3.2 分式的乘除法

合集下载

人教版初中数学试讲逐字稿《分式的乘除》

人教版初中数学试讲逐字稿《分式的乘除》

初中数学试讲稿《分式的乘除》【选自人教版数学八年级下册】各位评委老师好(鞠躬)我是应聘初中数学的3号考生,今天我抽到的课题是《分式的乘除》,下面开始我的试讲。

(所有的X,都是假装有数字或者公式,感谢各位配合)一、导入师:好,同学们上课师:大家小时候都见过大拖拉机和小拖拉机吧?见过它们耕地吗?生:(有的说有,有的说没有)师:有得见过有的没见过啊,没关系,那大家接着想一下假设大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,那请问大拖拉机的工作效率是小拖拉机的多少倍呢?师:大家动笔算算师:有请中间那位穿红衣服的女生说一下你的计算结果生:XX倍师:大家说她说的对不?生:对师:也就是,先分别算出大、小拖拉机的工作效率,然后直接求倍数,是吧?生:点头师:那大家再想一下假设有个长方体容器,容积为V,底面长为a,宽为b,,当容器内的水占容积的X时,水面的高度为多少?师:好,班长很快举起手了,那就请班长回答一下生:长方体容器本来的高为X,以为水占容积的X,长宽不变,所以水面的高为XXX师:班长很清晰的给大家分析出了水面的高度,那就像上面的问题,讨论数量关系时,有时需要进行分式的乘除运算,那么分式的乘除法有哪些法则呢?二、新授师:大家都知道分式与分数有类似的形式,所以学习分式的乘除运算之前,先回顾一下分数的乘除法则,谁能说说分数的乘除法则呢?师:好,最后那位男生生:分数乘法法则是分数乘分数,用分子的积作为积的分子,分母的积作为积的分母;除法是先把除式的分数的分子、分母颠倒位置后,再按照乘法法则与被除的分数相乘师:大家说这位男生说的完整不?说的对不对呀?生:对师:恩,这位男生说的很对,那接下来请大家按照前后桌为一组,进行分组,然后试着类比刚才分数的乘除法则,总结分式的乘除法则,讨论完后,举手示意师:好,各小组很快举起了手,再等等还没想好的同学师:大家都边商量边写完了,有请最先举手的前排这个小组说一下你们的结果生:乘法法则:俩分式相乘,用分子的积作为积的分子,分母的积作为分母;除法法则是,先把除式的分式分子分母颠倒位置后,再与被除式相乘师:恩,其他小组有需要补充的嘛?生:摇头示意师:那大家都认可这个小组的回答了?恩,的确刚才这位同学说的很正确,那么大家可以用数学式子来表示吗?用咱们数学语言来描述上述法则吗?提醒一下,大家可以用a、b、c、d........字母来表示分式的分子分母,自己在练习本上试着写写师:刚才我在下面看看了大家写的,大部分同学呢,写的很好,有得同学呢,把除法写错了,在这里,老师再次强调一下,除法其实也是转化为乘法来运算的,但是必须得先把除式的分子分母颠倒位置,其他不变,再与被除式相乘。

八下3-2分式的乘除法

八下3-2分式的乘除法

分式的乘除法课标与教材课标要求:要求会利用分式的基本性质进行约分和通分,会进行简单的分式乘、除法运算。

教材分析:分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。

学情分析1学生在小学阶段已经学过分数的乘除法,知道掌握了分数的乘除法法则,。

在前面学习的整式乘法和分解因式,为分式的运算和结果的化简奠定基础。

2学生想知道分式的乘除运算法则 3.在学习分式的乘除法法则时可通过与分数的乘除法法则进行类比学习教学目标一、知识技能:1、分式的乘除运算法则。

2、会进行简单的分式的乘除法运算。

二、数学思考:1、类比分数的乘除运算法则,探索分式的乘除运算法则。

2、能解决一些与分式有关的简单的实际问题。

三、问题解决:通过类比分数的乘除运算法则,探索出分式的乘除运算法则。

四、情感态度:1、通过师生讨论、交流,培养学生合作探究的意识和能力。

2、培养学生的创新意识和应用意识。

教学重点:分式乘除法的法则及应用.教学难点:分子、分母是多项式的分式的乘除法的运算。

【教学方法】自主探究、合作交流教学法.【教学媒体】多媒体课件教学过程1、创设情境,导入新课还记得我们小学学过的分数的乘除法吗?试一试看谁算的快。

=⨯=⨯92755432=÷=÷92755432 还记得运算的法则吗?口述一下。

如果把数换成字母你会算吗? 试一试:=⨯c d a b ;=÷cd a b 结合自己的运算,你能总结分式乘除法的法则吗?与同伴交流。

分式的乘除法的法则:二、自主学习、合作探究学习活动一:运用分式乘法法则进行计算例1 计算巩固练习:计算(1)c a a b ⋅; (2)y x xy xy y x 234322+⋅-; (3)2221x x x x x +⋅-; (4)2222(1)(1)x xy x y x x x x -+⋅--(5)222212444211a a a a a a a a -+-+⋅⋅--++ 在活动一、活动二的学习的过程中总结学生在解答过程中的易错点和注意点。

