2017-2018年高一下学期期中考试数学试题

合集下载

浙江省杭州市2017-2018学年高一下学期期中数学试卷Word版含解析

浙江省杭州市2017-2018学年高一下学期期中数学试卷Word版含解析

浙江省杭州市2017-2018学年下学期期中考试高一数学试卷一、选择题:(每题4分,共48分)1.集合M={x|x=k•90°+45°,k∈Z},N={x|x=k•45°+90°,k∈Z},则有()A.M=N B.N⊊M C.M⊊N D.M∩N=∅2.sin(﹣)的值等于()A.B.﹣ C.D.﹣3.若cosθ>0,且sin2θ<0,则角θ的终边所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.tan40°+tan80°﹣tan40°tan80°的值是()A.B.C.D.5.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间的人数为()A.11 B.12 C.13 D.146.若函数f(x)=cos(3x﹣θ)﹣sin(3x﹣θ)为奇函数,则θ等于()A.kπ(k∈Z)B.C.D.7.如果函数y=sin2x+acos2x的图象关于直线x=﹣对称,那么a等于()A.B.1 C.D.﹣18.锐角三角形ABC中,a b c分别是三内角A B C的对边设B=2A,则的取值范围是()A.(﹣2,2)B.(0,2)C.(,2)D.(,)9.下列关于正弦定理的叙述中错误的是()A.在△ABC中,a:b:c=sinA:sinB:sinCB.在△ABC中,若sin2A=sin2B,则A=BC.在△ABC中,若sinA>sinB,则A>B;若A>B,则sinA>sinBD.在△ABC中, =10.已知cos(θ+)•cos(θ﹣)=,θ∈(,π),则sinθ+cosθ的值为()A .B .C .D .11.已知向量,,则向量夹角为( )A .B .C .D .θ12.在△ABC 中,A=60°,a=4,b=4,则B 等于( )A .B=45°或135°B .B=135°C .B=45°D .以上答案都不对二、填空题(每题4分,共16分)13.已知A ,B 均为钝角,且sinA=,求A+B 的值为 .14.sin10°sin30°sin50°sin70°= .15.若=(2,3),=(﹣4,7),则在方向上的投影为 .16.如图茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为 .三、简答题:17.已知,cos (α﹣β)=,sin (α+β)=.求sin2α的值.18.如图所示,在地面上有一旗杆OP,为测得它的高度h,在地面上取一线段AB,AB=20m,在A处测得P点的仰角∠OAP=30°,在B点测得P点的仰角∠OBP=45°,又测得∠AOB=30°,求旗杆的高度.19.已知向量=(1,﹣),=(sinx,cosx),f(x)=•,若f(θ)=0,求的值.20.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<)在一个周期内的图象如图所示,其中M(,2),N(,0).(Ⅰ)求函数f(x)的解析式;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且a=,c=3,f()=,求△ABC的面积.21.求证:﹣2cos(α+β)=.22.已知△ABC中,BC=1,A=120°,∠B=θ,记f(θ)=,①求f(θ)关于θ的表达式.②求f(θ)的值域.浙江省杭州市2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题:(每题4分,共48分)1.集合M={x|x=k•90°+45°,k∈Z},N={x|x=k•45°+90°,k∈Z},则有()A.M=N B.N⊊M C.M⊊N D.M∩N=∅【考点】18:集合的包含关系判断及应用.【分析】在集合N中,k=2n,或k=2n+1,n∈Z,能过说明M的元素都是集合N的元素,而集合N中存在元素不在集合M中,从而便得出M⊊N.【解答】解:对于集合N,k=2n,或k=2n+1,n∈Z;k=2n+1时,x=n•90°+45°+90°=(n+1)•90°+45°,n+1∈Z;又M 的元素x=k•90°+45°,k ∈Z ; ∴M 的元素都是N 的元素; 而k=2n 时,x=k•90°+90°; ∴N 中存在元素x ∉M ; ∴M ⊊N . 故选:C .2.sin (﹣)的值等于( )A .B .﹣C .D .﹣【考点】GI :三角函数的化简求值.【分析】要求的式子即 sin (﹣4π+),利用诱导公式可得,要求的式子即 sin=sin.【解答】解:sin (﹣)=sin (﹣4π+)=sin=sin=,故选C .3.若cos θ>0,且sin2θ<0,则角θ的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【考点】G3:象限角、轴线角;GC :三角函数值的符号.【分析】sin2θ=2sin θcos θ,因为cos θ>0,所以sin θ<0,可以判定角θ的终边所在象限. 【解答】解:由sin2θ=2sin θcos θ,因为cos θ>0,所以sin θ<0,可以判定角θ的终边所在象限第四象限. 故选D .4.tan40°+tan80°﹣tan40°tan80°的值是( )A .B .C .D .【考点】GR :两角和与差的正切函数. 【分析】由两角和差的正切公式进行化简即可.【解答】解:由两角和差的正切公式得tan40°+tan80°﹣tan40°tan80°=tan(40°+80°)(1﹣tan40°tan80°)﹣tan40°tan80°=tan120°(1﹣tan40°tan80°)﹣tan40°tan80°=﹣+tan40°tan80°﹣tan40°tan80°=﹣,故选:B.5.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间的人数为()A.11 B.12 C.13 D.14【考点】B4:系统抽样方法.【分析】根据系统抽样方法,从840人中抽取42人,那么从20人抽取1人.从而得出从编号481~720共240人中抽取的人数即可.【解答】解:使用系统抽样方法,从840人中抽取42人,即从20人抽取1人.所以从编号1~480的人中,恰好抽取=24人,接着从编号481~720共240人中抽取=12人.故:B.6.若函数f(x)=cos(3x﹣θ)﹣sin(3x﹣θ)为奇函数,则θ等于()A.kπ(k∈Z)B.C.D.【考点】H8:余弦函数的奇偶性.【分析】根据辅导角公式,我们可以将已知中的函数f(x)=cos(3x﹣θ)﹣sin(3x﹣θ)解析式化为正弦型函数的形式,进而根据正弦函数的对称性,结合函数奇偶性的性质得到到f(0)=0,进而解三角方程即可求出对应θ的值.【解答】解:∵函数f(x)=cos(3x﹣θ)﹣sin(3x﹣θ)=﹣2sin(3x﹣﹣θ)若函数f(x)=cos(3x﹣θ)﹣sin(3x﹣θ)为奇函数,则sin(﹣﹣θ)=0,即+θ=kπ,k∈Z.∴θ=故选D.7.如果函数y=sin2x+acos2x的图象关于直线x=﹣对称,那么a等于()A.B.1 C.D.﹣1【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;GQ:两角和与差的正弦函数.【分析】将函数y=sin2x+acos2x利用辅角公式化简,再根据正弦函数在对称轴上取最值可得方程,进而可得答案.【解答】解:由题意知y=sin2x+acos2x=sin(2x+φ)当时函数y=sin2x+acos2x取到最值±将代入可得:sin+acos=解得a=﹣1故选D.8.锐角三角形ABC中,a b c分别是三内角A B C的对边设B=2A,则的取值范围是()A.(﹣2,2)B.(0,2)C.(,2)D.(,)【考点】HP:正弦定理;GH:同角三角函数基本关系的运用.【分析】先根据正弦定理得到=,即可得到,然后把B=2A代入然后利用二倍角的正弦函数公式化简,最后利用余弦函数的值域即可求出的范围.【解答】解:根据正弦定理得: =;则由B=2A,得: ====2cosA,而三角形为锐角三角形,所以A∈(,)所以cosA ∈(,)即得2cosA ∈(,).故选D9.下列关于正弦定理的叙述中错误的是( ) A .在△ABC 中,a :b :c=sinA :sinB :sinC B .在△ABC 中,若sin2A=sin2B ,则A=BC .在△ABC 中,若sinA >sinB ,则A >B ;若A >B ,则sinA >sinBD .在△ABC 中,=【考点】HP :正弦定理.【分析】在△ABC 中,由正弦定理可得 a=2RsinA ,b=2RsingB ,c=2RsinC ,结合比例的性质,三角函数的图象和性质,判断各个选项是否成立,从而得出结论.【解答】解:A 、在△ABC 中,由正弦定理可得 a=2RsinA ,b=2RsingB ,c=2RsinC , 故有a :b :c=sinA :sinB :sinC ,故A 成立; B 、若sin2A=sin2B ,等价于2A=2B ,或2A+2B=π,可得:A=B ,或A+B=,故B 不成立;C 、∵若sinA >sinB ,则sinA ﹣sinB=2cos sin>0,∵0<A+B <π,∴0<<,∴cos>0,∴sin >0,∵0<A <π,0<B <π,∴﹣<<,又sin>0,∴>0,∴A >B .若A >B 成立则有a >b , ∵a=2RsinA ,b=2RsinB , ∴sinA >sinB 成立; 故C 正确;D 、由,再根据比例式的性质可得D 成立.故选:B .10.已知cos (θ+)•cos(θ﹣)=,θ∈(,π),则sin θ+cos θ的值为( )A .B .C .D .【考点】GP :两角和与差的余弦函数.【分析】利用两角和差的余弦公式求得cos2θ的值,再利用同角三角函数的基本关系求得sin2θ的值,从而求得sin θ+cos θ=﹣的值. 【解答】解:∵已知,∴(cos ﹣sin θ)•(cos+sin θ)=cos2θ=,∴cos2θ=,∴sin2θ=﹣=﹣,∴sin θ+cos θ=﹣=﹣=﹣,故选:C .11.已知向量,,则向量夹角为( )A .B .C .D .θ【考点】9S :数量积表示两个向量的夹角.【分析】根据向量夹角的定义,结合三角函数的诱导公式进行化简即可.【解答】解:cos <,>==﹣sin θ=cos (+θ)=cos (﹣﹣θ)=cos(2π﹣﹣θ)=cos ()∵θ∈(,π),∴∈(,π),∴向量夹角为,故选:A12.在△ABC 中,A=60°,a=4,b=4,则B 等于( )A .B=45°或135°B .B=135°C.B=45°D.以上答案都不对【考点】HP:正弦定理.【分析】由A的度数求出sinA的值,再由a与b的值,利用正弦定理求出sinB的值,由b小于a,得到B 小于A,利用特殊角的三角函数值即可求出B的度数.【解答】解:∵A=60°,a=4,b=4,∴由正弦定理=得:sinB===,∵b<a,∴B<A,则B=45°.故选C二、填空题(每题4分,共16分)13.已知A,B均为钝角,且sinA=,求A+B的值为.【考点】GQ:两角和与差的正弦函数.【分析】根据同角的三角函数的基本关系结合角的范围,求得cosA,cosB,在借助于A+B的余弦值,针对A+B的范围即可求解【解答】解:∵A、B均为钝角且sinA=,∴cosA=﹣=﹣,cosB=﹣=﹣,∴cos(A+B)=cosAcosB﹣sinAsinB=(﹣)×(﹣)﹣×=,∵<A<π,<B<π,∴π<A+B<2π∴A+B=.故答案为:.14.sin10°sin30°sin50°sin70°=.【考点】GS:二倍角的正弦;GN:诱导公式的作用.【分析】通过诱导公式化正弦为余弦,利用二倍角公式即可求出结果.【解答】解:sin10°sin30°sin50°sin70°=sin30°cos20°cos40°cos80°===.故答案为:.15.若=(2,3),=(﹣4,7),则在方向上的投影为.【考点】MS:向量的投影.【分析】根据向量投影的公式,写出向量投影的表达式,进而用向量的数量积除以向量的模长来表示,代入数据求出结果.【解答】解:∵ =(2,3),=(﹣4,7),∴在方向上的投影||cosθ====故答案为:16.如图茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为5、8 .【考点】BA:茎叶图.【分析】根据中位数与平均数的计算公式,结合图中数据,即可求出x,y的值.【解答】解:根据茎叶图知,甲的中位数是10+x=15,解得x=5;乙的平均数为=16.8,解得y=8;∴x,y的值分别为5、8.故答案为:5、8.三、简答题:17.已知,cos(α﹣β)=,sin(α+β)=.求sin2α的值.【考点】GP:两角和与差的余弦函数;GQ:两角和与差的正弦函数;GS:二倍角的正弦.【分析】本题主要知识是角的变换,要求的角2α变化为(α+β)+(α﹣β),利用两个角的范围,得到要用的角的范围,用两角和的正弦公式,代入数据,得到结果.【解答】解:由题设知α﹣β为第一象限的角,∴sin(α﹣β)==.由题设知α+β为第三象限的角,∴cos(α+β)==,∴sin2α=sin,=sin(α﹣β)cos(α+β)+cos(α﹣β)sin(α+β)=.18.如图所示,在地面上有一旗杆OP,为测得它的高度h,在地面上取一线段AB,AB=20m,在A处测得P点的仰角∠OAP=30°,在B点测得P点的仰角∠OBP=45°,又测得∠AOB=30°,求旗杆的高度.【考点】HU:解三角形的实际应用.【分析】分别在△OAP,△OBP中用h表示出OA,OB,再在△OAB中利用余弦定列方程解出h.【解答】解:在Rt△OAP中,由tan∠OAP==,得OA==,在Rt△OBP中,由tan∠OBP==1,得OB=OP=h,在△AOB中,由余弦定理得cos∠AOB==,即=,解得h=20.即旗杆的高度为20m.19.已知向量=(1,﹣),=(sinx,cosx),f(x)=•,若f(θ)=0,求的值.【考点】9R:平面向量数量积的运算;GI:三角函数的化简求值.【分析】根据平面向量的数量积,利用同角的三角函数关系求出tanθ的值,再化简并求值.【解答】解:向量=(1,﹣),=(sinx,cosx),f(x)=•=sinx﹣cosx,∴f(θ)=sinθ﹣cosθ=0,∴=tanθ=;∴======﹣2.20.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<)在一个周期内的图象如图所示,其中M(,2),N(,0).(Ⅰ)求函数f(x)的解析式;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且a=,c=3,f()=,求△ABC 的面积.【考点】HS:余弦定理的应用;HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】(Ⅰ)由图象可求f(x)的周期T,由周期公式可得ω,又f(x)过点(,2),结合|φ|<,即可求得φ的值,从而可求函数f(x)的解析式;(Ⅱ)由f()=2sin(A+)=,结合A∈(0,π),即可求得A的值,在△ABC中,由余弦定理得b2﹣3b﹣4=0,解得b的值,由三角形面积公式即可得解.【解答】本题满分.解:(Ⅰ)由图象可知:函数f(x)的周期T=4×(﹣)=π,∴ω==2.又f(x)过点(,2),∴f()=2sin(+φ)=2,sin(+φ)=1,∵|φ|<, +φ∈(﹣,),∴+φ=,即φ=.∴f(x)=2sin(2x+).(Ⅱ)∵f()=2sin(A+)=,即sin(A+)=,又A∈(0,π),A+∈(,),∴A+=,即A=.在△ABC中,A=,a=,c=3,由余弦定理得 a2=b2+c2﹣2bccosA,∴13=b2+9﹣3b,即b2﹣3b﹣4=0,解得b=4或b=﹣1(舍去).∴S△ABC=bcsinA==3.21.求证:﹣2cos(α+β)=.【考点】GJ:三角函数恒等式的证明.【分析】先转换命题,只需证sin(2α+β)﹣2cos(α+β)•sinα=sinβ,再利用角的关系:2α+β=(α+β)+α,(α+β)﹣α=β可证得结论.【解答】证明:∵sin(2α+β)﹣2cos(α+β)sinα=sin﹣2cos(α+β)sinα=sin(α+β)cosα+cos(α+β)sinα﹣2cos(α+β)sinα=sin(α+β)cosα﹣cos(α+β)sinα=sin=sinβ.两边同除以sinα得﹣2cos(α+β)=.∴原式得证22.已知△ABC中,BC=1,A=120°,∠B=θ,记f(θ)=,①求f(θ)关于θ的表达式.②求f(θ)的值域.【考点】9R:平面向量数量积的运算.【分析】①利用正弦定理求出AC的值,再利用平面向量的数量积计算f(θ)=;②由①化简f(x),利用θ的取值范围,求出正弦函数的取值范围即可.【解答】解:①如图所示,△ABC中,BC=1,A=120°,∠B=θ,由正弦定理得, ===∴AC=∴f(θ)==1××cos=×(cos60°cosθ+sin60°sinθ)=sinθcosθ+sin2θ=sin2θ﹣cos2θ+=(sin2θ﹣cos2θ)+=sin(2θ﹣60°)+,其中θ∈(0°,60°);②由①知,θ∈(0°,60°),∴2θ∈(0°,120°),∴2θ﹣60°∈(﹣60°,60°),∴sin(2θ﹣60°)∈(﹣,)∴sin(2θ﹣60°)+∈(0,1);即f(θ)的值域是(0,1).。

