五年级奥数圆和扇形的周长与面积二

合集下载

五年级奥数题解第二讲《不规则图形面积的计算(二)》[1]

五年级奥数题解第二讲《不规则图形面积的计算(二)》[1]

第二讲不规则图形面积的计算(二)不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和“容斥原理”合并使用才能解决。

例1:如下图(1),在一个正方形内,以正方形的三条边为直径向内作三个半圆,求阴影部分的面积。

(1)(2)解法一:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到图(2)。

这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等。

所以上图中阴影部分的面积等于正方形面积的一半。

解法二:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如图(3)所示。

阴影部分的面积是正方形面积的一半。

(3)(4)解法三:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如图(4)所示。

阴影部分的面积是正方形的一半。

例2:如下图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。

解:由容斥原理,S阴影=S扇形ACB+S扇形ACD-S正方形ABCD=4π×AB2×2-AB2=4π×42×2-42=16×(2π-1)≈16×2214.3-=9.12(平方厘米)。

例3:如下图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半径CB=4厘米。

求阴影部分的面积。

EB解:S阴景=S扇形ABE+S扇形CBF-S矩形ABCD=41×π×62+41×π×42-6×4=41×π(36+16)-24=13π-24=15(平方厘米)(取π=3)例4:如下图,直角三角形ABC中,AB是圆的直径,且AB=20厘米,如果阴影(1)的面积比阴影(2)的面积大7平方厘米,求BC长。

第2讲圆、扇形的面积与周长(二)

第2讲圆、扇形的面积与周长(二)

第2讲圆形、扇形的面积与周长(二)重点摘要本讲主要讲授利用等积变形,重叠等方法求解圆形、扇形的面积与周长。

以及求解圆形、扇形与其他平面图形所组成的平面组合图形的面积。

精讲精练例题1、有七根直径5cm 的塑料管,用一根橡皮筋把它们勒成一捆(如图所示),此时橡皮筋的长度是多少?(π取3.14)练习1、如下图所示,圆的周长为15.7分米,圆的面积是长方形面积的32,问图中阴影部分的周长是多少分米?(π=3.14)例题2、如图,图①和图②是两个相同的正方形,图①中阴影部分是4个圆,图②中阴影部分是9个圆。

那么图中阴影部分的面积大?为什么?练习2、下左图是一个圆环,L 是圆环内最长的线段,下右图是以L 为直径的圆。

问:下左图的圆环与下右图的圆相比,谁的面积大?L L例题3、如下图,等边三角形边长是10厘米,那么阴影部分的周长是厘米?(π取3.14)练习3、如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(π取3.14,得数保留两位小数)。

例题4、如图所示,阴影部分的面积是200平方厘米,求两个圆之间的圆环面积。

(π取3.14)练习4、在正方形ABCD中,AC=6厘米。

求阴影部分的面积。

例题5、如图所示,求图中阴影部分的面积(π取3.14)。

练习5、图中阴影部分的面积是多少平方厘米?(π取3.14)例题6、求图中阴影部分的面积(π取3.14)。

练习6、等腰直角三角形的一腰的长是8厘米,以它的两腰为直径分别画了两个半圆,那么阴影部分的面积共有多少平方厘米?(π取3.14)【拓展题】如图正方形边长为1,则阴影部分面积为多少?。

(结果保留π)【课堂练习】1、求图形中阴影部分的面积(π取3.14)。

2、右图是由五个圆所构成的,其中总共有3种不同长度的直径,且有部分的圆彼此相切,如图所示。

若最大圆内白色部分的总面积是20cm2,则其中阴影部分的面积是多少平方厘米?3、三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米.AB长40厘米,BC长多少厘米?(π取3.14)4、下图三个圆的半径都是5厘米,三个圆两两相交于圆心。

