公司展品合起来有498 7件,那么A公司有展品多少件,B公司有展品多少件?5、张强用270 元买了一件外衣,一顶帽子和一双鞋,外衣比鞋贵140元,买外衣和鞋比买帽子多花了210元,问张强买外衣、帽子和鞋分别花了多少钱?6、甲箱里只有五元的纸币,乙箱里只有两元的纸币。
甲箱里的钱比乙箱里的钱多13元,乙箱里的纸币比甲箱里的纸币多19张,共有多少张纸币。
7、水果店运进香蕉、苹果、生梨共846千克,运来的香蕉比苹果的2倍还多17千克,运来的生梨比苹果的3倍少11千克,问运来香蕉多少千克?8、,甲水池有水1500升,乙水池有水1200升,每分钟从甲水池流入乙水池25升水,问多少分钟后乙水池的水是甲水池的2倍。
9、甲乙丙丁四人共做了370个零件,如果把甲做的个数加上20,乙做的个数减去3,丙做的个数乘以2,丁做的个数除以2,四人所做的零件个数正好相等,问四个人各做了多少个零件?10、果园里有桃树、梨树、苹果树共552棵,桃树比梨树的2倍多12棵,苹果树比梨树少20棵,问桃树,梨树,苹果树各有多少棵?11、甲乙丙三数之和为160,甲数是乙数的一半,乙数是丙的2倍,问甲乙丙三数各是多少?12、商店运来桔子、苹果、香蕉共53千克,桔子的重量是苹果的3倍少3千克,香蕉的重量是苹果的2倍多2千克,问桔子重多少千克?13、甲乙两根绳子,甲绳长63米,乙绳长29米,两根绳子剪去同样的长度,甲绳长是乙绳的3倍,问剪去的绳子长多少米?14、甲乙两个仓库各存一批面粉,甲仓库的袋数是乙仓库的3倍。
三升四学年奥数讲义
目录第一讲速算与巧算 (2)第二讲应用题综合(一) (9)第三讲应用题综合(二) (14)第四讲行程问题初步 (18)第五讲奇数与偶数 (23)第六讲计数问题 (28)第七讲体育比赛中的数学 (33)第八讲期中测试 (37)第九讲余数与周期 (40)第十讲简单的抽屉原理 (45)第十一讲巧求周长 (50)第十二讲数字谜 (55)第十三讲趣题巧解 (60)第十四讲逻辑推理 (64)第十五讲期末测试 (68)第一讲速算与巧算亲爱的同学们,你想一见到算式就能张口说出得数吗?你想让自己变得更聪明吗?学了今天的速算技巧后你就可以梦想成真了!还等什么?来吧,一起出发!你还记得吗?1.加法交换律:两个数相加,交换加数的位置,它们的和不变.2.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个数相加,再与第一个数相加,它们的和不变.3.乘法交换律:两个数相乘,交换两个数的位置,其积不变,即a×b=b×a,其中a,b为任意数.4.乘法结合律:三个数相乘,可以先把前两个数相乘后,再与后一个数相乘,或先把后两个数相乘后,再与前一个数相乘,积不变,即a×b×c=(a×b)×c=a×(b×c).【例1】计算:378+26+609分析:原式=(378+22)+(600+9)+(26-22)=400+600+9+4=1013.[拓展] 计算:1998+198+18分析:原式=(2000-2)+(200-2)+(20-2)=2220-6=2214.【例2】计算:1000-90-80-20-10分析:原式=1000-(90+80+20+10)=1000-200=800.【例3】计算:1)63×11 ;2)852×11分析:在这个数的首尾之间添上相邻两数依次相加的和(和满10要进1). 即“两边一拉,中间相加”. 1)63×11=693 (其中9是6+3),2)852×11=9372(7=5+2 3=5+8末尾9=8+1).【例4】计算:15×15 ;25×25 ;35×35分析:建议教师先介绍个位数字为5的数的平方速算规律:首数加1的和乘以首数,尾数相乘,两积连起来即为所求的积.15×15=225 ;25×25=625 ;35×35=1225.暑假精讲1.商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.在连除时,可以交换除数的位置,商不变,即a÷b÷c=a÷c÷b2.乘除法混合运算的性质(1)在乘除混合运算中,被乘数、乘数或除数可以连同数字前面的运算符号一起交换位置,例如a×b÷c=a÷c×b=b÷c×a(2)在乘除混合运算中,去掉括号的规则以及去括号的情形a×(b×c)=a×b×ca×(b÷c)=a×b÷ca÷(b÷c)=a÷b×c(3)两个数之积除以两个数之积,可以分别相除后再相乘,即(a×b)÷(c×d)=(a÷c)×(b÷d)=(a÷d)×(b÷c).在乘除运算中,要做到既正确又迅速,首先要熟练地掌握乘除的各种运算定律,性质和运算中积商的变化规律,其次要了解题目的特点,创造条件,选用合理,灵活的计算方法,下面我们通过一些例题介绍一些运算的速算和巧算的方法.【例1】计算:25×9×125×4×8分析:解题关键是观察题目可以发现25×4得100,125×8得1000,将它们分别合并便可达到速算原式=(25×4)×(125×8)×9=100×1000×9=900000.【例2】计算:456×2×125×25×5×4×8分析:原式=456×(2×5)×(25×4)×(125×8)=456×10×100×1000=456000000.[巩固] 计算:19×25×64×125分析:原式=(25×4)×(125×8)×(19×2)= 100×1000×38=3800000.【例3】计算:5400÷25÷4分析:根据除法性质知一个数分别除以两个数,等于除以这两个数的积. 原式=5400÷(25×4)=5400÷100=54.