高二期中考试数学试卷(理科)

合集下载

自贡蜀光中学高中二年级下理科数学期中考试理科数学_人教新课标

自贡蜀光中学高中二年级下理科数学期中考试理科数学_人教新课标

x 1 ,令
f ( x ) 2ln x x , f (x) 2 1 , 当 x (0,2) 时 , f (x) 0 , f (x) 为增函数 , 当 x (2, ) 时 ,
x
f (x) 0, f (x) 为减函数 ,所以 f (x) 的极大值为 f (2) 2ln 2 2 .
15 . 过抛物线 y 2=6 x 的焦点作直线 , 交抛物线于 A( x1 , y1), B(x2, y2) 两点 , 如果 x1+ x2=8 ,那么
C
y 2 4 x ⋯⋯⋯⋯⋯⋯⋯⋯5⋯分
所求的抛物线 的方程为
(2 ) 假设存在符合题意的直线 l , 其方程为 y

y2 4x , 消 x 得 y2 2 y 2t 0
y 2x t
2x t

l
C
因为直线 与抛物线 有公共点 , 所以得
4 8t 0 ,解得 t
1 2 .⋯⋯⋯⋯⋯⋯⋯⋯9⋯分
OA l
d
, 再利用积分知识可得正弦曲线 y=sinx 与 x 轴围成的
区域的面积 , 从而可求概率 . 解: 构成试验的全部区域为圆内的区域 , 面积为 π3, 正弦曲线 y=-sinx 与 x
π
轴围成的区域记为 M , 根据图形的对称性得 :面积为 S=2 0 sin xdx =-2cosx| 0 =4 , 由几何概率的计算公
在点( , 处的切线方程是
A. a 1,b 2 B.a 1,b 2 C.a 1,b -2 D.a 1,b 2
9. 设 f (x)
1 x3 1 x2 2ax, 若 f (x) 在 ( 2,
32
3
) 上存在单调递增区间
, 则实数 a 的取值范围为

河南省洛阳市2022-2023学年高二上学期期中考试理科数学试卷(含答案)

河南省洛阳市2022-2023学年高二上学期期中考试理科数学试卷(含答案)
求直线被曲线 ′ 截得的最短的弦长;
(3) 已知点的坐标为(5,3),点在曲线 ′ 上运动,求线段的中点的轨迹方程.
22. (12 分)
如图,长方体 — 1 1 1 1 中, = 2 = 21 ,
点在棱上且1 丄平面1 1

(1)求 的值
21. ( 12 分)
已知两定点 (-4,0), (-1,0),动点 满足 | | = 2 ||,直线 :(2 + 1) + ( + 1) −
5 − 3 = 0.
(1) 求动点的轨迹方程,并说明轨迹的形状;
(2) 记动点的轨迹为曲线,把曲线向右平移 1 个单位长度,向上平移 1 个单位长度后得到曲线 ′ ,
反射光线所在直线的方程.
20. (12 分)
在直角梯形 中, //, = 2 = 2 =2 2,∠ = 900 如图(1). 把△沿
翻折,使得平面 ⊥平面,如图(2).
(1) 求证: ⊥ ;
(2) 若为线段的中点,求点到平面的距离.
所成角的余弦值为
A.
6
B.
3
3
C.
3
15
D.
5
10
5
12. 若圆 2 + 2 − 4 − 4 − 10 = 0至少有三个不同的点到直线: = 的距离为 2 2,则直线的倾斜角
的取值范围是



A.[ 12 , 4 ]
5
B. [ 12 , 12 ]


C. [ 6 , 3 ]
B. - 5
C. 10
D. -10
2.已知(4,1,9),(2,4,3),则线段的长为
A. 39
B.7

湖北省武穴市武穴中学高二上学期期中考试数学(理)试题

湖北省武穴市武穴中学高二上学期期中考试数学(理)试题

武穴中学高二年级期中考试数学试题(理科)命题人:桂奋良 审题人:朱君海一、选择题(5分×10=50分)1.过点,且垂直于直线的直线方程为A .B .C .D .2.若圆的圆心到直线的距离为,则a 的值为A .B .C .2或0D .-2或03.现从200件产品中随机抽出20件进行质量检验,下列说法正确的是A .200件产品是总体B .20件产品是样本C .样本容量是200D .样本容量是204.若椭圆的两焦点为,且椭圆过点,则椭圆方程是A .B .C .D .5.已知表示两条不同直线,表示平面,下列说法正确的是A .若B . 若//,,m m n n αα⊥⊥则C .若,,//m m n n αα⊥⊥则D .若,,m n m n αα⊥⊂⊥则 6.一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的体积为A .1B .C .D .7.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,分别表示甲乙两名运动员这项测试成绩的平均数,分别表示甲乙两名运动员这项测试成绩的标准差,则有A .B .C .D .8.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为过点F 的直线交椭圆于两点。