分式的乘除法教案

分式的乘除法教案

分式的乘除法教案一、教学目标:1. 让学生理解分式的乘法和除法运算规则。

2. 培养学生运用分式的乘除法解决实际问题的能力。

3. 提高学生对分式运算的兴趣和自信心。

二、教学内容:1. 分式的乘法运算:分子乘分子,分母乘分母;2. 分式的除法运算:将除法转化为乘法,即乘以倒数;3. 特殊情况的处理:分式的值为0和不存在的情况。

三、教学重点与难点:1. 教学重点:分式的乘法运算规则和除法运算规则;2. 教学难点:特殊情况下分式的处理和实际应用。

四、教学方法:1. 采用直观演示法,通过例题展示分式的乘除法运算过程;2. 采用归纳法,引导学生总结分式的乘除法运算规则;3. 采用小组讨论法,让学生合作解决实际问题。

五、教学准备:1. 教案、PPT、黑板;2. 练习题;3. 教学工具:多媒体设备。

【教学环节】1. 导入:通过生活实例引入分式的乘除法运算,激发学生兴趣。

2. 新课讲解:讲解分式的乘法运算规则,举例说明,让学生跟随老师一起动手操作。

3. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

4. 讲解分式的除法运算:讲解除法转化为乘法的原理,举例说明。

5. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

6. 特殊情况处理:讲解分式的值为0和不存在的情况,举例说明。

7. 课堂练习:布置练习题,让学生独立完成,巩固新知识。

8. 总结:让学生总结分式的乘除法运算规则,加深印象。

9. 课堂小测:进行课堂小测,了解学生掌握情况。

10. 课后作业:布置课后作业,让学生巩固所学知识。

六、教学评估:1. 通过课堂练习和小测,评估学生对分式乘除法的理解和应用能力。

2. 观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的策略。

3. 收集学生的课后作业,分析他们的错误类型和解决问题的思路。

七、教学反思:1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高学生的学习兴趣。

2. 分析学生的学习困难,针对性地调整教学内容和策略。

3.2分式乘除法全面版

3.2分式乘除法全面版

((a a 2 1 ))2 a ((a 2 1 ))a (a ( 2 1 ))(a a 2 )a 2 (1 ) 返回
只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其 目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小 小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去 丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的 渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于 “我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们 奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约 约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局, 或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开 了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少, 走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会 了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟! 一生有多少 属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了 对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。 见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的 藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的 沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁? 长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时

青岛版数学八年级上册3.2《分式的约分》教学设计

青岛版数学八年级上册3.2《分式的约分》教学设计

青岛版数学八年级上册3.2《分式的约分》教学设计一. 教材分析《分式的约分》是青岛版数学八年级上册第三章第二节的内容。

本节课主要让学生掌握分式的约分方法,理解分式约分的原理,并能够灵活运用约分方法解决实际问题。

教材通过具体的例子引导学生探索分式约分的过程,总结约分的规律,为学生提供丰富的学习资源。

二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念、分式的乘除法运算。

通过观察、操作、交流、归纳等活动,学生能够理解分式约分的概念和方法,并能够应用约分方法解决实际问题。

三. 教学目标1.理解分式约分的概念,掌握分式约分的方法和步骤。

2.能够运用分式约分方法解决实际问题。

3.培养学生的数学思维能力,提高学生的数学素养。

四. 教学重难点1.重点:分式约分的方法和步骤。

2.难点:灵活运用分式约分方法解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探索、发现问题,培养学生的独立思考能力。

2.运用合作学习法,让学生通过小组讨论、交流,共同解决问题,提高学生的团队协作能力。

3.采用案例教学法,结合具体例子,让学生直观地理解分式约分的概念和方法。

六. 教学准备1.准备相关的教学案例和练习题,以便进行课堂练习和巩固。

2.准备教学PPT,以便进行多媒体教学。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,如:“某工厂生产A、B两种产品,A产品每件利润为20元,B产品每件利润为30元。

如果该工厂生产10件A产品和5件B产品,总利润为650元,那么该工厂生产1件A产品和1件B产品的利润分别是多少?”2.呈现(10分钟)呈现问题,引导学生观察、分析问题,发现其中的关系。

如:“10件A产品和5件B产品的利润可以表示为10 * 20 + 5 * 30,而总利润为650元,可以表示为10 * x + 5 * y,其中x表示1件A产品的利润,y表示1件B产品的利润。

”3.操练(10分钟)让学生进行小组讨论,共同解决问题。

分 式 的 乘 除 法

分 式 的 乘 除 法

分式的乘除法(一)教学知识点:1.掌握分式乘除法的运算法则。

2.会进行分式的乘除法的运算。

(二)能力训练要求:1.会通过类比的方法来理解和掌握分式的乘除法法则。

2.熟练运用分式乘除法法则,将分式乘除法全部化归为分式乘法进行计算。

(三)情感与价值观要求:1.通过师生共同交流、探讨,使在掌握知识的基础上,认识事物之间的内在联系,获得成就感。

2.培养的创新意识和应用的意识。

教学重点让掌握分式乘除法的法则及其应用。

教学难点分子、分母是多项式的分式的乘除法的运算。

教学方法启发引导,小组合作。

教具准备多媒体课件、投影仪教学过程一、回顾旧知,引出新知设计说明:利用“数、式通性”“类比转化”的思想方法引发学生猜测,归纳分式乘除法运算法则,从而获得新知。

师:我们一起来看一道计算题,你会做吗?(黑板出示)生:(教师黑板书写答案)师:你能用文字来叙述出你做这道题的思路吗?生:分子乘以分子得到分子,分母乘以分母得到分母。

