用门电路构成的施密特触发器
施密特触发器工作原理
施密特触发器工作原理施密特触发器是一种常用的电子元件,它可以在输入信号达到一定阈值时产生输出,并且在输入信号下降到另一个阈值时再次产生输出。
它的工作原理基于正反馈的电路结构,下面我们将详细介绍施密特触发器的工作原理。
首先,施密特触发器由两个晶体管和若干个电阻器、电容器组成。
其中,两个晶体管的基极通过电阻器相连,形成一个正反馈回路。
当输入信号加到施密特触发器的输入端时,如果输入信号的幅值超过了一个特定的阈值,那么触发器的输出端就会产生一个高电平输出。
这个阈值通常称为上升沿触发点。
而当输入信号下降到另一个特定的阈值时,输出端就会产生一个低电平输出,这个阈值通常称为下降沿触发点。
其次,施密特触发器的工作原理是基于正反馈回路的特性。
当输入信号超过上升沿触发点时,输出端产生高电平输出,这个高电平输出会通过正反馈回路传递到另一个晶体管的基极,使得这个晶体管导通,从而进一步增强输出端的高电平信号。
这种正反馈的作用会使得输出信号的变化更加迅速和明显,从而形成一个明显的输出脉冲。
而当输入信号下降到下降沿触发点时,输出端产生低电平输出,这个低电平输出同样会通过正反馈回路传递到另一个晶体管的基极,使得这个晶体管截止,从而进一步减弱输出端的低电平信号。
这种正反馈的作用会使得输出信号的变化更加迅速和明显,从而形成一个明显的输出脉冲。
最后,施密特触发器的工作原理可以总结为,当输入信号超过上升沿触发点时,输出端产生高电平输出;当输入信号下降到下降沿触发点时,输出端产生低电平输出。
这种工作原理使得施密特触发器在数字电路中具有重要的应用,例如在脉冲发生器、频率倍增器、数字比较器等电路中都可以看到它的身影。
总之,施密特触发器是一种基于正反馈回路的电子元件,它的工作原理是基于输入信号的阈值触发点,通过正反馈回路产生明显的输出信号。
它在数字电路中有着广泛的应用,对于理解它的工作原理有助于我们更好地设计和应用数字电路。
数字电子技术基础第五版第十章
1. 原理分析
* 稳V 态 I 0 ,V O 下 1 ,( V O 1 V O : )V H A , V O ; H *V I后V , O0,进入暂 V O 1 稳 0,C 开 态始 ,放电 *当放 VA 至 VTH 后V , O1,返回稳态; V I后 C 重 , 新 充 至 V OH
暂稳态时, Vo1,V ,Co1开始0充电
C 充电V至 I2VTH 时,VI2又引起正反馈
VI2 VO VO1
这期间vd维持低电平
电路迅速返V回 O稳 0,VO 态 1VDD,C放电至没有电压 稳, 态恢 。复
稳态 V I 0 ,V 下 d 0 ,V I : 2 V D,V D O 0 ,(V O 1 V D)D C ,上无电 暂稳态时, Vo1,V ,Co1开始0充电
2. 性能参数计算 输出脉宽:
放电 回路
tw (R R o)C ln V V ( ( ) ) V V ( (0 t) ) (R R o)C ln V V O T H H
输出脉宽
输出脉 V O 0 时 冲间 宽 V A 从 ) 度 V O放 H 等 ( V 电 T于 的 H至 时间。
二、微分型单稳态触发器
则有: vAVTH R1R2R2VT
V TR 1R 2R2V TH(1R R 1 2)V TH
vA VT R2 R1 R2
VT+称为输入信号vI的正向阈值电压
3.当 v 从I 高电平 V逐D D渐下降时,有
VTH=
vI
vA
v o1
vo
设此时
VI =VT-
当 v 下I 降到使 vA 时V,电th 路的状态将迅速转换为
性能参数: 暂稳态输出的宽度
施密特触发电路特点、施密特触发电路工作原理
施密特触发电路是一种具有迟滞功能的比较器电路,其主要特点和工作原理如下:
特点:
1. 滞后现象(Hysteresis):施密特触发器有两个不同的阈值电压,即上限阈值电压(VIH或VTH+)和下限阈值电压(VIL 或VTH-)。
当输入信号从低电平上升时,一旦超过上阈值电压,输出状态就会改变;而当输出已经处于高电平后,只有当输入信号下降到低于下阈值电压时,输出才会再次翻转。
两个阈值之间的差值称为滞后电压或回差电压。
2. 噪声抑制能力:由于存在滞后特性,施密特触发器对输入信号中的噪声有很好的抑制作用。
只有噪声足够大以使输入信号跨越阈值范围时,输出才会发生变化,这样可以避免小幅度的噪声引起输出的不必要切换。
3. 波形整形:对于非理想的方波、正弦波或其他不规则波形的输入信号,施密特触发器能够将其转换为边沿陡峭、干净的数字信号,常用于波形整形应用中。
工作原理:
在施密特触发电路内部,正反馈机制被用来实现上述的滞后
行为。
电路通常包含一个比较器和一些额外的电阻和电容元件来提供正反馈。
当输入电压VIN逐渐增大:
- 当VIN小于下限阈值电压VIL时,输出保持在某一稳定状态(比如低电平)。