【例4】计算:5÷(7÷11) ÷(11÷15) ÷(15÷21)分析:原式=5÷7×11÷11×15÷15×21=5×(11÷11)×(15÷15)×(21÷7)=5×3=15.【例5】计算:333333÷37÷3-3625÷125+125×50分析:运用a÷b÷c=a÷(b×c) .原式=333333÷(37×3)-29+6250=333333÷111+(6250-29)=3003+6221=9224.【例6】53×46+71×54+82×54分析:可以把53,199拆分.原式=(54-1)×46+71×54+82×54=54×46+71×54+82×54-46=54×(46+71+82)-46=54×199-46=54×(200-1)-46=54×200=54-46=10800-100=10700.【例7】(873×477-198)÷(476×874+199)分析:观察到873与874,476与477的关系,可以考虑把整数进行拆分. 原式=[873×(476+1)-198] ÷[476×(873+1)+199]=[873×476+873-198] ÷[476×873+476+199]=[873×476+675] ÷[476×873+675]=1.【例8】1111111111×9999999999分析:原式=1111111111×(10000000000-1)=11111111110000000000-1111111111=11111111108888888889.【例9】99999×26+33333×24分析:原式=99999×26+33333×3×8=99999×26+99999×8=99999×(26+8)=(100000-1)×34=3399966.【例10】计算:1+1×2×2+l×2×3×3+l×2×3×4×4+l×2×3×4×5×5分析:原式=1×(2-1)+l×2×(3-1)+1×2×3×(4-1)+1×2×3×4×(5-1)+l×2×3×4×5×(6-1) =l×2-1+l×2×3-1×2+l×2×3×4-1×2×3+l×2×3×4×5-1×2×3×4+l×2×3×4×5×6-l×2×3×4×5=l×2×3×4×5×6-l=720-l=719.【例11】计算:2006+2005-2004-2003+2002+2001-2000-1999+1998+…+5-4-3+2+1分析:(法1)我们观察可以发现,题目中每4个数一组可以相互抵消,将这些数先分组,简化计算. 原式=2006+(2005-2004-2003+2002)+(2001-2000-1999+1998)+…+(5-4-3+2)+1 =2006+0+0+…+0+1=2007.(法2)根据符号规律,可以4个数一组.原式=(2006+2005-2004-2003)+…+(6+5-4-3)+2+1=4×(2004÷4)+3=2007.[拓展] 计算:1992-1-2+3+4-5-6+7+8-…-1989-1990+1991分析:原式=(1992+1991-1990-1989)+…+(4+3-2-1)=4×(1992÷4)=1992.【例12】计算:9×17+91÷17-5×17+45÷17分析:[前铺]分配律的逆运算是个难点,建议教师先从简单题讲清楚再讲本题.计算1:36×19+64×19=(36+64)×19=1900.计算2:36×19+64×144=36×19+64×(19+125)=(36+64)×19+64×125=1900+8×8×125=1900+8000=9900.例题原式=9×17-5×17+91÷17+45÷17=(9-5)×17+(91+45)÷17=4×17+136÷17=68+8=76.【例13】计算:765×213÷27+765×327÷27分析:原式=765×(213+327)÷27=765×540÷27=765×20=15300.【例14】计算:25×2626-26×2525分析:[前铺]建议教师先给学生讲清楚周期性数字的规律.如123123=123×1001,123123123=123×1001001,…原式=25×26×101-26×25×101=0.[拓展1] 计算:12121212÷3030303分析:原式=12×1010101÷(3×1010101)=(12÷3)×(1010101÷1010101)=4×1=4.[拓展2] 计算:(4545+5353)÷4949分析:原式=(45×101+53×101)÷(49×101)=(45+53)×101÷49÷101=(45+53)÷49=2.【例15】2004×200320032003-2003×200420042004分析:原式=2004×2003×100010001-2003×2004×100010001=0.附加内容【附1】计算:(11×10×9×…×3×2×1)÷(22×24×25×27)分析:原式= (11×2÷22)×(10×5÷25)×(9×6÷27)×(8×3÷24)×7×4 =1×2×2×1×7×4=112.【附2】计算:(123456+234561+345612+456123+561234+612345)÷7 分析:[前铺]建议教师先讲解拆数法:123456=1×100000+2×10000+3×1000+4×100+5×10+6×1,234561=2×100000+3×10000+4×1000+5×100+6×10+1×1,…或者观察竖式发现:每个数位上的和=(1+2+3+4++5+6)×相应的数量单位.讲清楚拆数这个问题,题目就迎刃而解了.原式=(1+2+3+4+5+6)×(100000+10000+1000+100+10+1) ÷7 =21×111111÷7=3×111111=333333.