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.a、b为非零实数,且a<b,则下列命题成立的是()A.a2<b2B.< C.a2b<ab2D.<2.已知集合A={x|x2≥1},,则A∩(∁RB)=()A.(2,+∞)B.(﹣∞,﹣1]∪(2,+∞)C.(﹣∞,﹣1)∪(2,+∞) D.[﹣1,0]∪[2,+∞)3.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=2,则△ABC 的面积为()A.B.1 C.D.4.已知数列{an }中,a1=3,an+1=﹣(n∈N*),能使an=3的n可以等于()A.14 B.15 C.16 D.175.在三角形△ABC中,角A,B,C的对边分别为a,b,c,且满足==,则=()A.B.C.D.6.在1和16之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积()A.128 B.±128 C.64 D.±647.等差数列{an }的前n项和记为Sn,若a2+a6+a10=3,则下列各和数中可确定值的是()A.S6B.S11C.S12D.S138.在△ABC中,A=60°,a2=bc,则△ABC一定是()A.锐角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形9.已知数列{an }的前n项和Sn=2n+t(t是实常数),下列结论正确的是()A.t为任意实数,{an}均是等比数列B.当且仅当t=﹣1时,{an}是等比数列C.当且仅当t=0时,{an}是等比数列D.当且仅当t=﹣2时,{an}是等比数列10.如果不等式<1对一切实数x均成立,则实数m的取值范围是()A.(1,3)B.(﹣∞,3) C.(﹣∞,1)∪(2,+∞)D.(﹣∞,+∞)11.已知正项等差数列{an }满足a1+a2015=2,则的最小值为()A.1 B.2 C.2014 D.201512.不等式2x2﹣axy+3y2≥0对于任意x∈[1,2]及y∈[1,3]恒成立,则实数a的取值范围是()A.a≤2 B.a≤2 C.a≤5 D.a≤二、填空题:本大题共4小题,每小题5分.13.一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),则一元一次不等式ax+b<0的解集为.14.已知函数f(x)=,若使不等式f(x)<成立,则x的取值范围为.15.设{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,则a2015+a2016= .16.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量,,且,b和c的等差中项为,则△ABC面积的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=x2+3x+a(1)当a=﹣2时,求不等式f(x)>2的解集(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.19.设等差数列{an }的前n项和为Sn,n∈N*,公差d≠0,S3=15,已知a1,a4,a13成等比数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =a 2n ,求数列{b n }的前n 项和T n .20.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c 且acosC ,bcosB ,ccosA 成等差数列. (1)求B 的值;(2)求2sin 2A ﹣1+cos (A ﹣C )的取值范围.21.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形的休闲区A 1B 1C 1D 1(阴影部分)和环公园人行道组成.已知休闲区A 1B 1C 1D 1的面积为4000平方米,人行道的宽分别为4米和10米.(1)若设休闲区的长A 1B 1=x 米,求公园ABCD 所占面积S 关于x 的函数S (x )的解析式; (2)要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽该如何设计?22.已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是s n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n+1)在直线x ﹣y+2=0上. (Ⅰ)求数列{a n }、{b n }的通项公式a n ,b n (Ⅱ)设{b n }的前n 项和为B n ,试比较与2的大小.(Ⅲ)设T n =,若对一切正整数n ,T n <c (c ∈Z )恒成立,求c 的最小值.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.a、b为非零实数,且a<b,则下列命题成立的是()A.a2<b2B.< C.a2b<ab2D.<【考点】2K:命题的真假判断与应用.【分析】举例说明A、C、D错误,利用反证法说明B正确.【解答】解:a、b为非零实数,且a<b.当a=﹣2,b=1时,有a<b,但a2>b2,故A错误;若a<0,b>0,则<;若a<b<0,假设<,则ab2>a2b,即b>a,假设成立;若b>a>0,假设<,则ab2>a2b,即b>a,假设成立.综上,<,故B正确;当a=﹣2,b=1时,有a<b,但a2b>ab2,故C错误;当a=﹣2,b=1时,有a<b,但,故D错误.故选:B.2.已知集合A={x|x2≥1},,则A∩(∁B)=()RA.(2,+∞)B.(﹣∞,﹣1]∪(2,+∞)C.(﹣∞,﹣1)∪(2,+∞) D.[﹣1,0]∪[2,+∞)【考点】1H:交、并、补集的混合运算.【分析】分别求解一元二次不等式和分式不等式化简集合A,B,然后利用交、并、补集的混合运算得答案.【解答】解:A={x|x2≥1}={x|x≤﹣1或x≥1},由,得0<x≤2,∴={x|0<x≤2},∴∁RB={x|x≤0或x>2},∴A∩(∁RB)=(﹣∞,﹣1)∪(2,+∞).故选:C.3.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=2,则△ABC 的面积为()A.B.1 C.D.【考点】HR:余弦定理.【分析】利用余弦定理可得A,再利用三角形面积计算公式即可得出.【解答】解:△ABC中,∵a2=b2+c2﹣bc,∴cosA==,又A∈(0,π),∴A=,又bc=2,∴△ABC的面积S=sinA==,故选:D.4.已知数列{an }中,a1=3,an+1=﹣(n∈N*),能使an=3的n可以等于()A.14 B.15 C.16 D.17【考点】8H:数列递推式.【分析】利用递推关系可得:an+3=an,再利用数列的周期性即可得出.【解答】解:∵a1=3,an+1=﹣(n∈N*),∴a2=﹣,同理可得:a3=,a4=3,…,∴an+3=an,∴a16=a1=3,能使an=3的n可以等于16.故选:C.5.在三角形△ABC中,角A,B,C的对边分别为a,b,c,且满足==,则=()A.B.C.D.【考点】HP:正弦定理.【分析】由题意设a=7k、b=4k、c=5k(k>0),由余弦定理求出cosA的值,由正弦定理和二倍角的正弦公式化简所求的式子,可得答案.【解答】解:∵,∴设a=7k、b=4k、c=5k,(k>0)在△ABC中,由余弦定理得cosA==,由正弦定理得===,故选:C.6.在1和16之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积()A.128 B.±128 C.64 D.±64【考点】88:等比数列的通项公式.【分析】利用等比数列通项公式及其性质即可得出.【解答】解:设此等比数列为{an },公比为q,a1=1,a5=16,∴a3==4.则a2a3a4==64.故选:C.7.等差数列{an }的前n项和记为Sn,若a2+a6+a10=3,则下列各和数中可确定值的是()A.S6B.S11C.S12D.S13【考点】84:等差数列的通项公式.【分析】由已知条件利用等差数列的通项公式能求出a6=1,从而利用等差数列的前n项和公式能求出S11.【解答】解:∵等差数列{an }的前n项和记为Sn,a2+a6+a10=3,∴3a6=3,解得a6=1,∴.∴各和数S6,S11,S12,S13中可确定值的是S11.故选:B.8.在△ABC中,A=60°,a2=bc,则△ABC一定是()A.锐角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形【考点】HR:余弦定理;HP:正弦定理.【分析】由题意和余弦定理变形已知式子可得b=c,结合A=60°可判.【解答】解:∵在△ABC中A=60°,a2=bc,∴由余弦定理可得a2=b2+c2﹣2bccosA=b2+c2﹣bc,∴bc=b2+c2﹣bc,即(b﹣c)2=0,∴b=c,结合A=60°可得△ABC一定是等边三角形.故选:D9.已知数列{an }的前n项和Sn=2n+t(t是实常数),下列结论正确的是()A.t为任意实数,{an}均是等比数列B.当且仅当t=﹣1时,{an}是等比数列C.当且仅当t=0时,{an}是等比数列D.当且仅当t=﹣2时,{an}是等比数列【考点】87:等比数列.【分析】可根据数列{an }的前n项和Sn=2n+t(t是实常数),求出a1,以及n≥2时,an,再观察,t等于多少时,{an}是等比数列即可.【解答】解:∵数列{an }的前n项和Sn=2n+t(t为常数),∴a1=s1=2+t,n≥2时,an =sn﹣sn﹣1=2n+t﹣(2n﹣1+t)=2n﹣2n﹣1=2n﹣1当t=﹣1时,a1=1满足an=2n﹣1故选:B10.如果不等式<1对一切实数x均成立,则实数m的取值范围是()A.(1,3)B.(﹣∞,3) C.(﹣∞,1)∪(2,+∞)D.(﹣∞,+∞)【考点】3R:函数恒成立问题.【分析】不等式式<1对一切实数x均成立,等价于 2x2+2(3﹣m)x+(3﹣m)>0 对一切实数x均成立,利用判别式小于0,即可求出实数m的取值范围.【解答】解:不等式式<1对一切实数x均成立,等价于 2x2+2(3﹣m)x+(3﹣m)>0 对一切实数x均成立∴[2(3﹣m)]2﹣4×2×(3﹣m)<0,故m的取值范围为(1,3).故选:A.11.已知正项等差数列{an }满足a1+a2015=2,则的最小值为()A.1 B.2 C.2014 D.2015【考点】8F:等差数列的性质.【分析】正项等差数列{an }满足a1+a2015=2,可得a1+a2015=2=a2+a2014,再利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵正项等差数列{an }满足a1+a2015=2,∴a1+a2015=2=a2+a2014,则=(a2+a2014)=≥=2,当且仅当a2=a2014=1时取等号.故选:B.12.不等式2x2﹣axy+3y2≥0对于任意x∈[1,2]及y∈[1,3]恒成立,则实数a的取值范围是()A.a≤2 B.a≤2 C.a≤5 D.a≤【考点】3W:二次函数的性质.【分析】不等式等价变化为a≤=+,则求出函数Z=+的最小值即可.【解答】解:依题意,不等式2x2﹣axy+y2≤0等价为a≤=+,设t=,∵x∈[1,2]及y∈[1,3],∴≤≤1,即≤≤3,∴≤t≤3,则Z=+=3t+,∵3t+≥2=2,当且仅当3t=,即t=时取等号,故a≤2,故选:B.二、填空题:本大题共4小题,每小题5分.13.一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),则一元一次不等式ax+b<0的解集为.【考点】74:一元二次不等式的解法.【分析】由一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),可知:﹣3,1是一元二次方程式x2+ax+b=0的两个实数根,利用根与系数的关系可得a,b.进而解出一元一次不等式ax+b<0的解集.【解答】解:∵一元二次不等式x2+ax+b>0的解集为x∈(﹣∞,﹣3)∪(1,+∞),∴﹣3,1是一元二次方程式x2+ax+b=0的两个实数根,∴﹣3+1=﹣a,﹣3×1=b,解得a=2,b=﹣3.∴一元一次不等式ax+b<0即2x﹣3<0,解得.∴一元一次不等式ax+b<0的解集为.故答案为:.14.已知函数f(x)=,若使不等式f(x)<成立,则x的取值范围为{x|x<3} .【考点】7E:其他不等式的解法.【分析】根据函数的表达式解关于x≥2时的不等式f(x)<即可.【解答】解:∴f(x)=,∴x<2时,不等式f(x)<恒成立,x≥2时,x﹣<,解得:2≤x<3,综上,不等式的解集是:{x|x<3},故答案为:{x|x<3}.15.设{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,则a2015+a2016=18 .【考点】88:等比数列的通项公式.【分析】由4x2﹣8x+3=0,解得x=,.根据{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,可得a2013=,a2014=.q=3.即可得出.【解答】解:由4x2﹣8x+3=0,解得x=,.∵{an } 为公比q>1的等比数列,若a2013和a2014是方程4x2﹣8x+3=0的两根,∴a2013=,a2014=,∴q=3.∴a2015+a2016=q2(a2013+a2014)=18.故答案为:18.16.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量,,且,b和c的等差中项为,则△ABC面积的最大值为.【考点】HT:三角形中的几何计算.【分析】根据,利用向量的性质建立关系与余弦定理结合可得A的大小.b和c的等差中项为,根据等差中项性质,可得b+c=1.△ABC面积S=bcsinA,利用基本不等式可得最大值.【解答】解:向量,,∵,∴b(b﹣c)+(c﹣a)(c+a)=0.得:b2﹣bc=﹣c2+a2.即﹣a2+b2+c2=bc由余弦定理:b2+c2﹣a2=2bccosA可是:bc=2bccosA.∴cosA=.∵0<A<π∴A=又b和c的等差中项为,根据等差中项性质,可得b+c=1.∴b+c,(当且仅当b=c时取等号)可得:bc≤.则△ABC面积S=bcsinA≤=.故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=x2+3x+a(1)当a=﹣2时,求不等式f(x)>2的解集(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.【考点】3W:二次函数的性质;74:一元二次不等式的解法.【分析】(1)直接利用二次不等式转化求解即可.(2)利用函数恒成立,分离变量,利用函数的最值求解即可.【解答】解:(1)当a=﹣2时,不等式f(x)>2可化为x2+3x﹣4>0,解得{x|x<﹣4或x>1} …(2)若对任意的x∈[1,+∞),f(x)>0恒成立,则a>﹣x2﹣3x在x∈[1,+∞)恒成立,设g(x)=﹣x2﹣3x则g(x)在区间x∈[1,+∞)上为减函数,当x=1时g(x)取最大值为﹣4,∴a得取值范围为{a|a>﹣4} ….18.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.【考点】HX:解三角形.【分析】(1)利用正弦定理把已知条件转化成角的正弦,整理可求得sinC,进而求得C.(2)利用三角形面积求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b的值.【解答】解:(1)∵=2csinA∴正弦定理得,∵A锐角,∴sinA>0,∴,又∵C锐角,∴(2)三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC即7=a2+b2﹣ab,又由△ABC的面积得.即ab=6,∴(a+b)2=a2+b2+2ab=25由于a+b为正,所以a+b=5.19.设等差数列{an }的前n项和为Sn,n∈N*,公差d≠0,S3=15,已知a1,a4,a13成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn =a2n,求数列{bn}的前n项和Tn.【考点】8M:等差数列与等比数列的综合.【分析】(Ⅰ)运用等比数列的性质和等差数列的通项公式和求和公式,解方程可得首项和公差,即可得到所求通项公式;(Ⅱ)设bn =a2n=2n+1+1,运用分组求和的方法,结合等比数列的求和公式,计算即可得到Tn.【解答】解:(I)依题意,a1,a4,a13成等比数列.即有a42=a1a13,则,解得,因此an =a1+(n﹣1)d=3+2(n﹣1)=2n+1,即an=2n+1.(Ⅱ)依题意,.Tn =b1+b2+…+bn=(22+1)+(23+1)+…+(2n+1+1),=22+23+…+2n+1+n==2n+2+n﹣4.20.在△ABC中,角A,B,C所对边分别为a,b,c且acosC,bcosB,ccosA成等差数列.(1)求B的值;(2)求2sin2A﹣1+cos(A﹣C)的取值范围.【考点】HR:余弦定理;HP:正弦定理.【分析】(1)由于acosC,bcosB,ccosA成等差数列,可得2bcosB=acosC+ccosA,再利用正弦定理、和差化积、诱导公式等即可得出.(2)由,可得A﹣C=2A﹣,再利用倍角公式即可化为2sin2A﹣1+cos(A﹣C)=,由于,可得<π,即可得出.【解答】解:(1)∵acosC,bcosB,ccosA成等差数列,∴2bcosB=acosC+ccosA,由正弦定理可得:2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,∵B∈(0,π),sinB ≠0,∴cosB=,B=.(2)∵,∴A﹣C=2A﹣,∴=,∵,∴<π,∴<≤1,∴2sin2A﹣1+cos(A﹣C)的取值范.21.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米.(1)若设休闲区的长A1B1=x米,求公园ABCD所占面积S关于x的函数S(x)的解析式;(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?【考点】7G:基本不等式在最值问题中的应用;5C:根据实际问题选择函数类型.【分析】(1)利用休闲区A1B1C1D1的面积为4000平方米,表示出,进而可得公园ABCD所占面积S关于x的函数S(x)的解析式;(2)利用基本不等式确定公园所占最小面积,即可得到结论.【解答】解:(1)由A1B1=x米,知米∴=(2)当且仅当,即x=100时取等号∴要使公园所占面积最小,休闲区A 1B 1C 1D 1的长为100米、宽为40米.22.已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是s n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n+1)在直线x ﹣y+2=0上. (Ⅰ)求数列{a n }、{b n }的通项公式a n ,b n (Ⅱ)设{b n }的前n 项和为B n ,试比较与2的大小.(Ⅲ)设T n =,若对一切正整数n ,T n <c (c ∈Z )恒成立,求c 的最小值.【考点】8K :数列与不等式的综合;8E :数列的求和;8I :数列与函数的综合.【分析】(Ⅰ)利用已知条件得出数列的通项和前n 项和之间的等式关系,再结合二者间的基本关系,得出数列{a n }的通项公式,根据{b n }的相邻两项满足的关系得出递推关系,进一步求出其通项公式;(Ⅱ)利用放缩法转化各项是解决该问题的关键,将所求的各项放缩转化为能求和的一个数列的各项估计其和,进而达到比较大小的目的;(Ⅲ)利用错位相减法进行求解T n 是解决本题的关键,然后对相应的和式进行估计加以解决.【解答】解:(Ⅰ)由题意可得2a n =s n+2, 当n=1时,a 1=2,当n ≥2时,有2a n ﹣1=s n ﹣1+2,两式相减,整理得a n =2a n ﹣1即数列{a n }是以2为首项,2为公比的等比数列,故a n =2n .点P (b n ,b n+1)在直线x ﹣y+2=0上得出b n ﹣b n+1+2=0,即b n+1﹣b n =2, 即数列{b n }是以1为首项,2为公差的等差数列, 因此b n =2n ﹣1.(Ⅱ)B n =1+3+5+…+(2n ﹣1)=n 2 ∴=. (Ⅲ)T n =①②①﹣②得∴又∴满足条件Tn<c的最小值整数c=3.。

2017-2018学年高一下学期期中考试数学试卷Word版含答案

2017-2018学年高一下学期期中考试数学试卷Word版含答案

2017-2018学年高一下学期期中考试数学试卷一(本大题共12小题,每小题5分,共60分.)1.下列说法中正确的是( )A .共线向量的夹角为00或0180.B .长度相等的向量叫做相等向量;C .共线向量就是向量所在的直线在同一直线上D .零向量没有方向.2.下列函数中为奇函数的是( )A.sin ||y x =B.sin 2y x =C.sin 2y x =-+D.sin 1y x =+3.已知角的终边经过点(4,3)-,则tan α=( ) A.34 B.34- C.43 D.43-4.函数5cos(4)6y x π=-的最小正周期是( )A.4πB.2πC.πD.2π5.在直角坐标系中,直线330x -=的倾斜角是( ) A.6π B. 3π C. 56π D. 23π6.函数3sin(2)6y x π=-+的单调递减区间( ) A 5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ B .511,1212k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈ C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ D .2,63k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈7.函数3sin(2)26y x π=++图象的一条对称轴方程是( ) A.12x π=- B.0x = C.23x π= D.3π8.下列选项中叙述正确的是( )A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大9.如果点)cos 2,cos (sin θθθP 位于第二象限,那么角θ所在象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量AB BO OM MB +++ 化简后等于( )A .ACB .BC C .AMD .AB11.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( ) A. 4=AB.2ω=C.12πϕ=D.4=B12.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sin sin A B =,则有A B =;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是( ) A .1B .2C .3D .4二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是 .14.圆x 2+y 2=4上的点到直线3x +4y -25=0的距离最小值为____________.15.已知=,=, =,=,=,则+++-= .16.三、解答题(本大题共6小题,17题10分其余每题12分共70分)17(本题满分10分)已知角α的终边经过一点(5,12)(0)P a a a ->,求ααcos sin 2+的值;18.(本题满分12分)已知ABC △的三个顶点(04)A ,,(26)B -,,(82)C ,;(1)求AB 边的中线所在直线方程. (2)求AC 的中垂线方程.19. (本题满分12分)若圆经过点(2,0),(4,0),(1,2)A B C ,求这个圆的方程.20. (本题满分12分)已知54cos ,cos(),01352πααββα=-=<<<且, (1)求α2tan 的值; (2)求cos β的值21(本题满分12分)已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>>< 的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.(本题满分12分)已知函数2()sin cos 1(0)f x x x x ωωωω=⋅->的周期为π. (1)当[0,]2x π∈时,求()f x 的取值范围;(2)求函数()f x 的单调递增区间.2017-2018学年高一下学期期中考试数学试卷答案一(本大题共12小题,每小题5分,共60分.)1、A2、B3、B4、D5、D6、C7、C8、A9、D 10、D11、B 12、C二、填空(本大题共4小题,每小题5分,共20分.)13.230x y --= 14. 3 15. 0 16.17三、解答题(本大题共6小题,17题10分其余每题12分共70分)17(本题满分10分).已知角α的终边经过一点(5,12)(0)P a a a ->,求ααcos sin 2+的值;17.1913-;. 试题解析:(1)由已知a a a Y 13)12()5(22=-+=………………3分810分18.(本题满分12分)已知ABC △的三个顶点(04)A ,,(26)B -,,(82)C ,;(1)求AB 边的中线所在直线方程.(2)求AC 的中垂线方程.18.(1)3140x y +-=, (2)134-=x y【解析】(1)∵线段AB 的中点为(15)-,,∴AB 边的中线所在直线方程是512581y x -+=-+,,, 即3140x y +-=,……6分(2)AC 的中点为(4.3) ∴418024-=--=KAC ∴134)4(43-=-=-x y x y 即∴134-=x y AC 的中垂成方程为……12分19. (本题满分12分)若圆经过点(2,0),(4,0),(1,2)A B C ,求这个圆的方程.19.设圆的方程为022=++++F Ey Dx y x ……2分∴⎪⎩⎪⎨⎧=+++=++=++02504160F D 24F E D F D ……8分 得⎪⎪⎩⎪⎪⎨⎧=-==827-6D F E ……11分 ∴圆的方程为:0827622=+--+y x y x ………12分20. (本题满分12分)已知54cos ,cos(),01352πααββα=-=<<<且, (1)求α2tan 的值;(2)求cos β的值. 20.(1) 120119-;(2). cos β=6556 【解析】(1)由20,135cos π<<=a a 得 1cos ,072παα=<<,得 ∴,于是2)由02παβ<<<,得02παβ<-<又∵,∴由()βααβ=--得: ()cos cos βααβ=--⎡⎤⎣⎦()()cos cos sin sin ααβααβ=-+-655613125354135=⨯+⨯=…12分. 21. (本题满分12分)已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>>< 的部分图象如图所示, (Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.21.析:(Ⅰ)由图象可知2A =,125212122ππππω=+= ,所以2ω=; 所以()2sin(2)f x x ϕ=+,又图象的一个最高点为(,2)12π-所以2()2()122k k Z ππϕπ⋅-+=+∈,解得22()3k k Z πϕπ=+∈又2||,3πϕπϕ<∴=. 所以2()2sin(2)3f x x π=+.………6分(Ⅱ) 由)(1222322Z k k X k x ∈-=+=+πππππ得)(x f ∴的对称轴为)(122Z k k x ∈-=ππ 由ππk x =+322得)(32Z k k x ∈-=ππ)0,32)(ππ-∴kx f 的对称中心为()(Z k ∈……12分22.(本题满分12分)已知函数2()sin cos 1(0)f x x x x ωωωω=⋅->的周期为π. (1)当[0,]2x π∈时,求()f x 的取值范围;(2)求函数()f x 的单调递增区间. 22.]21,1[-,3,6[ππππ+-K K ,Z K ∈ 【解析】(1)解:.21)62sin(12sin 2322cos 1--=-+-=πωωωx x x y 20,,1,2T ππωπωωω>∴===∴= ∴函数1()sin(2).62f x x π=-- ……3分 若6562620ππππ≤-≤-≤≤x x 则1)62sin(21≤-≤-∴πx2121)62sin(1≤--≤-∴πx⎥⎦⎤⎢⎣⎡∴211-、的取值范围为y ……8分(2)令226222πππππ+≤-≤-k x k 得:326+≤≤-πππk x k )(Z k ∈)(]36[)(Z k k k x f ∈+-∴ππππ、的单调递增区间为………12分。

2017—2018学年人教版高一数学第二学期期中考试卷题库(共10套)

2017—2018学年人教版高一数学第二学期期中考试卷题库(共10套)