- 随着VIN继续增加并达到上限阈值电压VIH时,输出立即跳变到另一稳定状态(比如高电平)。
- 输出跳变的同时,正反馈通过电路设计使得即使输入电压略有下降,只要不降到下限阈值以下,输出仍会保持不变。
当需要将输出由高电平变为低电平时,VIN必须降低至低于下限阈值VIL,此时输出才会发生反向跳变。
因此,施密特触发电路以其独特的双阈值工作方式,在电子系统中广泛应用在信号检测、逻辑门电路、波形变换等领域。
施密特触发器的原理及特性
施密特触发器的原理及特性我们知道,门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。
施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。
在输入信号从低电平上升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压(),在输入信号从高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压()。
正向阈值电压与负向阈值电压之差称为回差电压()。
普通门电路的电压传输特性曲线是单调的,施密特触发器的电压传输特性曲线则是滞回的[图6.2.2(a)(b)]。
图6.2.1 用CMOS反相器构成的施密特触发器图6.2.2 图6.2.1电路的电压传输特性(a)同相输出(b)反相输出用普通的门电路可以构成施密特触发器[图6.2.1]。
因为CMOS门的输入电阻很高,所以的输入端可以近似的看成开路。
把叠加原理应用到和构成的串联电路上,我们可以推导出这个电路的正向阈值电压和负向阈值电压。
当时,。
当从0逐渐上升到时,从0上升到,电路的状态将发生变化。
我们考虑电路状态即将发生变化那一时刻的情况。
因为此时电路状态尚未发生变化,所以仍然为0,,于是,。
与此类似,当时,。
当从逐渐下降到时,从下降到,电路的状态将发生变化。
我们考虑电路状态即将发生变化那一时刻的情况。
因为此时电路状态尚未发生变化,所以仍然为,,于是,。
通过调节或,可以调节正向阈值电压和反向阈值电压。
不过,这个电路有一个约束条件,就是。
如果,那么,我们有及,这说明,即使上升到或下降到0,电路的状态也不会发生变化,电路处于“自锁状态”,不能正常工作。
图6.2.4 带与非功能的TTL集成施密特触发器集成施密特触发器比普通门电路稍微复杂一些。
我们知道,普通门电路由输入级、中间级和输出级组成。
如果在输入级和中间级之间插入一个施密特电路就可以构成施密特触发器[图6.2.4]。
02-31.2 施密特触发器电路结构及原理分析-课件
※ 施密特触发器电路结构及原理分析 ※
Schmitt Trigger
《数字电子技术基础》
第三十一讲 施密特触发器
■ 用门电路组成的施密特触发器
◆ 将两级反相器串接起来,同时通过分压电阻把输出端 的 电压反馈到输入端,就构成了施密特触发器电路。
CMOS门,阈值电压
VTH
1 2
第三十一讲 施密特触发器
小结——
1、无论T2由导通变截止还是由截止变导通,均 伴有正反馈过程,使输出端电压VO变得很陡峭;
2、由于R2>R3,所以使T1饱和导通时的VE必然 低于T2饱和导通时的VE值,因此,T1由截止变为导 通的输入电压VT+高于T1由导通变为截止时的输入电 压VT-,这样就得到了施密特触发特性。
vO
vO'
于是电路状态迅速转换为VO=VOH≈VDD,此时对应的输 入电平R1 R
2
VT
VT
R1
R2 R2
VTH
(1
R1 R2
)VTH
《数字电子技术基础》
第三十一讲 施密特触发器
(2)当VI从高电平VDD逐渐下降并达到VA=VTH时,VA 的下降又将引发另一个正反馈:
3、经计算可得此电路:
VT+ ≈ 1.7V VT- ≈ 0.8V △VT≈ 0.9V
课后练习
《数字电子技术基础》
第三十一讲 施密特触发器
■ 施密特触发电路的特点
施密特触发器(电路)是一种特殊的双稳态时序电 路,与一般双稳态电路比较,它具有两个明显的特点:
1、施密特触发器是一种优良的波形整形电路,因为 只要输入信号电平达到触发电平,输出信号就会从一个 稳态转变到另一个稳态,且通过电路内部的正反馈过程 可使输出电压的波形变得很陡。
施密特触发器
于是,电路的状态由vO VOL ≈ 0 迅速转换成vO VOH ≈VDD ,由此便可求得 上升过程中电路状态发生转换时对应的输入 电平VT+ ,即
vA
VTH
vO
R2 R1 R2
(vO
vI )
R2 R1 R2
VT +
整理后,可得
VT +
1
R1 R2
VTH
vA
VTH
vO
R2 R1 R2
(vO
vI )
R1 R1 R2
2VTH
R2 R1 R2
VT
整理后,可得
VT
1
R1 R2
VTH
其中, VT- 称为反向阈值电压。
将 VT+与 VT-之差定义为回差电压VT ,即