师:对,这就是小学所学的分数的乘法,这位同学说的很好。

我们大家一起来看看分数的乘法法则多媒体出示分数乘法法则:两个分数相乘,分母与分母相乘的积做为积的分母,分子与分子相乘的积做为分子二、建立模型,引入新课师:刚才我们做的是分数之间的乘法运算,那换成我们刚学过的分式,(黑板出示),大家来猜想一下应该等于多少呢?生:等于师:同学们还有没有不同的答案?(让学生讨论)师:对,分式的乘法与分数乘法类似,那你能说出分式乘法的法则吗?生:两个分式相乘,分母与分母相乘的积做为积的分母,分子与分子相乘的积做为积的分子。

师:说的太棒了,他已经帮我们归纳出了分式的乘法法则,(我们大家掌声鼓励一下)。

大家把他说的和幻灯片上分数乘法法则相对比一下,看一看有什么不同。

生:法则完全一样,一个是分数的乘法,一个是分式的乘法师:对,这个法则即适用与小学的分数乘法运算,同样也适用于分式之间的乘法运算。

我们看看分式的乘法法则教师采用多媒体用“分式”两字覆盖“分数”两字三、尝试练习师:现在我们大家来试一试,现在大家看刚才发的学案上面的1、2题,,你知道它等于多少吗?(口答)生:1题答案,生:2题答案四、强化拓展训练师:刚才两位同学回答的很好,现在请把3、4题做在你们的学案上(,)。

分式的乘除运算讲解

分式的乘除运算讲解

分式的乘除运算讲解1.引言1.1 概述分式是数学中重要且常见的概念,在解决实际问题中具有广泛的应用。

分式的乘除运算是我们在求解分式相关问题时必须掌握和应用的基础运算。

分式的乘法运算是指将两个分式相乘,得到一个新的分式。

而分式的除法运算则是将一个分式除以另一个分式,同样得到一个新的分式。

在实际生活中,我们经常遇到需要对分式进行乘除运算的情况,比如在购物中打折优惠、计算比例和比率等等。

为了正确进行分式的乘除运算,我们需要先了解分式的定义与性质。

分式可以看作是分子和分母之间带有分数线的数学表达式。

在分式中,分子表示分数的分子部分,而分母表示分数的分母部分。

分式的分子和分母都可以是整数、变量、或两者的组合。

在乘法运算中,我们将两个分式相乘,只需将它们的分子相乘,分母相乘,得到的积即为乘法结果的分子与分母。

而在除法运算中,我们将一个分式除以另一个分式,需要将被除数的分子与除数的分母相乘,被除数的分母与除数的分子相乘,从而得到商的分子与分母。

通过了解分式乘除运算的步骤和性质,我们可以更加灵活地对分式进行运算,解决实际问题中的各种分式运算题目。

分式的乘除运算不仅是数学中重要的基础知识,也是我们日常生活中的实际运用。

掌握了分式的乘除运算,我们能够更好地理解和应用数学知识,提高数学解题的能力和运算的准确性。

综上所述,本文将详细介绍分式的乘除运算的定义、性质以及运算步骤,并总结其应用与拓展。

通过学习与掌握分式的乘除运算,我们可以在数学解题中更加得心应手,为日常生活中的计算和问题解决提供帮助。

1.2 文章结构本文将按照以下结构进行分析和讲解分式的乘除运算。

2. 正文2.1 分式的乘法运算2.1.1 定义与性质2.1.2 乘法运算的步骤2.2 分式的除法运算2.2.1 定义与性质2.2.2 除法运算的步骤3. 结论3.1 总结分式的乘除运算在本章节中,我们通过详细解释分式的乘法与除法运算,掌握了其定义、性质以及实际操作步骤。

分式的乘除法练习及答案

分式的乘除法练习及答案

分式的乘除法练习及答案分式的乘除法练及答案运算法则:1)分式乘法法则:$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$2)分式的除法法则:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$3)分式的乘方法则:$\frac{a}{n} \cdot \frac{n}{b} = \frac{a}{b}$1.下列各式的约分正确的是()A。

$\frac{2}{2(a-c)^2} = \frac{1}{a-c}$B。

$\frac{abc}{233+(a-c)^3} = \frac{abc}{233+a^3-3a^2c+3ac^2-c^3}$C。

$\frac{2}{a-b} = \frac{2}{a-b}$D。

$\frac{2a-c}{1-4a+c^2+2a^2} = \frac{2a-c}{(1+2a)(1-c)}$2.在等式$\frac{a^2+aM}{a+1} = \frac{a^2-1}{a}$中,M的值为()A。