若AB 的中点坐标为,则E 的方程为A .B .C .D .9.已知二面角,,,A 为垂足,,,,则异面直线AB 与CD 所成角的余弦值为A .B .C .D .10.已知分别是椭圆的左、右焦点,A 是椭圆上一动点,圆C 与的延长线,的延长线以及线段相切,若为其中一个切点,则A .B .C .D .t 与2的大小关系不确定二、填空题(5×5=25分)11.防疫站对学生进行身体健康调查,某高二学生共有1200名,采用分层抽样法抽取一个容量为200的样本。

已知女生比男生少抽了60人,则该校的女生人数应是 。

12.经过点作直线L ,若直线L 与连接的线段恒有公共点,则直线L 的倾斜角的取值范围是。

陕西省西安市鄠邑区2022-2023学年高二下学期期中模拟理科数学试题及参考答案

陕西省西安市鄠邑区2022-2023学年高二下学期期中模拟理科数学试题及参考答案

2022-2023学年度第二学期期中质量检测高二数学(理科)模拟试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.z 为复数,若216i z z -=+成立,则z 的虚部为( ) A .6- B .6i - C .2D .2i2.反证法证明命题“若a R ∈,则函数3y x ax b =++至少有一个零点”时,正确的反设为( )A .若a R ∈,则函数3y x ax b =++恰好有一个零点 B .若a R ∈,则函数3y x ax b =++至多有一个零点 C .若a R ∈,则函数3y x ax b =++至多有两个零点 D .若a R ∈,则函数3y x ax b =++没有零点3.已知函数()i f x 的导函数为()(1,2,3)i f x i '=,若123()()()f x f x f x 、、的图象如图所示,则( )A .123()()()f a f a f a '''>>B .132()()()f a f a f a '''>>C .213()()()f a f a f a '''>>D .312()()()f a f a f a '''>>4.若()y f x =是奇函数,则11()f x dx -=⎰( )A .1B .0C .012()f x dx -⎰D .102()f x dx ⎰5.下列计算不正确...的是( )A .()xxee--'= B .2(ln(21))21x x +=+' C .(cos )sin x x '=- D .1()2x x'=6.用数学归纳法证明“()22,4n nn N n *≥∈≥”时,第二步应假设( )A .当(),2n k k N k *=∈≥时,22kk ≥成立 B .当(),3n k k N k *=∈≥时,22k k ≥成立 C .当(),4n k k N k *=∈≥时,22k k ≥成立 D .当(),5n k k N k *=∈≥时,22k k ≥成立 7.若函数()y f x =的导函数()()y x f x ϕ=='图象如图所示,则( )A .3-是函数()f x 的极小值点B .1-是函数()y f x =的极小值点C .函数()f x 的单调递减区间为(2,1)-D .()0x ϕ'<的解集为(,3)-∞- 8.函数()2ln f x x x =-的单调递减区间是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2)D .(,0)-∞和(0,2)9.函数()2()2xf x x x e =-的图象大致是( )A .B .C .D .10.函数()cos (1)sin 1,[0,2]f x x x x x π=+++∈在点x =( )处取得最小值. A .32π B .22π+ C .2 D .32π-11.已知函数()ln ()f x a x x a R =-∈在区间(,)e +∞内有最值,则实数a 的取值范围是( ) A .(,)e +∞ B .,2e ⎛⎫+∞ ⎪⎝⎭C .(,]e -∞D .(,)e -∞- 12.设2ln 21ln6,,412a b c e ===,则( ) A .a c b << B .a b c << C .b c a <<D .c a b <<第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,满分20分)13.已知0x >,观察下列不等式:①12x x +≥,②243x x +≥,③3274,x x+≥⋅⋅⋅,则第n 个不等式为_________.14.一个小球作简谐振动,其运动方程为()2sin 3x t t ππ⎛⎫=+⎪⎝⎭,其中()x t (单位:cm )是小球相对于平衡点的位移,t (单位:s )为运动时间,则小球在2t =时的瞬时速度为_________cm/s .15.设i 是虚数单位,复数z 的共轭复数为z ,下列关于复数的命题正确的有_________ ①z z =②若z 是非零复数,0z z +=,则||zi z = ③若12z z =,则2212z z =④若复数z 为纯虚数,则z i ⋅为实数16.如图:在平面直角坐标系xOy 中,将直线2xy =与直线1x =及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,圆锥的体积21130021212x V dx x πππ⎛⎫=== ⎪⎝⎭⎰圆锥. 据此类比:将曲线2y x =与直线2y =及y 轴所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V =_________.三、解答题(本大题共6小题,满分70分,解答应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知复数i z b =(b R ∈,i 是虚数单位),31iz +-是实数. (1)求b 的值;(2)若复数2()8m z m --在复平面内对应点在第二象限,求实数m 的取值范围. 18.(本小题满分12分)(1)已知b 克糖水中含有a 克糖,再添加m 克糖(0)m >(假设全部溶解),则糖水变甜了.将这一事实表示为不等式:当0,0b a m >>>时,有a a mb b m+<+,请证明这个不等式. (2)设ABC △的三边长分别为a ,b ,c ,请利用第(1)问已证不等式,证明:2c a b a b b c c a++<+++. 19.