五年级奥数几何专项一 圆与扇形综合

五年级奥数几何专项一  圆与扇形综合

圆与球:跨时代、跨文化的数学故事这座完美的古代建筑,最基本的设计元素竟然是最简单的几何图形—圆伫立在北京天坛祈年殿前,赞美之情油然而生。

这座完美的古代建筑,最基本的设计元素竟然是最简单的几何图形—圆。

三层汉白玉圆形台基、三层蓝琉璃圆顶大殿,与附近的圆形皇穹宇和圜丘交相辉映,好一片圆美世界!圆和球还是最实用的图形。

宏大如宇宙天体,微小至原子电子,飞转的车轮,滴嗒的钟表……人们的日常生活离不开圆和球,科技的进步也离不开圆和球。

简单中寓深奥。

在圆与球简约的外形下,潜藏着无穷的数学奥秘。

圆周长和圆面积的计算,蕴涵着极限思想。

中国古代数学家刘徽创立的“割圆术”,就是用圆内接正多边形去逐步逼近圆。

刘徽从圆内接正六边形出发,将边数逐次加倍,并计算逐次得到的正多边形的周长和面积(以及相应的圆周率近似值)。

古希腊数学家称用多边形逼近曲线图形的方法为“穷竭法”,早在公元前3世纪,阿基米德也是用这种方法去计算圆的周长、面积及圆周率的。

不过阿基米德最引以自豪的,是他对球体积的计算。

阿基米德考虑一个球和它的外切圆柱,以及一个辅助的圆锥,其基本做法是将这些立体分割成无数的薄片,并用力学平衡的方法比较它们的体积,最后求得球体积的正确公式: (R是球课前预习专项一 圆与扇形综合半径)。

阿基米德的方法可以看成是积分学的先声。

无独有偶,在东方,中国南北朝时期的数学家祖冲之和他的儿子祖,也是利用球和它的外切圆柱计算出正确的球体积公式。

不过与阿基米德不同,祖氏父子考虑的是同一个球的两个互相垂直的外切圆柱的公共部分(刘徽最先发现该种立体并命名为“牟合方盖”),并运用欧洲学者迟至17世纪才重新发现的不可分量原理推算出这部分立体与其所含内切球的体积之比。

祖氏父子的方法与阿基米德的可以说是异曲同工,殊途同归。

至于近代微积分的发明,圆和球也扮演了重要的角色。

我们知道,在17世纪上半纪微积分酝酿时期,圆面积与圆周率π的计算,曾是那些寻找打开无穷小算法大门钥匙的数学大师们关注的热点。

扇形的面积公式和周长公式弧度制

扇形的面积公式和周长公式弧度制

扇形的面积公式和周长公式弧度制在咱们学习数学的奇妙旅程中,扇形可是个有趣的小家伙。

今天咱们就来好好唠唠扇形的面积公式和周长公式,还有那个有点神秘的弧度制。

先来说说扇形的面积公式。

这就好比你去买披萨,扇形的披萨块儿大小怎么算呢?扇形的面积公式是 S = (n/360)×πr² ,这里的 n 表示扇形圆心角的度数,r 是扇形所在圆的半径。

举个例子,有一个扇形,圆心角是 90 度,半径是 5 厘米。

那它的面积就是(90/360)×π×5² = 1/4 × 25π = 6.25π 平方厘米。

这就好像是把整个圆平均分成了 360 份,扇形占了其中的 n 份,所以面积就是相应的比例乘以整个圆的面积。

再聊聊扇形的周长公式。

这就像是给扇形围个漂亮的“篱笆”,得知道需要多长的材料。

扇形的周长公式是 C = L + 2r ,这里的 L 是扇形的弧长,r 还是扇形所在圆的半径。

弧长 L 又等于(n/180)×πr 。

比如说有个扇形,圆心角是 120 度,半径是 8 厘米。

先算弧长 L = (120/180)×π×8 = 16π/3 厘米,那周长 C 就是16π/3 + 2×8 = 16π/3 + 16 厘米。

接下来讲讲弧度制,这可是个有点特别的东西。

咱们平常习惯用角度来衡量圆心角,比如说 30 度、60 度。

但弧度制就不太一样啦,它用弧长和半径的比值来表示圆心角的大小。

还记得有一次我在课堂上讲这些知识,有个同学一脸迷茫地问我:“老师,这弧度制到底有啥用啊?”我笑着回答他:“就好比你用尺子量东西,角度制是一种刻度,弧度制又是另一种刻度,各有各的用处呀。