2017—2018学年人教版高一数学第二学期期中考试卷题库(共10套)2017—2018学年人教版高一数学第二学期期中考试卷(一)(考试时间120分钟满分150分)一.单项选择题(共4小题,每小题5分,共20分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项)1.已知全集U={1,2,3,4,5},集合M={3,4,5},N={1,2,5},则集合{1,2}可以表示为()A.M∩N B.(?U M)∩N C.M∩(?U N)D.(?U M)∩(?U N)2.设函数f(x)=,g(x)=x2f(x﹣1),则函数g(x)的递减区间是()A.(﹣∞,0]B.[0,1)C.[1,+∞)D.[﹣1,0]3.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为()A.B.4 C. D.24.函数f(x)=2x﹣的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)二.填空题:共2小题,每小题5分,共10分.5.已知点A(1,2)、B(3,1),则线段AB的垂直平分线的方程是______.6.若正三棱锥的侧面都是直角三角形,则侧面与底面所成的二面角的余弦值为______.三、解答题:解答应写出文字说明,证明过程或演算步骤.7.已知圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.若直线l与圆C相交于A,B两点,且,求直线l的方程.8.如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点.(Ⅰ)求证:EF⊥BC;(Ⅱ)求二面角E﹣BF﹣C的正弦值.第二部分本学期知识和能力部分一.选择题:共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.9.下列函数中,周期为π,且在上为减函数的是()A.B.C.D.10.已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0 C.3 D.11.已知tanθ=,θ∈(0,),则cos(﹣θ)=()A.B.﹣C. D.12.设向量,满足|+|=,|﹣|=,则?=()A.1 B.2 C.3 D.513.在△ABC中,若∠A=60°,∠B=45°,,则AC=()A. B. C.D.14.已知平面向量,的夹角为,且||=,||=2,在△ABC中,=2+2,=2﹣6,D为BC中点,则||=()A.2 B.4 C.6 D.815.函数是()A.周期为π的奇函数 B.周期为π的偶函数C.周期为2π的奇函数D.周期为2π的偶函数16.为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位二.填空题:共2小题,每小题5分,共10分.17.设θ为第二象限角,若,则sinθ+cosθ=______.18.已知,是单位向量,?=0.若向量满足|﹣﹣|=1,则||的取值范围是______.三、解答题:解答应写出文字说明,证明过程或演算步骤.19.已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点.(1)求f(x)的解析式;(2)已知,且,,求f(α﹣β)的值.20.已知向量=(3,﹣4),=(6,﹣3),=(5﹣m,﹣(3+m)).(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,且∠A为直角,求实数m的值.21.已知函数f(x)=Asin(ωx+φ)(A,ω>0,﹣π<φ<π)在一个周期内的图象如图所示.(1)求f(x)的表达式;(2)在△ABC中,f(C+)=﹣1且?<0,求角C.22.已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:(1)2sinBcosC﹣sin(B﹣C)的值;(2)若a=2,求△ABC周长的最大值.23.已知函数f(x)=4cosωx?sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性;(3)当x∈[0,]时,关于x的方程f(x)=a 恰有两个不同的解,求实数a的取值范围.参考答案一.单项选择题:1. B 2.B.3.C4.C.二.填空题:5.答案为:4x﹣2y﹣5=06.答案为:.三、解答题:7.解:将圆C的方程x2+y2﹣8y+12=0配方得标准方程为x2+(y﹣4)2=4,则此圆的圆心坐标为(0,4),半径为2.…过圆心C作CD⊥AB,则D为AB的中点,,因为|BC|=2,所以.…由,解得a=﹣7,或a=﹣1.…即所求直线的方程为7x﹣y+14=0或x﹣y+2=0.…8.(Ⅰ)证明:由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示空间直角坐标系,易得B(0,0,0),A(0,﹣1,),D(,﹣1,0),C(0,2,0),因而E(0,,),F(,,0),所以=(,0,﹣),=(0,2,0),因此=0,所以EF⊥BC.(Ⅱ)解:在图中,设平面BFC的一个法向量=(0,0,1),平面BEF的法向量=(x,y,z),又=(,,0),=(0,,),由得其中一个=(1,﹣,1),设二面角E﹣BF﹣C的大小为θ,由题意知θ为锐角,则cosθ=|cos<,>|=||=,因此sinθ==,即所求二面角正弦值为.第二部分本学期知识和能力部分一.选择题:9.A.10.C.11.C.12.A.13. B 14.A.15. C 16.C.二.填空题:17.解:∵tan(θ+)==,∴tanθ=﹣,而cos2θ==,∵θ为第二象限角,∴cosθ=﹣=﹣,sinθ==,则sinθ+cosθ=﹣=﹣.故答案为:﹣18.解:由,是单位向量,?=0.可设=(1,0),=(0,1),=(x,y).∵向量满足|﹣﹣|=1,∴|(x﹣1,y﹣1)|=1,∴=1,即(x﹣1)2+(y﹣1)2=1.其圆心C(1,1),半径r=1.∴|OC|=.∴≤||=.∴||的取值范围是.故答案为:.三、解答题:19.解:(1)依题意有A=1,则f(x)=sin(x+φ),将点代入得,而0<φ<π,∴,∴,故.(2)依题意有,而,∴,.20.解:(1)若点A、B、C能构成三角形,则这三点不共线,∵,故知3(1﹣m)≠2﹣m∴实数时,满足条件.(2)若△ABC为直角三角形,且∠A为直角,则,∴3(2﹣m)+(1﹣m)=0解得.21.解:(1)由图可知函数的最大值是2,最小值是﹣2,∴A=2,…∵T=+=,∴T=π=,可得:ω=2,…又∵f(x)过点(﹣,0),且根据图象特征得:﹣2×+φ=0+2kπ,k∈Z,∴φ=+2kπ,k∈Z,…而﹣π<φ<π,∴φ=.…∴f(x)=2sin(2x+).…(2)∵f(x)=2sin(2x+),∴f(C)=2sin(2C)=﹣1,…∴sin(2C)=﹣,…因为C为三角形内角,∴C=或,…又∵?=abcosC<0,0<C<π,∴cosC<0,<C<π,∴C=..…22.解:(1)∵b2+c2=a2+bc,∴a2=b2+c2﹣bc,结合余弦定理知cosA===,又A∈(0,π),∴A=,∴2sinBcosC﹣sin(B﹣C)=sinBcosC+cosBsinC=sin(B+C)=sin[π﹣A]=sinA=;(2)由a=2,结合正弦定理得:====,∴b=sinB,c=sinC,则a+b+c=2+sinB+sinC=2+sinB+sin(﹣B)=2+2sinB+2cosB=2+4sin(B+),可知周长的最大值为6.23.解:(1)f(x)=4cosωx?sin(ωx+)=2sinωx?cosωx+2cos2ωx,=(sin 2ωx+cos 2ωx)+,=2sin(2ωx+)+,因为f(x)的最小正周期为π,且ω>0,从而有=π,故ω=1.(2)由(1)知,f(x)=2sin(2x+)+.若0≤x≤,则≤2x+≤.当≤2x+≤,即0≤x≤时,f(x)单调递增;当≤2x+≤,即≤x≤时,f(x)单调递减.综上可知,f(x)在区间[0,]上单调递增,在区间[,]上单调递减;(3)x∈[0,]时,关于x的方程f(x)=a 恰有两个不同的解,即y=a与函数在[0,]上,与f(x)=2sin(2x+)+由两个交点,由函数图象可知:a∈[2,2+),实数a的取值范围[2,2+).2017—2018学年人教版高一数学第二学期期中考试卷(二)(考试时间120分钟满分150分)一.单项选择题(共4小题,每小题5分,共20分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.)1.已知集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(?U B)=()A.{2}B.{2,3}C.{3}D.{1,3}2.一个几何体的三视图如图所示,已知这个几何体的体积为,则h=()A.B.C. D.3.过点A(2,3)且垂直于直线2x+y﹣5=0的直线方程为()A.x﹣2y+4=0 B.2x+y﹣7=0 C.x﹣2y+3=0 D.x﹣2y+5=04.在同一坐标系中画出函数y=log a x,y=a x,y=x+a的图象,可能正确的是()A.B.C.D.二.填空题:共2小题,每小题5分,共10分.5.函数f(x)=的定义域为______.6.已知圆C:(x﹣a)2+(y﹣2)2=4(a>0)及直线l:x﹣y+3=0,当直线l被C截得弦长为时,则a=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.7.如图,矩形ABCD中,对角线AC、BD的交点为G,AD⊥平面ABE,AE⊥EB,AE=EB=BC=2,F为CE上的点,且BF⊥CE.(Ⅰ)求证:AE⊥平面BCE;(Ⅱ)求三棱锥C﹣GBF的体积.第二部分本学期知识和能力部分一.选择题:共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.8.下列函数中,周期为π,且在上为减函数的是()A.B.C.D.9.已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0 C.3 D.10.已知tanθ=,θ∈(0,),则cos(﹣θ)=()A.B.﹣C. D.11.设向量,满足|+|=,|﹣|=,则?=()A.1 B.2 C.3 D.512.已知函数f(x)=sin(2x+φ)(|φ|<π)的图象过点P(0,),如图,则φ的值为()A.B. C.或D.﹣或13.已知函数y=f(x),将f(x)的图象上的每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得的图象沿着x轴向左平移个单位,这样得到的是的图象,那么函数y=f(x)的解析式是()A.B.C. D.14.已知,O为平面内任意一点,则下列各式成立的是()A.B.C.D.15.函数是()A.周期为π的奇函数 B.周期为π的偶函数C.周期为2π的奇函数D.周期为2π的偶函数二.填空题:共2小题,每小题5分,共10分.16.已知tanα=﹣,则=______.17.已知为非零向量,且夹角为,若向量=,则||=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.18.已知,且cos(α﹣β)=,sin(α+β)=﹣,求:cos2α的值.19.已知向量=(3,﹣4),=(6,﹣3),=(5﹣m,﹣(3+m)).(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,且∠A为直角,求实数m的值.20.已知函数f(x)=A(2ωx+φ)(A>0,ω>0,0<φ<π)在x=时取最大值2,x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)若f(α)=,α∈(,),求sin(﹣2α)的值.21.已知函数f(x)=4cosωx?sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.22.已知向量=(2cos(﹣θ),2sin(﹣θ)),=(cos(90°﹣θ),sin(90°﹣θ))(1)求证:⊥;(2)若存在不等于0的实数k和t,使=+(t2﹣3),=﹣k+t满足⊥.试求此时的最小值.参考答案一.单项选择题:1.D.2.B.3.A.4. D二.填空题:5.答案为:{x|0<x≤2且x≠1}.6.答案为:三、解答题:7.(I)证明:∵AD⊥面ABE,AD∥BC,∴BC⊥面ABE,AE?平面ABE,∴AE⊥BC.…又∵AE⊥EB,且BC∩EB=B,∴AE⊥面BCE.…(II)解:∵在△BCE中,EB=BC=2,BF⊥CE,∴点F是EC的中点,且点G是AC的中点,…∴FG∥AE且.…∵AE⊥面BCE,∴FG⊥面BCE.∴GF是三棱锥G﹣BFC的高…在Rt△BCE中,EB=BC=2,且F是EC的中点.…∴.…第二部分本学期知识和能力部分一.选择题:8.A.9.C.10.C.11.A.12. A 13.D.14.A.15. C 二.填空题:16.答案为:.17.答案为:.三、解答题:18.解:∵<β<α<,∴0<α﹣β<,π<α+β<,∵cos(α﹣β)=,sin(α+β)=﹣,∴sin(α﹣β)==,cos(α+β)=﹣=﹣,则cos2α=cos[(α﹣β)+(α+β)]=cos(α﹣β)cos(α+β)﹣sin(α﹣β)sin(α+β)=×(﹣)﹣(﹣)×=﹣.19.解:(1)若点A、B、C能构成三角形,则这三点不共线,∵,故知3(1﹣m)≠2﹣m∴实数时,满足条件.(2)若△ABC为直角三角形,且∠A为直角,则,∴3(2﹣m)+(1﹣m)=0解得.20.解:(1)由x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1﹣x2|的最小值为.得:T=π.函数f(x)=A(2ωx+φ)(A>0,ω>0,0<φ<π)在x=时取最大值2,∴A=2.∴=π,解得ω=1,∴f(x)=2sin(2x+φ),∵在x=时取最大值,∴+φ=+2kπ,(k∈Z),0<φ<π),∴φ=,∴f(x)=2sin.(2)∵f(α)=,∴2sin=,∴sin=,∵sin(﹣2α)=cos,∵<2<π,∴==﹣,∴sin(﹣2α)=﹣.21.解:(1)f(x)=4cosωxsin(ωx+)=2sinωx?cosωx+2cos2ωx=(sin2ωx+cos2ωx)+=2sin(2ωx+)+,所以T==π,∴ω=1.(2)由(1)知,f(x)=2sin(2x+)+,因为0≤x≤,所以≤2x+≤,当≤2x+≤时,即0≤x≤时,f(x)是增函数,当≤2x+≤时,即≤x≤时,f(x)是减函数,所以f(x)在区间[0,]上单调增,在区间[,]上单调减.22.解:(1)∵=2cos(﹣θ)cos(90°﹣θ)+2sin(﹣θ)sin(90°﹣θ)=2cosθsinθ﹣2sinθcosθ=0,∴.(2)=4cos2θ+4sin2θ=4,=1,∵⊥,∴=[+(t2﹣3)]?(﹣k+t)=+=﹣4k+t(t2﹣3)=0,(k≠0,t≠0).∴,∴==﹣.2017—2018学年人教版高一数学第二学期期中考试卷(三)一、单项选择题(每小题5分满分60分)1.如图所示,程序框图(算法流程图)的输出结果是()A.3 B.4 C.5 D.82.下列说法中,正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天3.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,把得到的点数之和是几就选几班,这种选法()A.公平,每个班被选到的概率都为B.公平,每个班被选到的概率都为C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大4.抽查10件产品,设事件A:至少有2件次品,则A的对立事件为()A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至多有1件正品5.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查,已知高二被抽取的人数为13人,则n等于()A.660 B.720 C.780 D.8006.掷一枚骰子,则掷得奇数点的概率是()A.B.C.D.7.程序框图如图所示,该程序运行后输出的S的值是()A.﹣3 B.﹣C.D.28.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>a C.c>a>b D.c>b>a9.如图是2012年在某大学自主招生考试的面试中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A.84,4.84 B.84,1.6 C.85,1.6 D.85,410.已知点M(a,b)在圆O:x2+y2=4外,则直线ax+by=4与圆O的位置关系是()A.相离 B.相切 C.相交 D.不确定11.已知两定点A(﹣3,0),B(3,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于()A.πB.4πC.9πD.16π12.(理科)已知两点A(0,﹣3),B(4,0),若点P是圆x2+y2﹣2y=0上的动点,则△ABP面积的最小值为()A.6 B.C.8 D.二、填空题(每小题5分,共20分)13.把二进制数11011(2)化为十进制数是______.14.若圆C1:x2+y2=1与圆C2:x2+y2﹣6x﹣8y+m=0外切,则m=______.15.将参加数学竞赛的1000名学生编号如下:0001,0002,003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法把编号分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0013,那么抽取的第40个号码为______.16.超速行驶已成为马路上最大杀手之一,已知某中段属于限速路段,规定通过该路段的汽车时速不超过80km/h,否则视为违规.某天,有1000辆汽车经过了该路段,经过雷达测速得到这些汽车运行时速的频率分布直方图如图所示,则违规的汽车大约为______辆.三、解答题(共70分)17.在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2, (6)的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5成绩x n70 76 72 70 72(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.18.已知A、B、C三个箱子中各装有2个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从A、B、C三个箱子中各摸出1个球.(I)若用数组(x,y,z)中的x、y、z分别表示从A、B、C三个箱子中摸出的球的号码,请写出数组(x,y,z)的所有情形,并回答一共有多少种;(Ⅱ)如果请您猜测摸出的这三个球的号码之和,猜中有奖.那么猜什么数获奖的可能性最大?请说明理由.19.设点M(x,y)在|x|≤1,|y|≤1时按均匀分布出现,试求满足:(1)x+y≥0的概率;(2)x+y<1的概率;(3)x2+y2≥1的概率.20.已知圆心为C的圆经过点A(0,2)和B(1,1),且圆心C在直线l:x+y+5=0上.(1)求圆C的标准方程;(2)若P(x,y)是圆C上的动点,求3x﹣4y的最大值与最小值.21.某连锁经营公司所属5个零售店某月的销售额和利润额资料如表:商店名称 A B C D E销售额x/千万元 3 5 6 7 9利润额y/百万元 2 3 3 4 5(1)画出销售额和利润额的散点图;(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程;(3)据(2)的结果估计当销售额为1亿元时的利润额.参考答案一、单项选择题:1.B.2.D.3.D.4. B 5.B.6.B.7.D.8.D.9.C.10.C.11.D.12.B.二、填空题13.答案为:27.14.答案为:9.15.答案为:0793.16.答案为280.三、解答题17.解:(1)根据平均数的个数可得75=,∴x6=90,这六位同学的方差是(25+1+9+25+9+225)=49,∴这六位同学的标准差是7(2)由题意知本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52=10种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41=4种结果,根据古典概型概率个数得到P==0.4.18.解:(Ⅰ)数组(x,y,z)的所有情形为:(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2),共8种.答:一共有8种.注:列出5、6、7种情形,得;列出所有情形,得;写出所有情形共8种,得.(Ⅱ)记“所摸出的三个球号码之和为i”为事件A i(i=3,4,5,6),…∵事件A3包含有1个基本事件,事件A4包含有3个基本事件,事件A5包含有3个基本事件,事件A6包含有1个基本事件,所以,,,,.…故所摸出的两球号码之和为4、为5的概率相等且最大.答:猜4或5获奖的可能性最大.…19.解:(1)如图,满足|x|≤1,|y|≤1的点组成一个边长为2的正方形ABCD,则S正方形ABCD=4;x+y=0的图象是AC所在直线,满足x+y≥0的点在AC的右上方,即在△ACD内(含边界),而S△ACD=S正方形ABCD=2,所以P(x+y≥0)==.(2)在|x|≤1,|y|≤1且x+y<1的面积为4﹣=,所以P(x+y<1)=.(3)在|x|≤1,|y|≤1且x2+y2≥1的面积为4﹣π,所以P(x2+y2≥1)=1﹣.20.解:(1)线段AB的中点为,又k AB=﹣1故线段AB的垂直平分线方程为即x﹣y+1=0…由得圆心C(﹣3,﹣2)…圆C的半径长故圆C的标准方程为(x+3)2+(y+2)2=25…(2)令z=3x﹣4y,即3x﹣4y﹣z=0当直线3x﹣4y﹣z=0与圆C相切于点P时,z取得最值…则圆心C(﹣3,﹣2)到直线3x﹣4y﹣z=0的距离为,解得z=﹣26或z=24故3x﹣4y的最小值为﹣26,最大值为24…21.解:(1)销售额与利润额成线性相关关系;(2)由已知数据计算得:=6,=3.4,b==0.5,a=3.4﹣0.5×6=0.4∴y对销售额x的回归直线方程为:y=0.5x+0.4;(3)∴当销售额为1亿元时,将x=10代入线性回归方程中得到y=5.4(千万元).2017—2018学年人教版高一数学第二学期期中考试卷(四)(考试时间120分钟满分150分)一.单项选择题(本题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选出最符合题目要求的一项.)1.在平行四边形ABCD中, ++=()A.B.C.D.2.已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是()A.4 B.2 C.8 D.13.以(﹣1,2)为圆心,为半径的圆的方程为()A.x 2+y2﹣2x+4y=0 B.x2+y2+2x+4y=0C.x2+y2+2x﹣4y=0 D.x2+y2﹣2x﹣4y=04.α是第四象限角,cosα=,则sinα=()A.B.C.D.5.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位6.对于向量、、和实数λ,下列命题中真命题是()A.若?=0,则=0或=0 B.若λ=,则λ=0或=C.若2=2,则=或=﹣D.若?=?,则=7.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<)的部分图象如图所示,则f(x)的解析式是()A.B.C.D.8.直线x﹣2y﹣3=0与圆C:(x﹣2)2+(y+3)2=9交于E、F两点,则△ECF的面积为()A.B. C.D.9.在平行四边形ABCD中,=,=,=2,则=()A.﹣B.﹣C.﹣D. +10.已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣11.已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C. D.(0,2]12.曲线y=+1(﹣2≤x≤2)与直线y=kx﹣2k+4有两个不同的交点时实数k的范围是()A.(,]B.(,+∞)C.(,)D.(﹣∞,)∪(,+∞)二.填空题(本题共4小题,每小题5分,共20分.)13.若圆O1:x2+y2=1与圆O2:(x﹣3)2+y2=r2(r>0)内切,则r的值为.14.已知向量=(3,1),=(1,3),=(k,7),若()∥,则k=.15.函数y=的定义域为.16.在等腰直角△ABC中,AB=AC=,D、E是线段BC上的点,且DE=BC,则?的取值范围是.三.解答题(本大题共6小题,共70分,解答应给出文字说明、证明过程或演算步骤.)17.已知半径为2的圆的圆心在x轴上,圆心的横坐标是正数,且与直线4x﹣3y+2=0相切.(1)求圆的方程;(2)若直线ax﹣y+5=0与圆总有公共点,求实数a的取值范围.18.已知||=4,||=2,且与夹角为120°求:(1)()?(+)(2)|2﹣|(3)与+的夹角.19.已知tan(π+α)=2,求下列各式的值:(1);(2).20.已知函数f(x)=sin(2x+)+1.(1)求函数f(x)的最小正周期和对称中心;(2)求函数f(x)的单调递增区间;(3)求函数f(x)在区间[0,]上的最大值和最小值.21.已知点A(﹣1,2),B(0,1),动点P满足.(Ⅰ)若点P的轨迹为曲线C,求此曲线的方程;(Ⅱ)若点Q在直线l1:3x﹣4y+12=0上,直线l2经过点Q且与曲线C有且只有一个公共点M,求|QM|的最小值.22.设0<α<π<β<2π,向量=(1,﹣2),=(2cosα,sinα),=(sinβ,2cosβ),=(cosβ,﹣2sinβ).(1)⊥,求α;(2)若|+|=,求sinβ+cosβ的值;(3 )若tanαtanβ=4,求证:∥.参考答案一.单项选择题:1.D.2.A.3.C.4.B.5.B.6.B.7.A.8.B.9.C.10.C.11.A.12.A.二.填空题:13.答案为:4.14.答案为5.15.答案为:{x|﹣+2kπ≤x≤+2kπ,k∈Z}.16.答案为:.三.解答题:17.解:(1)设圆心为M(m,0)(m∈Z).由于圆与直线4x﹣3y+2=0相切,且半径为2,所以=2,即|4m+2|=10.因为m为整数,故m=2.故所求的圆的方程是(x﹣2)2+y2=4.(2)因为直线ax﹣y+5=0与圆总有公共点,则圆心(2,0)到直线ax﹣y+5=0的距离不超过圆的半径,即≤2,解得a≤﹣,所以实数a的取值范围是(﹣∞,﹣].18.解:由题意可得||2=16,||2=4,且?=||||cos120°=﹣4,(1))()?(+)==16﹣8+4=12;(2)|2﹣|2=4=64+16+4=84,所以|2﹣|=2;(3)设与+的夹角为θ,则cosθ==,又0°≤θ≤180°,所以θ=30°,与的夹角为30°.19.解:(1)由已知得tanα=2.∴.(2)=20.解:(1)函数f(x)=sin(2x+)+1的最小正周期=π.由2x+=kπ,解得x=﹣,∴对称中心为(﹣,1).(2)由2kπ﹣≤2x+≤2kπ+,(k∈Z),解得kπ﹣≤x≤kπ+,∴函数f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).(3)在区间[0,]上,2x+∈[,],∴当2x+=,即x=时,函数f(x)取得最大值+1,当2x+=,即x=时,函数f(x)取得最小值0.21.解:(Ⅰ)设P(x,y),则∵点A(﹣1,2),B(0,1),动点P满足,∴,∴化简(x﹣1)2+y2=4;(Ⅱ)由题意,|QM|最小时,|CQ|最小,当且仅当圆心C到直线的距离最小,此时d==3,∴由勾股定理可得|QM|的最小值为=.22.解:(1)若,则=2cosα﹣2sinα=0,∴tanα=1.再由0<α<π<β<2π,可得α=.(2)由题意可得=(sinβ+cosβ,2cosβ﹣2sinβ),∴===,∴sinβcosβ=.结合0<α<π<β<2π,可得β为第三象限角,故sinβ+cosβ<0.∴sinβ+cosβ=﹣=﹣=﹣.(3)若tanαtanβ=4,则有,∴sinαsinβ=4cosαcosβ,∴,故与的坐标对应成比例,故.2017—2018学年人教版高一数学第二学期期中考试卷(五)(考试时间120分钟满分150分)一、单项选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若sinα>0,且tanα<0,则角α的终边位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.﹣300°化为弧度是()A.B.﹣C.﹣D.﹣3.若=(2,4),=(1,3),则=()A.(1,1)B.(﹣1,﹣1)C.(3,7)D.(﹣3,﹣7)4.若tanα=2,则等于()A.﹣3 B. C.D.35.若||=1,||=,(﹣)⊥,则与的夹角为()A.30°B.45°C.60°D.75°6.要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位7.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30°B.60°C.120°D.150°8.如图,在三棱锥S﹣ABC中,E为棱SC的中点,若AC=2,SA=SB=AB=BC=SC=2,则异面直线AC与BE所成的角为()A.30°B.45°C.60°D.90°9.在△ABC中,角A、B、C所对的边分别为a、b、c,若a?cosA=bcosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形10.已知向量,,且=+2,=﹣5+6,=7﹣2,则一定共线的()A.A,B,D B.A,B,C C.B,C,D D.A,C,D11.函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f (2 012)的值等于()A.B.2+2C. +2 D.﹣212.在△ABC中,M为边BC上任意一点,N为AM中点,,则λ+μ的值为()A.B.C.D.1二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置. 13.函数y=tan(x+)的单调区间为______.14.已知向量是两个不共线的向量,若向量与向量共线,则实数λ=______.15.函数f(x)=2sinxcos(x﹣),x∈[0,]的最小值为______.16.把函数的图象向左平移m(m>0)个单位,所得的图象关于y轴对称,则m的最小值是______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知α的终边经过点(﹣4,3),求下列各式的值:(1);(2)sinα?cosα.18.已知平面向量=(1,x),=(2x+3,﹣x)(x∈R).(1)若⊥,求x的值;(2)若∥,求|﹣|.19.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=4,b+c=8,求△ABC的面积.20.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DBA=30°,∠DAB=60°,AD=1,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角P﹣AB﹣D余弦值.21.已知,且,(1)求cosα的值;(2)若,,求cosβ的值.22.已知向量=(1+cosωx,1),=(1,a+sinωx)(ω为常数且ω>0),函数f(x)=在R上的最大值为2.(Ⅰ)求实数a的值;(Ⅱ)把函数y=f(x)的图象向右平移个单位,可得函数y=g(x)的图象,若y=g(x)在[0,]上为增函数,求ω取最大值时的单调增区间.参考答案一、单项选择题:1.B.2.B.3.B.4.D.5.B.6.B.7.A.8.C.9.C.10.A.11.B.12.A.二、填空题:13.答案为:递增区间为(kπ﹣,kπ+),k∈Z14.答案为:﹣15.答案为:0.16.答案为:π.三、解答题:17.解:∵α的终边经过点P(﹣4,3),∴|PO|=r=因此,,,…(1)根据诱导公式,得sin(±α)=cosα,cos(π+α)=﹣cosα,sin(π﹣α)=sinα∴…(2)sinα?cosα=﹣×=…18.解:(1)∵⊥,∴?=(1,x)?(2x+3,﹣x)=2x+3﹣x2=0整理得:x2﹣2x﹣3=0解得:x=﹣1,或x=3(2)∵∥∴1×(﹣x)﹣x(2x+3)=0即x(2x+4)=0解得x=﹣2,或x=0当x=﹣2时,=(1,﹣2),=(﹣1,2)﹣=(2,﹣4)∴|﹣|=2当x=0时,=(1,0),=(3,0)﹣=(﹣2,0)∴|﹣|=2故|﹣|的值为2或2.19.解:(1)∵△ABC中,,∴根据正弦定理,得,∵锐角△ABC中,sinB>0,∴等式两边约去sinB,得sinA=∵A是锐角△ABC的内角,∴A=;(2)∵a=4,A=,∴由余弦定理a2=b2+c2﹣2bccosA,得16=b2+c2﹣2bccos,化简得b2+c2﹣bc=16,∵b+c=8,平方得b2+c2+2bc=64,∴两式相减,得3bc=48,可得bc=16.因此,△ABC的面积S=bcsinA=×16×sin=4.20.(本小题满分12分)解:(Ⅰ)∵∠DBA=30°,∠DAB=60°,∴∠ADB=90°,∴BD⊥AD,又PD⊥底面ABCD,∴BD⊥PD,∴BD⊥面PAD,∴PA⊥BD.(Ⅱ)过D作DO⊥AB交AB于O,连接PO,∵PD⊥底面ABCD,∴∠POD为二面角P﹣AB﹣D的平面角.在Rt△ABD中,∵AD=1,∠ABD=30°,∴,∴,而PD=AD=1,在Rt△PDO中,,∴,∴.∴二面角P﹣AB﹣D余弦值为.21.解:(1)由,平方可得1+sinα=,解得sinα=.再由已知,可得α=,∴cosα=﹣.(2)∵,,∴﹣<α﹣β<,cos(α﹣β)=.∴cosβ=cos(﹣β)=cos[(α﹣β)﹣α]=cos(α﹣β)cosα+sin(α﹣β)sinα=+=﹣.22.解:(Ⅰ)函数f(x)==1+cosωx+a+sinx=2sin(ωx+)+a+1,…∵函数f(x)在R上的最大值为2,∴3+a=2故a=﹣1…(Ⅱ)由(Ⅰ)知:f(x)=2sin(ωx+),把函数f(x)=2sin(ωx+)的图象向右平移个单位,可得函数y=g(x)=2sinωx…又∵y=g(x)在[0,]上为增函数,∴g(x)的周期T=≥π即ω≤2.∴ω的最大值为2…此时单调增区间为…2017—2018学年人教版高一数学第二学期期中考试卷(六)(考试时间120分钟满分150分)一、单项选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项是符合题目要求的.1.已知集合M={x|y=lnx},N={x|2x≤8},则M∩N=()A.?B.{x|0<x≤3}C.{x|x≤3}D.{x|x<3}2.sin(﹣)的值等于()A.B.﹣C.D.﹣3.在单位圆中,面积为1的扇形所对的圆心角为()弧度A.1 B.2 C.3 D.44.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是()A.2B.2C.2D.45.函数f(x)=ln(x+1)﹣的零点所在的大致区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)6.已知某产品的广告费用x万元与销售额y万元的统计数据如表所示:x(万元)0 1 3 4y(万元) 2.2 4.3 4.8 6.7从散点图分析,y与x线性相关,且=0.95x+,则据此模型预报广告费用为6万元时销售额为()A.2.6万元B.8.3万元C.7.3万元D.9.3万元7.已知函数f(x)=ka x﹣a﹣x(a>0且a≠1)在R上是奇函数,且是增函数,则函数g(x)=log a(x﹣k)的大致图象是()A.B.C.D.8.给出下列结论:①若=,则ABCD是平行四边形;②cosπ<sinπ<tanπ;③若∥,∥,则∥;④若=,则=.则以上正确结论的个数为()A.0个B.1个C.2个D.3个9.把函数y=sin(2x+)的图象向右平移φ(φ>0)个单位长度,所得的图象关于y轴对称,则φ的最小值为()A.B.C.D.10.直线xsinα+y+2=0的倾斜角的取值范围是()A.[0,π)B.[0,]∪[,π)C.[0,]D.[0,]∪(,π)11.如图是由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的内角为θ,大正方形的面积是1,小正方形的面积是,则tanθ的值是()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCD﹣A1B1C1D1的体积为()A.B.C.2D.1二、填空题:本题共4小题,共20分.13.已知,则=.14.一个总体分为A、B两层,用分层抽样法从总体中抽取容量为10的样本,已知B层中个体甲被抽到的概率是,则总体中的个体数是.15.在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m=.16.已知圆C:x2+y2﹣2ax﹣2(a﹣1)y﹣1+2a=0(a≠1)对所有的a∈R且a≠1总存在直线l与圆C相切,则直线l的方程为.三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤.17.已知角θ的终边经过点P(a,﹣2),且cosθ=﹣.(1)求sinθ,tanθ的值;(2)求的值.18.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(I)求分数在[120,130]内的频率,并补全这个频率分布直方图;(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ)用分层抽样的方法在分段[110,130]的学生中抽取一个容量为6的样本,将样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130]内的概率.19.已知函数f(x)=Asin(2ωx+?)+k(A>0,ω>0,?∈[﹣])的最小正周期为,函数的值域为[﹣],且当x=时,函数f(x)取得最大值.(1)求f(x)的表达式,并写出函数f(x)的单调递增区间;(2)求函数f(x)在区间[0,]上的取值范围.20.如图,△ABC中,O是BC的中点,AB=AC,AO=2OC=2.将△BAO沿AO折起,使B点与图中B'点重合.(1)求证:AO⊥平面B'OC;(2)当三棱锥B'﹣AOC的体积取最大时,求二面角A﹣B'C﹣O的余弦值;(3)在(2)的条件下,试问在线段B'A上是否存在一点P,使CP与平面B'OA所成的角的正弦值为?证明你的结论,并求AP的长.21.已知函数f(x)=ax+.(1)从区间(﹣2,2)内任取一个实数a,设事件A={函数y=f(x)﹣2在区间(0,+∞)上有两个不同的零点},求事件A发生的概率;(2)当a>0,x>0时,f(x)=ax+.若连续掷两次骰子(骰子六个面上标注的点数分别为1,2,3,4,5,6)得到的点数分别为a和b,记事件B={f(x)>b2在x∈(0,+∞)恒成立},求事件B发生的概率.22.已知f(x)=asin(x+)+1﹣a(x∈R).(1)当x∈[0,]时,恒有|f(x)|≤2,求实数a的取值范围;(2)若f(x)=0在[0,]上有两个不同的零点,求实数a的取值范围.参考答案一、单项选择题:1.B.2.C.3. B 4.C.5.B.6.B.7.A8.B.9.D.10. B 11.A.12.A.二、填空题:13.解:由题意分式的分子与分母都除以cosα可得又∴==故答案为14.解:∵用分层抽样方法从总体中抽取一个容量为10的样本.由B层中每个个体被抽到的概率都为,知道在抽样过程中每个个体被抽到的概率是,∴总体中的个体数为10÷=100.故答案为:10015.解:如图区间长度是6,区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,所以m=3.故答案为:3.16.解:圆的圆心坐标为(a,1﹣a),半径为: |a﹣1|显然,满足题意切线一定存在斜率,∴可设所求切线方程为:y=kx+b,即kx﹣y+b=0,则圆心到直线的距离应等于圆的半径,即=|a﹣1|恒成立,即2(1+k2)a2﹣4(1+k2)a+2(1+k2)=(1+k)2a2+2(b﹣1)(k+1)a+(b﹣1)2恒成立,比较系数得,解之得k=﹣1,b=1,所以所求的直线方程为y=﹣x+1.故答案为:y=﹣x+1.三、解答题:17.解:(1)∵,且过P(a,﹣2),∴θ为第三象限的角…∴……(2)…18.解(I)分数在[120,130)内的频率为:1﹣(0.1+0.15+0.15+0.25+0.05)=1﹣0.7=0.3…,补全后的直方图如右(II)平均分为:125×0.3+135×0.25+145×0.05=121(III)由题意,[110,120)分数段的人数为:60×0.15=9人[120,130)分数段的人数为:60×0.3=18人∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本∴需在[110,120)分数段内抽取2人,并分别记为m,n;在[120,130)分数段内抽取4人,分别记为a,b,c,d设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A,则基本事件共有:(m,n),(m,a),…,(m,d),(n,a),…,(n,d),(a,b),…,(c,d)共15种…则事件A包含的基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9种∴19.解:(1)∵函数函数f(x)=Asin(2ωx+?)+k的值域为,A>0,∴,∴.又,∴ω=2,∵当时,函数f(x)取得最大值.∴,又,∴,∴.令2kπ﹣≤4x﹣≤2kπ+,解得≤x≤+(k∈Z),所以f(x)的增区间为(k∈Z).(2)因为x∈,所以4x﹣∈,所以sin∈,所以f(x)∈,故f(x)在区间上的取值范围是.20.解:(1)证明:∵AB=AC且O是BC中点,∴AO⊥BC即AO⊥OB',AO⊥OC,又∵OB'∩OC=O,∴AO⊥平面B'OC;…(2)在平面B'OC内,作B'D⊥OC于点D,则由(Ⅰ)可知B'D⊥OA又OC∩OA=O,∴B'D⊥平面OAC,即B'D是三棱锥B'﹣AOC的高,又B'D≤B'O,所以当D与O重合时,三棱锥B'﹣AOC的体积最大,过O点作OH⊥B'C于点H,连AH,由(Ⅰ)知AO⊥平面B'OC,又B'C?平面B'OC,∴B'C⊥AO∵AO∩OH=O,∴B'C⊥平面AOH,∴B'C⊥AH∴∠AHO即为二面角A﹣B'C﹣O的平面角.在,∴,∴,故二面角A﹣B1C﹣O的余弦值为…(3)连接OP,在(2)的条件下,易证OC⊥平面B'OA,∴CP与平面B'OA所成的角为∠CPO,∴∴又在△ACB′中,,∴CP⊥AB′,∴,∴…。