(本小题满分12分)已知函数432()8181f x x x x =-+-.(1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求函数()f x 的极值. 20.(本小题满分12分)已知函数()sin x f x e a x =-(其中 2.71828e =⋅⋅⋅为自然对数的底数),0为()f x 的一个极值点. (1)求a 的值;(2)证明:()f x x >恒成立. 21.(本小题满分12分)如图,在区间[0,1]上给定曲线2y x =,左边阴影部分的面积为1S ,右边阴影部分的面积记为2S .(1)当12t =时,求1S 的值; (2)当01t ≤≤时,求12S S +的最小值. 22.(本小题满分12分) 已知函数21()ln ()2f x x x mx x m R =--∈. (1)若0m =时,求函数()f x 的单调区间;(2)若函数()f x 在(0,)+∞上是减函数,求实数m 的取值范围.2022-2023学年度第二学期期中质量检测 高二数学(理科)模拟试题参考答案一、选择题(共12小题,每小题5分,共60分.)二、填空题(共4小题,每小题5分,共20分.)13.当0x >时,()1n n n x n n N x*+≥+∈成立 14.π 15.①④ 16.2π三、解答题(共6小题,第17题满分10分,其余满分均为12分.)17.(本小题满分10分) 解:(1) 解法1:∵i z b = ∴33i (3i)(1i)(3)(3)i1i 1i (1i)(1i)2z b b b b ++++-++===---+ 因为31iz +-是实数,所以解集为30b +=,解得3b =- 解法2:因为31iz +-是实数,则令3()1i z k k R +=∈- 则有3i i b k k +=-由复数相等的概念得3k b k=⎧⎨=-⎩,解得3b =-(2)由(1)可知3i z =-∴()222()8(3i)8896i m z m m m m m m --=+-=--+ ∵复数2()8m z m --在复平面内对应点在第二象限∴289060m m m ⎧--<⎨>⎩,解得09m << 所以实数m 的取值范围为(0,9) 18.(本小题满分12分) 解:(1)()()()()()a a m ab m b a m m a b b b m b b m b b m ++-+--==+++ 由00b a a b >>⇒-< 又∵0,0m b >>∴()0()m a b b b m -<+,即a a m b b m+<+得证.(2)ABC △的三边长分别为a ,b ,c根据三边关系有a b c +>由(1)已证不等式可得:c c ca b a b c+<+++ 同理可得,a a a b b b b c b c a c a c a b++<<++++++也成立 将以上不等式左右两边分别相加可得:2()2c a b a b c a b b c c a a b c++++<=+++++成立. 即命题得证.19.(本小题满分12分)解:(1)()3222()424364694(3)f x x x x x x x x x =-+=-+=-' 切点为(0,1)-,切线的斜率为(0)0k f ='=切所以曲线()y f x =在点(0,(0))f 处的切线方程为10y += (2)令()0f x '=,解得0x =,或3x =当0x =时,函数()f x 取得极小值()01f =- 20.(本小题满分12分)解:(1)函数()f x 的导函数为()cos xf x e a x '=-0为()f x 的一个极值点,则有0(0)cos00f e a =-=' 解得1a =(2)要证()f x x >,即证sin xe x x >+ 因为sin 1x ≤ 下面先证1xe x ≥+ 构造函数()1xg x e x =--()10x g x e -'==解得0x =当(,0)x ∈-∞时,有()0g x '<,则()g x 在(,0)-∞上单调递减 当(0,)x ∈+∞时,有()0g x '>,则()g x 在(0,)+∞上单调递增 所以当0x =时,()g x 取得最小值(0)0g = 即1xe x ≥+成立(当且仅当0x =时等号成立) 又因为1sin x ≥(当且仅当2()2x k k Z ππ=+∈时等号成立)由于等号不具有传递性,所以有sin xe x x >+成立. 21.(本小题满分12分)解:(1)当12t =时,1221014S x dx ⎛⎫=- ⎪⎝⎭⎰12301143x x ⎛⎫=- ⎪⎝⎭111183812=-⨯= (2)1S 面积等于边长分别为t 与2t 的矩形面积减去曲线2y x =与x 轴、直线x t =所围成的面积,即2231023tS t t x dx t =⨯-=⎰ 2S 面积等于曲线2y x =与x 轴、直线1x t x ==、所围成的面积减去矩形边长分别为1t -与2t 的矩形面积,即12232221(1)33t S x dx t t t t =--=-+⎰所以阴影部分的面积321241()(01)33S t S S t t t =+=-+≤≤令2()422(21)0S t t t t t =-'=-= 解得0t =,或12t =解不等式()0S t '>得112t <<即()S t 在1,12⎛⎫⎪⎝⎭上单调递增 解不等式()0S t '<得102t <<即()S t 在10,2⎛⎫⎪⎝⎭上单调递减所以当12t =时,()S t 取得极小值,也是最小值为1422.(本小题满分12分)解:(1)当0m =时,()ln ,(0,)f x x x x x =-∈+∞()ln 0f x x =='解得1x =解()0f x '>得1x >,即函数()f x 的单调递增区间为()1,+∞ 解()0f x '<得01x <<,即函数()f x 的单调递减区间为(0,1) (2)由函数()f x 在(0,)+∞上是减函数,可知()ln 0f x x mx =-≤'对任意(0,)x ∈+∞恒成立 即对任意0x >,都有ln xm x≥恒成立 构造函数ln (),0xg x x x => 由21ln ()0xg x x-'==解得x e = 解()0g x '>得0x e <<,即函数()f x 的单调递增区间为(0,)e 解()0g x '<得x e >,即函数()f x 的单调递减区间为(,)e +∞ 所以max ln 1()e g x e e== 所以1m e≥.。