大显身手 123456 234561 345612 456123 561234+)6123451.25×17×32×125分析:原式=(25×4)×17×(8×125)=1700000 .2.1)57×99 ;2)17×999分析:1)原式= 5643 ;2)原式=16983.3.56000÷(14000÷16)分析:原式= 64.4. 15000÷125÷15分析:原式=15000÷15÷125=1000÷125=8.数学迷宫仔细看看图中有几只猴子?第二讲应用题综合(一)春季班同学们已经学习了平均数的应用题,其中包括以两组数的平均数和它们的总平均数间的关系为内容的问题.求解时应恰当选取基准数并注意权重.暑假我们学习的平均数问题包括算术平均数、加权平均数、连续数和求平均数、调和平均数和基准数求平均数.解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数.首先,让我们先回顾一下吧!你还记得吗?1.小强做跳绳练习,第一次跳了67下,第二次跳了76下.她要想三次平均成绩达到80下,第三次至少要跳多少下?分析:80×3-(67+76)=97(下).2.小明家先后买了两批小猪,养到今年10月.第一批的3头每头重66千克,第二批的5头每头重42千克.小明家养的猪平均多重?分析:两批猪的总重量为66×3+42×5=408(千克).两批猪的头数为3+5=8(头),故平均每头猪重408÷8=51(千克).3.甲乙两地相距240千米,一辆汽车从甲地往乙地送货,去时以每小时40千米的速度行驶.返回时由于空载,以每小时60千米的速度行驶.这辆汽车往返的平均速度是每小时多少千米?分析:240×2=480(千米),240÷40=6(小时),240÷60=4(小时),6+4=10(小时),480÷10=48(千米).4.小强为了培养自己的数学解题能力,除了认真读一些书外,还规定自己每周(一周为7天)平均每天做4道数学竞赛训练题.星期一至星期三每天做3道,星期四不做,星期五、六两天共做了13道.那么,星期日要做几道题才能达到自己规定的要求?分析:要先求出每周规定做的题目总数,然后求出星期一至星期六已做的题目数.两者相减就是星期日要完成的题目数.每周要完成的题目总数是4×7=28(道).星期一至星期六已做题目3×3+13=22(道),所以,星期日要完成28-22=6(道).综合列式为4×7-(3×3+13)=6(道).暑假精讲【例1】五个同学期末考试的数学成绩平均94分,而其中有三个同学的平均成绩为92分,另两个同学的平均成绩是多少?分析:(94×5-92×3)÷2=97(分).【例2】一个房间里有9个人,平均年龄是25岁;另一个房间里有11个人,平均年龄是45岁.两个房间的人合在一起,他们的平均年龄是几岁?分析:(25×9+45×11)÷(9+11)=36(岁).【例3】学而思三升四竞赛班50人考试,全班平均分为85分,其中有40的人及格,及格人的平均分是93分,那么不及格人的平均分是多少分?分析:不及格人的平均分是(85×50-93×40)÷(50-40)=53(分).【例4】甲班51人,乙班49人,某次考试2个班全体同学的平均成绩是81分,乙班平均分比甲班高7分,那么乙班的平均成绩是多少分?分析:甲、乙2班总分为81×(51+49)=8100(分),由于乙班平均分比甲班高7 分,如果甲班每人提高7分,那么2班平均分即为乙班现在的平均分(8100+7×51)÷(51+49)=84.57(分).下面我们要学习一类新的应用题——盈亏问题.盈亏问题就是把一定数量的物品分给若干对象,由两种分配方案产生不同的盈亏数,反过来求被分配的物品数与分配的对象数.解题的关键在于确定两次分配数之差与盈亏总额(盈数+亏数),由此得到求解盈亏问题的公式:分配总人数=盈亏总额÷两次分配数之差.需要注意的是,两种分配方案的结果会出现一盈一亏、两盈、两亏等情况,所以我们要灵活把握.【例5】六一儿童节到了,李老师给同学们准备了一些漂亮的贴画作礼物,如果每人分3张就会多出29张,如果每人分5张则少19张,那么李老师给几个学生发礼物呢?分析:学生的人数:(29+19)÷(5-3)=24(个).【例6】杨老师到新华书店去买书,若买5本则多3元;若买7本则少1.8元.这本书的单价是多少?顾老师共带了多少元钱?分析;买5本多3元,买7本少1.8元.盈亏总额为3+1.8=4.8(元),这4.8元刚好可以买7-5=2(本)书,因此每本书4.8÷2=2.4(元),顾老师共带钱2.4×5+3=15(元).【例7】学校组织四年级师生去参观清华、北大,原计划租用45个座位的客车,但这样有5人没座,如果租用同样数量的55个座位的客车,则正好多出1辆车.那么,原计划租用45座客车几辆?分析:租55个座位的客车,正好多出1辆车,也就是少了一车的人,即55人,所以,原计划租用的客车数量(55+5)÷(55-45)=6(辆).【例8】用绳子量一口井的深度,把绳子折两折来量,多50厘米;折三折来量,还差30厘米,求绳长和井深各是多少?分析:根据题意,(50×2+30×3)÷(3-2)=190(厘米).(190+50)×2=480(厘米)或(190-30)×30=480(厘米).【例9】海尔兄弟约好在动物园门口见面,弟弟从家去动物园,如果每分钟走30米,就要迟到5分钟,如果每分钟走40米,可以提前2分钟到动物园,那么,海尔兄弟家到动物园的距离是几米?