$a$B。

$a+1$C。

$-a$D。

$a-1$3.XXX在下面的计算题中只做对了一道题,你认为他做对的题目是()A。

$\frac{111b}{1bab} \div 2 = \frac{1}{b}$B。

$\frac{2}{2} \div \frac{2}{2} = 1$C。

$\frac{2}{2} \cdot \frac{2}{2} = 1$D。

$(x-y) \div \frac{1}{2} = 2(x-y)$4.将分式$\frac{2}{x+1}+\frac{x}{x+1}$化简得,$x$满足的条件是$x \neq -1$5.化简1)$\frac{-x^2}{2b} = -\frac{x^2}{2b}$2)$\frac{2y}{3a} \cdot \frac{a}{2} = \frac{y}{3}$6.计算frac{2b^2-3ab^2x^2}{2} \div \frac{-3ab}{1+3ax} =\frac{2b(1-3ax)}{9a}$frac{x^2-y^2}{x^2+xy-a-2} \div \frac{x+y}{2y-a} \cdot \frac{2a^2+2a}{2a^2+2a} = \frac{(x-y)(2a+y)}{(x+2y-a)(2a+2y)}$frac{4m^2-4m+1}{4m^2-1} \div \frac{2}{2} = \frac{2m-1}{2m+1}$frac{(4x-y)}{2x-ym+1} \cdot \frac{m-1}{m+1} \div \frac{-4}{(7n^2-4x^2)(-8x^2)} = \frac{(4x-y)(m-1)(7n^2-4x^2)}{2(m+1)x^2}$frac{2xy}{-ynm} \div \frac{5}{4x^2} = -\frac{8x^3}{5nymy}$frac{a^2-14}{a^2+4a-1} \div (a+1) \cdot \frac{2a-1}{a+4} = \frac{2a-1}{a^2+4a-1}$。