高二年级期中考试数学试卷(理科)(及答案)

高二年级期中考试数学试卷(理科)(及答案)

高二年级期中考试数学试卷(理科)(及答案)考试时间:120分钟共150分第I 卷(模块卷)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知过点A (-2,m )和B (-8,4)的直线与直线01-2y x 平行,则m 的值为()A. 0B. -8C. 2D. 102. 圆4)2(22yx 与圆91)()2(22y x的位置关系为()A. 内切B. 相交C. 外切D. 相离3. 关于直线a 、b 、l 及平面M 、N ,下列命题中正确的是()A. 若M b M a //,//,则b a //B. 若a b M a ,//,则Mb C. 若,,a M bM 且,la lb ,则l MD. 若N a M a//,,则MN 4. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是()A.122B. 144C.12D.1425. 若直线10x y 与圆22()2xa y有公共点,则实数a 的取值范围是()A.3,1B.1,3 C.3,1 D. ),1[]3,(6. 如图,在正四面体P —ABC 中,D ,E ,F 分别是棱AB ,BC ,CA 的中点,下面四个结论中不成立...的是()A. BC//平面PDFB. DF ⊥平面PAEC. 平面PDF ⊥平面ABCD. 平面PAE ⊥平面ABC7. 已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于A.46 B.410 C.22 D.238. 如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H ,则以下命题中,错误..的命题是()A. 点H 是△A 1BD 的垂心B. AH 垂直平面CB 1D 1C. AH 的延长线经过点C 1D. 直线AH 和BB 1所成角为45°二、填空题:本大题共6小题,每小题5分,共30分。

安徽省蚌埠市第二中学2021-2022学年高二上学期期中考试数学(理)试题 Word版含答案

安徽省蚌埠市第二中学2021-2022学年高二上学期期中考试数学(理)试题 Word版含答案

蚌埠二中2021—2022学年度高二第一学期期中考试 数学(理科)试题(试卷分值:150分 考试时间:120分钟 )留意事项:第Ⅰ卷全部选择题的答案必需用2B 铅笔涂在答题卡中相应的位置,第Ⅱ卷的答案必需用0.5毫米黑色签字笔写在答题卡的相应位置上,否则不予计分。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.推断圆1:221=+y x C 与圆9)2()2(:222=-+-y x C 的位置关系是A .相离 B.外切 C. 相交 D. 内切2.若直线l 经过点)3,2(P ,且在x 轴上的截距的取值范围是)3,1(-,则其斜率的取值范围是A . 1k 3>-<或k B. 311<<-k C. 13<<-k D. 311>-<k k 或3.以下结论正确的是A. 各个面都是三角形的几何体是三棱锥B. 以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C. 棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D. 圆锥的顶点与底面圆周上的任意一点的连线都是母线4.一条光线从点)4,2(A 射出,倾斜角为60角,遇x 轴后反射,则反射光线的直线方程为A .03243=-+-y x B.03423=---y xC. 03243=-++y xD. 03423=---+y y x5.已知n m ,是两条不同的直线,γβα,,是三个不同的平面,则下列命题正确的是 A .若,//,//ααn m 则n m // B. 若γβγα⊥⊥,则βα// C. 若,//,//βαm m 则βα// D. 若,,αα⊥⊥n m 则n m //6. 若圆03222=+-+by ax y x 的圆心位于第三象限,那么直线0=++b ay x 肯定不经过 A .第一象限 B.其次象限 C.第三象限 D.第四象限7. 已知点)3,1(P 与直线01:=++y x l ,则点P 关于直线l 的对称点坐标为 A.1,3(--) B.)4,2( C. )2,4(-- D. )3,5(--8. 如图,在四周体ABCD 中,截面PQMN 是正方形,则下列命题中,错误的为A .BD AC ⊥B .BD AC =C. PQMN //截面ACD. 异面直线BD 与PM 所成的角为459. 已知棱长为2的正方体1111D C B A ABCD -的一个面1111D C B A 在半球底面上,四个顶点D C B A ,,,都在半球面上,则半球体积为A.π34B.π32 C. π3 D. 33π10.如图,网格纸上小正方形的边长为1,粗实线画出的是某三棱椎的三视图,则该三棱锥的体积为A .32 B. 34C. 38D. 411. 在正方体1111D C B A ABCD -中,F E ,分别为棱11,CC AA 的中点,则在空间中与三条直线CDEF D A ,,11第10题图都相交的直线有A .很多条B . 3条 C.1条 D. 0条12.设点)1,(a P ,若在圆1:22=+y x O 上存在点Q ,使得60=∠OPQ ,则a 的取值范围是A .⎥⎦⎤⎢⎣⎡-33,33 B. ⎥⎦⎤⎢⎣⎡-23,23 C. ⎥⎦⎤⎢⎣⎡-21,21 D. ⎥⎦⎤⎢⎣⎡-31,31 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.)13.母线长为1的圆锥体,其侧面开放图是一个半圆,则该圆锥的体积为______________ 14.一个平面图形用斜二测画法作的直观图是一个边长为cm 1的正方形,则原图形的周长为________________cm15.已知P 点是圆0364x C 22=--++y x y :上的一点,直线05-4y -3x :l =。