VT
VT+
VT
2 R1 R2
VTH
如图7-6所示,根据 VT+与 VT- 表达式画出施密特触发器的电 压传输特性。其中,图7-6(a)中, vO与vI 的高低电平是同相的, 所以也将这种形式的电压传输特性称为同相输出的施密特触发特
如图7-7所示为CMOS集成施密特触发器CD40106的内部结构。
图7-7 CD40106的内部结构
如图7-8所示为CD40106的电压传输特性以及阈值电压与供电 电压的关系曲线。
(a)电压传输特性
(b)阈值电压与供电电压的关系曲线
图7-8 CD40106的性能特性
如图7-9所示为CD40106的工作电压波形。
数字电子技术
施密特触发器
门电路组成 的施密特触
发器
集成施密特 触发器
施密特触 发器的应用
施密特触发器工作原理
施密特触发器工作原理
施密特触发器是一种常见的电路元件,用于产生非常稳定的数字信号输出。
它的工作原理基于正反馈和负反馈的结合,能够在输入信号超过一定阈值时切换输出状态。
在本文中,我们将详细介绍施密特触发器的工作原理及其应用。
首先,让我们来了解一下施密特触发器的基本结构。
它由两个电阻和一个正反馈的比较器组成。
当输入信号超过一定阈值时,比较器输出高电平,从而改变电路的状态。
这种正反馈的结构使得施密特触发器具有较高的噪声抑制能力和良好的稳定性。
施密特触发器的工作原理可以通过一个简单的电路图来说明。
当输入信号超过阈值Vt1时,比较器输出高电平,导通第一个电阻,从而使得输出电压为低电平。
当输入信号下降到阈值Vt2时,比较器输出低电平,截断第一个电阻,从而使得输出电压为高电平。
这样,施密特触发器就实现了在输入信号超过一定阈值时切换输出状态的功能。
施密特触发器在数字电路中有着广泛的应用。
例如,在脉冲发生器中,它可以产生稳定的脉冲信号;在数字系统中,它可以用于信号的整形和去除噪声;在电子开关中,它可以实现稳定的触发功能。
由于其稳定性和可靠性,施密特触发器在数字电路设计中扮演着重要的角色。
总之,施密特触发器是一种基于正反馈和负反馈结合的电路元件,能够产生稳定的数字信号输出。
它的工作原理简单明了,应用广泛。
通过本文的介绍,相信读者对施密特触发器的工作原理有了更深入的了解,希望能够对您的学习和工作有所帮助。
数电知识点汇总
数电知识点汇总一、数制与编码。
1. 数制。
- 二进制:由0和1组成,逢2进1。
在数字电路中,因为晶体管的导通和截止、电平的高和低等都可以很方便地用0和1表示,所以二进制是数字电路的基础数制。
例如,(1011)₂ = 1×2³+0×2² + 1×2¹+1×2⁰ = 8 + 0+2 + 1=(11)₁₀。
- 十进制:人们日常生活中最常用的数制,由0 - 9组成,逢10进1。
- 十六进制:由0 - 9、A - F组成,逢16进1。
十六进制常用于表示二进制数的简化形式,因为4位二进制数可以用1位十六进制数表示。
例如,(1101 1010)₂=(DA)₁₆。
- 数制转换。
- 二进制转十进制:按位权展开相加。
- 十进制转二进制:整数部分采用除2取余法,小数部分采用乘2取整法。
- 二进制与十六进制转换:4位二进制数对应1位十六进制数。
将二进制数从右向左每4位一组,不足4位的在左边补0,然后将每组二进制数转换为对应的十六进制数;反之,将十六进制数的每一位转换为4位二进制数。
2. 编码。
- BCD码(Binary - Coded Decimal):用4位二进制数来表示1位十进制数。
常见的有8421 BCD码,例如十进制数9的8421 BCD码为(1001)。
- 格雷码(Gray Code):相邻的两个代码之间只有一位不同。
在数字系统中,当数据按照格雷码的顺序变化时,可以减少电路中的瞬态干扰。
例如,3位格雷码的顺序为000、001、011、010、110、111、101、100。
二、逻辑代数基础。
1. 基本逻辑运算。
- 与运算(AND):逻辑表达式为Y = A·B(也可写成Y = AB),当A和B都为1时,Y才为1,否则Y为0。
在电路中可以用串联开关来类比与运算。
- 或运算(OR):逻辑表达式为Y = A + B,当A和B中至少有一个为1时,Y为1,只有A和B都为0时,Y为0。
数字电路练习题及答案--施密特触发器
2、施密特触发器在性能上有哪两个重要特点?(1)输入信号从低电平上升的过程中,电路状态转换时对应的输入电平,与输入信号从高电平下降过程中对应的输入转换电平不同。
(2)在电路状态转换时,通过电路内部的正反馈过程使输出电压波形的边沿变得很陡。
3、施密特触发器有哪些用途?(1)可以将边沿变化缓慢的信号波形整型为边沿陡峭的矩形波。
(2)可以将叠加在矩形脉冲高、低电平上的噪声有效地清除。
二、计算题:1、如图所示为一个用CMOS 门电路构成的施密特触发器,已知电源电压为10V ,Ω=k R 101;Ω=k R 202;求其正向阈值电压、负向阈值电压及回差电压。