江西省2017—2018学年高一数学下学期期中考试试卷(共八套)

江西省2017—2018学年高一数学下学期期中考试试卷(共八套)

江西省2017—2018学年高一数学下学期期中考试试卷(共八套)江西省2017—2018学年高一数学下学期期中考试试卷(一)(考试时间120分钟满分150分)一.单项选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.过两点A(1,),B(4,2)的直线的倾斜角为()A.30°B.60°C.120°D.150°2.将长方体截去一个四棱锥后,得到的几何体的直观图如图所示,则该几何体的俯视图为()A.B.C.D.3.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若β⊥α,l⊥α,则l∥βB.若l∥β,l∥α,则α∥βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β4.若圆锥的轴截面是等边三角形,则它的侧面展开图扇形的圆心角为()A.90°B.180°C.45°D.60°5.如果AC<0且BC<0,那么直线Ax+By﹣C=0不通过()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.一个多面体的三视图如图所示,其中主视图是正方形,左视图是等腰三角形,则该几何体的侧面积为()A.64 B.98 C.108 D.1587.若直线ax+by﹣3=0和圆x2+y2+4x﹣1=0切于点P(﹣1,2),则ab的值为()A.﹣3 B.﹣2 C.2 D.38.已知圆(x﹣1)2+(y﹣a)2=4(a>0)被直线x﹣y﹣l=0截得的弦长为2,则a的值为()A.B.C.﹣l D.﹣l9.如图所示是一个几何体的三视图,则该几何体的体积为()A.1 B.C.D.10.直线L1:ax+(1﹣a)y=3,L2:(a﹣1)x+(2a+3)y=2互相垂直,则a的值是()A.0或﹣B.1或﹣3 C.﹣3 D.111.如图,在正方体ABCD﹣A1B1C1D1中,M,N,P,Q分别是AA1,A1D1,CC1,BC 的中点,给出以下四个结论:①A1C⊥MN;②A1C∥平面MNPQ;③A1C与PM相交;④NC与PM异面.其中不正确的结论是()A.①B.②C.③D.④12.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A﹣BCD.则在三棱锥A﹣BCD中,下列命题正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC二.填空题.(本大题共4小题,每小题5分,共20分)13.一个三角形的直观图是腰长为4的等腰直角三角形,则它的原面积是.14.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测,若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为件.15.经过两圆x2+y2+6x﹣4=0和x2+y2+6y﹣28=0的交点,并且圆心在直线x﹣y﹣4=0上的圆的方程.16.已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O 所得截面的面积为π,则球O的表面积为.三.解答题.(本大题共6个大题,共70分)17.已知直线l的方程为2x﹣y+1=0(Ⅰ)求过点A(3,2),且与直线l垂直的直线l1方程;(Ⅱ)求与直线l平行,且到点P(3,0)的距离为的直线l2的方程.18.如图,在底面是矩形的四棱锥P﹣ABCD中,PA⊥平面ABCD,PA=AB,E是PD的中点.(1)求证:PB∥平面EAC;(2)求证:平面PDC⊥平面PAD.19.已知圆C:x2+y2+2x﹣4y+3=0.(1)若不经过坐标原点的直线l与圆C相切,且直线l在两坐标轴上的截距相等,求直线l 的方程;(2)设点P在圆C上,求点P到直线x﹣y﹣5=0距离的最大值与最小值.20.如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.21.已知以点C为圆心的圆经过点A(0,﹣1)和B(4,3),且圆心在直线3x+y﹣15=0上.(Ⅰ)求圆C的方程;(Ⅱ)设点P在圆C上,求△PAB的面积的最大值.22.已知直角梯形ABCD的下底与等腰直角三角形ABE的斜边重合,AB⊥BC,且AB=2CD=2BC(如图1),将此图形沿AB折叠成直二面角,连接EC、ED,得到四棱锥E ﹣ABCD(如图2).(1)求证:在四棱锥E﹣ABCD中,AB⊥DE.(2)设BC=1,求点C到平面EBD的距离.参考答案一.单项选择题1.A.2.C.3.C.4.B 5.A.6.A.7.C 8.A.9.B 10.B.11.B.12.D.二.填空题13.答案为:16.14.答案为:1800.15.答案为:x2+y2﹣x+7y﹣32=0.16.答案为:.三.解答题17.解:(Ⅰ)设与直线l:2x﹣y+1=0垂直的直线l1的方程为:x+2y+m=0,把点A(3,2)代入可得,3+2×2+m=0,解得m=﹣7.∴过点A(3,2),且与直线l垂直的直线l1方程为:x+2y﹣7=0;(Ⅱ)设与直线l:2x﹣y+1=0平行的直线l2的方程为:2x﹣y+c=0,∵点P(3,0)到直线l2的距离为.∴=,解得c=﹣1或﹣11.∴直线l2方程为:2x﹣y﹣1=0或2x﹣y﹣11=0.18.证明:(1)连结BD交AC于O,连结EO,则EO是△PBD的中位线,∴EO∥PB,又PB⊄平面EAC,EO⊂平面EAC,∴PB∥平面EAC;(2)∵PA⊥平面ABCD,CD⊂平面ABC,∴PA⊥CD.∵ABCD是矩形,∴AD⊥CD.而PA∩AD=A,∴CD⊥平面PAD,又CD⊂平面PDC,∴平面PDC⊥平面PAD.19.解:(1)圆C的方程可化为(x+1)2+(y﹣2)2=2,即圆心的坐标为(﹣1,2),半径为,因为直线l在两坐标轴上的截距相等且不经过坐标原点,所以可设直线l的方程为x+y+m=0,于是有,得m=1或m=﹣3,因此直线l的方程为x+y+1=0或x+y﹣3=0;(2)因为圆心(﹣1,2)到直线x﹣y﹣5=0的距离为,所以点P到直线x﹣y﹣5=0距离的最大值与最小值依次分别为和.20.解:(1)证明:在直四棱柱ABCD﹣A1B1C1D1中,连接C1D,∵DC=DD1,∴四边形DCC1D1是正方形.∴DC1⊥D1C.又AD⊥DC,AD⊥DD1,DC⊥DD1=D,∴AD⊥平面DCC1D1,D1C⊂平面DCC1D1,∴AD⊥D1C.∵AD,DC1⊂平面ADC1,且AD⊥DC=D,∴D1C⊥平面ADC1,又AC1⊂平面ADC1,∴D1C⊥AC1.(2)连接AD1,连接AE,设AD1∩A1D=M,BD∩AE=N,连接MN,∵平面AD1E∩平面A1BD=MN,要使D1E∥平面A1BD,须使MN∥D1E,又M是AD1的中点.∴N是AE的中点.又易知△ABN≌△EDN,∴AB=DE.即E是DC的中点.综上所述,当E是DC的中点时,可使D1E∥平面A1BD.21.解:(Ⅰ)设所求圆的方程为x2+y2+Dx+Ey+F=0 …依题意得…解得D=﹣12,E=6,F=5 …∴所求圆的方程是x2+y2﹣12x+6y+5=0 …(Ⅱ)|AB|==4,…由已知知直线AB的方程为x﹣y﹣1=0 …所以圆心C(6,﹣3)到AB的距离为d=4…P到AB距离的最大值为d+r=4+2…所以△PAB面积的最大值为=16+8…22.解:(1)作AB的中点F,连结EF,DF,∵AB=2CD,∴BE=CD=BC,∵BE∥CD,∴四边形BCDE为正方形,∴DF⊥AB,∵BE=AE,F为AB的中点,∴EF ⊥AB ,∴AB ⊥平面DEF , ∵DE ⊂平面DEF , ∴AB ⊥DE . (2)∵BC=1,∴AB=2BC=2,BE==,BD=BC=,FE=BF=1,DF=BC=1∴DE=EF=,∴△BDE 为等边三角形,边长为,∴S △BDE =××=.∵EF ⊥AB ,平面EAB ⊥平面ABCD ,∴EF ⊥面ABCD ,即EF 为点E 到平面ABCD 的距离,∴S E ﹣BCD =•EF •S △BCD =×1×=, 设点C 到平面EBD 的距离为d ,则S E ﹣BCD =•d •S △BDE =•d •=,∴d=,即点C 到平面EBD 的距离为.江西省2017—2018学年高一数学下学期期中考试试卷(二)(考试时间120分钟 满分150分)一、单项选择题(共12小题,每小题5分,共60分) 1.下列角中终边与330°相同的角是( ) A .30° B .﹣30° C .630° D .﹣630°2.如果点P (sin θcos θ,2cos θ)位于第三象限,那么角θ所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.下列命题中正确的是( )A .若两个向量相等,则它们的起点和终点分别重合B .模相等的两个平行向量是相等向量C .若和都是单位向量,则D .两个相等向量的模相等4.下列关系式正确的是( )A . +=0B . •是一个向量C .﹣=D .0•=5.已知扇形的半径是2,面积为8,则此扇形的圆心角的弧度数是( ) A .4 B .2 C .8 D .16.要得到函数y=sin (2x ﹣)的图象,应该把函数y=sin2x 的图象( )A .向左平移B .向右平移C .向左平移D .向右平移7.已知,且x 在第三象限,则cosx=( )A .B .C .D .8.如图所示的是函数y=2sin (ωx +φ)(|φ|<)的部分图象,那么( )A .ω=,φ=B .ω=,φ=﹣C .ω=2,φ=D .ω=2,φ=﹣9.余弦函数y=cos (x +)在下列( )区间为减函数.A .[﹣π,] B .[﹣π,0] C .[﹣,π] D .[﹣,]10.已知=(3,1),=(x ,﹣1),且∥,则x 等于( )A .B .﹣C .3D .﹣311.已知||=,||=2,.=﹣3,则与的夹角是( ) A .150° B .120° C .60° D .30°12.已知△ABC 的三个顶点A 、B 、C 及平面内一点P ,若++=,则点P 与△ABC的位置关系是( )A .P 在AC 边上B .P 在AB 边上或其延长线上C .P 在△ABC 外部D .P 在△ABC 内部二、填空题(共4小题,每小题5分,共20分)13.已知sin α=,α是第一象限角,则cos (π﹣α)的值为______.14.已知=(﹣1,3),=(1,t ),若(﹣2)⊥,则||=______.15.如图,平行四边形ABCD 中,E 是边BC 上一点,G 为AC 与DE 的交点,且,若=,,则用,表示=______.16.已知函数y=3cosx (0≤x≤2π)的图象和直线y=3围成一个封闭的平面图形,则其面积为______..三、解答题(本大题共6小题,共70分)17.如图所示,A,B是单位圆O上的点,且B在第二象限,C是圆与x轴正半轴的交点,A点的坐标为(,),且A与B关于y轴对称.(1)求sin∠COA;(2)求cos∠COB.18.设f(θ)=.(1)化简f(θ)(2)求f()的值.19.已知函数f(x)=sin(﹣).(1)请用“五点法”画出函数f(x)在长度为一个周期的闭区间上的简图(先在所给的表格20.已知向量.(1)若向量与向量平行,求实数m的值;(2)若向量与向量垂直,求实数m的值;(3)若,且存在不等于零的实数k,t使得,试求的最小值.21.已知函数y=3sin(2x+﹣2.(Ⅰ)求f(x)最小正周期,对称轴及对称中心;(Ⅱ)求f(x)在区间[0,π]上的单调性.22.如图,在扇形OAB中,∠AOB=60°,C为上的一个动点.若=x+y,求x+3y 的取值范围.参考答案一、单项选择题1. B .2. B 3. D .4. D .5. A .6. D .7. D .8. A .9. C .10. D . 11. B 12. A .二、填空题13.答案为:.14.答案为:.15.答案为:. 16.答案为:6π.三、解答题17.解:(1)∵A 点的坐标为(,),∴sin ∠COA=;(2)cos ∠COB=cos (π﹣∠COA )=﹣cos ∠COA=﹣.18.解:(1)===;(2).19.解:(1)令,则.填表:……(2)因为x∈[0,2],所以,…所以当,即x=0时,取得最小值;…当,即时,取得最大值1 …20.解:(1)∵,且∴,解得;(2)∵,且∴,解得;(3)由(2)可知,时,m=,∴=(﹣,1),=(,)又∵,∴,∴+t(t2﹣3)+(t﹣kt2+3k)=0,代入数据可得:﹣4k+t(t2﹣3)=0∴,∴,由二次函数的知识可知,当t=﹣2时,的最小值为.21.解:函数y=3sin(2x+)﹣2;(Ⅰ)函数f(x)的最小正周期是T==π,令2x+=+kπ,k∈Z,解得x=+,k∈Z,∴函数f(x)的对称轴是x=+,k∈Z;令2x+=kπ,k∈Z,解得x=﹣+,k∈Z,∴函数f(x)的对称中心是(﹣+,﹣2);(Ⅱ)令﹣+2kπ≤2x+≤+2kπ,k∈Z,解得﹣+kπ≤x≤+kπ,k∈Z,∴函数f(x)的单调增区间为[﹣+kπ, +kπ],k∈Z;同理函数f(x)的单调减区间为[+kπ, +kπ],k∈Z;∴函数f(x)在区间[0,π]上的单调性是:单调增区间为[0,]和[,π],单调减区间为[,].22.解:设扇形的半径为r;考虑到C为弧AB上的一个动点,=x+y.显然x,y∈[0,1];两边平方:=;所以:y2+x•y+x2﹣1=0,显然△=4﹣3x2>0;∵y>0,∴解得:,故;不妨令,x∈[0,1];∴;∴f(x)在x∈[0,1]上单调递减,f(0)=3,f(1)=1,∴f(x)∈[1,3];即x+3y的取值范围为[1,3].江西省2017—2018学年高一数学下学期期中考试试卷(三)(考试时间120分钟满分150分)一、单项选择题(本大题共12小题,每小题5分,共60分.)1.下列说法中正确的是()A.单位向量的长度为1B.长度相等的向量叫做相等向量C.共线向量的夹角为0°D.共面向量就是向量所在的直线在同一平面内2.将300°化为弧度为()A. B. C. D.3.向量(+)+(+)+化简后等于()A.B.C.D.4.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若直线ax+2y+1=0与直线x﹣y﹣2=0互相垂直,那么a的值等于()A.﹣B.2 C.﹣D.﹣26.四边形ABCD中,若向量=,则四边形ABCD()A.是平行四边形或梯形B.是梯形C.不是平行四边形,也不是梯形D.是平行四边形7.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=48.函数y=3sin(2x+)的单调增区间()A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)C.[kπ﹣,kπ+](k∈Z)D.[kπ+,kπ+](k∈Z)9.要得到函数y=3cos(2x﹣)的图象,可以将函数y=3sin2x的图象()A.沿x轴向左平移单位B.沿x轴向右平移单位C.沿x轴向左平移单位D.沿x轴向右平移单位10.在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是,则cos2θ﹣sinθ2+2=()A.B.C.﹣D.﹣11.已知函数f(x)=(sinx+cosx)﹣|sinx﹣cosx|+1,则f(x)的值域是()A.[0,2]B.[1﹣,2]C.[0,1﹣]D.[0,1+]12.给出下列说法:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限或x轴负半轴的角.其中错误说法的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题5分,共20分.)13.已知=,=,=,=,=,则+++=.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知tan()=,tan()=﹣,则tan()=.16.关于函数f(x)=6sin(2x+)(x∈R),有下列命题:①由f(x1)=f(x2)=0可得x1﹣x2必是π的整数倍;②y=f(x)的表达式可改写为f(x)=6cos(2x﹣);③y=f(x)的图象关于点(﹣,0)对称;④y=f(x)的图象关于直线x=对称.以上命题成立的序号是.三、.解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(4a,﹣3a)(a>0),求2sinα+cosα+tanα的值.18.设,是二个不共线向量,知=2﹣8,=+3,=2﹣.(1)证明:A、B、D三点共线;(2)若=4﹣k,且B、D、F三点线,求k的值.19.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tanα+tan2α的值;(2)求β.20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)把y=f(x)纵坐标不变,横坐标向右平移,得到y=g(x),求y=g(x)的解析式;(Ⅱ)求y=g(x)的单调递增区间.21.已知sinα+sinβ=,求y=sinα﹣cos2β+1的最值.22.已知函数f(x)=2sin2(+x)+cos2x+1.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若关于x的方程f(x)﹣m=2在x∈[0,]上有两个不同的解,求实数m的取值范围.参考答案一、单项选择题1. A .2. C .3. D .4. D .5. B .6. D .7. C .8. C .9. A .10. A . 11. D .12. C .二、填空题13.答案为:. 14.答案为:3. 15.答案为116.答案为:②③④.三、.解答题17.解:∵角α的终边经过一点P (4a ,﹣3a )(a >0),∴r==5a ,∴sin α==﹣,cos α==,tan α==﹣,∴则2sin α+cos α+tan α=﹣.…18.(1)证明:==2﹣﹣(+3)=﹣4,∴,B 为公共点, ∴A 、B 、D 三点共线.(2)∵B 、D 、F 三点共线,∴存在实数λ,使,∴4﹣k =λ,∴=(k ﹣4λ),∵,是两个不共线向量, ∴4﹣λ=k ﹣4λ=0, 解得k=16.19.解:(1)由cos α=,0<α<,得sin α===,∴tan α===4,于是tan2α===﹣,tan α+tan2α=﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)===,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)=+=,所以.…20.解:(Ⅰ)由图象可知A=2,,∴ω=2;∴f(x)=2sin(2x+φ),又图象的一个最高点为(﹣,2),∴φ=(k∈Z),解得φ=(k∈Z),又|φ|<π,∴φ=.∴f(x)=2sin(2x+).∴;(Ⅱ)由,得,k∈Z.∴g(x)的单调增区间为[](k∈Z).21.解:∵sinα+sinβ=,∴sinα=﹣sinβ代入y中,得:y=sinβ﹣(1﹣sin2β)+1=sin2β﹣sinβ+=(sinβ﹣)2+,…∵﹣1≤sinα≤1,∴﹣≤sinα≤,又sinβ=﹣sinα,且﹣1≤sinβ≤1,﹣≤sinβ≤1,…∴y min=,y max=,…22.解:(I)∵由f(x)=2sin2(+x)+cos2x+1=2sin(2x+)+2,…∴由2kπ﹣≤2x+≤2kπ+,解得:kπ﹣≤x≤kπ+,k∈Z,∴函数的单调递增区间为[kπ﹣,kπ+],k∈Z;…(II)由f(x)﹣m=2,∴f(x)=m+2,当x∈[0,]时,2x+∈[,],由图象得f(0)=2+2sin=2+,函数f(x)的最大值为4,…∴要使方程f(x)﹣m=2在x∈[0,]上有两个不同的解,则f(x)=m+2在x∈[0,]上有两个不同的解,即函数f(x)和y=m+2在x∈[0,]上有两个不同的交点,即2≤2+m<4,∴≤m<2.…江西省2017—2018学年高一数学下学期期中考试试卷(四)(考试时间120分钟 满分150分)一、单项选择题(共12小题,每小题5分,满分60分) 1.下列说法中正确的是( ) A .共线向量的夹角为0°或180° B .长度相等的向量叫做相等向量C .共线向量就是向量所在的直线在同一直线上D .零向量没有方向2.下列函数中为奇函数的是( )A .y=sin |x |B .y=sin2xC .y=﹣sinx +2D .y=sinx +1 3.已知角的终边经过点(4,﹣3),则tan α=( )A .B .﹣C .D .﹣4.函数y=cos (4x ﹣π)的最小正周期是( )A .4πB .2πC .πD .5.在直角坐标系中,直线3x +y ﹣3=0的倾斜角是( )A .B .C .D .6.函数的单调递减区间( )A .(k ∈Z )B .(k ∈Z )C .(k ∈Z )D .(k ∈Z )7.函数y=3sin (2x +)+2图象的一条对称轴方程是( )A .x=﹣B .x=0C .x=πD .8.下列选项中叙述正确的是( )A .终边不同的角同一三角函数值可以相等B .三角形的内角是第一象限角或第二象限角C .第一象限是锐角D .第二象限的角比第一象限的角大9.如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.向量+++化简后等于( )A .B .C .D .11.已知函数y=Asin (ωx +φ)+B 的一部分图象如图所示,如果A >0,ω>0,|φ|<,则( )A.A=4 B.ω=1 C.φ=D.B=412.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知=,=,=,=,=,则+++﹣=.16.已知tan()=,tan()=﹣,则tan()=.三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.参考答案一、单项选择题1.A.2.B.3.B.4.D.5.D.6.D.7.C.8.A.9.D.10.D.11.C.12.C.二、填空题13.答案为:2x﹣y﹣3=0.14.答案为:3.15.答案为:.16.答案为1三、解答题17.解:由已知r==13a…∴sinα=﹣,cosα=,…∴2sinα+cosα=﹣…18.解:(1)∵线段AB的中点为(﹣1,5),∴AB边的中线所在直线方程是=,即x+3y﹣14=0.(2)AC的中点为(4.3)∵K AC==﹣,∴y﹣3=4(x﹣4)即y=4x﹣13,∴AC的中垂线方程为y=4x﹣13.19.解:设圆的方程为x2+y2+Dx+Ey+F=0,则,解得.∴圆的方程为:.20.解:(1)∵由cosα=,0<α<,得sinα===,∴得tan=∴于是tan2α==﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)==,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==.…21.解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2,==+,∴ω=2.再根据五点法作图可得2•(﹣)+φ=,∴φ=,函数f(x)=2sin(2x+).(Ⅱ)由2x+=kπ+,求得x=﹣,可得函数的图象的对称轴方程为x=﹣,k∈Z.令2x+=kπ,求得x=﹣,可得函数的图象的对称轴中心为(﹣,0),k ∈Z.22.解:(1)f(x)=sin2ωx+sinωx•cosωx﹣1==.∵ω>0,∴T=,则ω=1.∴函数f(x)=sin(2x﹣)﹣.由0,得,∴,∴.∴f(x)的取值范围[﹣1,];(2)令,得:,(k∈Z),∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).江西省2017—2018学年高一数学下学期期中考试试卷(五)(考试时间120分钟满分150分)一、单项选择题(共12小题,每小题5分,满分60分)1.计算:cos210°=()A.B.C.D.2.如图,四边形ABCD中,=,则相等的向量是()A.与B.与C.与D.与3.已知角α的终边经过点P(﹣b,4)且cosα=﹣,则b的值等于()A.3 B.﹣3 C.±3 D.54.