八年级上册数学分式的乘除

八年级上册数学分式的乘除

在八年级上册的数学课程中,我们学习了一个重要的主题——分式的乘除。

分式是一种特殊的数学表达式,它包含了一个或多个字母,这些字母表示未知数。

分式的乘除运算与整数和小数的乘除运算有所不同,需要遵循一定的规则。

首先,我们来学习分式的乘法。

分式的乘法是将两个分式相乘,得到一个新的分式。

在进行乘法运算时,我们需要先将分子与分子相乘,然后将分母与分母相乘。

例如,计算2/3乘以4/5,我们可以得到(2*4)/(3*5)=8/15。

接下来,我们来学习分式的除法。

分式的除法是将一个分式除以另一个分式,得到一个新的分式。

在进行除法运算时,我们需要先将被除数的倒数乘以除数,然后进行乘法运算。

例如,计算2/3除以4/5,我们可以得到(2*5)/(3*4)=10/12=5/6。

在学习分式的乘除时,我们需要掌握一些基本的技巧和规律。

例如,我们可以将复杂的分式化简为最简形式,这样可以简化计算过程。

此外,我们还需要注意约分和通分的概念,这对于解决实际问题非常重要。

数学分式的计算方法

数学分式的计算方法

数学分式的计算方法数学分式是数学中常见的一种表达形式,它由分子和分母组成,分子和分母都可以是数或者变量的组合。

在计算数学分式时,我们需要掌握一些基本的计算方法和技巧。

一. 分式的加减法1. 分式的加法:当两个分式的分母相同时,可以直接将分子相加,并保持分母不变。

例如,计算1/3 + 2/3,由于分母相同,所以直接将分子相加得到3/3,即1。

2. 分式的减法:当两个分式的分母相同时,可以直接将分子相减,并保持分母不变。

例如,计算4/5 - 2/5,由于分母相同,所以直接将分子相减得到2/5。

3. 分式的加减法:当两个分式的分母不同时,我们需要先找到它们的最小公倍数作为通分的分母,并将分子进行相应的乘法运算后再进行加减。

例如,计算1/2 + 1/3,首先找到2和3的最小公倍数为6,然后将分子进行相应的乘法运算得到3/6 + 2/6,最后得到5/6。

二. 分式的乘除法1. 分式的乘法:将两个分式的分子相乘作为新的分子,分母相乘作为新的分母。

例如,计算2/3 * 4/5,将分子相乘得到8,分母相乘得到15,所以结果为8/15。

2. 分式的除法:将第一个分式的分子乘以第二个分式的倒数,作为新的分子,第一个分式的分母乘以第二个分式的分子,作为新的分母。

例如,计算2/3 ÷ 4/5,将2/3乘以5/4得到10/12,最后可以化简为5/6。

三. 分式的化简与约分1. 分式的化简:将一个分式的分子和分母同时除以它们的最大公约数,可以得到一个化简后的分式。

例如,将12/16化简为3/4,因为12和16的最大公约数为4,所以同时除以4得到3/4。

2. 分式的约分:将一个分式的分子和分母同时除以它们的公因子,可以得到一个约分后的分式。

例如,将15/25约分为3/5,因为15和25的公因子为5,所以同时除以5得到3/5。

四. 分式的整数部分和真分数部分1. 分式的整数部分:当一个分式的分子大于或等于分母时,可以将其化简为一个整数和一个真分数相加。

分式乘除经典例题+习题

分式乘除经典例题+习题

第十九讲 分式的乘除【要点梳理】 要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c acb d bd⋅=,其中a b c d 、、、是整式,0bd ≠.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠.要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘. (3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分. (4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成nn a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a b a b a b b b b ---⎛⎫=≠ ⎪⎝⎭.【典型例题】 类型一、分式的乘法例1、计算:(1)422449158a b xx a b;(2)222441214a a a a a a -+--+-. 【思路点拨】(1)中分子、分母都是单项式,直接用分式乘法法则计算,结果要通过约分化简;(2)中分子、分母都是多项式,要先把可分解因式的分子、分母分解因式,然后用乘法法则化简计算. 【答案与解析】解:(1)422449158a b x x a b 422449315810a b x bx a b x==. (2)222441214a a a a a a -+--+-22(2)1(1)(2)(2)a a a a a --=-+-22(2)(1)(1)(2)(2)a a a a a --=-+-222(1)(2)2a a a a a a --==-++-.【总结升华】分式的乘法运算的实质就是运用分式的基本性质把分式约分化简的过程,熟练之后也可先约分后运用乘法法则计算. 举一反三: 【变式】计算.(1)26283m x xm ;(2)22122x x x x+-+ 【答案】解:(1)原式22621283242m x mx xx m mx ===;(2)原式22112(2)2x x x x x x+==-+-;类型二、分式的除法例2、 计算:(1)222324a b a bc cd-÷;(2)2222242222x y x y x xy y x xy -+÷+++. 【思路点拨】(1)先运用法则将分式的除法转化为乘法,然后约分化简;(2)先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母分解因式,然后约分化简. 【答案与解析】解:(1)222324a b a b c cd -÷22222244236a bcd a b cd c a b c a b ==--23dc=-. (2) 2222242222x y x y x xy y x xy-+÷+++2(2)(2)2()()2x y x y x x y x y x y+-+=++22(2)24x x y x xyx y x y --==++.【总结升华】分式的除法和实数的除法一样,均是转化为乘法来完成的. 举一反三: 【变式】化简:.【答案】 解:原式=•=.类型三、分式的乘方例3、(2014秋•华龙区校级月考)下列计算正确的是( )A. B.C. D.【思路点拨】把四个选项先利用分式的乘方法则,将分子分母分别乘方,然后利用积与幂的乘法法则,积的乘方的运算法则,积的乘方等于积中每一个因式分别乘方并把结果相乘,幂的乘方法则是底数不变,指数相乘,即可计算出结果,得到计算正确的选项.【答案】C.【解析】解:A、,本选项错误;B、,本选项错误;C、,本选项正确;D、,本选项错误.所以计算结果正确的是C.【总结升华】此题考查了分式的乘方法则,考查了积的乘方及幂的乘方法则,完全平方公式的运用,是一道基础题.类型四、分式的乘除法、乘方的混合运算例4、计算:(1)(2016春•淅川县期中)(﹣2ab﹣2c﹣1)2÷×()3;(2)22 2223()a b aba abb b a⎛⎫-⎛⎫÷+⎪ ⎪-⎝⎭⎝⎭.【思路点拨】先算乘方,再算乘、除.【答案与解析】解:(1)(﹣2ab﹣2c﹣1)2÷×()3 =﹣••=﹣.(2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭ 2222232()1()[()]()a b ab b a a b b a -=+-22222332()()1()()a b a b a b b a a b a b +-=+-211()a a b a ab==++.【总结升华】(1)题中有除法和乘方运算,应先算乘方,要特别注意符号的处理.(2)本题是乘除混合运算,首先把除法运算转化为乘法运算,再用乘法运算法则计算. 举一反三:【变式】计算:(1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)2222()m n n m m nm n mn m --+⎛⎫÷⎪-⎝⎭. 【答案】解: (1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23263382633312212b b b a a b a b a a a ba b ⎛⎫⎛⎫=-÷-÷==⎪ ⎪⎝⎭⎝⎭. (2)2222()m n n m m n m n mn m --+⎛⎫÷ ⎪-⎝⎭22222()()()()m n m n m n m m nm n m n m n mn +---==-+.【巩固练习】 一.选择题 1.计算261053ab cc b 的结果是( )A .24a cB .4aC .4a cD .1c2. (2016•迁安市一模)化简:(a ﹣2)•的结果是( )A .a ﹣2B .a+2C .D .3.(2015•蜀山区一模)化简的结果是( )A.12B.1a a + C. D.4.分式32)32(ba 的计算结果是( ) A .3632b aB .3596b aC .3598b aD .36278b a5.下列各式计算正确的是( )A .yx y x =33B .326m m m =C .b a ba b a +=++22D .b a a b b a -=--23)()(6.22222nm m n m n ⋅÷-的结果是( )A .2n m -B .32nm -C .4mn -D .-n二.填空题7.1a c b c÷⨯_____; 2233y xy x -÷_____.8.389()22x yy x⋅-=______;=+-÷-x y x x xy x 33322______. 9.(2015•泰安模拟)化简的结果是 .10.如果两种灯泡的额定功率分别是21U P R =,225U P R=,那么第一只灯泡的额定功率是第二只灯泡额定功率的________倍.11.3322()a bc =____________;=-522)23(z y x ____________. 12.222222.2ab b a b a ab b a ab+-=++-______. 三.解答题13. (2016•黄石)先化简,再求值:÷•,其中a=2016.14.阅读下列解题过程,然后回答后面问题计算:2111ab c d b c d÷⨯÷⨯÷⨯解:2111ab c d b c d÷⨯÷⨯÷⨯=2a ÷1÷1÷1① =2a . ②请判断上述解题过程是否正确?若不正确,请指出在①、②中,错在何处,并给出正确的解题过程.15.小明在做一道化简求值题:22222().,x xy y x yxy x xy x-+--÷他不小心把条件x 的值抄丢了,只抄了y =-5,你说他能算出这道题的正确结果吗?为什么?【答案与解析】 一.选择题 1.【答案】C ; 【解析】 ∵2261061045353ab c ab c ac b c b c==,∴ 选C 项. 2.【答案】B ;【解析】原式=(a ﹣2)•=a+2,故选B .3.【答案】B ;【解析】解:原式=×=.故选B.4.【答案】D ;【答案】23663333228()3327a a a b b b==. 5.【答案】D ;【解析】3322()()()()a b a b a b b a a b --==---. 6.【答案】B ;【解析】222222222223n n m n m m m m n n m m n n-÷⋅=-⋅⋅=-.二.填空题7.【答案】2abc;292x y -;【解析】2111a a ac b c b c c bc÷⨯=⨯⨯=.22223933322y x x xy xy x y y -÷=-⨯=-. 8.【答案】218x-;-1; 【解析】328918()22x y y x x⋅-=-;22233()3133()x xy x y x x y x x x x x y --+-÷=⨯=---. 9.【答案】;【解析】解:原式=••=.10.【答案】5;【解析】222122555U U U RP P R R R U ÷=÷=⨯=. 11.【答案】9368a b c;1010524332x y z -;【解析】3399323636228()a a a bc b c b c==;25101052510510533243()2232x x x y z y z y z -=-=-. 12.【答案】ba; 【解析】()()()()()2222222.2b a b a b a b ab b a b ba ab b a ab a a b aa b ++-+-=⋅=++--+. 三.解答题13.【解析】 解:原式=••=(a ﹣1)•=a+1当a=2016时,原式=2017. 14.【解析】解:第①步不正确,因为乘除运算为同级运算时,应从左到右依次计算.应为:22111111111a b c d a b c d b b c c d d ÷⨯÷⨯÷⨯=⨯⨯⨯⨯⨯⨯=2222a b c d.15.【解析】解:22222().x xy y x yxy x xy x-+--÷=()()22xyx yx x y xx y ---⨯⨯- =5y -=这道题的结果与x 的值无关,所以他能算出正确结果是5.。