湖南省株洲市二中09-10学年高二上学期期中考试(数学理)

湖南省株洲市二中09-10学年高二上学期期中考试(数学理)

株洲市二中09-10学年高二上学期期中考试数学(理科)命题人:杨平安 审题人:邓秋和 时量:120分钟 分值:100分一、选择题(每小题3分,共8小题,合计24分)1.设命题“若p ,则q ”为真命题,则下列命题中一定为真的是( ).A .若p ⌝,则q ⌝ B. 若q ⌝,则p ⌝C. 若q ,则pD. 若q ⌝,则p2. 下列各点中,在曲线 0122=++-y xy x 上的点是( ).A. )2,2(-B. )3,4(-C. )10,3(D. )5,2(-3. 已知命题p :}0)3)(2({1<-+∈x x x ,命题q :Φ=}0{,则下列判断正确的是( ). A. p 假q 真 B. q p ∨为真 C. q p ∧为真 D. p ⌝为真 4. 设R c b a ∈,,且0≠c ,则b a >是22bc ac >的( ).A .充要条件 B. 充分而不必要条件 C. 必要而不充分条件 D. 既不充分也不必要条件5. 若椭圆192522=+y x 上一点p 到一个焦点的距离为5,则它到另一个焦点的距离为( ). A. 5 B. 6 C. 4 D. 10 6. 向量)3,2,1(--=a的模是( ).A. 14B. 14C. 11D. 11 7. 双曲线3322=-y x 的渐近线方程是( ).A. x y 3±=B. x y 31±= C. x y 3±= D. x y 33±= 8. 抛物线y x 412=上的一点M 到焦点的距离为1,则点M 的纵坐标是( ). A. 1617B. 1615C. 87D. 0二、填空题(每小题4分,共6小题,合计24分)9. 已知),2,3(),3,3,2(x b a -=-=,且b a ⊥,则=x .10. 已知动点p 满足)0,5(),0,5(,8B A PB PA -=-,则动点p 的轨迹方程为 .11. 已知),9,2,1(),3,1,2(y b x a -== 若b a,共线,则=x ,=y .12. 已知平面α和β平面的法向量分别是)2,1,(),4,3,1(--x ,若βα⊥,则=x .13.已知椭圆2214x y m +=()4>m 的离心率2e =,则实数m = .14. 已知抛物线22(0)y px p =>上的点到直线03=+-p y x 的最小距离是4,则抛物线方程是 .三、解答题(共6小题,合计52分)15.(8分)已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90 底面ABCD ,且112PA AD DC AB ====, M 是PB 的中点。