扇形的半径是6cm,圆心角为15°,则扇形面积是()A.B.3πcm2C.πcm2 D.5.在△ABC中,点P为BC边上一点,且=2,,则λ=()A.B. C.D.6.若函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.7.如图是函数y=Asin(ωx+φ)的图象的一段,它的解析式为()A.B.C.D.8.△ABC的外接圆的圆心为O,半径为2,且,则向量在方向上的投影为()A.B.3 C.D.﹣39.把函数f(x)=cos(2x+)的图象沿x轴向左平移m个单位(m>0),所得函数为奇函数,则m的最小值是()A.B. C.D.10.如图,已知△ABC中,AB=AC=4,∠BAC=,点D是BC的中点,若向量=+m,且点M在△ACD的内部(不含边界),则的取值范围是()A.(﹣2,4)B.(﹣2,6)C.(0,4)D.(0,6)11.如图,设点A是单位圆上的一定点,动点P由点A出发在圆上按逆时针方向旋转一周,点P旋转过的弧为l,弦AP为d则函数d=f(l)的图象是()A.B.C.D.12.设向量与的夹角为θ,定义与的“向量积”:是一个向量,它的模,若,则=()A.B.2 C. D.4二、填空题:本大题共4小题,每小题5分,共20分.13.已知,且,则tanφ=______.14.设向量,是夹角为的单位向量,若=+2,则||=______.15.已知f(x)=sin(ω>0),f()=f(),且f(x)在区间上有最小值,无最大值,则ω=______.16.函数f(x)=3sin(2x﹣)的图象为C,则以下结论中正确的是______.(写出所有正确结论的编号).①图象C关于直线x=对称;②图象C关于点对称;③函数f(x)在区间(﹣,)内是增函数;④由y=3sin2x的图象向右平移个单位长度可以得到图象C.三、解答题:本大题共6小题,共70分.17.已知向量.(1)若,求k的值;(2)若,求m的值.18.已知f(α)=(1)化简f(α);(2)若f(α)=,且0<α<,求sinα+cosα的值.19.已知向量=(cosα,sinα),=(cosβ,sinβ),=(﹣1,0)(1)求向量的长度的最大值;(2)设α=,β∈(0,π),且⊥(+),求β的值.20.已知函数f(x)=sin(2x﹣)(1)画出函数f(x)在区间[0,π]的简图(要求列表);(2)求函数f(x)的单调递减区间.21.已知函数f(x)=sin(2ωx﹣)+b,且函数的对称中心到对称轴的最小距离为,当x∈[0,]时,f(x)的最大值为1(1)求函数f(x)的解析式(2)若f(x)﹣3≤m≤f(x)+3在x∈[0,]上恒成立,求m的取值范围.22.已知平面向量=(﹣,1),=(,),=﹣+m,=cos2x+sinx,f(x)=•,x∈R.(1)当m=2时,求y=f(x)的取值范围;(2)设g(x)=f(x)﹣m2+2m+5,是否存在实数m,使得y=g(x)有最大值2,若存在,求出所有满足条件的m值,若不存在,说明理由.参考答案一、单项选择题1.B 2.D.3.A 4.D.5.D.6.A.7.D.8.A 9.D.10.B.11.C.12.B.二、填空题13.答案为:﹣.14.答案为.15.答案为:16.答案为:②③.三、解答题17.解:(1)∵,∴3,.∵,∴﹣9(1+2k)=﹣2+3k,∴k=﹣.(2)∵m,由,得1×(m﹣2)﹣2×(﹣2m﹣3)=0,∴m=﹣.18.解:(1)f(α)==﹣=sinαcosα.(2)f(α)=,且0<α<,sinα>0,cosα>0,sinα+cosα>0.可得:sinαcosα=,2sinαcosα=.1+2sinαcosα=.∴sinα+cosα=.19.解:(1)=(cosβ﹣1,sinβ),∴丨丨===,∴当cosβ=﹣1,丨丨取最大值,最大值为2,向量的长度的最大值2;(2)α=,⊥(+),∴•+•=0,cosαcosβ﹣sinαsinβ﹣cosα=0,(cosβ+sinβ)=,sinβ+cosβ=1,∵sin2β+cos2β=1,解得:cosβ=0或1,∵β∈(0,π),β=.20.解:(1)对于函数f(x)=sin(2x﹣),∵x∈[0,π],可得2x﹣∈[﹣,],列表如下:(2)令2kπ+≤2x﹣≤2kπ+,求得kπ+≤x≤kπ+,可得函数f(x)的单调递减区间为[kπ+,kπ+],k∈Z.21.解:(1)∵函数的对称中心到对称轴的最小距离为,∴=,即周期T=π,即||=π,解得ω=1或ω=﹣1,若ω=1,则f (x )=sin (2x ﹣)+b ,当x ∈[0,]时,2x ﹣∈[﹣,],∴当2x ﹣=,时,函数f (x )取得最大值为f (x )=+b=+b=+b=1,即b=﹣,此时;若ω=﹣1,则f (x )=sin (﹣2x ﹣)+b ,当x ∈[0,]时,﹣2x ﹣∈[﹣π,﹣],∴当﹣2x ﹣=0时,函数f (x )取得最大值为f (x )=0+b=1,即b=1,此时,综上或.(2)若,由(1)知,函数f (x )的最大值为1,最小值为f (x )=﹣+1=﹣﹣=﹣﹣=﹣2,即﹣2≤f (x )≤1,则﹣5≤f (x )﹣3≤﹣2,1≤f (x )+3≤4, ∵f (x )﹣3≤m ≤f (x )+3在x ∈[0,]上恒成立,∴﹣2≤m ≤1;若.由(1)知,函数f (x )的最大值为1,最小值为f (x )=(﹣1)+1=1﹣,即1﹣≤f (x )≤1,则﹣2﹣≤f (x )﹣3≤﹣2,4﹣≤f (x )+3≤4, ∵f (x )﹣3≤m ≤f (x )+3在x ∈[0,]上恒成立,∴﹣2≤m ≤4﹣.22.解:(1)当m=2时,=﹣+2=(﹣+1, +),=cos2x+sinx=(sinx﹣cos2x,sinx+cos2x ),函数y=f(x)=•=(﹣+1)•(sinx﹣cos2x )+(+)•(sinx+cos2x )=cos2x+2sinx=1﹣sin2x+2sinx=2﹣(sinx﹣1)2,故当sinx=1时,函数y取得最大值为2,当sinx=﹣1时,函数y取得最小值为﹣2,故函数的值域为[﹣2,2].(2)∵=﹣+m=(﹣+, +),=cos2x+sinx=(sinx﹣cos2x,sinx+cos2x ),函数y=f(x)=•=(﹣+)•(sinx﹣cos2x )+(+)•(sinx+cos2x )=cos2x+msinx,∴g(x)=f(x)﹣m2+2m+5=cos2x+msinx﹣m2+2m+5=1﹣sin2x+msinx﹣m2+2m+5=﹣sin2x+msinx﹣m2+2m+6.令sinx=t,则﹣1≤t≤1,g(x)=h(t)=﹣t2+mt﹣m2+2m+6,函数h(t)的对称轴为t=,当<0时,h(t)的最大值为h(1)=﹣1+m﹣m2+2m+6=2,求得m=.当m≥0时,h(t)的最大值为h(﹣1)=﹣1﹣m﹣m2+2m+6=2,求得m=.综上可得,存在实数m=或m=,使得y=g(x)有最大值2.江西省2017—2018学年高一数学下学期期中考试试卷(六)(理科)(考试时间120分钟满分150分)一、单项选择题(本大题共12个小题,每小题5分,共60分,在每小题所给出的四个选项中,只有一项是符合题目要求的).1.在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.1762.已知=(1,2),=(0,1),=(k,﹣2),若(+2)⊥,则k=()A.2 B.﹣2 C.8 D.﹣83.在△ABC中,已知a2+b2=c2+,则∠C=()A.30°B.45°C.150°D.135°4.已知a>b>0,那么下列不等式成立的是()A .﹣a >﹣bB .a +c <b +cC .(﹣a )2>(﹣b )2D .5.在△ABC 中,角A 、B 、C 所对的边为a ,b ,c ,若a ,b ,c 成等差数列,则角B 的范围是( )A .B .C .D .6.不等式x +>2的解集是( )A .(﹣1,0)∪(1,+∞)B .(﹣∞,﹣1)∪(0,1)C .(﹣1,0)∪(0,1)D .(﹣∞,﹣1)∪(1,+∞)7.有两个等差数列{a n },{b n },其前n 项和分别为S n 和T n ,若,则=( )A .B .C .D .8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 满足A=,>0,a=,则b +c 的取值范围是( )A .(1,)B .(,]C .(,)D .(,)9.已知a >0,b >0,若不等式恒成立,则m 的最大值等于( )A .10B .9C .8D .710.已知点A ,B ,C 是不在同一直线上的三个点,O 是平面ABC 内一定点,P 是△ABC内的一动点,若,λ∈[0,+∞),则点P 的轨迹一定过△ABC 的( )A .外心B .内心C .重心D .垂心11.等比数列{a n }共有奇数项,所有奇数项和S 奇=255,所有偶数项和S 偶=﹣126,末项是192,则首项a 1=( ) A .1 B .2 C .3 D .412.已知数列{a n }:, +, ++,…, +++…+,…,那么数列b n =的前n 项和S n 为( )A .B .C .D .二、填空题:(本大题共4小题,每小题5分,共20分.)13.若{a n }是等差数列,首项a 1>0,a 2015+a 2016>0,a 2015•a 2016<0,则使前n 项和S n >0成立的最大正整数n 是______.14.已知a、b为正实数,且=2,若a+b﹣c≥0对于满足条件的a,b恒成立,则c的取值范围为______.15.在锐角三角形A BC中,tanA=,D为边BC上的点,△A BD与△ACD的面积分别为2和4.过D作D E⊥A B于E,DF⊥AC于F,则•=______.16.给出下面六个命题,不正确的是:______①若向量、满足||=2||=4,且与的夹角为120°,则在上的投影等于﹣1;②若B=60°,a=10,b=7,则该三角形有且只有两解③常数列既是等差数列,又是等比数列;④若向量与共线,则存在唯一实数λ,使得=λ成立;⑤在正项等比数列{a n}中,若a5a6=9,则log3a1+log3a2+…+log3a10=10;⑥若△ABC为锐角三角形,且三边长分别为2,3,x.则x的取值范围是<x<.三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程.)17.已知,与的夹角为120°.(Ⅰ)求的值;(Ⅱ)当实数x为何值时,与垂直?18.已知递增等比数列{a n}的第三项、第五项、第七项的积为512,且这三项分别减去1,3,9后成等差数列.(1)求{a n}的首项和公比;(2)设S n=a12+a22+…+a n2,求S n.19.设△ABC的内角A、B、C所对的边分别为a、b、c,已知.(1)求△ABC的周长和面积;(2)求cos(A+C)的值.20.已知f(x)=x2﹣abx+2a2.(Ⅰ)当b=3时,(ⅰ)若不等式f(x)≤0的解集为[1,2]时,求实数a的值;(ⅱ)求不等式f(x)<0的解集;(Ⅱ)若f(2)>0在a∈[1,2]上恒成立,求实数b的取值范围.21.已知点A,B分别在射线CM,CN(不含端点C)上运动,∠MCN=,在△ABC中,角A,B,C所对的边分别是a,b,c(1)若a,b,c依次成等差数列,且公差为2,求c的值:(2)若c=,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.22.设数列{a n }的各项均为正数,它的前n 项的和为S n ,点(a n ,S n )在函数y=x 2+x +的图象上;数列{b n }满足b 1=a 1,b n +1(a n +1﹣a n )=b n .其中n ∈N *. (Ⅰ)求数列{a n }和{b n }的通项公式;(Ⅱ)设c n =,求证:数列{c n }的前n 项的和T n >(n ∈N *).参考答案一、单项选择题1.B.2.C 3.B.4.C.5.B 6.A.7.D.8.D.9.B.10.C 11.C.12.A.二、填空题13.答案为:4030.14.答案为:.15.答案为:.16.答案为:②③④.三、解答题17.解:(Ⅰ),,,∴.(Ⅱ)∵()⊥(),∴=0,即4x﹣3(3x﹣1)﹣27=0,解得.18.解:(1)根据等比数列的性质,可得a3•a5•a7=a53=512,解之得a5=8.设数列{a n}的公比为q,则a3=,a7=8q2,由题设可得(﹣1)+(8q2﹣9)=2(8﹣3)=10解之得q2=2或.∵{a n}是递增数列,可得q>1,∴q2=2,得q=.因此a5=a1q4=4a1=8,解得a1=2;(2)由(1)得{a n}的通项公式为a n=a1•q n﹣1=2×=,∴a n2=[]2=2n+1,可得{a n2}是以4为首项,公比等于2的等比数列.因此S n=a12+a22+…+a n2==2n+2﹣4.19.解:(1)在△ABC中,由余弦定理,解得c=2,∴△ABC的周长为a+b+c=1+2+2=5.又∵,∴,则=.(2)由正弦定理知∴,∵a<c,∴A<C,故A为锐角,∴,∴cos(A+C)=cosAcosC﹣sinAsinC=.20.解:(Ⅰ)当b=3时,f(x)=x2﹣abx+2a2=x2﹣3ax+2a2,(ⅰ)∵不等式f(x)≤0的解集为[1,2]时,∴1,2是方程x2﹣3ax+2a2=0的两根.∴,解得a=1.(ⅱ)∵x2﹣3ax+2a2<0,∴(x﹣a)(x﹣2a)<0,∴若a>0时,此不等式解集为(a,2a),若a=0时,此不等式解集为空集,若a<0时,此不等式解集为(2a,a).(Ⅲ)f(2)=4﹣2ab+2a2>0在a∈[1,2]上恒成立即b<a+在a∈[1,2]上恒成立;又∵a+,当且仅当a=,即a=时上式取等号.∴b,实数b的取值范围是(﹣∞,)21.解:(1)∵a,b,c依次成等差数列,且公差为2∴a=c﹣4,b=c﹣2,在△ABC中,∵,由余弦定理可得cos∠MCN==﹣,代值并整理可得c2﹣9c+14=0,解得c=2或c=7,∵a=c﹣4>0,∴c>4,∴c=7;(2)由题意可得周长y=2sinθ+2sin(﹣θ)+=2sin(+θ)+,∴当+θ=即θ=时,周长取最大值2+.22.解:(1)∵点(a n,S n)在函数y=x2+x+的图象上,∴,①当n≥2时,,②①﹣②得:,即,∵数列{a n}的各项均为正数,∴a n﹣a n﹣1=4(n≥2),又a1=2,∴a n=4n﹣2;∵b1=a1,b n+1(a n+1﹣a n)=b n,∴,∴;(2)∵,∴,4T n=4+3•42+5•43+…+(2n﹣3)•4n﹣1+(2n﹣1)•4n,两式相减得,∴.江西省2017—2018学年高一数学下学期期中考试试卷(七)(考试时间120分钟满分150分)一、单项选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要的)1.已知,则等于()A.B.7 C. D.﹣72.在四边形ABCD中,=(1,2),=(﹣4,2),则该四边形的面积为()A.B. C.5 D.103.等比数列{a n}的前n项和为S n,已知S3=a2+5a1,a7=2,则a5=()A.B.﹣C.2 D.﹣24.设•不共线,则下列四组向量中不能作为基底的是()A. +与﹣B.3﹣2与4﹣6C. +2与+2D.和+5.若f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0)的最小正周期为π,f(0)=,则()A.f(x)在单调递增B.f(x)在单调递减C.f(x)在单调递增D.f(x)在单调递减6.若x,y满足约束条件,且向量=(3,2),=(x,y),则•的取值范围()A.[,5]B.[,5]C.[,4]D.[,4]7.函数与的图象关于直线x=a对称,则a可能是()A.B.C.D.8.若0<α<,﹣<β<0,cos(+α)=,cos(﹣)=,则cos(α+)=()A.B.﹣C.D.﹣9.在等比数列{a n}中,若,,则=()A.B.C. D.10.设二元一次不等式组所表示的平面区域为M,使函数y=ax2的图象过区域M的a的取值范围是()A.B. C.(﹣∞,9)D.11.设等差数列{a n}的前n项和是S n,若﹣a m<a1<﹣a m+1(m∈N*,且m≥2),则必定有()A.S m>0,且S m+1<0 B.S m<0,且S m+1>0C.S m>0,且S m+1>0 D.S m<0,且S m+1<012.已知数列{a n}满足:a n=log(n+2)定义使a1•a2•…•a k为整数的数k(k∈N*)叫做(n+1)希望数,则区间[1,2012]内所有希望数的和M=()A.2026 B.2036 C.2046 D.2048二、填空题(本题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知向量=(1,),=(3,y),若向量,的夹角为,则在方向上的投影是______.14.(几何证明选讲选做题)如图,在矩形ABCD中,,BC=3,BE⊥AC,垂足为E,则ED=______.15.函数y=log a(x+3)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则+的最小值为______.16.设数列{a n},(n≥1,n∈N)满足a1=2,a2=6,且(a n+2﹣a n+1)﹣(a n+1﹣a n)=2,若[x]表示不超过x的最大整数,则[++…+]=______.三、解答题(本大题共6小题,共70分,解答写出必要的文字说明、演算过程及步骤)17.设函数f(α)=sinα+cosα,其中,角α的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤α≤π.(1)若P点的坐标为(,1),求f(α)的值;(2)若点P(x,y)为平面区域上的一个动点,试确定角α的取值范围,并求函数f(α)的最小值和最大值.18.在△ABC中,角A,B,C的对边分别为a,b,c,C=,且a2﹣(b﹣c)2=(2﹣)bc.(Ⅰ)求角B的大小;(Ⅱ)若等差数列{a n}的公差不为零,且a1•cos2B=1,且a2,a4,a8成等比数列,求{}的前n项和S n.19.如图,D是直角△ABC斜边BC上一点,AC=DC.(I)若∠DAC=30°,求角B的大小;(Ⅱ)若BD=2DC,且AD=2,求DC的长.20.数列{a n}前n项和为S n,a1=4,a n+1=2S n﹣2n+4.(1)求证:数列{a n﹣1}为等比数列;(2)设,数列{b n}前n项和为T n,求证:8T n<1.21.某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米,现在准备养一批供游客观赏的鱼,分别在AB,BC,CA上取点D,E,F,如图,使得EF∥AB,EF⊥ED,在△DEF喂食,求S的最大值.△DEF22.在平面直角坐标系中,已知O为坐标原点,点A的坐标为(a,b),点B的坐标为(cosωx,sinωx),其中ω>0.设f(x)=•.(1)记函数y=f(x)的正的零点从小到大构成数列{a n}(n∈N*),当a=,b=1,ω=2时,求{a n}的通项公式与前n项和S n;(2)令ω=1,a=t2,b=(1﹣t)2,若不等式f(θ)﹣>0对任意的t∈[0,1]恒成立,求θ的取值范围.参考答案一、单项选择题1.A.2.C.3.A.4.B.5.D.6.A.7.A.8.C 9.C10.D.11.A 12.A二、填空题13.答案为:3.14.答案为:15.答案为:8.16.答案为:2015.三、解答题17.解:(1)∵P点的坐标为(,1),可得r=|OP|==2,∴由三角函数的定义,得sinα=,cosα=,故f(α)=sinα+cosα=+×=2.(2)作出不等式组表示的平面区域,得到如图所示的△ABC及其内部区域,其中A(0,1)、B(0.5,0.5),C(1,1),∵P为区域内一个动点,且P为角α终边上的一点,∴运动点P,可得当P与A点重合时,α=达到最大值;当P与线段BC上一点重合时,α=达到最小值.由此可得α∈[,].∵f(α)=sinα+cosα=2sin(α+),∴由α∈[,],可得α+∈[,],当α+=即α=时,f(α)有最小值2sin=1;当α+=即α=时,f(α)有最大值2sin=.综上所述函数f(α)的最小值为1,最大值为.18.解:(Ⅰ)由,得,∴,A∈(0,π),∴,由,得.(Ⅱ)设{a n}的公差为d,由(I)得,且,∴,又d≠0,∴d=2,∴a n=2n,∴=,∴.19.解:(Ⅰ)在△ABC中,根据正弦定理,有.因为,所以.又∠ADC=∠B+∠BAD=∠B+60°>60°,所以∠ADC=120°.…于是∠C=180°﹣120°﹣30°=30°,所以∠B=60°.…(Ⅱ)设DC=x,则BD=2x,BC=3x,.于是,,.…在△ABD中,由余弦定理,得AD2=AB2+BD2﹣2AB•BDcosB,即,得x=2.故DC=2.…20.证明:(1)∵a n+1=2S n﹣2n+4,∴n≥2时,a n=2S n﹣2(n﹣1)+4﹣1∴n≥2时,a n+1=3a n﹣2又a2=2S1﹣2+4=10,∴n≥1时a n+1=3a n﹣2∵a1﹣1=3≠0,∴a n﹣1≠0,∴,∴数列{a n﹣1}为等比数列(2)由(1),∴,∴∴=∴,∴8T n<121.解:Rt△ABC中,∠C=90°,AB=2百米,BC=1百米.∴cosB=,可得B=60°,∵EF∥AB,∴∠CEF=∠B=60°设=λ(0<λ<1),则CE=λCB=λ百米,Rt△CEF中,EF=2CE=2λ百米,C到FE的距离d=CE=λ百米,∵C到AB的距离为BC=百米,∴点D到EF的距离为h=﹣λ=(1﹣λ)百米=EF•h=λ(1﹣λ)百米2可得S△DEF∵λ(1﹣λ)≤ [λ+(1﹣λ)]2=,当且仅当λ=时等号成立的最大值为百米2.∴当λ=时,即E为AB中点时,S△DEF22.解:(1)f(x)=•=acosωx+bsinωx=cos2x+sin2x=2(sin2x+cos2x)=2sin(2x+).由2sin(2x+)=0,可得2x+=kπ,即x k=﹣+,k∈Z,当k=1时,x1=>0,且x k+1﹣x k=(常数),∴{a n}为首项是a1=,公差为的等差数列.∴a n=﹣+,n∈N*.∴S n===n2+n,n∈N*.(2)由题意可得f(θ)﹣=t2cosθ+(1﹣t)2sinθ﹣t(1﹣t)=(1+sinθ+cosθ)t2﹣(2sinθ+1)t+sinθ.∴题意等价于(1+sinθ+cosθ)t2﹣(2sinθ+1)t+sinθ>0对任意的t∈[0,1]恒成立.令t=0,t=1,得sinθ>0,cosθ>0.由1+2sinθ<2+2sinθ+2cosθ,∴对称轴t=<1恒成立.∴对称轴落在区间(0,1)内.∴题意等价于,得,即有可得+2k3π<θ<+2k3π,k3∈Z.∴θ的取值范围是[+2kπ, +2kπ],k∈Z.江西省2017—2018学年高一数学下学期期中考试试卷(八)(考试时间120分钟满分150分)一、单项选择题(本大题共12小题,每小题5分,共60分,每小题只有一个正确选项)1.经过1小时,时针旋转的角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.已知,,则sin(α+π)等于()A.B. C.D.3.一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为()A.B.C.D.4.已知数列,…则是它的第()项.A.21 B.22 C.23 D.245.在四边形ABCD中,=(1,2),=(﹣4,2),则该四边形的面积为()A.B. C.5 D.106.在△ABC中,若(tanB+tanC)=tanBtanC﹣1,则sin2A=()A.﹣B.C.﹣D.7.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π),且函数的图象如图所示,则点(ω,φ)的坐标是()A.B.C.D.8.函数y=的定义域是()A.B.C.D.9.记a=sin(cos2016°),b=sin(sin2016°),c=cos(sin2016°),d=cos(cos2016°),则()A.d>c>b>a B.d>c>a>b C.c>d>b>a D.a>b>d>c10.化简=()A.1 B.C.D.211.已知函数f(x)=cosωx(sinωx+cosωx)(ω>0),如果存在实数x0,使得对任意的实数x,都有f(x0)≤f(x)≤f(x0+2016π)成立,则ω的最小值为()。