分式的运算(含答案)

分式的运算(含答案)

分式的运算【知识精读】1. 分式的乘除法法则;当分子、分母是多项式时,先进行因式分解再约分。

2. 分式的加减法(1)通分的根据是分式的基本性质,且取各分式分母的最简公分母。

求最简公分母是通分的关键,它的法则是:①取各分母系数的最小公倍数;②凡出现的字母(或含有字母的式子)为底的幂的因式都要取;③相同字母(或含有字母的式子)的幂的因式取指数最高的。

(2)同分母的分式加减法法则(3)异分母的分式加减法法则是先通分,变为同分母的分式,然后再加减。

3. 分式乘方的法则(n为正整数)4. 分式的运算是初中数学的重要内容之一,在分式方程,求代数式的值,函数等方面有重要应用。

学习时应注意以下几个问题:(1)注意运算顺序及解题步骤,把好符号关;(2)整式与分式的运算,根据题目特点,可将整式化为分母为“1”的分式;(3)运算中及时约分、化简;(4)注意运算律的正确使用;(5)结果应为最简分式或整式。

下面我们一起来学习分式的四则运算。

【分类解析】例1:计算的结果是()A. B. C. D.分析:原式故选C说明:先将分子、分母分解因式,再约分。

例2:已知,求的值。

分析:若先通分,计算就复杂了,我们可以用替换待求式中的“1”,将三个分式化成同分母,运算就简单了。

解:原式例3:已知:,求下式的值:分析:本题先化简,然后代入求值。

化简时在每个括号内通分,除号改乘号,除式的分子、分母颠倒过来,再约分、整理。

最后将条件等式变形,用一个字母的代数式来表示另一个字母,带入化简后的式子求值。

这是解决条件求值问题的一般方法。

解:故原式例4:已知a、b、c为实数,且,那么的值是多少?分析:已知条件是一个复杂的三元二次方程组,不容易求解,可取倒数,进行简化。

解:由已知条件得:所以即又因为所以例5:化简:解一:原式解二:原式说明:解法一是一般方法,但遇到的问题是通分后分式加法的结果中分子是一个四次多项式,而它的分解需要拆、添项,比较麻烦;解法二则运用了乘法分配律,避免了上述问题。

八年级下册数学教案分式的乘除(三)

八年级下册数学教案分式的乘除(三)

八年级下册数学教案分式的乘除(三)一、教学目标1.掌握分式的乘法、除法运算方法;2.能够使用分式的乘法、除法运算方法解决实际问题;3.培养学生解决复杂问题的能力。

二、教学重难点1.分式的乘法、除法运算方法;2.解决实际问题的能力。

三、教学内容本课时的教学内容为分式的乘除法运算。

3.1 分式的乘法运算分式的乘法运算是指两个分数的乘积,先将分数化为带分数或者假分数的形式,然后再用乘法运算法则进行计算。

如下面例子所示:$$\\frac{2}{3} \\times \\frac{5}{6} = \\frac{2}{3}\\times \\frac{5}{6} \\times \\frac{3}{3} \\times\\frac{2}{2} = \\frac{20}{18} = \\frac{10}{9}$$3.2 分式的除法运算分式的除法运算是指两个分数的商,首先将分式转化为乘法形式,然后再进行分子与分母的同除。

如下面例子所示:$$\\frac{2}{3} \\div \\frac{5}{6} = \\frac{2}{3}\\times \\frac{6}{5} = \\frac{2 \\times 6}{3 \\times 5} = \\frac{12}{15} = \\frac{4}{5}$$四、教学过程4.1 概念讲解老师向学生介绍分式的乘法、除法运算方法及步骤,给出一些简单的例子。