”然后我给他举了个例子,比如在研究三角函数的时候,弧度制就特别方便,能让计算更简洁呢。

其实在生活中,扇形的面积和周长公式以及弧度制也都有不少用处。

比如说设计师在设计扇子的时候,就得用到扇形的知识,算一算面积和周长,才能做出美观又实用的扇子。

学而思-----第二讲 圆和扇形的周长与面积

学而思-----第二讲    圆和扇形的周长与面积

D
E
D
E
A
A
B
C
F
B
C
F
4、旋转法(例 6) 旋转法是本讲的重 点与难点,对于“羊吃草”的问题还是比较 简单的。关键是直线型旋转面积,学员无法 想到
直线旋转后所扫发到 过的面积,其实,由教师讲解后你会发现, 一般情况下直线所扫过一周的面积(有特例 ,如:钝
角三角形的长边绕钝角顶点旋转时)就是一个圆环的面积。所以旋转多少度就再乘以 即可。
够活动的最大范围是 多少?(

分析:如图,羊活动的范围是受绳子的牵制的,所以羊活动的最大范围即绳子 AE 所扫过的总面积。(三部分)
(1) 红色部分为按绳长 30 米所能达到的最大范围(绳子不受任何牵制),此图形为半径 30,
圆心角 270 度的扇形。
(2) 黄色部分为按绳长 10 米所能达到的最大范围(绳子受点 D 牵制),所以之后只能按半径
由第三个图可知:所求面积已转化为扇环的面积,圆心角度数为 120 度。所以 阴影=


S=
E
E
E
C
C
G
C
G
A
B
D
A
F
B
D
A
F
B
D
第二讲 圆和扇形的周长和面积 2.2
五年级秋季班 第二讲 圆和扇形的周长与面积
曹威
拓展练习:“羊吃草 ”问题
草场上有一个长 20 米,宽 10 米的关闭着的羊圈,在羊圈外的一角,用长 30 米的绳子拴着一只羊,问这只羊能
B
C
C
B
O
A
O
A
分析:与丄题同理 A 点移到 O 点,阴影面积变为扇形 OBC 的面积,注意:圆心角 COB=60 度。

扇形周长公式和面积公式

扇形周长公式和面积公式

扇形周长公式和面积公式
1、扇形周长公式:
因为扇形周长=半径×2+弧长
若半径为r,直径为d,扇形所对的圆心角的度数为n°,那么扇形周长:C=2r+(n÷360)πd=2r+(n÷180)πr。

2、扇形面积计算公式:
R是扇形半径,n是弧所对圆心角度数,π是圆周率,也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n。

S=nπR^2/360
S=1/2LR(L为弧长,R为半径)
S=1/2|α|r平方
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。

显然,它是由圆周的一部分与它所对应的圆心角围成。

《几何原本》中这样定义扇形:由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形。

扇形,是圆的一部分,由两个半径和和一段弧围成,在较小的区域被称为小扇形,较大的区域被称为大扇形。

θ是扇形的角弧度,r是圆的半径,L是小扇形的弧长。

高思奥数导引小学五年级含详解答案第15讲:圆与扇形

高思奥数导引小学五年级含详解答案第15讲:圆与扇形

第15讲:圆与扇形内容概述掌握圆与扇形的基本概念和性质,以及它们的周长和面积计算公式,并能熟练运用公式处理相关的几何问题;学习如何利用割补法和包含排除的思想计算图形中特定部分的面积;学会分析几何图形的运动过程,并由此得出点的轨迹和图形扫过的区域。

典型问题兴趣篇1.已知一个扇形的圆心角为120︒,半径为2,这个扇形的面积和周长各是多少?(π取3.14)2.已知一个扇形面积为18.84平方厘米,圆心角为60︒,这个扇形的半径和周长是多少?(π取3.14)3.(1)根据图15-1所给的数值,求这个图形的外周长和面积。

(π取3.14)(2)如图15-2,有8个半径为1厘米的小圆,用它们圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。