2017-2018学年陕西省重点高中高一下学期期中考试数学试题word版含答案

2017-2018学年陕西省重点高中高一下学期期中考试数学试题word版含答案

2017-2018学年陕西省重点高中高一下学期期中考试数学试题一、单选题1.底面半径为,母线长为的圆锥的体积为()A. B. C. D.【答案】D【解析】分析:由题意首先求得圆锥的高度,然后求解圆锥的体积即可.详解:由题意可得圆锥的高,则圆锥的体积为:.本题选择D选项.点睛:本题主要考查圆锥的空间结构,圆锥的体积公式等知识,意在考查学生的转化能力和计算求解能力.2.圆柱的轴截面是正方形,且轴截面面积是,则它的侧面积是()A. B. C. D.【答案】B【解析】分析:首先确定圆柱的底面半径和高,然后求解其侧面积即可.详解:由题意可得,圆柱的高为,底面半径为,则底面周长为:,圆柱的侧面积为:.本题选择B选项.点睛:本题主要考查圆柱的侧面积公式及其应用等知识,意在考查学生的转化能力和计算求解能力.3.若是异面直线,直线,则与的位置关系是()A. 相交B. 异面C. 平行D. 异面或相交【答案】D【解析】分析:由题意结合空间几何体的性质确定直线的位置关系即可.详解:很明显与的位置关系不可能为平行,否则由平行公理可得,如图所示,在正方体中,取直线分别为,若取为,则与的位置关系是异面,若取为,则与的位置关系是相交,综上可得:与的位置关系是异面或相交.本题选择D选项.点睛:本题主要考查空间中直线的位置关系及其应用,意在考查学生的转化能力和计算求解能力. 4.已知是平面,是直线.下列命题中不正确的是()A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】B【解析】分析:由题意找到反例即可确定错误的选项.详解:如图所示,在正方体中,取直线为,平面为,满足,取平面为平面,则的交线为,很明显与为异面直线,不满足,选项B说法错误;由面面垂直的性质推理可得A选项正确;由线面垂直的性质推理可得C选项正确;由线面垂直的定义可得D选项正确.本题选择B选项.点睛:本题主要考查线面关系有关命题的应用,意在考查学生的转化能力和计算求解能力. 5.如图所示的直观图,其平面图形的面积为()A. B. C. D.【答案】B【解析】分析:首先还原平面图形,然后求解其面积即可.详解:由直观图可知该平面图形对应的几何体为一个直角三角形,其两条直角边的长度分别为,,则其面积为.本题选择B选项.点睛:本题主要考查直观图的画法及其还原,意在考查学生的转化能力和计算求解能力.6.球面上有四个点,若两两垂直,且,则该球的表面积为()A. B. C. D.【答案】D【解析】分析:首先求得外接球半径,然后求解其表面积即可.详解:由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为,由题意可得:,据此可得:,外接球的表面积为:.本题选择D选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.7.以为圆心且与直线相切的圆的方程为()A. B.C. D.【答案】A【解析】圆心到切线距离为,所以,又因为圆心,圆方程为,故选A.8.已知正方形的对角线与相交于点,将沿对角线折起,使得平面平面(如图),则下列命题中正确的是()A. 直线直线,且直线直线B. 直线平面,且直线平面C. 平面平面,且平面平面D. 平面平面,且平面平面【答案】C【解析】分析:由题意结合几何关系逐一考查所给命题的真假即可求得最终结果.详解:若,则AB在平面ACD内的射影AC⊥CD,该结论明显不成立,则直线AB⊥直线CD不成立,故A错误;∵AB与CD不垂直,所以直线AB⊥平面BCD不成立,故B错误;∵AC⊥DE,BE⊥AC,∴AC⊥平面BDE,∴平面ABC上平面BDE,且平面ACD⊥平面BDE,故C正确;很明显平面ABD⊥平面BCD不成立,故D错误.本题选择C选项.点睛:本题主要考查线面关系的命题及其应用等知识,意在考查学生的转化能力和计算求解能力.9.直线和直线,若,则的值为()A. B. C. 或 D. 或或【答案】C【解析】分析:由题意结合直线平行的充分必要条件得到关于实数a的方程,求解方程组然后进行验证即可求得最终结果.详解:由两条直线平行的充分必要条件可得,满足题意时有:,解得:.当时,直线,直线,此时直线重合,不满足;当时,直线,直线,满足;当时,直线,直线,满足;综上所述,的值为或.本题选择C选项.点睛:本题主要考查直线平行的充分必要条件及其应用,意在考查学生的转化能力和计算求解能力. 10.一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】A【解析】试题分析:由三视图知该几何体是一个组合体,下面是圆柱,上面是三棱锥,如图三棱锥中是圆柱底面直径,在底面圆周上,平面,是圆心,尺寸见三视图,则.故选A.【考点】三视图,组合体的体积.11.在中,,,若使该三角形绕直线旋转一周,则所形成的几何体的体积是()A. B. C. D.【答案】A【解析】分析:首先确定空间几何体的结构特征,然后结合体积公式整理计算即可求得最终结果.详解:如图所示,△ABC中,绕直线BC旋转一周,则所形成的几何体是以ACD为轴截面的圆锥中挖去了一个以ABD为轴截面的小圆锥后剩余的部分.由于,,,则,,结合三棱锥的体积公式可得:以ACD为轴截面的圆锥的体积:,以ABD为轴截面的小圆锥的体积:,则所形成的几何体的体积是.本题选择A选项.点睛:本题主要考查椎体的体积公式,学生的空间想象能力,意在考查学生的转化能力和计算求解能力. 12.已知,,直线过点且与线段相交,那么直线的斜率的取值范围是()A. B. C. D.【答案】A【解析】如图所示:根据题意得,所求直线的斜率满足或,即,或,∴,或,直线的斜率的取值范围是,故选.二、填空题13.若直线与互相垂直,则点到轴的距离为__________.【答案】或【解析】分析:由题意首先求得实数m的值,然后求解距离即可.详解:由直线垂直的充分必要条件可得:,即:,解得:,,当时点到轴的距离为0,当时点到轴的距离为5,综上可得:点到轴的距离为或.点睛:本题主要考查直线垂直的充分必要条件,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.14.已知过点的直线被圆所截得的弦长为,那么直线的方程为____________________.【答案】或【解析】分析:首先求得圆心到直线的距离,然后求解直线方程即可.详解:设圆心到直线的距离为,由题意可知:,解得:,即点到经过点直线的距离为,很明显直线的斜率不存在时满足题意,直线方程为,当直线斜率存在时,设直线方程为,即,由点到直线距离公式可得:,解得:,此时,直线方程为,整理为一般式即:.综上可得:直线的方程为或.点睛:本题主要考查直线与圆的位置关系,直线方程的求解等知识,意在考查学生的转化能力和计算求解能力.15.圆与圆相内切,则的值为__________.【答案】【解析】分析:首先将圆的方程写成标准型,然后利用圆内切的充分必要条件整理计算即可求得最终结果.详解:圆的标准方程即:,圆的圆心在圆之外,则,结合两圆内切的充分必要条件可得:,解得:.点睛:(1)判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法.(2)当两圆相交时求其公共弦所在的直线方程或是公共弦长,只要把两圆方程相减消掉二次项所得方程就是公共弦所在的直线方程,再根据其中一个圆和这条直线就可以求出公共弦长.16.如图,在正方体中,过对角线的一个平面交于点,交于.①四边形一定是平行四边形;②四边形有可能是正方形;③四边形在底面内的投影一定是正方形;④四边形有可能垂直于平面.以上结论正确的为_______________.(写出所有正确结论的编号)【答案】①③④【解析】分析:由题意结合几何关系逐一考查所给命题的真假即可求得最终结果.详解:如图所示:①由于平面BCB1C1∥平面ADA1D1,并且B、E、F、D1,四点共面,故ED1∥BF,同理可证,FD1∥EB,故四边形BFD1E一定是平行四边形,故①正确;②若BFD1E是正方形,有ED1⊥BE,结合A1D1⊥BE可得BE⊥平面ADD1A1,明显矛盾,故②错误;③由图得,BFD1E在底面ABCD内的投影一定是正方形ABCD,故③正确;④当点E和F分别是对应边的中点时,EF⊥平面BB1D,则平面BFD1E⊥平面BB1D,故④正确.综上可得:题中所给的结论正确的为①③④.点睛:本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.三、解答题17.三角形的三个顶点是.(1)求边所在的直线的方程;(2)求的面积.【答案】(1)(2)17【解析】分析:(1)由斜率公式可得,由点斜式整理为一般式可得直线方程为.(2)结合点到直线距离公式可得到的距离,由两点之间距离公式可得,则三角形的面积为.详解:(1),,即.(2)到的距离,,故.点睛:本题主要考查直线方程的求解,点到直线距离公式及其应用等知识,意在考查学生的转化能力和计算求解能力.18.求符合下列条件的直线方程:(1)过点,且与直线平行;(2)过点,且与直线垂直;(3)过点,且在两坐标轴上的截距相等.【答案】(1)(2)(3)或【解析】分析:(1)设直线方程为,由直线系方程可得满足题意的直线方程为.(2)设直线方程为,由直线系方程可得满足题意的直线方程为.(3)分类讨论截距为0和截距不为0两种情况可得直线方程为或.详解:(1)设直线方程为,把代入上式得:,解得:,直线方程为.(2)设直线方程为,把代入上式得:,解得:,直线方程为.(3)若截距为,则直线方程为,把代入上式得:,解得:,故直线方程为,即;若截距不为,设截距为,则方程为,把代入上式得:,解得:,故直线方程为,综上:直线方程为或.点睛:本题主要考查直线方程的求解,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.19.已知以点为圆心的圆经过点和,线段的垂直平分线交圆于点和,且.(1)求直线的方程;(2)求圆的方程.【答案】(1)(2)或.【解析】分析:(1)由题意可得CD过AB的中点,结合点斜式方程可得其直线方程为;(2)设圆心,由圆心在直线上,结合圆的半径整理计算即可求得最终结果可得或,则圆的方程为或.详解:(1)直线的斜率,中点坐标为,直线方程为,即;(2)设圆心,则由点在直线上得:①,又直径,,②由①②解得:或圆心或圆的方程为或.点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.20.如图,已知菱形的边长为,,,将菱形沿对角线折起,得到三棱锥,点是棱的中点,.(1)求证:平面;(2)求证:平面平面.【答案】(1)见解析(2)见解析【解析】分析:(1)由题意知,为的中点,为的中点,.又平面,平面,平面.(2)由题意结合勾股定理可得.由菱形的性质可得;结合线面垂直的判断定理可得平面,则平面平面.详解:(1)由题意知,为的中点,为的中点,.又平面,平面,平面.(2)由题意知,,,,,即.又四边形是菱形,;,平面,平面,平面,平面平面.点睛:(1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.21.在棱长为的正方体中,分别为的中点.(1)求证:;(2)求三棱锥的体积.【答案】(1)见解析(2)【解析】分析:(1)由题意结合几何关系可证得平面,结合线面垂直的定义可得;(2)结合三棱锥的性质转化顶点可得.详解:(1)在棱长为的正方体中,连结.平面,平面,是正方形,;又,平面;又平面,;(2)到平面的距离,,三棱锥的体积.点睛:求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.22.如图,三棱柱111ABC A B C -, 1AA ⊥底面ABC ,且ABC ∆为正三角形, 16AA AB ==,D 为AC 中点.(1)求三棱锥1C BCD -的体积; (2)求证:平面1BC D ⊥平面11ACC A ; (3)求证:直线1//AB 平面1BC D【答案】(1)2)见解析(3)见解析【解析】试题分析:(1)先根据ABC ∆为正三角形, D 为AC 中点,∴BD AC ⊥,求出BCD ∆的面积;再根据1C C ⊥底面ABC ,即可求解三棱锥的体积;(2)先根据1A A ⊥底面ABC ,∴1A A BD ⊥,再结合BD AC ⊥,即可得到BD ⊥平面11ACC A ,从而证明平面1BC D ⊥平面11ACC A ;(3)连结1B C 交1BC 于O ,连结OD ,根据D 为AC 中点, O 为1B C 中点,所以1//OD AB ,即可证明直线1//AB 平面1BC D .试题解析(1)∵ABC ∆为正三角形, D 为AC 中点,∴BD AC ⊥,由6AB =可知, 3,CD BD ==12BCD S CD BD ∆=⋅⋅=又∵1A A ⊥底面ABC ,且16A A AB ==, ∴1C C ⊥底面ABC ,且16C C =,∴1113C BCD BCD V S C C -∆=⋅⋅= (2) ∵1A A ⊥底面ABC ,∴1A A BD ⊥. 又BD AC ⊥,∴BD ⊥平面11ACC A .又BD ⊂平面1BC D ,∴平面1BC D ⊥平面11ACC A . (3)连结1B C 交1BC 于O ,连结OD ,在1B AC ∆中, D 为AC 中点, O 为1B C 中点,所以1//OD AB , 又OD ⊂平面1BC D ∴直线1//AB 平面1BC D .【考点】平面与平面垂直的判定;直线与平面平行的判定;棱柱、棱锥、棱台的体积.【方法点晴】本题主要考查了平面与平面垂直的判定以及直线与平面平行的判定和棱锥的体积的计算,属于中档试题,解答时证明直线与平面平行时,一般常用的做法是证明平面与平面平行或证明直线与直线平行,分别利用线面平行的判定定理或面面平行的性质定理证明线面平行,而证明平面与平面垂直时,可转化为先证明线面垂直,在利用面面垂直的判定定理证明面面垂直,此类问题的解答关键是牢记线面位置的关系的判定定理,构造判定定理的条件,利用判定定理证明.。

2017-2018学年高一数学下学期期中试题(含解析)

2017-2018学年高一数学下学期期中试题(含解析)

数学试卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,集合,集合,则( )A. B. C. D.【答案】A【解析】,所以,故选A.考点:集合的运算.视频2. 已知,,且,则点坐标为()A. B. C. D.【答案】B【解析】分析:设出P点的坐标,根据要用的点的坐标写出两个向量的坐标,根据所给的关于向量的等式,得到两个方程,解方程组即可得到要求的点的坐标.详解:设P点的坐标为,M(3,-2),N(-5,-1),且,.点P的坐标为.故选:B.点睛:本题考查相等向量和相反向量,是一个基础题,解题的关键是写出要用的向量的坐标,根据两个向量相等,得到向量坐标之间的关系.3. 下列命题中,一定正确的是( )A. 若,且,则B. 若,且,则C. 若,且,则D. 若,且,则【答案】D【解析】【分析】利用特例法和不等式基本性质逐一判断即可.【详解】A.a>0,b<0时,,因此不成立;B.a>0,b<0时,,因此不成立;C.取a=5,b=﹣3,c=1,d=﹣6,满足a>b,c>d,则ac<bd,不正确;D.若,且,则即正确.故选:D.【点睛】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.4. 下列函数中,既是偶函数又在单调递增的是()A. B. C. D.【答案】D【解析】【分析】根据题意,依次分析选项中函数的奇偶性与单调性,即可得到答案.【详解】根据题意,依次分析选项:对于A,y==,为幂函数,其定义域为{x|x≥0},不是偶函数,不符合题意;对于B,y=x3,为幂函数,是奇函数,不符合题意;对于C,y=cosx,为偶函数,在(0,+∞)不是增函数,不符合题意;对于D,y=ln|x|=,为偶函数,且当x>0时,y=lnx,为增函数,符合题意;故选:D.【点睛】本题考查函数奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性.5. 已知等差数列前9项的和为27,,则()A. 11B. 13C. 15D. 17。

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+13.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量+++化简后等于()A.B.C.D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=412.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知=, =, =, =, =,则+++﹣= .16.已知tan()=,tan()=﹣,则tan()= .三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向【考点】向量的物理背景与概念.【分析】根据共线向量、平行向量、相等向量以及零向量的概念便可判断每个说法的正误,从而找出正确选项.【解答】解:A.共线向量的方向相同或相反;方向相同时,夹角为0°,相反时的夹角为180°,∴该说法正确;B.长度相等,方向相同的向量叫做相等向量,∴该说法错误;C.平行向量也叫共线向量,∴共线向量不是向量所在直线在同一直线上;∴该说法错误;D.零向量的方向任意,并不是没有方向,∴该说法错误.故选:A.2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+1【考点】函数奇偶性的判断.【分析】要探讨函数的奇偶性,先求函数的定义域,判断其是否关于原点对称,然后探讨f(﹣x)与f(x)的关系,即可得函数的奇偶性.【解答】解:选项A,定义域为R,sin|﹣x|=sin|x|,故y=sin|x|为偶函数.选项B,定义域为R,sin(﹣2x)=﹣sin2x,故y=sin2x为奇函数.选项C,定义域为R,﹣sin(﹣x)+2=sinx+2,故y=sinx+2为非奇非偶函数偶函数.选项D,定义域为R,sin(﹣x)+1=﹣sinx+1,故y=sinx+1为非奇非偶函数,故选:B.3.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣【考点】任意角的三角函数的定义.【分析】根据三角函数的定义进行求解即可.【解答】解:∵角α的终边经过点P(4,﹣3),∴tanα==,故选:B.4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.【考点】三角函数的周期性及其求法.【分析】根据余弦函数的最小正周期的求法,将ω=4代入T=即可得到答案.【解答】解:∵y=cos(4x﹣π),∴最小正周期T==.故选:D.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.【考点】直线的倾斜角.【分析】由已知方程得到直线的斜率,根据斜率对于得到倾斜角.【解答】解:由已知直线的方程得到直线的斜率为﹣,设倾斜角为α,则tanα=﹣,α∈[0,π),所以α=;故选:D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【考点】正弦函数的单调性.【分析】利用y=sinx的单调性,求出函数的单调递减区间,进而可求函数的单调递减区间.【解答】解:利用y=sinx的单调递减区间,可得∴∴函数的单调递减区间(k∈Z)故选D.7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.【考点】正弦函数的图象.【分析】利用正弦函数的图象的对称性,求得y=3sin(2x+)+2图象的一条对称轴方程.【解答】解:∵对于函数y=3sin(2x+)+2图象,令2x+=kπ+,求得x=+,可得函数图象的一条对称轴方程为x=π,故选:C.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大【考点】命题的真假判断与应用.【分析】分别举例说明四个选项的正误得答案.【解答】解:对于A,终边不同的角同一三角函数值可以相等,正确,如;对于B,三角形的内角是第一象限角或第二象限角,错误,如是终边在坐标轴上的角;对于C,第一象限是锐角,错误,如是第一象限角,不是锐角;对于D,第二象限的角比第一象限的角大,错误,如是第二象限角,是第一象限角,但.故选:A.9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】三角函数的化简求值.【分析】根据象限得出sinθ,cosθ的符号,得出θ的象限.【解答】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.10.向量+++化简后等于()A.B.C.D.【考点】向量加减混合运算及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解:向量+++=,故选:D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=4【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.【解答】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.12.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4【考点】任意角的概念.【分析】由任意角的三角函数的定义,三角函数值与象限角的关系,即可得出结论.【解答】解:①由任意角的三角函数的定义知,终边相同的角的三角函数值相等,正确.②在三角形中,若sinA=sinB,则有A=B,故正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,正确,④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,故不正确.⑤若cosα<0,则α是第二或第三象限角或α的终边落在x轴的非正半轴上,故不正确.其中正确的个数为3个,故选:C.二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是2x﹣y﹣3=0 .【考点】待定系数法求直线方程.【分析】先求出线段AB的中垂线的斜率,再求出线段AB的中点的坐标,点斜式写出AB的中垂线得方程,并化为一般式.【解答】解:设A(0,2)、B(4,0).=﹣,所以线段AB的中垂线得斜率k=2,又线段AB的中点为(2,1),直线AB的斜率 kAB所以线段AB的中垂线得方程为y﹣1=2(x﹣2)即2x﹣y﹣3=0,故答案为:2x﹣y﹣3=0.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为 3 .【考点】直线与圆的位置关系.【分析】圆心(0,0)到直线3x+4y﹣25=0的距离d==5,圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r,从而可求.【解答】解:∵圆心(0,0)到直线3x+4y﹣25=0的距离d==5,∴圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r=5﹣2=3故答案为:3.15.已知=, =, =, =, =,则+++﹣= .【考点】向量的加法及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解: +++﹣=+++﹣=﹣=,故答案为:.16.已知tan()=,tan()=﹣,则tan()= 1 .【考点】两角和与差的正切函数.【分析】观察三个函数中的角,发现=﹣(),故tan()的值可以用正切的差角公式求值【解答】解:∵=﹣(),∴tan()===1故答案为1三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.【考点】任意角的三角函数的定义.【分析】利用三角函数的定义可求得sinα与cosα,从而可得2sinα+cosα.【解答】解:由已知r==13a…∴sinα=﹣,cosα=,…∴2sinα+cosα=﹣…18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.【考点】待定系数法求直线方程.【分析】(1)利用中点坐标公式、斜截式即可得出.(2)利用斜率计算公式、相互垂直的直线斜率之间的关系、斜截式即可得出.【解答】解:(1)∵线段AB的中点为(﹣1,5),∴AB边的中线所在直线方程是=,即x+3y﹣14=0.(2)AC的中点为(4.3)==﹣,∵KAC∴y﹣3=4(x﹣4)即y=4x﹣13,∴AC的中垂线方程为y=4x﹣13.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.【考点】圆的一般方程.【分析】设出圆的一般式方程,把三个点的坐标代入,求解关于D、E、F的方程组得答案.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,解得.∴圆的方程为:.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.【考点】二倍角的正切;两角和与差的余弦函数.【分析】(1)利用已知及同角三角函数基本关系式可求sinα,进而可求tanα,利用二倍角的正切函数公式可求tan2α的值.(2)由0<β<α<,得0<α﹣β<,利用同角三角函数基本关系式可求sin(α﹣β),由β=α﹣(α﹣β)利用两角差的余弦函数公式即可计算求值.【解答】解:(1)∵由cosα=,0<α<,得sinα===,∴得tan=∴于是tan2α==﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)==,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==.…21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)利用正弦函数的图象的对称性,求得函数的对称轴方程和对称中心坐标.【解答】解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2, ==+,∴ω=2.再根据五点法作图可得2•(﹣)+φ=,∴φ=,函数f(x)=2sin(2x+).(Ⅱ)由2x+=kπ+,求得x=﹣,可得函数的图象的对称轴方程为x=﹣,k∈Z.令2x+=kπ,求得x=﹣,可得函数的图象的对称轴中心为(﹣,0),k∈Z.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用降幂公式降幂,再由辅助角公式化简,由x的范围求得相位的范围,则函数的取值范围可求;(2)利用复合函数的单调性求得原函数的单调区间.【解答】解:(1)f(x)=sin2ωx+sinωx•cosωx﹣1==.∵ω>0,∴T=,则ω=1.∴函数f(x)=sin(2x﹣)﹣.由0,得,∴,∴.∴f(x)的取值范围[﹣1,];(2)令,得:,(k∈Z),∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).。