(本题6分)解:(1)正向阈值电压为:(2分) (2)负向阈值电压为:(2分) (3)回差电压为:(2分) 解:(1)正向阈值电压为:V V R R V TH T 5.7210)20101()1(21=+=+=+(2分) (2)负向阈值电压为:V V R R V TH T 5.2210)20101()1(21=-=-=-(2分) (3)回差电压为:V V V V V V T T T 55.25.7=-=-=∆-+(2分)2、在图示的施密特触发器电路中,若G1和G2为74LS 系列与非门和反相器,它们的域值电压V V TH 1.1 ,,,二极管的导通压降,试计算电路的正向阈值电压、负向阈值电压和回差电压。
三、做图题:1、已知输入信号波形如图所示,试画出其输出波形。
四、综合题:1、在下图所示的施密特触发器电路中,已知1G 和2G 为CMOS 反相器,V V k R k R D D 15;30;1021=Ω=Ω=。
(1)、试计算电路的正向阈值电压+T V 负向阈值电压-T V 和回差电压T V ∆。
(5分) (2)、若施密特触发器的输入电压波形如图所示,试画出其输出电压波形。
(5分)解:(1)、正向阈值电压为:(2分)负向阈值电压为:(2分) 回差电压为:(1分)(2)、画出输出电压波形。
波形产生整形电路
施密特触发器是一种能够把输入波形整形成为适 合于数字电路需要的矩形脉冲的电路。
1.施密特触发器的触发特性
逻辑符号
施密特发器有反相传输和同相传输两种电路。
uo
施密特触发器 的电压传输特性
0
下限阈值电压
UT-
UT+
ui
上限阈值电压
回差,是指当输入电压Ui由低变高时的阀值电压UT+和输 入电压由高变低时的阀值电压UT-是不相同的,我们定义 ⊿UT称为回差。
1
Uo
工作过程分析:
1.当刚加电源时,由于电容C还没有来得
及充上电荷,所以UC=0,Uo=UOH=UDD。 2.UOH通过R向C充电,当充电充到UC=UT+ 时,电路输出发生转换,UO由UOH变成UOL =0V。 3.电容上的电压UC=UT+,又要通过R向 UOL放电,当电容上的电压放到UT-时, 电路的输出状态又发生转换。
常见的时钟秒信号源晶体振荡器
G1 1 10M G2 1 Uo
石英晶体符号 石英晶体的固有谐振频率
680P
32768HZ
30P
石英振荡器的频率取决于石英 晶体的固有谐振频率,而与外 接的电阻、电容无关,因此它 的频率稳定。
5. 压控振荡器
压控振荡器(Voltage Controlled Oscillator)简称VOC 振荡器的频率受一个输 入电压的控制 广泛用于自动检测、自动控制及通信电路中
电路工作波形:
Ui URi 1 2U DD
UR
Q Q
tw
只有负脉冲才能触发单稳态触发器进入暂稳态 暂稳态时间 tw 可用 RC 电路的暂稳态过程三要素公式 求出tw≈0.7RC。
施密特触发器
滞后特性
滞后电压传输特性,即输入电压的上升过程和下降过
程的阈值电平不同。这是施密特触发器固有的特性。
uo ui 0 UT- UT+ (a) 传输特性 ui (b) 逻辑符号 uo
Hale Waihona Puke 9.3 施密特触发器uo ui 0 UT- UT+ (a) 传输特性 ui (b) 逻辑符号
上限阈值电压
3、幅度鉴别
因为施密特触发器输出状态取决于输入信号的状态, 所以可以用它来作为幅度鉴别电路。
4、多谐振荡器 利用施密特触发器可以构成多谐振荡器。
本节小结
施密特触发器是一种能够把输入波形整形成为适 合于数字电路需要的矩形脉冲的电路。而且由于具有 滞回特性,所以抗干扰能力也很强。 施密特触发器可以由分立元件构成,也可以由门 电路及555定时器构成。 施密特触发器在脉冲的产生和整形电路中应用很广。
uo
下限阈值电压
回差电压(滞后电压):ΔUT= UT+-UT-
9.3.1 门电路组成的施密特触发器
施密特触发器是一种能够把输入波形整形成为适合于 数字电路需要的矩形脉冲的电路。
9.3.1 门电路组成的施密特触发器
设Vth=VDD/2,R1<R2
0
1
0
9.3.1 门电路组成的施密特触发器
设Vth=VDD/2,R1<R2
{End}
1A 1B 1Y 2Y 2B 2A VSS (b) 4093 的引脚排列图
9.3.2 集成施密特触发器
VCC 4A 4Y 5A 5Y 6A 6 Y 14 13 12 11 10 9 7414 1 2 3 4 5 6 7 1 2 3 8 VCC 3A 3B 3Y 4A 4 B 4Y 14 13 12 11 10 9 74132 4 5 6 7 8
数字电路答案第八章
第八章脉冲产生与整形在时序电路中,常常需要用到不同幅度、宽度以及具有陡峭边沿的脉冲信号。
事实上,数字系统几乎离不开脉冲信号。
获取这些脉冲信号的方法通常有两种:直接产生或者利用已有信号变换得到。