陕西省西安市第一中学2022-2021学年高二上学期期中考试数学(理)试题 Word版含答案

陕西省西安市第一中学2022-2021学年高二上学期期中考试数学(理)试题 Word版含答案

市一中高校区2022—2021学年度第一学期期中考试高二数学试题(理科)命题人:袁芹芹一、选择题:(本大题共12小题,每小题3分,共36分) 1.已知向量a =(-1,1,-1),b =(2, 0,-3),则a b 等于( ) A.2 B. -4 C. -5 D.12.不等式021≥+-xx的解集为( )A .]1,2[-B .]1,2(-C .),1()2,(+∞--∞D .),1(]2,(+∞--∞ 3. 下列命题中是假命题的是( ) A .若a > 0,则2a>1 B .若x 2+y 2=0,则x =y =0 C .若b 2=ac ,则a ,b ,c 成等比数列D .若a+c=2b ,则a ,b ,c 成等差数列4.已知{}n a 是等比数列,1414,2a a ==,则公比q 等于 ( )A .21-B .-2C . 2D .215. 命题“任意x ∈R ,|x |+x 2≥0”的否定是 ( ) A .任意x ∈R ,|x |+x 2<0 B .存在x ∈R ,|x |+x 2≤0C .存在x 0∈R ,|x 0|+x 20<0 D .存在x 0∈R ,|x 0|+x 20≥0 6. 如图,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB =a ,AD =b ,1AA =c ,则用向量a ,b ,c 可表示向量1BD 等于( ) A .a +b +c B .a -b +c C .a +b -c D .-a +b +c7. 若,,a b c 为实数,则下列命题正确的是( )A .若a b >,则22ac bc >B .若0a b <<,则22a ab b >>C .若0a b <<,则11a b < D .若0a b <<,则b a a b >8. 若命题))((q p ⌝∨⌝为真命题,则p ,q 的真假状况为( )A .p 真,q 真B .p 真,q 假C .p 假,q 真D .p 假,q 假 9. 已知变量x ,y 满足条件,则目标函数z=2x+y( )A .有最小值3,最大值9B .有最小值9,无最大值C .有最小值8,无最大值D .有最小值3,最大值810.已知数列{}n a 的前n 项和12+=+n n S n ,则3=a ( )A. 321 B. 281 C. 241 D. 20111. 设2910n a n n =-++,则数列{}n a 前n 项和最大值时,n 的值为( )A .4B .5C .9或10D .4或512. 方程ax 2+2x +1=0至少有一个负实根的充要条件是 ( ).A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0二、填空题(本大题共4小题,每小题5分,共20分) 13. 已知0,0,0>>>n y x ,41,x y +=则yx 41+的最小值为 . 14. 若不等式22214x a x ax ->++对任意实数x 均成立,则实数a 的取值范围是________ 15.在数列{}n a 中,11a =,13(1)n n a S n +=≥,则数列{a n }的通项公式。