2017_2018学年高一数学下学期期中试题

2017_2018学年高一数学下学期期中试题

内蒙古包头市第四中学2017-2018学年高一数学下学期期中试题第Ⅰ卷选择题(共60分)一、 选择题(每小题5分,共60分。

每小题只有一个正确选项) 1.已知五个数据,则该样本的标准差为()A .B .C .D . 2.已知表示两条不同直线,表示平面,下列说法正确的是()A .若,则B .若,,则C .若,则D .若,,则3.某几何体的三视图如下图所示,则该几何体的表面积是()4.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50), [50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如上图所示的频率分布直方图。

已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为() A .B .C .D .5.直线与直线垂直,则实数的值为() A.B .C .D .6.若直线和互相平行,则两平行线之间的距离为()A .B .C .D .7.某程序框图如下图所示,该程序运行后输出的值是()俯视图正视图224234A .B .C .D .(8题)A.B.C.D.8.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(上图所示),设甲乙两组数据的平均数分别为中位数分别为则()A .,B .,C .,D .,9.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A .B .C .D .10.两圆的公切线有()A.2条B.3条C.4条D.以上都不对11.已知圆的一条直径通过直线被圆所截弦的中点,则该直径所在的直线方程为()A. B. C. D.12.过点的直线与圆有公共点,则直线的倾斜角的范围是( )A .B .C .D .第Ⅱ卷非选择题(共90分)二、填空题(每小题5分,共20分。

把答案填在题中横线)13.把二进制数110 011化为十进制数为.14.过点,且在两坐标轴上的截距互为相反数的直线方程为.15.边长为的正,在斜二测画法下的直观图的面积是.16.设不等式组表示的平面区域为,在区域内随机取一个点,此点到坐标原点的距离不小于的概率是.三、 解答题(本题共6小题,共70分。

浙江省杭州市2017-2018学年高一下学期期中考试数学试卷Word版含答案

浙江省杭州市2017-2018学年高一下学期期中考试数学试卷Word版含答案

浙江省杭州市2017-2018学年下学期期中考试高一数学试卷一.选择题(每小题5分,共40分)1.在等差数列{}n a 中,已知120a =,前n 项和为n S 且813S S =,当n S 取得最大时n 的值为( ) A .9 B .10 C .12 D .10或112.关于x 的不等式,2|1||2|1x x a a -+-≤++的解集为空集,则a 的取值范围为( )A .(0,1)B .(-1,0)C .(1,2)D .(,1)-∞-3.已知5sin()413x π+=-,则sin 2x 的值等于( )A .120169B .119169C .120169-D .119169-4.在ABC ∆中2cos 22B a c c+=(a 、b 、c 分别为角A 、B 、C 的对边),则ABC ∆的形状为( ) A .正三角形 B .直角三角形 C .等腰三角形 D .等腰三角形或直角三角形 5.在数列{}n a 中,1112,n(1)n n a a a l n+==++,则n a 等于( )A .2n l n +B .2(1)n n l n +-C . 2n nl n +D .1n n l n ++ 6.已知正项等比数列{}n a 满足7652a a a =+,若存在两项,m n a a14a =,则14m n+的最小值为( )A .32 B .53 C .256D .不存在 7.设0,0a b >>,则以下不等式中不恒成立是( )A .|1||5|6x x --+≤B .3322a b ab +≥C .22222a b a b ++≥+ D≥8.数列{}n a 的通项公式为2n a kn n =+满足12345a a a a a <<<<,且1n n a a +>对8n ≥恒成立,则实数k 的取值范围是( )A .11(,)317--B .11(,)917--C .11(,)311--D .11(,)911-- 二.填空题(第9题每空2分,10-12题每空3分,13-15题每空4分,共36分) 9.α为第三象限角,3cos 25α=-,则s i n2_______α=,tan(2)_________4πα+=,在以sin 2α为首项,tan(2)4πα+为公差的等差数列{}n a 中,其前n 项和达到最大时__________.n =10.设,a b 都是正数,且22260a b a b +--=,则11a b +的最小值为__________,此时ab 值为__________. 11.在四边形ABCD 中,已知,A DD C A BB C ⊥⊥,1,2,120ABAD BAD ==∠=︒,则______,___B D AC == 12.已知数列{}n a 满足111,31nn n a a a a +==+,则_________n a =,若1n n n b a a +=,则n b 的前n 项和为_____________.13.数列{}n a 的前n 项和为n S 数列{}n a 的各项按如下规则排列11212312,,,,,,,23344455, 341,,,556若存在正整数k ,使110,10k k S S +<≥,则__________.k a =14.已知αβ、均为钝角,sin 510αβ==,则_________.αβ+= 15.关于x 的不等式229|3|x x x kx ++-≥在[1,5]上恒成立,则实数k 的取值范围为____________.三.解答题16.已知函数()2cos (sin cos )f x x x x =+. (1)求5()4f π的值; (2)求函数()f x 的最小正周期及单调递增区间.17.已知实数a 满足不等式|2|2a +<,解关于x 的不等式(1)(1)0.ax x +->18.在ABC ∆中,a b c 、、分别为内角A 、B 、C 所对边,且2sin (2)sin a A b c B =+(2)sin c b C ++. (1)求A 的大小;(2)求sin sin B C +的最大值.19.设a R ∈函数2() (||1)f x ax bx a x =+-≤. (1)若|(0)|1f ≤,|(1)|1f ≤求证5|()|4f x ≤; (2)当1b =,若()f x 的最大值为178,求实数a 的值.20.设各项均为正数的数列{}n a 的前n 项和为n S ,已知2132a a a =+数列是公差为1的等差数列,数列{}n b 满足1111,,22n n n b b b n++==,记数列{}n b 的前n 项和为n T . (1)求数列{}n a 、{}n b 的通项公式及前n 项和;(2λ≤恒成立,求实数λ的取值范围.浙江省杭州市2017-2018学年下学期期中考试高一数学试卷答案一.选择题(每题5分,共40分)二.填空题(9、10、11、12每题6分,其余每题4分共36分) 9.45 17- 610. 312.132n - 31n n + 13. 57 14. 74π15. (]10.6-三.解答题:(第16题14分,其余各题均15分,共74分.) 16.解(1)2()2sin cos 2cos 2cos 21f x x x x Sin x x =+=++2)14x =++552()sin()124244f πππ∴=+=+=(2)())4f x x π=+ T π∴=222242k x k πλλππ-≤+≤+K Z ∈388k x k ππππ∴-≤≤+ K Z ∈单调递增区间为3,88k k πλππ⎡⎤-+⎢⎥⎣⎦ K Z ∈ 17.解(2)2a +< 40a ∴-<<(1)(1)0ax x +-= 11x ∴= 21x a=-1110a a a++=> 1a <-或0a > 41a ∴-<<-当的不等式解集为1(,1)a-当10a -<<的不等式解集为1(1,)a- 当0a =时 不等式解集为∅ 18.解(1)由条件的222222a b bc c bc =+++ 222a b c bc ∴=++又2222a b c bc =+- cos A 1cos 2A ∴=- 120A =︒(2)120A =︒ 60B C ∴+=︒1sin sin sin sin(60)sin sin 22B C B B B B B ∴+=+︒-=+-1sin cos sin(60)22B B B =+=+︒ 060B ︒<<︒ 6060120B ∴︒<+︒<︒ ∴当30B =︒时 sin sin B C +的最大值为1 19.(1)证:(0)1f a =≤ (1)1f b =≤22()(1)1f x a x bx a x b x ∴=-+≤-+ 21x x =-+ 11x -≤≤ 2215()1()24f x x x x ∴=-+=--+5()4f x ∴≤(2)解:1b =当1a ≤时 5()4f x ≤()f x 的最大值为178矛盾 1a ∴>当1a >时 1( 1.0)2a -∈- ()f x ∴在1(1,)2a--是减函数 1(,1)2a -是增函数(1)1f = (1)1f -=-max ()(1)1f x f ∴==不符题意当1a <-时 1(10,1)2a -- ()f x ∴在1(1,)2a--是增函数在1(,1)2a -是减函数 max 1117()()248f x f a a a ∴=-=--= 28217a a --= 即281720a a ++= 18a ∴=-或2a =-1a <- 2a ∴=-20.解:(1){}nS 是公差为1的等差数列 (1)n =-2132a a a =+ 212333a a a a S ∴=++=2133()S S S ∴-= ))222312⎡⎤∴+-=⎢⎥⎣⎦11)(4)a =+110a ∴-= 11a ∴= n =2n S n = 21n a n =- *n N ∈1112n n b b n n +=+ 112b = 1()2n n b n ∴= 1()2nn b n ∴= 可得22n n n T +∴=-(2)令2()2nn nf n +== 222111(1)(1)2(2)(1)(1)()2222n n n n n n n n n n n n f n f n +++++++-++-++-=-==-3n ∴≥时 (1)()0f n f n +-< 2n <时 (1)()0f n f n +-> (1)(2)(3)(4)(5)f f f f f ∴<=>>>max 3()(2)(3)2f n f f ∴=== 32λ∴≥。

2017-2018学年北京市高一下学期期中考试数学试题word版解析版

2017-2018学年北京市高一下学期期中考试数学试题word版解析版

2017-2018学年北京市高一下学期期中考试数学试题一、选择题(每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项,请将答案填在答题纸上)1. 已知数列满足,且,那么()A. 8B. 9C. 10D. 11【答案】C【解析】是公差为2,的等差数列,本题选择C选项.2. 如果,那么下列不等式正确的是()A. B. C. D.【答案】A【解析】若,两边同乘以正数可得,所以,故选.3. 在△ABC中,若∠A=60°,b=3,c=8,则其面积等于()A. 12B.C.D.【答案】B【解析】本题选择B选项.4. 等比数列满足,。

则公比q的值为()A. 2B.C. 1D. 2或【答案】D【解析】等比数列中,,,所以得,即,∴,化简得,解得或,故选.5. 若,则下列不等式:①;②;③;④中,正确的不等式有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】故①错;故②对;,,当且仅当时等号成立,而,故,故③对;,故④对;综上,正确的不等式有3个.本题选择C选项.6. 若变量满足约束条件,则的最大值是()A. B. 0 C. D.【答案】C【解析】作出不等式组所表示的平面区域,如图所示及其内部,其中,,,设,则,作出直线并进行平移,由图可知,当直线经过点时,纵截距最大,从而目标函数又达到最大值,所以,故选.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7. 在R上定义运算⊙:,则满足的实数的取值范围为()A. (0,2)B. (-1,2)C.D. (-2,1)【答案】D【解析】由得∴满足的实数的取值范围为(-2,1).本题选择D选项.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷Word版含解析

2017-2018学年高一下学期期中数学试卷一、选择题(本答题共12个小题,每小题5分,共60分)1.设全集U={﹣1,﹣2,﹣3,﹣4,0},集合A={﹣1,﹣2,0},B={﹣3,﹣4,0},A)∩B=()则(∁UA.{0} B.{﹣3,﹣4} C.{﹣1,﹣2} D.∅2.已知命题p:点P在直线y=2x﹣3上;命题q:点P在直线y=﹣3x+2上,则使命题“p且q”为真命题的一个点P(x,y)是()A.(0,﹣3)B.(1,2)C.(1,﹣1)D.(﹣1,1)3.设集合A={x|﹣x2﹣x+2<0},B={x|2x﹣5>0},则集合A与B的关系是()A.B⊆A B.B⊇A C.B∈A D.A∈B4.下列命题:①“若a2<b2,则a<b”的否命题;②“全等三角形面积相等”的逆命题;③“若a>1,则ax2﹣2ax+a+3>0的解集为R”的逆否命题;④“若x(x≠0)为有理数,则x为无理数”的逆否命题.其中正确的命题是()A.③④B.①③C.①②D.②④5.已知非空集合M和N,规定M﹣N={x|x∈M且x∉N},那么M﹣(M﹣N)等于()A.M∪N B.M∩N C.M D.N6.当x>0,y>0, +=1时,x+y的最小值为()A.10 B.12 C.14 D.167.已知函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,则f(1)+2f′(1)的值是()A.B.1 C.D.28.已知A={x|x≥k},B={x|x2﹣x﹣2>0},若“x∈A”是“x∈B”的充分不必要条件,则k 的取值范围是()A.k<﹣1 B.k≤﹣1 C.k>2 D.k≥29.设f(x)是可导函数,且=()A.B.﹣1 C.0 D.﹣210.已知函数f(x)的导函数f′(x)=a(x+b)2+c(a≠0)的图象如图所示,则函数f(x)的图象可能是()A. B.C.D.11.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为()A.1 B.C. D.12.已知函数f(x)的定义域为R,f(﹣2)=2021,对任意x∈(﹣∞,+∞),都有f'(x)<2x成立,则不等式f(x)>x2+2017的解集为()A.(﹣2,+∞)B.(﹣2,2)C.(﹣∞,﹣2)D.(﹣∞,+∞)二、填空题(本答题共4个小题,每小题5分,共20分)13.已知某物体的运动方程是S=t+t3,则当t=3s时的瞬时速度是m/s.14.已知y=f(x)为R上可导函数,则“f′(0)=0“是“x=0是y=f(x)极值点”的(填“充分不必要条件”或“必要不充分条件”或“充要条件”或“既不充分也不必要条件”).15.下列结论中,正确结论的序号为①已知M,N均为正数,则“M>N”是“log2M>log2N”的充要条件;②如果命题“p或q”是真命题,“非p”是真命题,则q一定是真命题;③若p为:∃x>0,x2+2x﹣2≤0,则¬p为:∀x≤0,x2+2x﹣2>0;④命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”.16.若实数a,b满足2a+2b=1,则a+b的最大值是.三、解答题(本大题共6个小题,17题10分,其它每小题10分,共70分)17.(1)已知,求曲线g(x)在点(4,2)处的切线方程;(2)已知函数f(x)=x3﹣3x,过点A(0,16)作曲线y=f(x)的切线,求此切线方程.18.设命题p:A={x|(4x﹣3)2≤1};命题q:B={x|a≤x≤a+1},若¬p是¬q的必要不充分条件,求实数a的取值范围.19.已知函数f(x)=|x﹣m|﹣1.(1)若不等式f(x)≤2的解集为{x|﹣1≤x≤5},求实数m的值;(2)在(1)的条件下,若f(x)+f(x+5)≥t﹣2对一切实数x恒成立,求实数t的取值范围.20.已知函数f(x)=x2﹣(2﹣a)x﹣(2﹣a)lnx..(1)若a=1,求函数f(x)的极值;(2)若f(x)在其定义域内为增函数,求实数a的取值范围.21.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.22.已知函数,其中a>0.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(本答题共12个小题,每小题5分,共60分)1.设全集U={﹣1,﹣2,﹣3,﹣4,0},集合A={﹣1,﹣2,0},B={﹣3,﹣4,0},则(∁UA)∩B=()A.{0} B.{﹣3,﹣4} C.{﹣1,﹣2} D.∅【考点】1H:交、并、补集的混合运算.【分析】先计算集合CU A,再计算(CUA)∩B.【解答】解:∵A={﹣1,﹣2,0},B={﹣3,﹣4,0},∴CUA={﹣3,﹣4},∴(CUA)∩B={﹣3,﹣4}.故答案选B.2.已知命题p:点P在直线y=2x﹣3上;命题q:点P在直线y=﹣3x+2上,则使命题“p且q”为真命题的一个点P(x,y)是()A.(0,﹣3)B.(1,2)C.(1,﹣1)D.(﹣1,1)【考点】2E:复合命题的真假.【分析】根据已知条件便知P点是直线y=2x﹣3和直线y=﹣3x+2的交点,所以解方程组即得点P坐标.【解答】解:若“p且q”为真命题,则:P既在直线y=2x﹣3上,又在y=﹣3x+2上;所以点P是直线y=2x﹣3和y=﹣3x+2的交点;∴解得x=1,y=﹣1;∴P(1,﹣1).故选C.3.设集合A={x|﹣x2﹣x+2<0},B={x|2x﹣5>0},则集合A与B的关系是()A.B⊆A B.B⊇A C.B∈A D.A∈B【考点】18:集合的包含关系判断及应用.【分析】化解集合A,B,根据集合之间的关系判断即可.【解答】解:集合A={x|﹣x2﹣x+2<0}={x|x>1或x<﹣2},B={x|2x﹣5>0}={x|x>2.5}.∴B⊆A,故选A4.下列命题:①“若a2<b2,则a<b”的否命题;②“全等三角形面积相等”的逆命题;③“若a>1,则ax2﹣2ax+a+3>0的解集为R”的逆否命题;④“若x(x≠0)为有理数,则x为无理数”的逆否命题.其中正确的命题是()A.③④B.①③C.①②D.②④【考点】2K:命题的真假判断与应用.【分析】结合四种命题的定义,及互为逆否的两个命题,真假性相同,分别判断各个结论的真假,可得答案.【解答】解:①“若a2<b2,则a<b”的否命题为“若a2≥b2,则a≥b”为假命题,故错误;②“全等三角形面积相等”的逆命题“面积相等的三角形全等”为假命题,故错误;③若a>1,则△=4a2﹣4a(a+3)=﹣12a<0,此时ax2﹣2ax+a+3>0恒成立,故“若a>1,则ax2﹣2ax+a+3>0的解集为R”为真命题,故其逆否命题为真命题,故正确;④“若x(x≠0)为有理数,则x为无理数”为真命题,故其的逆否命题,故正确.故选:A5.已知非空集合M和N,规定M﹣N={x|x∈M且x∉N},那么M﹣(M﹣N)等于()A.M∪N B.M∩N C.M D.N【考点】1H:交、并、补集的混合运算.【分析】根据题中的新定义判断即可得到结果.【解答】解:根据题意得:M﹣(M﹣N)=M∩N,故选:B.6.当x>0,y>0, +=1时,x+y的最小值为()A.10 B.12 C.14 D.16【考点】7F:基本不等式.【分析】利用“乘1法”和基本不等式的性质即可得出.【解答】解:∵x>0,y>0, +=1,∴x+y=(x+y)=10+=16,当且仅当y=3x=12时取等号.∴x+y的最小值为16.故选:D.7.已知函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,则f(1)+2f′(1)的值是()A.B.1 C.D.2【考点】6H:利用导数研究曲线上某点切线方程;3T:函数的值.【分析】利用函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,可求f(1)、f′(1)的值,从而可得结论.【解答】解:∵函数y=f(x)的图象在点(1,f(1))处的切线方程是x﹣2y+1=0,∴f(1)=1,f′(1)=∴f(1)+2f′(1)=2故选D.8.已知A={x|x≥k},B={x|x2﹣x﹣2>0},若“x∈A”是“x∈B”的充分不必要条件,则k 的取值范围是()A.k<﹣1 B.k≤﹣1 C.k>2 D.k≥2【考点】2L:必要条件、充分条件与充要条件的判断.【分析】解不等式可得x<﹣1,或x>2,由充要条件的定义可得{x|x≥k}是集合{x|x<﹣1,或x>2}的真子集,结合数轴可得答案.【解答】解:解不等式x2﹣x﹣2>0可得x<﹣1,或x>2,要使“x≥k”是“x2﹣x﹣2>0”的充分不必要条件,则需集合A={x|x≥k}是集合B={x|x<﹣1,或x>2}的真子集,故只需k>2即可,故实数k的取值范围是(2,+∞),故选:C.9.设f(x)是可导函数,且=()A.B.﹣1 C.0 D.﹣2【考点】6F:极限及其运算.),【分析】由题意可得=﹣2=﹣2f′(x结合已知可求)=2【解答】解:∵ =﹣2=﹣2f′(x0)=﹣1∴f′(x故选B10.已知函数f(x)的导函数f′(x)=a(x+b)2+c(a≠0)的图象如图所示,则函数f(x)的图象可能是()A .B .C .D .【考点】63:导数的运算;3O :函数的图象.【分析】根据导数和函数的单调性的关系即可判断.【解答】解:由f′(x )图象可知,函数f (x )先减,再增,再减,故选:D .11.若点P 是曲线y=x 2﹣lnx 上任意一点,则点P 到直线y=x ﹣2的最小距离为( )A .1B .C .D .【考点】IT :点到直线的距离公式.【分析】设出切点坐标,利用导数在切点处的函数值,就是切线的斜率,求出切点,然后再求点P 到直线y=x ﹣2的最小距离.【解答】解:过点P 作y=x ﹣2的平行直线,且与曲线y=x 2﹣lnx 相切,设P (x 0,x 02﹣lnx 0)则有k=y′|x=x 0=2x 0﹣.∴2x 0﹣=1,∴x 0=1或x 0=﹣(舍去).∴P (1,1),∴d==.故选B .12.已知函数f (x )的定义域为R ,f (﹣2)=2021,对任意x ∈(﹣∞,+∞),都有f'(x )<2x 成立,则不等式f (x )>x 2+2017的解集为( )A .(﹣2,+∞)B .(﹣2,2)C .(﹣∞,﹣2)D .(﹣∞,+∞) 【考点】6B :利用导数研究函数的单调性.【分析】构造函数g (x )=f (x )﹣x 2﹣2017,利用对任意x ∈R ,都有f′(x )<2x 成立,即可得出函数g(x)在R上单调性,进而即可解出不等式.【解答】解:令g(x)=f(x)﹣x2﹣2017,则g′(x)=f′(x)﹣2x<0,∴函数g(x)在R上单调递减,而f(﹣2)=2021,∴g(﹣2)=f(﹣2)﹣(﹣2)2﹣2017=0,∴不等式f(x)>x2+2017,可化为g(x)>g(﹣2),∴x<﹣2,即不等式f(x)>x2+2017的解集为(﹣∞,﹣2),故选:C.二、填空题(本答题共4个小题,每小题5分,共20分)13.已知某物体的运动方程是S=t+t3,则当t=3s时的瞬时速度是 4 m/s.【考点】61:变化的快慢与变化率.【分析】求出位移的导数;将t=3代入;利用位移的导数值为瞬时速度;求出当t=3s时的瞬时速度.【解答】解:根据题意,S=t+t3,则s′=1+t2将t=3代入得s′(3)=4;故答案为:414.已知y=f(x)为R上可导函数,则“f′(0)=0“是“x=0是y=f(x)极值点”的必要不充分条件(填“充分不必要条件”或“必要不充分条件”或“充要条件”或“既不充分也不必要条件”).【考点】2L:必要条件、充分条件与充要条件的判断.【分析】x=0是y=f(x)极值点,可得f′(0)=0;反之不成立,例如函数f(x)=x3,虽然f′(0)=0,但是x=0不是函数f(x)的极值点.【解答】解:x=0是y=f(x)极值点,可得f′(0)=0;反之不成立,例如函数f(x)=x3,f′(x)=3x2,虽然f′(0)=0,但是x=0不是函数f(x)的极值点.∴f′(0)=0“是“x=0是y=f(x)极值点”的必要不充分条件.故答案为:必要不充分条件.15.下列结论中,正确结论的序号为①②④①已知M,N均为正数,则“M>N”是“log2M>log2N”的充要条件;②如果命题“p或q”是真命题,“非p”是真命题,则q一定是真命题;③若p为:∃x>0,x2+2x﹣2≤0,则¬p为:∀x≤0,x2+2x﹣2>0;④命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”.【考点】2K:命题的真假判断与应用.【分析】根据充要条件的定义和对数函数的性质,可判断①;根据复合命题的真假,可判断②;根据特称命题的否定方法,可判断③;运用原命题的逆否命题,可判断④.【解答】解:对于①,由M,N>0,函数y=log2x在(0,+∞)递增,可得“M>N”⇔“log2M>log2N”,故①正确;对于②,如果命题“p或q”是真命题,“非p”是真命题,可得P为假命题,q一定是真命题.故②正确;对于③,p为:∃x>0,x2+2x﹣2≤0,则¬p为:∀x>0,x2+2x﹣2>0.故③不正确;对于④,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”.故④正确.故答案为:①②④.16.若实数a,b满足2a+2b=1,则a+b的最大值是﹣2 .【考点】7F:基本不等式.【分析】由2a+2b=1,得=,从而可求a+b的最大值,注意等号成立的条件.【解答】解:∵2a+2b=1,∴=,即,∴a+b≤﹣2,当且仅当,即a=b=﹣1时取等号,∴a=b=﹣1时,a+b取最大值﹣2.故答案为:﹣2.三、解答题(本大题共6个小题,17题10分,其它每小题10分,共70分)17.(1)已知,求曲线g(x)在点(4,2)处的切线方程;(2)已知函数f(x)=x3﹣3x,过点A(0,16)作曲线y=f(x)的切线,求此切线方程.【考点】6H:利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算g′(4),求出切线方程即可;(2)设出切点为M(x0,y),表示出切线方程,求出切点坐标,从而求出切线方程即可.【解答】解:(1)∵g(x)=,∴g′(x)=,∴g′(4)=,∴曲线g(x)在点(4,2)处的切线方程为y﹣2=(x﹣4),即y=x+1;(2)曲线方程为y=x3﹣3x,点A(0,16)不在曲线上,设切点为M(x0,y),则点M的坐标满足y=x3﹣3x,因f′(x0)=3(x2﹣1),故切线的方程为y﹣y=3(x2﹣1)(x﹣x),将A(0,16)代入切线方程化简得x03=﹣8,解得x=﹣2.所以切点为M(﹣2,﹣2),切线方程为9x﹣y+16=0.18.设命题p:A={x|(4x﹣3)2≤1};命题q:B={x|a≤x≤a+1},若¬p是¬q的必要不充分条件,求实数a的取值范围.【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由(4x﹣3)2≤1,得≤x≤1,A={x|≤x≤1}.由¬p是¬q的必要不充分条件,得p是q的充分不必要条件,即A B,即可得出.【解答】解:由(4x﹣3)2≤1,得≤x≤1,A={x|≤x≤1}.由¬p是¬q的必要不充分条件,得p是q的充分不必要条件,即A B,∴,∴0≤a≤.∴实数a的取值范围是[0,].19.已知函数f(x)=|x﹣m|﹣1.(1)若不等式f(x)≤2的解集为{x|﹣1≤x≤5},求实数m的值;(2)在(1)的条件下,若f(x)+f(x+5)≥t﹣2对一切实数x恒成立,求实数t的取值范围.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(1)求得不等式f(x)≤2的解集,再根据不等式f(x)≤2的解集为{x|﹣1≤x≤5},求得实数m的值.(2)由题意可得g(x)=|x﹣2|+|x+3|的最小值大于或等于t﹣2,求得g(x)=|x﹣2|+|x+3|的最小值,可得t的范围.【解答】解:(1)由f(x)≤2得,|x﹣m|≤3,解得m﹣3≤x≤m+3,又已知不等式f(x)≤2的解集为{x|﹣1≤x≤5},∴,解得m=2.(2)当m=2时,f(x)=|x﹣2|﹣1,由于f(x)+f(x+5)≥t﹣2对一切实数x恒成立,则|x﹣2|+|x+3|﹣2≥t﹣2对一切实数x恒成立,即|x﹣2|+|x+3|≥t对一切实数x恒成立,设g(x)=|x﹣2|+|x+3|,于是,所以当x<﹣3时,g(x)>5;当﹣3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5,∴t≤5,即t的取值范围为(﹣∞,5].20.已知函数f(x)=x2﹣(2﹣a)x﹣(2﹣a)lnx..(1)若a=1,求函数f(x)的极值;(2)若f(x)在其定义域内为增函数,求实数a的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)求出函数的导数,利用导数为0,求解极值点,然后判断求解极值即可.(2)利用导函数的符号,结合基本不等式或函数的导数求解函数的最值,推出结果即可.【解答】解:(1)∵f(x)=x2﹣(2﹣a)x﹣(2﹣a)lnx,x>0∴,因为a=1,令=0得x=1或x=(舍去)…又因为,当0<x<1时,f'(x)<0;x>1时,f'(x)>0所以x=1时,函数f(x)有极小值f(1)=0…(2)若f'(x)>0,在x>0上恒成立,则2x2﹣(2﹣a)x﹣(2﹣a)>0恒成立,∴恒成立…而当x>0时∵.检验知,a=2时也成立∴a≥2…[或:令,∴,∵x>0,∴g'(x)<0﹣﹣﹣﹣﹣所以,函数g(x)在定义域上为减函数所以g(x)<g(0)=2检验知,a=2时也成立∴a≥2….21.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(Ⅰ)当a=5,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由题意可得B⊆A,区间B的端点在集合A中,由此求得a的范围.【解答】解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得 x>3.综上可得,原不等式的解集为{x|x<﹣6,或 x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].22.已知函数,其中a>0.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若直线x﹣y﹣1=0是曲线y=f(x)的切线,求实数a的值;(Ⅲ)设g(x)=xlnx﹣x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)【考点】6H:利用导数研究曲线上某点切线方程;6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)先求导函数,直接让导函数大于0求出增区间,导函数小于0求出减区间即可;(Ⅱ)直接利用切线的斜率即为切点处的导数值以及切点是直线与曲线的共同点联立方程即可求实数a的值;(Ⅲ)先求出g(x)的导函数,分情况讨论出函数在区间[1,e]上的单调性,进而求得其在区间[1,e]上的最小值.【解答】解:(Ⅰ)因为函数f(x)=,∴f′(x)==,f′(x)>0⇒0<x<2,f′(x)<0⇒x<0,或x>2,故函数f(x)的单调增区间为(0,2),单调减区间为(﹣∞,0)和(2,+∞),(Ⅱ)设切点为(x,y),由切线斜率k=1=,⇒x3=﹣ax+2a,①由x﹣y﹣1=x﹣﹣1=0⇒(x2﹣a)(x﹣1)=0⇒x=1,x=±.把x=1代入①得a=1,把x=代入①得a=1,把x=﹣代入①得a=﹣1(舍去),故所求实数a的值为1.(Ⅲ)∵g(x)=xlnx﹣x2f(x)=xlnx﹣a(x﹣1),∴g′(x)=lnx+1﹣a,解lnx+1﹣a=0得x=e a﹣1,故g(x)在区间(e a﹣1,+∞)上递增,在区间(0,e a﹣1)上递减,①当e a﹣1≤1时,即0<a≤1时,g(x)在区间[1,e]上递增,其最小值为g(1)=0;②当1<e a﹣1<e时,即1<a<2时,g(x)的最小值为g(e a﹣1)=a﹣e a﹣1;③当e a﹣1≥e,即a≥2时,g(x)在区间[1,e]上递减,其最小值为g(e)=e+a﹣ae.。