如果圆周率π取3.14,那么花瓣图形的周长和面积分别是多少?4.如图15-3,求各图形中阴部分的面积。

(图中长度单位为厘米,π取3.14)5.如图15-4,求各图中阴部部分的面积。

(图中长度单位为厘米,π取3.14)6.图15-5中甲区域比乙区域的面积大57平方厘米,且半圆的半径是10厘米。

其中直角三角形竖起的直角边的长度是多少?(π取3.14)7.求图15-6中阴影部分的面积。

(π取3.14)8.如图15-7,在33⨯的方格表中,分别以、A E 为圆心,3、2为半径,画出圆心角都是90︒的两段圆弧。

图中阴影部分的面积是多少?(π取3.14)9.如图15-8,在一块面积为36平方厘米的圆形铝板中,裁出了7个同样大小的圆铝板。

问:余下的边角料的总面积是多少平方厘米?10.一条直线上放着一个长和宽分别为4厘米和3厘米的长方形Ⅰ(图15-9)。

让这个长方形绕顶点B 顺时针旋转90︒后到达长方形Ⅱ的位置,这样连续做三次,A 点到达E 点的位置。

求A 点经过的总路程的长度。

(圆周率按3计算)拓展篇1.(1)已知一个扇形的半径为2厘米,弧长为3.14,这个扇形的面积是多少? (2)已知一个半圆形的面积是56.52平方厘米,求这个半圆形的周长。

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案40圆与扇形(二)

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案40圆与扇形(二)

年级五年级学科奥数版本通用版课程标题圆与扇形(二)有时竞赛题中会考查一些关于无滑滚动、杠杆原理等物理知识,其中要用到关于圆的计算。

这类题要求我们知道一些简单的物理常识,因此平时就要注意积累。

最后我们举两个关于圆的、设而不求的例子,以提高同学们的思维水平。

无滑滚动硬币在支撑面上滚动,硬币边缘上各点与支撑面接触的瞬时,与支撑面无相对滑动,称硬币做无滑滚动。

这时,硬币边缘在与支撑面接触时,相对于支撑面的速度为0。

一个硬币沿一条直线滚动,并且没有滑动。

此时圆心运动的距离与硬币周长的比值就是硬币滚动的圈数。

硬币沿着曲线型边缘滚动,比如沿着另一个硬币边缘滚动,这种情况下若直接计算硬币自转多少圈容易算错,这时我们可以假定硬币边缘上有一红点,利用这个红点的指向间接判断硬币自转多少圈。

例1直径l厘米的圆沿边长为4.14 厘米的正方形内侧无滑动地滚动l圈(见图),则圆绕自己的圆心转了______圈。

分析与解:把整个过程分为4段,根据对称性知道,只要计算一段的情况就行了。

在一条边上滚动,是直线上的无滑动滚动。

用滚动距离除以圆周长就是滚动的圈数。

.4(=14÷-,故在一条边上旋转一周。

所以整个过程中圆绕自己的圆心转了4圈。

.3114)1例2半径为1的圆片绕着边长为6、7、8的三角板滚动一周,回到原位置。

圆片扫过的面积多大?分析与解:把扫过的区域分成六块,其中三块是长方形,总面积为42)876(2=++⨯;另外三块是扇形,能拼成半径是2的圆,面积是56.1214.34=⨯,所以圆片扫过的总面积是54.56。

例3 三个相同的硬币,将其中两个紧挨着固定在桌面上。

另外一个紧贴着这两个硬币滚动一周,没有滑动。

问,这个硬币自身转动几圈?分析与解:利用对称性知,只要计算滚动半周,硬币自转的圈数就可以知道了。

假设固定的两个硬币是左右相邻的,在右半周,滚动半周,硬币旋转34圈。

滚动一周,则硬币旋转38圈。

例4 试说明图中阴影部分面积与图中直角三角形面积相同。

扇形的周长公式和面积公式是什么

扇形的周长公式和面积公式是什么

扇形的周长公式和面积公式是什么
扇形也是一种图形,那么扇形的周长公式和面积公式是多少呢?有些同学需要这种问题的解答。

下面是由小编为大家整理的“扇形的周长公式和面积公式是什么”,仅供参考,欢迎大家阅读。

扇形的周长公式和面积公式是什么
1、扇形周长公式为:扇形周长=扇形半径×2+弧长,即C=2r+ (n÷360) πd=2r+(n÷180)πr。

扇形面积公式是S=(lR)/2 或S=(1/2)θR²,R是底圆的半径,l为扇形弧长,θ为圆心角。

2、一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。

拓展阅读:如何计算扇形圆心角的度数
计算扇形圆心角的度数的方法:
1、用弧长除以周长,用这个比值乘以圆周角360度;
2、用扇形面积除以圆的面积,用所得比值乘以圆周角360度即可。