分析:迟到5分钟相当于少走了:30×5=150(米),提前2分钟到相当于多走了:40 ×2=80(米),所以,如果不迟到也不早到,弟弟走的时间为:(150+80)÷(40-30)= 23(分钟),家到学校的距离为:30×(23+5)=840(米).【例10】百货商店委托搬运站运送100只花瓶.双方商定每只运费1元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1元,结果搬运站共得运费92元.问:搬运过程中共打破了几只花瓶?分析:假设100只花瓶在搬运过程中一只也没有打破,那么应得运费1×100=100(元).实际上只得到92元,少得100-92=8(元).搬运站每打破一只花瓶要损失1+1=2(元).因此共打破花瓶8÷2=4(只).附加内容【附1】100名学生参加数学竞赛,平均分数是63分,其中参赛男同学平均分为60分,女同学平均分为70分,那么该校参赛男同学比女同学多几人?分析:参赛女同学人数为:[100×(63-60)] ÷(70-60)=30(人).所以参赛男同学比女同学多100-30-30=40(人).【附2】学而思竞赛班举行歌唱比赛,五位评委打分.计分时,先去掉一个最高分和一个最低分,在算出平均分作为该选手的最后得分.下面是嘟嘟同学的得分:79,83,86,81,■(第五个分数被盖上了),最后得分82.请你算算第五位评委打多少分?分析:如果第五位评委的分数是最高分获最低分,那么另一个去掉的分数就是79或86,剩下的3个分数的平均分不等于82,不合题意.所以第五位评委的分数是没有被去掉的,去掉的是79和86,第五位评委的分数是82×3-(83+81)=82(分).【附3】早晨陈奶奶去超市买菜,如果她买6千克鱼肉则还差10元.如果买8千克猪肉则还剩2元.已知每千克鱼肉比猪肉贵5元.那么陈奶奶带了多少钱?分析:由于每千克鱼肉比猪肉贵5元,6千克鱼肉应该比6千克猪肉贵:6×5=30(元),这时,买6千克猪肉应该剩下:30—10=20(元),所以,每千克猪肉的价钱为:(20—2)÷(8—6)=9(元),陈奶奶所带钱数:8×9+2=74(元).【附4】乐乐从家去学校上学,每分钟走50米,走了2分钟后,发觉按这样的速度走下去,到学校就会迟到8分钟.于是乐乐开始加快速度,每分钟比原来多走10米,结果到达学校时离上课还有5分钟.问:乐乐家离学校有多远?分析:乐乐从改变速度的那一点到学校,若每分钟走50米,则要迟到8分钟,也就是到上课时间时,他离学校还有50×8=400(米);若每分钟多走10米,即每分钟走60米,则到达学校时离上课还有5分钟,如果一直走到上课时间,那么他将多走(50+10)×5=300(米).所以盈亏总额,即总的路程相差400+300=700(米).两种走法每分钟相差10米,因此所用时间为700-10=70(分),也就是说,从乐乐改变速度起到上课时间有70分钟.所以乐乐家到学校的距离为50×(2+70+8)=4000(米).【附5】四(2)班在这次的班级评比中,获得了“全优班”的称号.为了奖励同学们,班主任刘老师买了一些铅笔和橡皮.刘老师把这些铅笔和橡皮分成一小堆一小堆,以便分给几位优秀学生.如果每堆有1块橡皮2支铅笔,铅笔分完时橡皮还剩5块;如果每堆有3块橡皮和5支铅笔,橡皮分完时还剩5支铅笔.那么,刘老师一共买了多少块橡皮?多少支铅笔?分析:如果增加10支铅笔,则按1块橡皮、2支铅笔正好分完;而按3块橡皮、5支铅笔分,则剩下10+5=15(支)铅笔,但如果按3块橡皮、6支铅笔分,则正好分完,可以分成:15÷(6—5)=15(堆),所以,橡皮数为:15×3=45(块),铅笔数为:15×6—10=80(支).大显身手1.暑假期间,小强每天都坚持游泳,并对所游的距离作了记录.如果他在暑假的最后一天游670米,则平均每天游495米;如果最后一天游778米,则平均每天游498米;如果他想平均每天游500米,那么最后一天应游多少米?分析:(778-670)÷(498-495)=108÷3=36(天),说明小强一共游了36天.要想平均游500米的话,他最后一天应该游670+36×(500-495)=670+180=850米.2.甲、乙两地相距240千米,一辆汽车从甲地往乙地送货,去时以每小时40千米的速度行驶.返回时由于空载,以每小时60千米的速度行驶.这辆汽车往返的平均速度是每小时多少千米?分析:240×2=480(千米),240÷40=6(小时),240÷60=4(小时),6+4=10(小时),480÷10=48(千米).3.王老师带班里的学生去颐和园春游,他们租了一些船在昆明湖上划船,如果增加1条船,正好每条船坐4人,如果减少1条船,正好每条船坐6人,那么,他们总共有几人去了颐和园?分析:这道题也可以理解为:原来每条船坐4人正好,后来减少了2条船,每条船坐6人.所以,租的船的数量为:6×(1+1)÷(6—4)=6(条),去颐和园的总人数为:6×4=24(人).4.兰兰参加暑假的英语夏令营,老师为她们安排住宿,如果每个房间住5人,则多出18人,如果每个房间住7人,则有2个房间空着.那么,参加英语夏令营的同学有几人?分析:房间数量:(18+7×2)÷(7—5)=16(个),参加夏令营的人数:16×5+18=98(人).成长故事永远看得起自己有一天某个农夫的一头驴子,不小心掉进一口枯井里,农夫绞尽脑汁想办法救出驴子,但几个小时过去了,驴子还在井里痛苦地哀嚎着.最后,这位农夫决定放弃,他想这头驴子年纪大了,不值得大费周章去把它救出来,不过无论如何,这口井还是得填起来.于是农夫便请来左邻右舍帮忙一起将井中的驴子埋了,以免除它的痛苦.农夫的邻居们人手一把铲子,开始将泥土铲进枯井中.