高二年理科数学下学期期中考试卷

高二年理科数学下学期期中考试卷

高二年理科数学下学期期中考试卷(考试时间:120分钟 总分:150分)一、选择题(每小题5分,共60分) 1、设)(x f 是可导函数,且/0000(2)()lim2,()x f x x f x f x x∆→-∆-==∆ (▲▲▲)A.0.5B. 0C. -1D.-22、一个口袋内装有大小相同的6个白球和2个黑球,从中取3个球,则共有(▲▲▲)种不同的取法.A、2216C C B、1226C CC、36CD、38C3、设211111()123S n n n n n n =++++++++,则(▲▲▲) A . 11(2)23S =+ B . 11(2)24S =+ C . 111(2)1234S =+++ D . 111(2)234S =++4、曲线x x x y 435125++=在1-=x 处的切线的倾斜角是(▲▲▲)A、4π- B、4π C、43π D、45π5、3sinπ=y 则y '等于(▲▲▲)A、0B、3cosπC、3sin31πD、3cos31π6、函数13)(3+-=x x x f ,]0,3[-∈x 的最大值、最小值分别是(▲▲▲) A、3,-17 B、1,-1 C、1,-17 D、9,-197、平面内平行于同一直线的两直线平行,由类比思维,我们可以得到(▲▲▲)A、空间中平行于同一直线的两直线平行 B、空间中平行于同一平面的两直线平行 C、空间中平行于同一直线的两平面平行 D、空间中平行于同一平面的两平面平行 8、某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有(▲▲▲)A .38C 种 B .38A 种 C .39C 种 D .311C 种 9、⎰12dx e x 等于(▲▲▲)A、)1(212+e B、)1(212-e C、12-e D、21e - 10、如果函数321132y x ax x b =+++有单调递减区间,则(▲▲▲)A .24a b ⎧≥⎨∈⎩RB .240a b ⎧≤⎨<⎩C .240a b ⎧<⎨>⎩D .24a b ⎧>⎨∈⎩R11、已知32()26f x x x a =-+(a 为常数)在[-2,2]上有最大值3,那么在[-2,2]上f (x )的最 小值是(▲▲▲)A . -29B .-37C .-5D .-1112、一个作直线运动的物体,它的速度v (米/秒)与时间t (秒)满足3(0)v t t =≥ ,如果它在a 秒内的平均速度与2秒时的瞬时速度相等,则a等于(▲▲▲)A .B C . D .4 二、填空题(每小题4分,共16分) 13、已知13a =,133nn n a a a +=+,试通过计算2a ,3a ,4a ,5a 的值,推测出n a = . 14、垂直于直线0162=+-y x 且与曲线1323-+=x x y 相切的直线方程的一般式是15、抛物线24y x =与过它的顶点倾斜角为45o的直线l 所围成的图形的面积是 .16、8个身高不相同的人排成前后两排,每排4人,要求后排的人都比他对应的前排的人高,则不同的派法有 种.(用数字作答)高二年数学期中考试答题卷一、选择题二、填空题:13、 14、 15、 16、 三、解答题17、计算求值(本题满分12分,每小题6分)(1)计算⎰+202)2cos 2(sinπdx xx (2)已知复数z 满足)3(1)3(i z i z z -=-⋅求z18、(本题满分12分) 已知曲线34313+=x y (1)求曲线在点)4,2(P 处的切线方程 (2)求曲线过点)4,2(P 的切线方程19、(本题满分12分)从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(用数字结尾)(1)甲、乙两人必须跑中间两棒; (2)若甲、乙两人只有一人被选且不能跑中间两棒; (3)若甲、乙两人都被选且必须相邻两棒.20、(本题满分12分)已知数列{}n a 前n 项和为n S 且11=a ,)(*2N n a n S n n ∈=(1)试求出1S ,2S ,3S ,4S ,并猜想n S 的表达式 (2)证明你的猜想,并求n a 的表达式21、(本题满分12分) 已知函数()f x =2ax x b +在x =1处取得极值2.(1)求函数()f x 的解析式; (2)实数m 满足什么条件时,函数()f x 在区间(,21)m m +上单调递增?22、(本题满分14分)已知函数x x a x x f --+=2)ln()(在0=x 处取得极值 (1)求实数a 的值;(2)若b x x f +-≤25)(时∈x ]2,0[恒成立,求实数b 的取值范围; (3)证明对任意的正整数n ;不等式211ln nn n n +<+都成立高二年数学期中考试参考答案二、填空题(每小题4分,共16分) 13、3n14、023=++y x15、8316、252017、解(1)⎰+202)2cos 2(sinπdx xx ⎰+=20)sin 1(πdx x⎰⎰+=2020sin ππxdx dx)]0cos (2cos [2---+=ππ12+=π(2)设),(R b a bi a z ∈+= 则i bi a i b a 31)](3[22+=--+i ai b b a 313322+=--+∴⎩⎨⎧=-=-+∴331322a b b a ⎩⎨⎧=-=∴01b a 或⎩⎨⎧=-=31b a1-=∴z 或i 31+-18、解:(1)2x y =' 4|2='∴=x y∴所求切线方程为)2(44-=-x y 即044=--y x(2)设切点)3431,(300+x x A 则切线方程为)()3431(02030x x x x y -=+-又切线过点)4,2(P)2()3431(402030x x x -=+-∴ 10-=∴x 或20=x∴切线方程为044=--y x 或02=+-y x19、解:(1)602622=A A(2)480361212=A C C (3)180332226=A A C20、解:(1)11=S 342=S 233=S 584=S 猜想12+=n nS n(2)证明①当1=n 时 111121=+⨯=S 成立②假设k n =)1(*N k k ∈≥且时,12+=k kS k 成立 那么1+=k n 时121)1(++⋅+=k k a k Skk k k S k S k S S k 21212)1()1()()1(+-+=-+=++1)1()1(2122)1(2)1(22221+++=+⋅++=++=∴+k k k k k k k S k k k S k k 1+=∴k n 时命题成立由①②可知,对于一切*N n ∈ 12+=n nS n 均成立 由)1(222+==⇒=n n nS a a n S n n n n 21、解:(1)已知函数()f x =2axx b+,222()(2)()()a x b ax x f x x b +-'∴=+. ……………………2分又函数()f x 在x =1处取得极值2,(1)0,(1)2,f f '=⎧∴⎨=⎩即(1)20,21a b a a b+-=⎧⎪⎨=⎪+⎩4,1.a b =⎧⇒⎨=⎩24()1xf x x ∴=+. …………………5分 (2)由2222224(1)4(2)4(1)()01(1)(1)x x x x f x x x x +--'===⇒=±++. …………………7分所以24()1xf x x =+的单调增区间为[1,1]-. ………………………9分 若(,21)m m +为函数()f x 的单调增区间,则有1,211,21,m m m m ≥-⎧⎪+≤⎨⎪+>⎩解得10.m -<≤即(1,0]m ∈-时,(,21)m m +为函数()f x 的单调增区间. ………………………12分 22、解:(Ⅰ),121)(--+='x ax x f 0=x 时,)(x f 取得极值,0)0(='∴f ,故,010201=-⨯-+a解得.1=a 经检验1=a 符合题意。

昆十六中高二年级下学期期中考试数学试卷(理科)

昆十六中高二年级下学期期中考试数学试卷(理科)

昆十六中高二年级下学期期中考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分.共60分.在每小题给出的四个选项中,只有一个是正确的,将正确答案的代号涂在答题卡上.1。

一个容量为32的样本,已知某组样本的频率为 0。

375,则该组样本的频数为( )A。

4 B.8 ﻩC。

12ﻩﻩD。

162、若,且是第二象限角,则的值为 ( C )A. B. C.ﻩD.3、某几何体的正视图和侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是(C)ﻩA。