扇形是什么图形
一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。

《几何原本》中这样定义扇形:由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形。

扇形,是圆的一部分,由两个半径和和一段弧围成,在较小的区域被称为小扇形,较大的区域被称为大扇形。

在右图中,θ是扇形的角弧度,r是圆的半径,L是小扇形的弧长。

圆弧为180°的扇形称为半圆。

其他圆弧角的扇形有时给予其特别的名字,其中包括象限角(90°)、六分角(60°)以及八分角(45°),它们分别是整圆的1/4、1/6、1/8。

扇形的周长公式和面积公式是什么

扇形的周长公式和面积公式是什么

扇形的周长公式和面积公式是什么
扇形也是一种图形,那么扇形的周长公式和面积公式是多少呢?有些同学需要这种问题的解答。

下面是由小编为大家整理的“扇形的周长公式和面积公式是什么”,仅供参考,欢迎大家阅读。

扇形的周长公式和面积公式是什么
1、扇形周长公式为:扇形周长=扇形半径×2+弧长,即C=2r+ (n÷360) πd=2r+(n÷180)πr。

扇形面积公式是S=(lR)/2 或S=(1/2)θR²,R是底圆的半径,l为扇形弧长,θ为圆心角。

2、一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。

拓展阅读:如何计算扇形圆心角的度数
计算扇形圆心角的度数的方法:
1、用弧长除以周长,用这个比值乘以圆周角360度;
2、用扇形面积除以圆的面积,用所得比值乘以圆周角360度即可。

扇形是什么图形
一条圆弧和经过这条圆弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。

《几何原本》中这样定义扇形:由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形。

扇形,是圆的一部分,由两个半径和和一段弧围成,在较小的区域被称为小扇形,较大的区域被称为大扇形。

在右图中,θ是扇形的角弧度,r是圆的半径,L是小扇形的弧长。

圆弧为180°的扇形称为半圆。

其他圆弧角的扇形有时给予其特别的名字,其中包括象限角(90°)、六分角(60°)以及八分角(45°),它们分别是整圆的1/4、1/6、1/8。

五年级数学0基础班-第11讲几何入门之圆和扇形的周长与面积

五年级数学0基础班-第11讲几何入门之圆和扇形的周长与面积

五年级数学0基础班
一、知识站点:
1.圆的周长与面积;
2.扇形的面积;
3.圆中的奇妙图形。

二、知识讲解与相关例题:
1.圆的周长与面积:
掌握了圆的周长与面积公式,回答下列问题:
⑴一个半径为5厘米的圆的面积和周长分别为多少?
⑵一个直径为12厘米的圆的面积和周长分别是多少?
正方形ABCD的边长为5厘米,以B点为圆心做一个圆(如图所示),这个圆的面积是多少?
如图:一个长方形中镶嵌了一个半径为20厘米的半圆,求这个圆的周长和长方形的面积。

几何入门之圆和扇形的周长与面积
(★)
(★★)
(★★)
(★★)
下面是两个同心圆,已知小圆半径为3厘米,大圆的半径是小圆的2倍,则红色部分的面积是多少?
2.扇形的面积:
(★)
以边长为6厘米的等边三角形的ABC边为半径做一个扇形(如图所示),请求出它的周长和面积。