高一数学2017-2018学年度第二学期期中质量检测试题及答案

高一数学2017-2018学年度第二学期期中质量检测试题及答案

2017-2018学年度第二学期期中质量检测高一数学试卷满分:150分 时间:120分钟注意事项:1.答题前请在答题卡上填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、单项选择题(共12题,每小题5分,共60分)1、把512π化成角度是 ( )A. 25︒B.45︒C.75︒D.115︒2、找出与54π终边相同的角 ( ) A. -4πB.94πC.114πD.3-4π3、在半径为2的圆中圆心角为6π所对应的弧长时多少 ( )A. 3πB. 23πC. 6πD.56π4、下列赋值语句正确的是 ( )A. 5a =B.5a b +=C.2a b ==D.1a a =+ 5、条件语句表达的算法结构为 ( )A. 顺序结构B.选择结构C.循环结构D.以上都不对 6、如图所示,程序框图(算法流程图)的输出结果是( )A. 16B.2524C.1112D.347、甲、乙、丙三人中选出两人参加运动会,则甲被选中的概率是( )A. 13B.23C.1D.168、当收集到的数据很大,或者有多组数据时用哪种统计图表示较合适( ) A. 条形统计图 B.折线统计图 C.茎叶统计图 D.扇形统计图9、现在从100件产品中随机抽取20件进行质量检测,下列说法正确的是( ) A.100件产品是总体 B.20件产品是样品 C.样本容量是100 D.样本容量是2010、从编号为1050的50枚最新研制的某种型号的导弹随机抽取5枚来进行发射实验,若采取每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是 ( )A.5、10、15、20、25B.3、13、23、33、43C.1、2、3、4、5D.2、4、6、16、3211、如图,长方形的面积为1,将100个豆子随机地撒在长方形内,其中恰好有20个豆子在阴影部分,则用随机模拟的方法估计图中阴影部分的面积为( )A. 15B.45C.120D.110012、给出下列四个命题 ( )①34π是第二象限角 ②4-3π是第三象限角③-400︒是第四象限角 ④315︒是第一象限角,其中正确的命题有 A. 1个 B.2个 C.3个 D.4个 二、填空题(共4小题,每小题5分,共20分) 13、写出与45︒终边相同的角的集合14、某中学高二年级从甲乙两个班级各选出7名参加数学竞赛,他们取得的成绩(满分100)的茎叶图如图,其中甲班的平均分是85,乙班学生成绩的中位数是83,则x y += 15、下面算法语句执行结果为F or17232i to S i i i ==*+=+Next输出S.16、从分别写有有1,2,3,4,5的5张卡片中随机抽取1张,放回再随机抽取一张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率是.三、解答题(共6小题,17题10,其余各小题每题12分,共70分)17、(10分)已知一组数据从小到大顺序排列,得到-2,0,4,X,7,15中位数为5,求这组数据的平均数和标准差。

2017—2018学年人教版高一数学下学期期中考试试卷题库(共10套)

2017—2018学年人教版高一数学下学期期中考试试卷题库(共10套)

2017—2018学年人教版高一数学下学期期中考试试卷(一)(考试时间120分钟满分150分)一、单项选择题:本大题共12小题,每小题5分,共60分1.若b<0<a,d<c<0,则()A.bd<ac B.C.a+c>b+d D.a﹣c>b﹣d2.已知△ABC中,a=4,b=4,A=30°,则B等于()A.30°B.30°或150°C.60°D.60°或120°3.已知{a n}是公差为1的等差数列;S n为{a n}的前n项和,若S8=4S4,则a10=()A.B.C.10 D.124.在△ABC中,内角A,B,C所对的边分别为a,b,c,且a,b,c成等比数列,若sinAsinC+sin2C﹣sin2A=sinBsinC,则sinA=()A.B.C.D.5.已知不等式ax2﹣5x+b>0的解集为{x|﹣3<x<2},则不等式bx2﹣5x+a>0的解集为()A.{x|﹣<x<}B.{x|x<﹣或x>}C.{x|﹣3<x<2}D.{x|x<﹣3或x>2}6.设等比数列{a n}中,前n项之和为S n,已知S3=8,S6=7,则a7+a8+a9=()A.B.C.D.7.若x,y满足且z=2x+y的最大值为6,则k的值为()A.﹣1 B.1 C.﹣7 D.78.设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.3 B.2C.2 D.9.若两个正实数x,y满足+=1,且不等式x+<m2﹣3m有解,则实数m的取值范围()A.(﹣1,4)B.(﹣∞,﹣1)∪(4,+∞)C.(﹣4,1)D.(﹣∞,0)∪(3,+∞)10.两个等差数列{a n}和{b n},其前n项和分别为S n,T n,且,则等于()A.B.C.D.11.设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>012.记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根二、填空题:本大题共4小题,每小题5分,共20分13.已知等差数列{a n}中,a1+a3+a8=,那么cos(a3+a5)=______.14.若x,y满足约束条件,则z=3x+y的最小值为______.15.设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c=______.16.在a>0,b>0的情况下,下面三个结论:①;②;③;④.其中正确的是______.三、解答题:本大题共6小题,共70分。

精品2017-2018学年高一数学下学期期中试题(含解析)

精品2017-2018学年高一数学下学期期中试题(含解析)

大庆铁人中学高一学年下学期期中考试数学试题一、选择题(每小题只有一个选项正确,每小题 5分,共60 分。

)1. 下列说法正确的是()A. 若,则B. 若C. 若D. 若【答案】D【解析】【分析】利用不等式的性质逐一判断每一个选项的真假.【详解】对于选项A,举例a=-2,b=1,但是,所以该选项错误;对于选项B,举例a=-2,c=-1,b=-1,满足,但是a<b,所以该选项错误;对于选项C,举例a=-1,b=0,k=3,显然,所以该选项错误;对于选项D,由题得,所以.所以该选项正确.故答案为:D【点睛】(1)本题主要考查不等式的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2)做类似的题目,可以利用不等式的性质证明,也可以举反例.2. 等差数列的前n项和为,若()A. 11B. 9C. 13D. 15【答案】C【解析】【分析】先根据已知计算出,再利用等差数列的通项求.【详解】由题得.故答案为:C【点睛】(1)本题主要考查等差数列的前n项和,考查等差数列的通项,意在考查学生对这些知识的掌握水平和基本计算能力.(2) 等差数列的前项和公式:一般已知时,用公式,已知时,用公式3. 已知四棱锥P-ABCD(图1)的三视图如图2所示,为正三角形,PA为四棱锥P-ABCD的高,俯视图是直角梯形,则四棱锥P-ABCD的体积()...........................A. B. C. D.【答案】B【解析】【分析】先计算出AB,PA的长度,再求四棱锥P-ABCD的体积.【详解】由题得,所以四棱锥P-ABCD的体积为,故答案为:B【点睛】(1)本题主要考查棱锥体积的计算,意在考查学生对该知识的掌握水平.(2)求边和角,一般要解三角形.4. 在△ABC中,a,b,c分别为角A,B,C所对的边.若则A=()A. B. C. D.【答案】C【解析】【分析】根据诱导公式和两角和的正弦公式以及正弦定理计算即可得解.【详解】sinB=sin(A+C)=sinAcosC+cosAsinC,∵b+a(sinC﹣cosC)=0,可得:sinB+sinA(sinC﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA,∴tanA=﹣1,∵<A<π,∴A=.故答案为:C【点睛】本题主要考查正弦定理和和角的正弦公式,意在考查学生对这些知识的掌握水平和基本计算能力.5. 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的侧面积是()A. B. C. D.【答案】C【解析】【分析】先求出圆柱的底面圆的半径,再求圆柱的侧面积.【详解】由题得圆柱的底面圆的半径为,所以圆柱的侧面积为.故答案为:C【点睛】(1)本题主要考查球的内接圆柱问题,意在考查学生对这些知识的掌握水平和空间想象观察能力.(2)本题解题的关键是求出圆柱的底面圆的半径.6. 设x,y满足约束条件,则的最小值是()A. -15B. -9C. 9D. 1【答案】D【解析】【分析】先作出不等式组对应的可行域,再通过数形结合分析得到的最小值.【详解】不等式组对应的可行域如下图所示,因为z=2x+y,所以y=-2x+z,当直线经过点A时,直线的纵截距z最小,解方程组得A(0,1),所以z最小=2×0+1=1,故答案为:D【点睛】(1)本题主要考查线性规划,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.(2) 解答线性规划时,要加强理解,不是纵截距最小,就最小,要看函数的解析式,如:,直线的纵截距为,所以纵截距最小时,最大.7. 一个直角梯形的一个底角为,下底长为上底长的倍,这个梯形绕下底所在直线旋转一周所形成的旋转体体积为,则该直角梯形的上底长为()A. 2B.C.D.【答案】A【解析】【分析】由题意可知,这个几何体的体积是一个圆锥加一个同底圆柱的体积.再根据题目中的条件求解即可.【详解】如图,梯形ABCD,AB∥CD,∠A=90°,∠B=45°,绕AB边旋转一周后形成一圆柱和一圆锥的组合体.设CD=x,AB=,AD=x.∴旋转体体积V=S圆柱+S圆锥=.故答案为:A【点睛】本题主要考查圆柱和圆锥体积,考查组合体的体积,意在考查学生对这些知识的掌握水平和空间想象能力.8. 已知等比数列的各项都为正数,且为与的等差中项,则()A. 14B. 18C. 16D. 20【答案】B【解析】【分析】根据等差中项的定义求出a6的值,结合对数的运算法则以及等比数列的运算性质进行化简即可.【详解】∵为与的等差中项,∴2a6=+=8,即a6=4,在正项等比数列中,log2a2+log2a3+…log2a10=log2(a2•a3…a9•a10)=log2(a6)9=9log24=9×2=18,故答案为:B【点睛】(1)本题主要考查等差中项,考查等比数列的性质和对数的运算,意在考查学生对这些知识的掌握水平和基本计算能力.(2) 等比数列中,如果,则,特殊地,时,则,是的等比中项.9. 已知函数的图像恒过定点A,若点A在直线上,其中,则的最小值是()A. 9B. 4C.D. 8【答案】C【解析】【分析】先求出定点A的坐标,再代入直线的方程得到m+n=2,再利用基本不等式求最小值.【详解】由题得A(-2,-2),所以-2m-2n+4=0,所以m+n=2,所以=.当且仅当时取到最小值.故答案为:C【点睛】(1)本题主要考查对数函数的定点问题,考查基本不等式,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 本题的解题关键是常量代换,即把化成,再利用基本不等式求函数的最小值. 利用基本不等式求最值时,要注意“一正二定三相等”,三个条件缺一不可.10. 不等式的解集为(-4,1),则不等式的解集为()A. B. C. D.【答案】B【解析】【分析】根据不等式ax2+bx+c>0的解集求得a、b、c的关系,代入不等式b(x2+1)﹣a(x+3)+c>0中,化简并求出该不等式的解集可得答案.【详解】不等式ax2+bx+c>0的解集为(﹣4,1),则不等式对应方程的实数根为﹣4和1,且a<0;由根与系数的关系知,,∴,∴不等式b(x2+1)﹣a(x+3)+c>0化为3a(x2+1)﹣a(x+3)﹣4a>0,即3(x2+1)﹣(x+3)﹣4<0,解得﹣1<x<,∴该不等式的解集为(﹣1,).故答案为:B【点睛】(1)本题主要考查含参的一元二次不等式的解法,意在考查学生对这些知识的掌握水平和基本的计算能力.(2)解题的关键是由根与系数的关系知,得到.11. 在锐角中,A、B、C分别为三边a,b,c所对的角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年上学期高一(第二学期)期中考试数学试卷
(分值:100分 时间:120分钟)
一、选择题(本大题共10题,每小4分,共40分)
⒈若扇形圆心角的弧度数为1,半径为2,则扇形的弧长是( ) A .1 B .2 C .3 D .4
2.=0
150sin ( )
A .23
B .23-
C .21
D .2
1
-
3.函数y =sin x
2
是( )
A .最小正周期为4π的奇函数
B .最小正周期为2π的奇函数
C .最小正周期为4π的偶函数
D .最小正周期为2π的偶函数 4.函数y =1+sin x ,x ∈[0,2π]的大致图象是( )
5.已知向量a 与b 的夹角是060,且5a =, 4b =,则 a b ⋅=( ). A. 20 B. 10 C. 10- D. 20- 6.设)2,4(=a ,),6(y b =,且b a //,则=y ( )
A .3
B .12
C .12-
D .3-
7.已知5
1cos -=∂,ππ
<∂<2
,则∂2cos =( )
A .25
23
-
B .510
C .515-
D .515
8.函数x y cos =的图像( )
A .关于x 轴对称
B .关于y 轴对称
C .关于原点对称
D .关于直线2
π
=
x 对称
9.已知函数)sin(ϕω+=x A y (0,0>>ωA )在同一周期内,当12
π
=x 时,2max =y ,
当12

=
x 时 ,2min -=y ,那么函数的解析式为( ) A .)3
2sin(2π+=x y B .)6
2sin(2π
-=x y
C .)6
2sin(2π+=x y D .)3
2sin(2π
-=x y
10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,若 AC =a ,
BD =b ,则 AE =( ) A.14a +12b B.23a +13b C.12a +14b D.13a +23b
二、填空题(本大题共有5小题,每小题4分,满分20分)
11.已知点P (tan α,cos α)在第二象限,则角α的终边在第________象限 12.比较大小:3
tan π__________4tan
π
13. 已知2tan =x ,则
x x x
x sin cos sin cos -+ =
14.已知sin α-cos α=-5
1
,则 sin 2α= .
15.把x y sin =的图像上所有点的纵坐标伸长为原来的4倍(横坐标不变)得_________ __(填函数解析式)的图像.
三、解答题(本大题共5小题,共40分)
16.(6分)已知定义在区间[]ππ,-上的函数x x f sin )(=的部分函数图象如图所示。

(1)将函数)(x f 的图像补充完整;
(2)写出函数)(x f 的单调递增区间.
17.(8
分)已知1cos ,(0,)22
π
αα=∈
(1)求tan α的值; (2)求sin()6π
α+的值.
18.(8分)已知向量()()R x x x ∈==,1,cos ,1,sin , (1)当4
π
=
x 时,求向量+的坐标;
(2)若函数()m b a x f ++=2
为奇函数,求实数m 的值。

19.
(8分)已知31sin )sin(cos )cos(=+++ββαββα,且)2,2
3(ππα∈,求α2cos ,
)4
sin(π
α+
的值.
20.(10分)设函数f (x )=
2
3cosx +2
1
sinx +1,
(1)求函数f (x )的值域和函数的单调递增区间; (2)当f (α)=5
9,且26
3
π
π
α<<
时,求sin (2α+32π)的值.
参考答案
一、BCAAB AABAC
二、11.四 12.> 13.-3 14.24
25
15. 4sin y x = 三、解答题 16.(1)略
(2)减区间(,)2
ππ--、(,)2
ππ,增区间(,)22
ππ
-
17.【解析】由cos α=
,α∈
,
所以,sin α=
=.
(1)tan α===.
(2)sin
=sin αcos +cos αsin =×+×=+=1.
18.解(1)当4
π
=x 时,22
(((2,2)22a b +=+=r r
(2)函数()m b a x f ++=2
为奇函数
2(sin cos )45sin 2a b x x x +=++=+r r
2
()5sin 2f x a b m x m =++=++r r 为奇函数
所以5m =-
19.解.1cos()cos sin()sin cos[()]cos 3
αββαββαββα+++=+-==
且)
2,2
3(ππα∈,
222
sin 1cos 3
αα=-=-
27
cos 22cos 19
αα=-=-,2221224sin()sin cos cos sin 4443πππααα-+=+== 20.解:(1)()sin()13
f x x π
=++
1sin()13x π-≤+≤得0sin()123x π
≤++≤,所以值域为[0,2]
由22,232k x k k z πππππ-≤+≤+∈得522,66
k x k k z ππ
ππ-≤≤+∈
所以单调增区间为5[2;2],66
k k k z ππ
ππ-+∈
(2)9()5f α=得42sin(),356323παπππ
αααπ+=<<∴<+<
324324
cos(),sin(2)sin[2()]2sin()cos()2()3533335525
πππππααααα+=-∴+=+=++=⨯⨯-=-。

相关文档
最新文档