当这头驴子了解到自己的处境时,刚开始哭得很凄惨.但出人意料的是,一会儿之后这头驴子就安静下来了.农夫好奇地探头往井底一看,出现在眼前的景象令他大吃一惊:当铲进井里的泥土落在驴子的背部时,驴子的反应令人称奇──它将泥土抖落在一旁,然后站到铲进的泥土堆上面!就这样,驴子将大家铲倒在它身上的泥土全数抖落在井底,然后再站上去.很快地,这只驴子便得意地上升到井口,然后在众人惊讶的表情中快步地跑开了!第三讲应用题综合(二)年龄问题和还原问题春季班都学习过基础的知识:年龄问题的解题要点是分析题意从表示年龄间倍数关系的条件入手理解数量关系.关键抓住“年龄差”不变.应用“差倍”、“和倍”或“和差”问题数量关系式解决;还原问题我们学习了用倒推法解单、多个变量的还原问题.今天我们再提高和拓展一下.来吧,我们出发!你还记得吗?1.今年姐姐13岁,弟弟今年10岁,当姐弟年龄之和达101岁时,姐弟各是多少岁?分析:法1:两人年龄和每年增加2岁.算出过多少年两人年龄和达101岁,就可在现在的年龄上各人增加同样多的岁数.101-(13+10)=101-23=78(岁),78÷2=39(年),姐:13+39=52(岁) ,弟:10+39=49(岁) .法2:可以把本题理解为一道“和差问题”,由已知姐姐和弟弟今年分别是13岁和10岁,可求出两人今年的年龄差是:13-10=3(岁).当两人的年龄和是101岁时,两人的年龄差还是3岁.所以,姐姐的年龄为(101+3)÷2=52(岁),弟弟的年龄为52-3=49(岁).2.今年爸爸48岁,儿子20岁,几年前爸爸的年龄是儿子的5倍?分析:今年爸爸与儿子的年龄差为“48—20=28”岁,因为二人的年龄差不随时间的变化而改变,所以当爸爸的年龄为儿子的5倍时,两人的年龄差还是这个数,这样就可以用“差倍问题”的解法.当爸爸的年龄是儿子年龄的5倍时,他们的年龄差是儿子年龄的4倍,所以儿子的年龄是:(48—20)÷(5—1)=7(岁),由20-7=13(岁),推知13年前爸爸的年龄是儿子年龄的5倍3.小新在做一道加法题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的答案是多少?分析:(倒推法)把个位上的5看作9,相当于把正确的和多算了4,求正确的和,应把4减去;把十位上的8看作3,相当于把正确的和少算了50,求正确的和,应把50加上去.所以正确的和是123+50- 4=169.即:123+(80-30)- (9-5)=169.4.一群蚂蚁搬家,原存一堆食物.第一天运出总数的一半少12克.第二天运出剩下的一半少12克,结果窝里还剩下43克.问蚂蚁家原有食物多少克?分析:(倒推法)教师可画线段图帮助学生理解.如果第二天再多运出12克,就是剩下的一半,所以第一天运出后,剩下的一半重量是43-12=3l(克);这样,第一天运出后剩下的重31×2=62(克).那么,一半的重量是62—12=50(克),原有食物50×2=100(克).即[(43-12)×2-12]×2=100(克).暑假精讲【例1】父亲15年前的年龄相当于儿子12年后的年龄.当父亲的年龄是儿子的4倍时,父亲多少岁?分析:父亲比儿子大15+12=27岁.儿子是27÷(4—1)=9岁.父亲是9×4=36岁.【例2】小明一家有4人:爷爷、爸爸、妈妈和小明.爷爷比爸爸大26岁,妈妈比小明也大26岁.已知这家人今年的年龄之和为126岁,而5年前的年龄之和为107岁,那么小明与他爷爷的年龄之差是几岁?分析:5年来,小明家的年龄之和增加了126-107=19岁.这家现有4口人,而19<4×5,这说明小明还不满5岁,他今年只有19-3×5=4岁.于是今年妈妈4+26=30岁,爷爷和爸爸的年龄之和为126-4-30=92岁.又爷爷比爸爸大26岁,因此今年爷爷(92+26)÷2=59岁,他比小明大59-4=55岁.【例3】6年前,母亲的年龄是儿子的5倍.6年后母子年龄和是78岁.问:母亲今年多少岁?分析:母子今年年龄和:78-6×2=66(岁),母子6年前年龄和:66-6×2=54(岁),母亲6年前的年龄:54÷(5+1)×5=45(岁),母亲今年的年龄:45+6=51(岁).【例4】王老师与王平和李刚两位同学的平均年龄是20岁,李老师与王平和李刚两位同学的平均年龄是18岁.王老师今年32岁,李老师今年多少岁?分析:王老师比李老师大20×3—18×3=6(岁).故李老师今年的年龄为32—6=26(岁).【例5】林林1999年上四年级,他出生年份的各位数字之和是最大的一位数的3倍,问他1999年几岁?分析:他出生于1989年,1999年时他10岁.【例6】新天地广场运进一批新款式彩色电视机,第一天售出总数的一半多10台,第二天售出剩下的一半多20台,还剩95台.这批新款彩电有多少台?分析:根据题意可画出线段示意图进行倒推还原.由示意图可知:95台加上20台正好是剩下的一半,所以用(95+20)×2=剩下的台数;剩下的台数加上10台,正好是总数的一半,于是可求出这批彩电的台数.[(95+20)×2+10]×2=480(台).【例7】村姑卖蛋,第一次卖出一篮的一半又二个;第二次卖出余下的一半又二个;第三次卖出再剩下的一半又二个,这时篮里只剩下二十个蛋.这篮鸡蛋有多少个?从上面线段图可以看出:最后剩下20个再加上第三次卖出的再余下的一半以外的2个,就是再余下的一半,由此可求出再余下的是:(20+2)×2=44(个).44个再加上第二次卖出余下的一半以外的2个就是余下的一半,因此可求出余下的是:(44+2)×2=92(个).92个再加上第一次卖出一篮的一半以外的2个就是全篮的一半,因此可求出全篮鸡蛋的个数是(92+2)×2=188(个). 