3.圆中的奇妙图形:
【本讲小结】
1.圆的周长与面积;
2.扇形的面积;
3.圆中的奇妙图形。

附送
思思
你见,或者不见我。

五年级奥数思维训练圆与扇形的周长与面积计算

五年级奥数思维训练圆与扇形的周长与面积计算

练一练
根据已知信息,将表格填补完整。(单位:厘米,π取3.14)
半径(r) 1 2 3 4
直径(d) 2 4 6 8
周长(C) 2π 4π 6π 8π
面积(S) 1π 4π 9π
25π
通过观察此表,回答:圆的半径扩大n倍,周长和面积分别扩 大几倍?
练一练
根据已知信息,将表格填补完整。(单位:厘米,π取3.14)
直径(d) 2 4 6
周长(C) 2π 4π 6π 8π
面积(S) 1π 4π
25π
通过观察此表,回答:圆的半径扩大n倍,周长和面积分别扩 大几倍?
练一练
根据已知信息,将表格填补完整。(单位:厘米,π取3.14)
半径(r) 1 2 3
直径(d) 2 4 6
周长(C) 2π 4π 6π 8π
面积(S) 1π 4π 9π
练一练
根据已知信息,将表格填补完整。(单位:厘米,π取3.14)
半径(r) 1 2
直径(d) 2 4 6
周长(C) 2π

面积(S) 1π
25π
通过观察此表,回答:圆的半径扩大n倍,周长和面积分别扩 大几倍?
练一练
根据已知信息,将表格填补完整。(单位:厘米,π取3.14)
半径(r) 1 2
直径(d) 2 4 6
ห้องสมุดไป่ตู้
半径(r) 1 2
直径(d) 2
6
周长(C) 2π

面积(S) 25π
通过观察此表,回答:圆的半径扩大n倍,周长和面积分别扩 大几倍?
练一练
根据已知信息,将表格填补完整。(单位:厘米,π取3.14)
半径(r) 1 2
直径(d) 2

小学奥林匹克数学 竞赛数学 五年级 第15讲-+圆与扇形

小学奥林匹克数学  竞赛数学 五年级 第15讲-+圆与扇形

圆:到定点距离等于定长的几何图形。

2C πr=2πS r =O r 圆的周长:圆的面积:扇形:圆的一段弧与两条半径围成的图形。

它是圆的一部分。

22360C πn r r =+⨯2360πn S r =⨯扇形的周长: 扇形的面积: O 2弧长半径÷×S =割补法求不规则图形的面积:通过割补,化不规则为规则。

(1)已知一个扇形的半径为2厘米,弧长为3.14,这个扇形的面积是多少?(2)已知一个半圆形的面积是56.52平方厘米,求这个半圆形的周长.(π取3.14)弧长=2π×半径×n 360(1) 3.14=3.14×4×n 360 n =90°面积=3.14×4×14=3.14122扇形弧长半径÷×S (2) 56.52×2÷3.14=36 半径=62×3.14×6÷2+6×2=30.84已知一个扇形的面积为18.84平方厘米,圆心角为60°,这个扇形的半径和周长各是多少?(π取3.14)18.84×6=113.04平方厘米113.04÷3.14=36半径=6厘米3.14×6×2÷6=6.28厘米周长:6.28+12=18.28厘米求各图中阴影部分的面积。

(图中长度单位为厘米,π取近似值3.14) 10 10 ⑴2⑵ 10×10÷2÷2=25 3.14×1×1=3.142×2÷2=2 3.14-2=1.141.14×2=2.28如图,直角三角形ABC的面积是45,分别以B、C为圆心,3为半径画圆。