4.2 分组练习学生分成小组,完成下面这个练习。

1.$\\frac{2}{3} \\times \\frac{5}{6} =$2.$\\frac{8}{15} \\times \\frac{3}{4} =$3.$\\frac{1}{3} \\div \\frac{5}{6} =$4.$\\frac{12}{35} \\div \\frac{15}{28} =$4.3 讲解注意点老师针对学生在练习中出现的问题进行讲解,并强调注意点。

分式的乘除法

分式的乘除法

分式的乘除法分式的乘除法(通用9篇)分式的乘除法篇1第一课时一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.第 1 2 页分式的乘除法篇2一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇3第一课时一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇4一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇5一、教学过程【复习提问】1.分式的基本性质?2.分式的变号法则?【新课】数学小笑话:(配上漫画插图幻灯片)从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他立刻欣喜地说:“够了!够了!”问:这个富家子弟为什么会犯这样的错误?分数约分的方法及依据是什么?1.提出课题:分式可不行以约分?依据什么?怎样约分?约到何时为止?同学分组争论,最终达成共识.2.老师小结:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1 约分:(1);请同学观看思索:①有没有公因式?②公因式是什么?解:.小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,留意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.(2);请同学分析如何约分.解:.小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②留意对分子、分母符号的处理.(3);解:原式.(4);解:原式.(5);解:原式.例2 化简求值:.其中,.分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算供应了便利条件.解:原式.当,时..二、随堂练习教材P65练习1、2.三、总结、扩展1.约分的依据是分式的基本性质.2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.3.若分式的分子、分母中有多项式,则要先分解因式,再约分.四、布置作业教材P73中2、3.补充思索争论题:1.将下列各式约分:(1);(2);(3)2.已知,则五、板书设计分式的乘除法篇6各位评委:下午好!今日我说课的题目是《分式的乘除法(第1课时)》,所选用是人教版的教材。

分式的乘除法教学设计及教学反思

分式的乘除法教学设计及教学反思

分式的乘除法教学设计及教学反思§3.2 分式的乘除法教学设计教学⽬标(⼀)教学知识点1.分式乘除法的运算法则,2.会进⾏分式的乘除法的运算.(⼆)能⼒训练要求1.类⽐分数乘除法的运算法则.探索分式乘除法的运算法则.2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作⽤,发展有条理的思考和语⾔表达能⼒.3.⽤分式的乘除法解决⽣活中的实际问题,提⾼“⽤数学”的意识.(三)情感与价值观要求1.通过师⽣共同交流、探讨,使学⽣在掌握知识的基础上,认识事物之间的内在联系,获得成就感.2.培养学⽣的创新意识和应⽤数学的意识.●教学重点让学⽣掌握分式乘除法的法则及其应⽤.●教学难点分⼦、分母是多项式的分式的乘除法的运算.●教学⽅法引导、启发、探求●教学过程Ⅰ.创设情境,引⼊新课[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?[⽣]观察上⾯运算,可知:两个分数相乘,把分⼦相乘的积作为积的分⼦,把分母相乘的积作为积的分母;两个分数相除,把除数的分⼦和分母颠倒位置后,再与被除数相乘.即×=;÷=×=.这⾥字母a,b,c,d都是整数,但a,c,d不为零.[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法.Ⅱ.讲授新课1.分式的乘除法法则[师⽣共析]分式的乘除法法则与分数的乘除法法则类似:两个分式相乘,把分⼦相乘的积作为积的分⼦,把分母相乘的积作为积的分母;两个分式相除,把除式的分⼦和分母颠倒位置后再与被除式相乘.2.例题讲解请同学们认真阅读课本74页例1和76页例2体会法则在解题中的运⽤.并思考下列问题:1.分式的除法运算归根结底化成了什么运算?2.当分式的分⼦、分母是多项式时应怎么办?3.当运算结果不是最简分式时,应怎么办?[例1]计算:(1)·;(2)·.分析:(1)将算式对照乘除法运算法则,进⾏运算;(2)强调运算结果如不是最简分式时,⼀定要进⾏约分,使运算结果化为最简分式.解:(1)·===;(2)·==.[例2]计算:(1)3xy2÷;(2)÷分析:(1)将算式对照分式的除法运算法则,进⾏运算;(2)当分⼦、分母是多项式时,⼀般应先分解因式,并在运算过程中约分,可以使运算简化,避免⾛弯路.解:(1)3xy2÷=3xy2·==x 2;(2)÷=×===Ⅲ.随堂练习⾃学效果反馈(⼀)⾃学效果反馈(⼆)1、计算(1)(2)(3)(a 2-a )÷(4)÷ 2、计算正确吗?⾃学效果反馈(三)做⼀做 b b a a b -+?-2239aba b a a b a b a --?+-2224( 1 ) 2 a b b a ?1计算: ( 4 ) 22234 b 8a ba ÷( 3 )b a b a 3 2÷( 2 ) xy ab b a y x 89 272322?221a a =÷=b b a 12÷()3 123222+÷+--+x x x x x 22224n m n m n m ???? ??-÷⑴⑵通常购买同⼀品种的西⽠时,西⽠的质量越⼤,花费的钱越多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北 师 • 八 课首 北 师 大 大•八 年 级《 数 数 ( 下() 》 ) 》 级 《 学学 下
2
1
教学目标、重点、难点
经历探索分式的乘除运算法则的过程,并能结合具体 情境说明其合理性; 会进行简单分式的乘除运算,具有一定的代数化归 能力。 能解决一些与分式有关的简单的实际问题.
分式的乘除法则、 重点: 乘除法运算的结果的化简.
难点: 法则使用后对分式的化简.
2
回顾与思考
回顾与思考
1、观察下列运算,你想到了什么?说出来与同学们分享. 1 2 4 2 4 8 ; 3 5 3 5 15 2 5 2 5 2 10 ; 7 9 7 9 63 3 2 4 2 5 2 5 5 ; 3 5 3 4 3 4 6 4 5 2 5 9 5 9 45 . 7 9 7 2 7 2 14
做一做 P68
你会挑西瓜吗?
通常购买同一品种的西瓜时,西瓜的质量越大,花 费的钱越多. 因此人们希望西瓜瓤占整个西瓜的比例 越大越好. 假如我们把西瓜都看成球形,并把西瓜瓤的 密度看成是均匀的, 西瓜的皮厚都是d . (1) 西瓜瓤与西瓜的体积各是多少? (2) 西瓜瓤与西瓜的体积的比是多少? (3) 买大西瓜合算 买大西瓜合算还是买小西瓜合算? 设西瓜的半径为R , 球的体积公式是 V 4 R3 3 4 ( R d )3 则: (1) V 4 R3 , V . 西瓜瓤 3 西瓜 3 4 ( R d )3 V西瓜瓤 3 ( R d )3 (2) ( R d )3= (1 d )3 . = R 3 V西瓜 4 R3 R R 3 d 小 , d 越 大 ,1 d 越 大 , (1 d )3 越 大 . (3) R越大, R 越 6 R R R
10
2
分式(2)