本章主要讨论常用的脉冲产生和整形电路的结构、工作原理、性能分析等,常见的脉冲电路有:单稳态触发器、施密特触发器和多谐振荡器。
第一节基本知识、重点与难点一、基本知识(一)常用脉冲产生和整形电路1. 施密特触发器(1)电路特点施密特触发器是常用的脉冲变换和脉冲整形电路。
电路主要有两个特点:一是施密特触发器是电平型触发电路;二是施密特触发器电压传输特性具有回差特性,或称滞回特性。
输入信号在低电平上升过程中,电路输出状态发生转换时对应的输入电平称为正向阈值电压U T+,输入信号在高电平下降过程中,电路状态转换对应的输入电平称为负向阈值电压U T-,U T+与U T-的差值称为回差电压ΔU T。
(2)电路构成及参数施密特触发器有多种构成方式,如:门电路构成、集成施密特触发器、555定时器构成。
主要电路参数:正向阈值电压U T+、负向阈值电压U T-和回差电压ΔU T。
(3)电路应用施密特触发器主要应用范围:波形变换、波形整形和幅度鉴别等。
2. 单稳态触发器(1)电路特点单稳态触发器特点如下:①单稳态触发器有稳态和暂稳态两个不同的工作状态;②在外加触发信号的作用下,触发器可以从稳态翻转到暂稳态,暂稳态维持一段时间,自动返回原稳态;③暂稳态维持时间的长短取决于电路参数R和C。
(2)电路构成及参数单稳态触发器有多种构成方式,如:门电路构成的积分型单稳态触发器、门电路构成的微分型单稳态触发器、集成单稳态触发器、555定时器构成的单稳态触发器等。
主要电路参数:暂稳态的维持时间t w、恢复时间t re 、分辨时间t d、输出脉冲幅度U m。
(3)电路应用单稳态触发器主要应用范围:定时、延时、脉冲波形整形等。
3. 多谐振荡器多谐振荡器是一种自激振荡器,接通电源后,就可以自动产生矩形脉冲,是数字系统中产生脉冲信号的主要电路。
施密特触发器
施密特触发器实验 3.9 施密特触发器及其应⽤⼀、实验⽬的1.掌握施密特触发器的特点。
2.学会测试集成施密特触发器的阈值电压。
3.了解施密特触发器的应⽤。
⼆、实验原理1.施密特触发器施密特触发器⼜称施密特反相器,是脉冲波形变换中经常使⽤的⼀种电路。
它在性能上有两个重要的特点:第⼀,输⼊信号从低电平上升的过程中,电路状态转换时对应的输⼊电平,与输⼊信号从⾼电平下降过程中对应的输⼊转换电平不同。
第⼆,在电路状态转换时,通过电路内部的正反馈过程使输出电压波形的边沿变得很陡。
利⽤这两个特点不仅能将边沿变化缓慢的信号波形整形为边沿陡峭的矩形波,⽽且可以将叠加在矩形脉冲⾼、低电平上的噪声有效地清除。
施密特触发器可以由门电路构成,也可做成单⽚集成电路产品,且后者最为图3.9.1 CMOS施密特触发器逻辑符号及施密特电路的电压传输特性曲线226227常⽤。
图3.9.1是CMOS 集成施密特触发器CD40106逻辑符号与电压传输特性曲线。
2.施密特触发器的应⽤⑴⽤于波形变换利⽤施密特触发器状态转换过程中的正反馈作⽤,可以把边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲信号。
图3.9.2的例⼦中,输⼊信号是由直流分量和正弦分量叠加⽽成的,只要以信号的幅度⼤于V T+即可在施密特触发器的输出端得到同频率的矩形脉冲信号。
图3.9.2 ⽤施密特触发器实现波形变换⑵⽤于脉冲的整形在数字系统,常常需要将窄脉冲进⾏展宽,图3.9.3是⽤CD40106来展宽脉冲宽度的电路及输⼊、输出波形,它是利⽤R 、C 充电延时的作⽤来展宽输出脉冲的,改变R 、C 的⼤⼩,即可调节脉宽展宽的程度。
V I V t (ms )t (ms )228图图 3.9.3 施密特触发器实现窄脉冲展宽电路及其波形⑶⽤于单稳态触发器单稳态触发器的⼯作特性具有如下的显著特点:第⼀,它有稳态和暂稳态两个不同的⼯作状态;第⼆,在外界触发脉冲作⽤下,能从稳态翻转到暂稳态,在暂稳态维持⼀段时间以后,再⾃动返回稳态;第三,暂稳态维持时间的长短取决于电路本⾝的参数,与触发脉冲的宽度和幅度⽆关。
电子技术应用实验教程实验报告综合篇(附含答案解析)_UESTC_大三上
范文范例参考完美Word 格式整理版第一部分 常用电子测量仪器的使用本部分主要涉及实验要用到的三种仪器:数字示波器、信号发生器和稳压电源。
学生在自学了《电子技术应用实验教程 综合篇》(后称教材)第一章内容后,填空完成这部分的内容。
一、学习示波器的应用,填空完成下面的内容示波器能够将电信号转换为可以观察的视觉图形,便于人们观测。
示波器可分为 模拟示波器 和 数字示波器 两大类。
其中, 模拟示波器 以连续方式将被测信号显示出来;而 数字示波器 首先将被测信号抽样和量化,变为二进制信号存储起来,再从存储器中取出信号的离散值,通过算法将离散的被测信号以连续的形式在屏幕上显示出来。
我们使用的是 数字示波器 。