【例8】A ,B ,C 三位小朋友都有若干本图书,如果A 将自己的书给B ,C ,使B ,C 的书各增加一倍然后B 又将现有的图书给A ,C ,使A ,C 现有的图书各增加一倍;最后C 再将自己已有的图书给A ,B ,使A ,B 的图书各增加一倍,这时三人的图书都是240本.A ,B ,C 三位小朋友原来各有图书多少本?分析:如图: 【例9】三人存款不等,只知如果甲给乙40元,乙又给丙30元,丙AB C 第一次 39210120 第二次 60 42240 第三次 12120 480240240240再给甲20元,给乙70元,这时三人都有240元.三人原来各有存款多少元?分析:甲原有:240-20+40=260(元);乙原有:240-70+30-40=160(元);丙原有:240+20+70-30=300(元).附加内容【附1】甲、乙、丙、丁四人现在的年龄和是64岁,甲21岁,乙17岁.甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是多少岁?分析:(法1)当甲18岁时,乙的年龄为17—3=14(岁).丁现在的年龄为(64—18—14)÷(1+3)=32÷4=8(岁).(法2)甲18岁是3年前,所以4人总年龄是64-3×4=52(岁),所以丙丁年龄和为52-18-14=20(岁),丁就是20÷(1+3)=5(岁),现在的年龄是5+3=8(岁).【附2】竹篮内有若干李子,将它的一半又一个给小朋友甲,把剩下的一半又两个给小朋友乙,最后取剩余的一半又三个给小朋友丙,这时竹篮里的李子恰好发完.问竹篮内原来有多少个李子?分析:(倒推法)“剩余的一半又三个恰好发完”说明剩余的一半刚好是3个,即第二次发完后还剩6个,“剩下的一半又两个”,则第一次发完后还剩(6+2)×2=16(个),“将它的一半又一个”,则原来有(16+1)×2=34(个).大显身手1.小樱今年16岁,小桃今年11岁,几年后,小樱和小桃的年龄之和是45岁?分析:小樱和小桃今年年龄和为16+11=27(岁).小樱和小桃经过45—27=18(年) 两人的年龄之和是45岁时.这时,小樱和小红每人经过的年数都为:18÷2=9(年).2.已知明明今年2岁,爸爸今年28岁,那么请问11年后爸爸的年龄是小明的年龄的多少倍?分析:(28+11)÷(2+11)=39÷13=3(倍).3.小龟问老龟:“老爷爷,您今年多少岁?”老龟说:“把我的年龄加上20,再缩小2倍之后减去15,再扩大3倍,正好是105岁.你能算出我今年多少岁吗?”分析:(法1)根据题意,从最后一个条件105岁开始倒推:最后的数扩大3倍是105岁,如果没扩大3倍,应该是105÷3=35(岁);这个35岁是减去15得到的,如果没减去15,应该是35+15=50(岁);这个50岁是缩小2倍后得到的,如果没有缩小2倍,应该是50×2=100(岁);这个100岁是老龟的年龄加上20后得到的,那么老龟的年龄应该是80岁.(法2)设老龟今年x岁.依题意有[(x+20)÷2—15]×3=105.解得x=80.4.小红、小华和小刚各有一些故事书,小红给小华3本,小华给小刚5本后,三个人的书的本数同样多.小华原来比小刚多多少本?分析:(倒推法)5+(5-3)= 7(本).成长故事老鹰和火鸡有一群火鸡看着老鹰张著翅膀自由自在地在天上翱翔,十分的羡慕.于是和老鹰的头头商量是否能够派一个教练来教他们飞行的方法,老鹰头头爽快的答应下来.老鹰教练很有耐心地教导火鸡张开翅膀学飞行:翅膀张开,用力地拍!火鸡们在老鹰教练的大力指导下拼命地张着翅膀、用力地拍,它们好高兴自己会飞了,虽然飞得不是很高,但是它们已经会飞了!太阳西下,该是下课回家的时候了,老鹰教练对它们说:你们今天好棒!你们都飞得很好,你们可以飞了!太阳下山了,我也要回家了!结果呢?老鹰是飞着回家,火鸡仍然是走路回家.第四讲行程问题初步在春季班时我们已经学习了简单的行程问题——相遇问题的基本类型(两人单次直线相遇),同学们,你们还记得做行程问题的基本工具是什么吗?没错,就是画“线段图”.今天我们将学习更加复杂的相遇问题.先来回顾一下相遇问题的基础知识吧!你还记得吗?1.团团和圆圆同时从甲、乙两个书店相对出发,团团每分钟走460米,圆圆每分钟走480米.3分钟后两人相遇.甲、乙两个书店相隔是多少千米?分析:(法1)根据公式:总路程=速度和×相遇时间,所以甲、乙两个书店的路程是(460+480)×3=2820(米).(法2)如图,还可以先分别求两人各走了多少再相加,460×3+480×3=2820(千米).2.胖胖和瘦瘦两家相距255千米,两人同时骑车从家出发相对而行,胖胖每小时行45千米,瘦瘦每小时行40千米.两人相遇时,胖胖和瘦瘦各行了多少千米?分析:255÷(45+40)=3(小时).胖胖:45×3=135(千米),瘦瘦:40×3=120(千米).3.孙悟空在花果山,猪八戒在高老庄,花果山和高老庄中间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?分析:建议教师画线段图.我们可以先求出2小时孙悟空和猪八戒走的路程:(200+150)×2=700(千米),又因为还差500米,所以花果山和高老庄之间的距离:700+500=1200(千米).4.甲乙两辆汽车分别从A、B两地出发相向而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行5O千米,5小时相遇.求A、B两地间的距离.分析:这题不同的是两车不“同时”.(法1 )求A、B两地间的路程就是求甲、乙两车所行的路程和.这样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.48×(1+5)=288(千米),5O×5=25O(千米),288+25O=538(千米).(法2 )还可以先求出甲、乙两车5小时所行的路程和,再加上甲车1小时所行的路程.(48+5O)×5=49O(千米),49O+48=538(千米).暑假精讲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲周长与面积例1、下面是一块地,四周用篱笆围起来,转弯处都是直角,求篱笆一共长多少米?试一试:求下面图形的周长。