已知图中阴影部分的面积是35.58。

请问:角A是多少度?(π取近似值3.14)A B C45-35.58=9.423.14×3×3=28.269.42÷28.26=13∠B +∠ C=360÷3=120度∠ A=180-120=60度图⑴是一个直径是3厘米的半圆,AB 是直径.如图⑵所示,让A 点不动,把整个半圆逆时针转60°,此时B 点移动到C 点.请问:图中阴影部分的面积是多少平方厘米?(π取近似值3.14)⑴ A B A BC60 ⑵ 3.14×3×3÷6=4.71平方厘米如图,在一块面积为36平方厘米的圆形铝板中,裁出了7个同样大小的圆铝板.问:余下的边角料的总面积是多少平方厘米?36÷9=4平方厘米4×7=28平方厘米36-28=8平方厘米【例7】高思教育竞赛数学导引第15讲图中4个圆的圆心是恰好是正方形的4个顶点,而它们的公共点恰好是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?正方形对角线:2+2=4厘米4×4÷2=8厘米图中有一个等腰直角三角形ABC ,一个以AB 为直径的半圆,和一个以BC 为半径的扇形.已知厘米.图中阴影部分的面积为多少平方厘米?(π取3.14)10AB BC ==25×π÷2=12.5π平方厘米10×10×π×45360=12.5π平方厘米10×10÷2=50平方厘米12.5π+12.5π-50≈28.5平方厘米下图是由一个圆与一个直角扇形重叠组成的,其中圆的直径与扇形的半径都是4.图中阴影部分的面积是多少?(π取3.14)π×4×4÷4 - 4×4÷2=4.564【例10】高思教育竞赛数学导引第15讲(1)如图,已知外面大圆的半径是4,求正方形以及里面小圆的面积.(答案用π表示)(2)已知图7-18中正方形的边长为2,分别以其四个顶点为圆心的直角扇形恰好交于正方形中心,求图中阴影部分的面积.(答案用π表示) 正方形面积:8×8÷2=32(2r )2=32 r 2=8小圆的面积=8π(2r )2÷2=4 r 2=2小圆的面积=2π阴影面积=2π-4图中有一个矩形和两个半径分别为5和2的直角扇形.请问:两个阴影部分的面积之差是多少?(π取3.14)大扇形的面积=5×5×π÷4=6.25π小扇形的面积=2×2×π÷4=π长方形的面积=5×3=156.25π-15-π=1.485(1)根据图中给出的数值,求这个图形的外周长和面积.(π取3.14) (2)如图,有七根直径为5厘米的塑料管,用一根橡皮筋把它们扎成一捆,此时橡皮筋的长度是多少厘米?(π取3.14) 6 直径=6÷3=2 圆的周长=2π周长2π+6×2=18.28 圆的面积=π4×2+2×1×2+4×1×2=20 图形的面积20+3.14=23.14 5π+5×6=45.7厘米如图,一只小狗被拴在一个边长为4米的正五边形的建筑物的一个顶点处,四周都是空地.绳长刚好够小狗走到建筑物外墙边的任一位置.小狗的活动范围是多少平方米?(建筑外墙不可逾越,小狗身长忽略不计,π取3.14)狗4+4+2=10米(5-2)×180÷5=108度360-108=252度222521070360=mππ⨯⨯2218010872636052=m ππ-⨯⨯⨯22728236052=mππ⨯⨯⨯70π+725π+85π≈270平方米(1)图7-23中正方形的边长是4厘米,圆形的半径是1厘米.当圆形绕正方形滚动一周又回到原来位置时,扫过的面积有多大?(π取3.14)2π⨯212.56=平方厘米2×4×4=32平方厘米12.56+32=44.56平方厘米(2)图中等边三角形的边长是3厘米,圆形的半径是1厘米.当圆形绕等边三角形滚动一周又回到原来位置时,扫过的面积有多大?(π取3.14)360-90-90-60=120度120+120+120=360度3×2×3=18平方厘米2π⨯=212.5612.56+18=30.56平方厘米本讲知识点汇总一、圆的周长和面积: 圆面积 二、扇形的弧长和面积: 扇形弧长= ;扇形面积= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加油站
C B
答案:1
【例6】(★★★★)(北大附中“资优博雅杯”数学竞赛)(2)如图,阴影正方形的顶点分别是大正方形
各边的中点,分别以大正方形各边的一半为直径向外
各边的中点分别以大正方形各边的一半为直径向外
做半圆,再分别以阴影正方形的各边为直径向外作半
圆,形成个月牙形个月牙形
圆,形成8个“月牙形”。

这8个“月牙形”的总面积
为32平方厘米,问大正方形EFGH的面积是多少?
A
H
D
加加点睛
三个转化:化未知为已知;
化不规则为规则;为不可求为可求
四个基本方法:割补、变换、
差不变、整体、
重点例题:例1,例2,例3,例4,例5。

相关文档
最新文档