使用双踪示波器,能够同时观测两个时间相关的信号。
信号通过探头从面板上的 通道1 和 通道2 端送入,分别称为CH1和CH2。
在使用示波器时,需要注意以下几点: (1)正确选择触发源和触发方式触发源的选择:如果观测的是单通道信号,就应选择 该信号 作为触发源;如果同时观测两个时间相关的信号,则应选择信号周期 大 (大/小)的通道作为触发源。
(2)正确选择输入耦合方式应根据被观测信号的性质来选择正确的输入耦合方式。
如图1.1所示,输入耦合方式若设为交流(AC ),将阻挡输入信号的直流成分,示波器只显示输入的交流成分;耦合方式设为直流(DC ),输入信号的交流和直流成分都通过,示波器显示输入的实际波形;耦合方式设为接地(GND ),将断开输入信号。
0U1V 5V(A )tU 1V5V 图1.2 被测信号实际波形tU (B )t0U-2V2V (C )DC图1.1 输入耦合开关示意图图1.3 不同输入耦合方式时的波形已知被测信号波形如图1.2所示,则在图1.3中, C 为输入耦合方式为交流(AC )范文范例参考完美Word 格式整理版时的波形, A 为输入耦合方式为直流(DC )时的波形, B 为输入耦合方式为接地(GND )时的波形。
数字电路施密特触发器
)VTH
(1 0.5) 5V
I1
7.5V
vO1
VT
(1
R1 R2
)VTH
(1 0.5) 5V
2.5V
VT VT VT 5V
VOH VTH R2
I OH (max)
施密特触发器旳应用
1. 波形变换
1
vI
vO
vO1 VOH
VOL
o VT_
VT+
vvvTTI - +
vO
VOH
VOL
q t pH
86.2
0.439 43.9%
t pH t pL 86.2 110
VL0O
T1 T2
t t
8.3.2 分析RC环形多谐振荡电路,画出各点波形
C
5000pF
R
Rs
1
1
1
vo1
vo2 400Ω vR 100Ω
vo3
G1
G2
G3
1
vo
G4
8.3.3 石英晶体振荡器
1、石英晶体电路符号和选频特征
VT
VT+
(1
R1 R2
)VTH
(3) υI1 VTH电路,维持 υ O=VOH 不变
(4)当υI下降, υI1也下降 ,只要υI1 > VTH, 则保持 υo =VOH
当 υI1 =VTH,电路产生如下正反馈 :
R2
G1
G2
vI↓
vI1↓ vO1↑
vO↓ vI
R1
1
1
vO
vO= VOL
vI1
vO1
3. 振荡周期旳计算
T1 : vI(0+) 0;vC() VDD =RC, t = t2-t1
施密特触发器与反相器的区别
② 输入信号增加和减小时,电路有不同的阈 值电压,它具有如下页右图所示的传输特性。
VOUT 5.0
1.5 3.5 5.0 VIN CMOS非门电压传输特性
VTH=VDD/2
VOUT 5.0
CD4098实现脉冲延时的原理图
现代电子技术实验
TWI=CX1*RX1 TW2=CX2*RX2
决定从触发信号(Ui)有效 到 灯亮的时间 决定灯亮的时间
电路第一个单稳态设 成上升沿触发,第二个单稳 态设成下降沿触发。
实验目的 实验原理 实验内容 注意事项
三、实验内容
现代电子技术实验
1、利用所给器件,实现图3.34所示CMOS门电
① 微分型单稳态触发器
74LS00引脚图
如图所示,负脉冲触发, C2和R5构成输入微分电路 R=(R6+RW2) 和 C3 构 成 微 分 定 时 电 路 。 输 出 脉 宽 tw≈(0.7-
1.3)RC3。
现代电子技术实验
VTH
R=(100----600)欧;
C3=4700P
TW=(0.7—1.3)RC3
设计任务设计任务11通过分析通过分析cdcd40984098组成的延时电路设计一个延时灯组成的延时电路设计一个延时灯电路电路可通过触摸按钮打开指示灯可通过触摸按钮打开指示灯延时一定时间后使指延时一定时间后使指使灯灭并且延时时间在使灯灭并且延时时间在1010秒内连续可调秒内连续可调
现代电子技术实验
实验目的 实验原理 实验内容 注意事项
现代电子技术实验
3、用与非门构成图3.40所示的微分型单稳态触发 器,输入Vin接20kHz TTL信号,改变RW2,用双踪示波 器观测Vin和Vi,Va,Vb,Vc,Vout的波形变化情况(定 量记录Vin、Vc、Vout波形,标出周期、幅度及脉宽)。
2版-7章-数字电路与逻辑设计(第2版)-邬春明-清华大学出版社
时,TD 截止;当触发器输出Q=0, Q =1,TD 饱和,可为外接电容提供放电通道。
(5)输出缓冲器G4 。输出缓冲器 G4 是接在输出端的反相器,其作用是提高定时器
带负载能力,同时隔离负载对定时器的影响。
VCC
当uI1 UR1,uI2 UR2 时,比较器C1的输出uC1 =1,比较器C2的输出 uC2 =0,基本RS触发
器被置1,放电三极管TD截止,输出uO 为高电平;