例2、把一个边长是20厘米的大正方形分成4个完全一样的小正方形,这4个小正方形的周长的和比原来的大正方形周长增加了多少厘米?试一试:把一边长9厘米的正方形纸,剪成4个完全一样的小正方形,这4个小正方形周长之和比原来的正方形周长增加了多少厘米?例3、三同样大小的长方形拼成一个正方形,正方形周长是60分米,求每个长方形的周长。
试一试3四个完全一样的长方形正好拼成一个正方形,正方形周长是80厘米,求每个长方形的周长。
例4、把一长8厘米,宽5厘米的长方形纸剪成一个面积最大的正方形,这个正方形的面积是多少平方厘米?试一试:把一7分米,宽4分米的长方形剪成一个面积最大的正方形,这个正方形的面积是多少平方厘米?例5求图形的面积。
(单位:厘米)试一试:计算下面图形的面积。
(单位:分米)例6、两边长7厘米的正方形,一部分叠在一起放在桌上(如图),问桌子被盖住的面积是多少?试一试:求阴影部分面积。
(单位:厘米)堂上练习:1.如下图所示,甲、乙两人同时从学校到新华书店,甲沿A路线行走,乙沿B路线行走,如果两人速度一样,谁先到新华书店?为什么?2.把一长方形纸如图剪成4个小长方形,这4个小长方形的周长和比原来的长方形的周长增加了多少厘米?3.如下图,四个完全一样的正方形拼成一个长方形,长方形的周长是90厘米,求每个小正方形的周长。
4.把一块长5米、宽3米的长方形木板剪成一个面积最大的正方形木板,求这个正方形木板的面积。
5.计算下图的面积。
(单位:厘米)6.两个相同的长方形如图叠放,求这个图形的面积。
(单位:分米)课外作业1. 下面是一个楼梯的侧面,如果在阶梯上铺上地毯,要计算地毯的长度,可以怎样测量?2. 把一个边长为15厘米的正方形,如下图剪成6个完全一样的小长方形,这6个小长方形周长之和比原来的正方形的周长增加了多少厘米?第二讲 分数与小数例1、一正方形纸, 你能折出它的41吗?请你将折出的不同图形在下面的正方形中用阴影表示出来。
试一试:用阴影表示出一正方形纸的21。
例2、妈妈做了两同样大小的饼,小军把一饼切成了相等的3块,吃了一块,妈妈把另一饼切成了6等块,吃了2块,小军和妈妈谁吃得多?试一试:在( )里填上合适的数。
21=例3、有两根一样长的绳子,第一根用去101,第二根用去101米,哪一根用去的多?试一试:有两根一样长的带子,各长8米,第一根用去21,第二根用去21米,哪一根用去的多?例4、按从小到大的顺序排列各数量。
0.7分米 8厘米 8分米7厘米 7分米试一试:按从大到小的顺序排列各数量。
80分米 9米 9分米 8分米 8.9分米例5、写出比1小、比0大的所有小数部分是一位数的小数。
试一试:在( )里填上合适的小数。
3<( )<( )<( )<( )<4例6、□里可以填几?(1)6.8+2.□>9.1(2)13.1-□.4<8.7试一试:□里可以填几?(1)4.□+3.3>7.3(2)8.8-□.9<2.9堂上练习:1. 用分数表示图中的实心点部分。
2.3. 两根绳子均长1米,第一根用去了它的41,第二根用去了41米,哪根用去得多?4. 先写出小数,再比较大小。
3元8角 4元2角1米6分米 1米8分米( )元○( )元( )米○( )米5. 写出比1大,比2小的所有小数部分是一位数的小数。
6. 2.4+5.□>7.5课外作业 1. 在71、51、54中,最大的分数是( ),最小的分数是()。
2. 小红0.3小时行1千米,小刚0.2小时行1千米,谁走得快?第三讲 课本思考题例1、在□里填上合适的数字。
(1) □□÷3=23……□(2) □□÷□=21 (1)试一试:(1)□□÷4=17……□(2)□□÷□=32 (2)例2:兄妹二人上街买练习本,哥哥买了5本,妹妹买了同样的3本练习本,这样哥哥就比妹妹多付8角钱,问每本练习本多少钱?试一试:小芳、小红二人逛街,小芳买了8只气球,小红买了10只同样的气球,结果小芳比小红少付2元钱,每只气球多少元?例3:把1、3、5、7四个数字分别填进□里,写成乘法算式。
(1)要使积最大,应该怎样填?□□□×□(2)要使积最小,应该怎样填?□□□×□试一试:把1、2、4、8四个数字分别填进□里,写成乘法算式。
(1)要使积最大,可以怎样填?□□□×□(2)要使积最小,可以怎样填?□□□×□例4、商的十位可能是几?试一试:被除数的百位可能是几?例5、在□里填上合适的数字。
(1)(2)试一试5课作业1.□45÷4,要使商是两位数,□里最大能填几?2.□÷29=11……□,被除数最大是多少?最小是多少?3.4.小红买了9支铅笔,比小娟少买了3支,已知小娟比小红多花了1元5角钱,求平均每支铅笔多少钱?5.一个三位数□56÷8,商是三位数,□里可以填哪些数?课外作业1.368÷□,要使它的商是两位数,□里最小填多少?2.□÷80=23……□,余数最大时,被除数是多少?第四讲找规律填数例1 、找出下面各数列的排列规律,在()里填上合适的数。