习题3.3

P66
1、2 。
11
a c a d ad
【分数的乘除法法则 】 两个分数相乘, 把分子 相乘的积作为积的分子, 把分母相乘的积作为积的 分母; 两个分数相除, 把除式 的分子分母颠倒位置后, 再与被除式相乘.
【分式的乘除法法则 】
两个分式相乘, 把分子 相乘的积作为积的分子, 把分母相乘的积作为积的 分母; 两个分式相除, 把除式 的分子分母颠倒位置后, 再与被除式相乘.
瞧,这真 像兄弟俩!
4
例题解析
例 1
怎样进行分式的乘法运算?
2 a 2
1 . 2 a 2 a 2a
y = 2a ;
2 6a 2y ; 计算: 1 8y 3a2
2y 2 解: 1 6a 2 8y 3a
6a2 2y 2 6∙2 ∙ ay2 8 y 3a2 = 8∙3 ∙ a2y
将除法转化为 乘法,再按乘法 去做. 7
随堂练习 P69
计算:
自我发展的平台
2 a a a ; a1
2
1 a b2 ; b a
x2 1 x 1 . 3 y y2
x2 1 x 1 3 y y2 2 x2 1 y y x 1 y 2 x 1 x 1 y x 1
a 2 1 a 2 1 2 21 . 2 a 2 a 2a a 2 aa 2 a 2a
你是否 悟到了怎么去做 分式的乘法运算?
分式乘法运算,就是运用分 式的运算法则和分式的基 本性质,进行约分化简,其结 果通常要化成最简分式或 整式.
5
例题解析பைடு நூலகம்
怎样进行分式的除法运算?
6y 2 a 1 a2 1 . 2 例 计算: 1 3 xy 2 2 ; x a 4a 4 a2 4 2 6y 2 2 a 1 a2 1 解 : 1 3 xy 2 2 x a 4a 4 a2 4 x 2 a 1 a2 4 3 xy 2 2 6y a 4a 4 a 2 1
y x x y 3 ; yx xy ax 4 2 3a x
7 2 2
a x a x a . 2 2 a
2 2 4 2 3
9
感悟与反思
1、分式乘、除法法则; 2、分式乘方法则; 3、分式运算结果的要求; 4、这节课你有哪些收获? 学习方法指导: 类比分数的乘、除、乘方,掌握分式的乘、 除、乘方; 因式分解、约分是分式化简的必经途径。
3a y 4mn 3 1 ; 3 2 2mn 9m n
2 2 2
分式的乘方, 把分子分母各自乘方.
4
a x x 2 y ay
2 2 2
3
2
a ; xy
b )n b n ( a an
3 xy2 x 6y 2
1 x2; 2

a2 4a 4a2 1
a 1a2 4
你是否 悟到了怎么去做 分式的除法运算? 应该注意什么?
a 1a 2a 2 a 22 a 1a 1
a 2 a 2 a 1 2a 2 . a a2
2、猜一猜下面的式子怎么运算,与同伴交流你的想法.
1 b d ?
a c
2 b d ?
a c
用代数化的思想,把a,b,c,d看作数,就可以运用分数的 乘除法法则去进行运算.
3
分式的乘除法法则与分数类似
1 b d bd ;
a c ac
2 b d b c bc .
解 : 1 a b2 b a
2 a a a a1
2
a b2 ba
aa 1 a 1 a
1. a
aa 1a 1 a
a 1
2
y x 1
xy y .
a2 2a 1.
8
拓展练习 相同分式的乘法--乘方运算
相关文档
最新文档