当 uI1 UR1,uI2 UR2 时,比较器C1的输出uC1 =0,比较器C2的输出 uC2=0,基本RS触发 器被置1,放电三极管TD截止,输出uO为高电平;
(二)脉冲电路
利用脉冲信号产生器直接产生 对已有信号进行整形,使之满足系统的要求 脉冲电路是专门用来产生电脉冲和对电脉冲进行放大、变
换和整形的电路。
二、555定时器
VC比C 较器 RD
基本RS触发器
8
UCO
uI1
(TH )
u I2
( TR )
U R1 5 6
2 U
R2
5kΩ
+
C
-
1
5kΩ
+
(一)用门电路构成施密特触发器
R1和R2构成 分压环节
G1和G2为两级串接 的反相器
R2
G1
uI
R1
1
uA
G2
1
uO
u O1
输入电压uI通过R1、 R2的分压来控制G1、
G2门的状态
1.同相输出施密特触发器的电压传输特性和逻辑符号:
uo
UT
UOH
1
uI
施密特触发器
施密特触发器编辑词条施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压简介折叠编辑本段门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。
施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。
在输入信号从低电平上升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压,在输入信号从高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压。
正向阈值电压与负向阈值电压之差称为回差电压。
它是一种阈值开关电路,具有突变输入——输出特性的门电路。
这种电路被设计成阻止输入电压出现微小变化(低于某一阈值)而引起的输出电压的改变。
利用施密特触发器状态转换过程中的正反馈作用,可以把边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲信号。
输入的信号只要幅度大于vt+,即可在施密特触发器的输出端得到同等频率的矩形脉冲信号。
当输入电压由低向高增加,到达V+时,输出电压发生突变,而输入电压Vi由高变低,到达V-,输出电压发生突变,因而出现输出电压变化滞后的现象,可以看出对于要求一定延迟启动的电路,它是特别适用的.从传感器得到的矩形脉冲经传输后往往发生波形畸变。
当传输线上的电容较大时,波形的上升沿将明显变坏;当传输线较长,而且接受端的阻抗与传输线的阻抗不匹配时,在波形的上升沿和下降沿将产生振荡现象;当其他脉冲信号通过导线间的分布电容或公共电源线叠加到矩形脉冲信号时,信号上将出现附加的噪声。
无论出现上述的那一种情况,都可以通过用施密特反相触发器整形而得到比较理想的矩形脉冲波形。
只要施密特触发器的vt+和vt-设置得合适,均能收到满意的整形效果。
发明折叠编辑本段施密特触发器是由美国科学家奥托·赫伯特·施密特(Otto Herbert Schmitt)于1934年发明,当时他只是一个研究生,后于1937年他在其博士论文中将这一发明描述为“热电子触发器”(thermionic trigger)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-4-19
2
第5章 脉冲波形的产生与变换
脉冲信号:指突然变化的电压或电流。 脉冲电路的研究重点:波形分析。 数字电路的研究重点:逻辑功能。 获得脉冲波形的方法主要有两种: 1.利用脉冲振荡电路产生; 2.是通过整形电路对已有的波形进行整形、变 换,使之符合系统的要求。
2011-4-19
3
以下主要讨论几种常用脉冲波形的产生与变换 电路:(功能、特点及其主要应用简介) 1. 施密特触发器:主要用以将非矩形脉冲变换 成上升沿和下降沿都很陡峭的矩形脉冲; 2. 单稳态触发器:主要用以将脉冲宽度不符合 要求的脉冲变换成脉冲宽度符合要求的矩形脉冲; 3. 多谐振荡器:产生矩形脉冲; 4. 555定时器。
2011-4-19
4
5.1 施密特触发器
主要用途:把变化缓慢的信号波形变换为边沿 陡峭的矩形波。 特点: ⑴电路有两种稳定状态。两种稳定状态的维持 和转换完全取决于外加触发信号。触发方式:电平 触发。 ⑵电压传输特性特殊,电路有两个转换电平 (上限触发转换电平UT+和下限触发转换电平UT-)。 - ⑶状态翻转时有正反馈过程,从而输出边沿陡 峭的矩形脉冲。
第5章 脉冲波形的产生与变换
5.1 施密特触发器
结束 放映
5.1.1 用门电路构成的施密特触发器 5.1.2 集成施密特触发器及其应用
2011-4-19
1
复习
触发器有什么特点? 请画出与非门实现的基本RS触发器的电路图。 请列出基本RS触发器的功能表。 什么叫现态?次态? 基本RS触发器的触发方式?