(1)7,10,13,16,19,()(2)200,190,170,140,100.()试一试:在下面的()里填上合适的数。
(1)2,6,10,14,18,(),()。
(2)19,18,16,13,9,()。
例2、找规律,在()里填上合适的数。
(1)2,6,18,54,()(2)160,80,40,20,()试一试:在下面的()里填上合适的数。
(1)15,3,13,3,11,3,(),()(2)1,5,3,10,5,15,7,20,(),()例3、找出下列各数列的排列规律,在()里填上合适的数。
(1)8,15,10,15,12,15,(),()。
(2)2,8,8,10,14,12,(),()。
试一试:在下面的数列中填上合适的数。
(1)15,3,13,3,11,3,(),()。
(2)1,5,3,10,5,15,7,20,(),()。
例4、找出规律,在()里填上合适的数。
(1)1,1,2,3,,5,8,13,()。
(2)1,2,2,4,8,32,()。
试一试:在()里填上合适的数。
(1)4,8,12,20,32,52,()。
(2)1,3,3,9,27,()。
例5、找出规律,在下面的数列中填上合适的数。
(1)3,6,7,14,15,30,31,(),()。
(2)2,5,13,31,69,()。
试一试:在下面的数列中填上合适的数。
(1)2,4,5,10,11,23,(),()。
(2)1,3,8,19,42,()。
例6、按图(1)图(2)的规律,在图(3)图(4)的空格里填上合适的数。
试一试:根据前面两个三角形里的规律,填出后面图形中空格里的数。
堂上练习:1.按规律在()里填上合适的数。
(1)1,3,5,7,9,(),()。
(2)54,44,34,24,(),()。
2.找出规律,在()里填上合适的数。
(1)1,3,9,27,(),()。
(2)80,40,20,(),()。
3.找出规律,在()里填上合适的数。
(1)14,4,11,4,8,4,(),()。
(2)95,7,90,6,85,5,(),()。
4.按规律填数。
(1)3,6,9,15,24,39,()。
(2)1,4,4,16,64,()。
5.找出规律()里填上合适的数。
(1)2,8,9,36,37,(),()。
(2)1,4,15,50,(),()。
6.按图(1)、图(2)的规律,在图(3)、图(4)、图(5)的空格里填数。
课外作业1. 找出规律在()里填上合适的数。
(1)4,8,12,16,20,24,(),()。
(2)52,50,46,40,32,(),()。
2. 按规律填数。
(1)312,9,310,9,308,9,(),()。
(2)45,24,48,22,51,20,(),()。
第五讲简便计算例1用简便方法计算下面各题。
(1)84+325+16 (2)54+29+71+46试一试1用简便方法计算下面各题。
(1)31+125+69 (2)82+43+57(3)53+25+75+47 (4)192+24+8+76例2用简便方法计算下面各题。
(1)734-25-75 (2)811-123-77试一试2看谁算得又对又巧妙。
(1)794-81-19 (2)523-41-459(3)543-126-74 (4)183-24-14-64例3用简便方法计算下列各题。
(1)274+98 (2)587-99(3)361+102 (4)456-103试一试3用简便方法计算下列各题。
(1)753+99 (2)346+98(3)926-99 (4)154-98例4用简便方法计算下列各题。
(1)50×9×2(2)25×3×4(3)8×7×125(4)4×8×25×125试一试4用简便方法计算下列各题。
(1)3×2×50 (2)8×50×2(3)6×25×4 (4)4×7×25(5)125×4×8 (6)8×6×125(7)10×25×4 (8)15×125×8×2例5看谁算得又对又快。
(1)53×11 (2)42×11(3)78×11 (4)435×11试一试5用简便方法计算。
(1)23×11 (2)36×11(3)43×11 (4)58×11(5)69×11 (6)85×11(7)216×11 (8)352×11例6用简便方法计算下列各题。
(1)38×32 (2)51×59试一试6用简便方法计算。
(1)27×23 (2)84×86(3)15×15 (4)92×98(5)31×39 (6)64×44堂上练习:用简便方法计算下列各题。
(1)57+524+43 (2)291+15+85 (3)68+23+177+123 (4)451+83+17+49 (5)491-27-73 (6)583-76-24 (7)854-161-39 (8)1000-593-407 (9)236+97(10)418+96 (11)511-96 (12)134-98(13)172+203 (14)442+105 (15)635-104 (16)716-102 (17)2×7×50 (18)6×50×2 (19)4×9×25 (20)25×4×13 (21)8×3×125(22)11×8×125 (23)8×50×2×125 (24)125×6×8(25)52×11 (26)34×11 (27)35×11(28)26×11 (29)39×11 (30)56×11(31)352×11 (32)283×11 (33)75×75课外作业简便计算。