7
当uI=0V时, G1截止、G2导通,输出为UOL, 即uO=0V。只要满足uI1<UTH,电路就会处于这种 状态(第一稳态)。 当uI上升,使得uI1 =UTH时,电路会产生如下正 反馈过程:
2011-4-19
8
电路会迅速转换为G1 导通、G2 截止,输出为 UOH,即uO=VDD 的状态(第二稳态)。此时的uI值 称为施密特触发器的上限触发转换电平UT+ 。显然, uI继续上升,电路的状态不会改变。
2011-4-19 9
如果uI 下降,uI1 也会下降。当uI1 下降到UTH时, 电路又会产生以下的正反馈过程:
电路会迅速转换为G1截止、G2导通、输出为 UOL的第一稳态。此时的uI值称为施密特触发器的下 限触发转换电平UT-。uI再下降,电路将保持状态 - 不变。
2011-4-19 10
(2)工作波形与电压传输特性 施密特触发器将三角波uI变换成矩形波uO。 下限触发转 换电平UT- - 上限触发转 换电平UT+
脉冲鉴幅
2011-4-19 17
2011-4-19 5
5.1.1 用门电路构成的施密特触发器
1. 电路组成 两个CMOS反相器,两个分压电阻。
2011-4-19
用集成门电路构成的施密特触发器 (a) 电路 (b)逻辑符号
6
2. 工作原理 (1)工作过程 设CMOS反相器的阈值电压UTH=VDD/2,输入 信号uI为三角波。
2011-4-19
回差 T T+- T-(通常 T+> T-) - - 3. 重要参数 改变R 的大小可以改变回差∆U 改变 1和R2的大小可以改变回差 T 2011-4-19
施密特触发器的工作波形及电压传输特性 (b)电压传输特性 回差∆U = U -U (通常U >U ) 回差 (a)工作波形 通常
11
5.1.2 集成施密特触发器及其应用
2. 施密特触发与非门电路 为了对输入波形进行整形,许多集成门电路采 用了施密特触发形式。 比如CMOS的CC4093和TTL的74LS13就是施 密特触发的与非门电路。
施密特触发与非门的逻辑符号
2011-4-19 14
施密特触发器的应用
1. 波形变换 将变化缓慢的波形变换成矩形波(如将三角波 或正弦波变换成同周期的矩形波)。
2011-4-19
波形变换
15
2. 脉冲整形 在数字系统中,矩形脉冲经传输后往往发生波 形畸变,或者边沿产生振荡等。通过施密特触发器 边沿 波形 整形,可以获得比较理想的矩形脉冲波形。 振荡 畸变
脉冲整形
2011-4-19 16
3.脉冲鉴幅 将一系列幅度各异的脉冲信号加到施密特触发 器的输入端,只有那些幅度大于UT+的脉冲才会在输 出端产生输出信号。可见,施密特触发器具有脉冲 鉴幅能力。
2011-4-19 12
为了提高电路的性能, 为了提高电路的性能,电路在施密特触发器 的基础上,增加了整形级和输出级。 的基础上,增加了整形级和输出级。 施密特触发反相器 整形级可以使输出波形的边沿更加陡峭, 整形级可以使输出波形的边沿更加陡峭, (a) 原理框图 (b) 电压传输特性 (c) 逻辑符号 2011-4-19输出级可以提高电路的负载能力。 13 输出级可以提高电路的负载能力。
集成施密特触发器的UT+和UT-的具体数值可从 - 集成电路手册中查到。 如CT74132的UT+=1.7 V、UT-=0.9 V,所以, 、 - ∆UT=UT+—UT-=1.7 V—0.9 V=0.8 V。 = - 1. 施密特反相器 TTL的74LS14和CMOS的CC40106均为六施密 特触发的反相器。 下面以CC40106为例说明其功能。