B。

ﻩC. ﻩD.4.已知:函数f(x)= 错误!;则满足f(x)= 错误! 的x的值为(B )A 2 B 3 C 错误! D错误!5、现有男大学生6名,女大学生4名,其中男、女班长各1人。

从这10人中选派5人到某中学顶岗,班长中至少有一人参加,则不同有选派方法有()A。

169种ﻩB。

140种ﻩC。

126种ﻩD。

196种6.曲线y= ln x(x>0)的一条切线为y = 2x + m,则m的值为( D )ﻫA ln2-1B 1—ln2 C 1+ln2 D -1-ln27.已知:定义域为R的函数f(x)为奇函数,当x>0时,f(x)= x3+1;则x<0时,f(x)的解析式为( B)ﻫA f(x)= x3+1 B f(x)= x3 -1 C f(x)= —x3 +1D f(x)= -x3 -18.△ABC中,∠A =错误!,边BC = 错误!,错误!·错误!= 3,且边AB < AC,则边AB的长为(A)ﻫA 2 B 3 C 4 D 69.已知等差数列{an }的公差为2,若a1,a3,a4成等比数列.则a2的值为( C )ﻫA —4B 4C —6D 610.设分别是双曲线的左、右焦点,若双曲线上存在点,使,且,则双曲线的离心率为( B )A. ﻩﻩB.ﻩC.ﻩﻩD.11、、是空间不同的直线,、是空间不同的平面,对于命题,命题,下面判断正确的是A. 为真命题ﻩB.为真命题为真命题ﻩD.为假命题12。

宁夏银川市第二中学2022-2023学年高二上学期期中考试数学(理)试题

宁夏银川市第二中学2022-2023学年高二上学期期中考试数学(理)试题

绝密★启用前银川二中2022-2023学年第一学期高二年级期中考试理 科 数 学 试 题命题:米永强 李丽 审核:任晓勇注意事项:1. 本试卷共22道题,满分150分。

考试时间为120分钟。

2. 答案写在答题卡上的指定位置。

考试结束后,交回答题卡。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知命题:R,25x p x ∀∈>,则p ⌝为( )A .R,25x x ∀∉>B .R,25x x ∀∈≤C .00R,25xx ∃∈> D .00R,25xx ∃∈≤2. 已知等差数列}{n a 的公差为d ,则“0>d ”是“数列}{n a 为单调递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 已知等差数列{}n a 满足13512a a a ++=,10111224a a a ++=,则{}n a 的前13项的和为( )A .12B .36C .78D .1564. 若a b >,0ab ≠,则下列不等式恒成立的是( )A .22b a > B .bc ac > C .ba 11> D .c b c a +>+5. 命题“若1a b +>,则,a b 中至少有一个大于1”的否命题为( )A .若,a b 中至少有一个大于1,则1a b +>B .若1a b +≤,则,a b 都不大于1C .若1a b +≤,则,a b 中至少有一个大于1D .若1a b +≤,则,a b 中至多有一个大于16. 滕王阁始建于唐朝永徽四年,因唐代诗人王勃诗句“落霞与孤鹜齐飞,秋水共长天一色”而流芳后世.如图,小华同学为测量滕王阁的高度,在滕王阁的正东方向找到一座建筑物AB ,高为12m ,在它们的地面上的点M 处(B ,M ,D 三点共线)测得楼顶A ,滕王阁顶部C 的仰角分别为15︒和60︒,在楼顶A 处测得阁顶部C 的仰角为30,则小华估算滕王阁的高度为(1.732≈,精确到1m )A .42mB .45mC .51mD .57m7. 已知等差数列{}n a 中,其前5项的和525S =,等比数列{}n b 中,1132,8,b b ==则37a b =( ) A .54B .54-C .45D .54-或548. 设等比数列{}n a 的前n 项和为n S ,若39S =,636S =,则789(a a a ++= )A .144B .81C .45D .639. 若命题“存在R x ∈,使220x x m ++≤”是假命题,则实数m 的取值范围是( )A .(],1-∞B .()1,+∞C .(),1-∞D .[)1,+∞ 10. 已知关于x 的不等式22430(0)x ax a a -+<<的解集为()12x x ,,则1212ax x x x ++的最大值( )A. B. CD11. 历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起到了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,……即()()()()()()121,123,F F F n F n F n n n *===-+-≥∈N ,此数列在现代物理、准晶体结构等领域有着广泛的应用,若此数列被4整除后的余数构成一个新的数列}{n b ,则54321b b b b +++ 的值为 ( )A .72B .71C .73D .7412. 已知数列}{n a 的前n 项和为,n S 且满足,)(333221*∈=+++N n n a a a n n 若对于任意的 ]1,0[∈x ,不等式21)1(222+-++--<a a x a x S n 恒成立,则实数a 的取值范围为 ( )A .),3[]1,(+∞--∞ B. ),3]1,(+∞--∞(C . ),1[]2,(+∞--∞ D. ),12,(+∞--∞()二、填空题:本题共4小题,每小题5分,共20分.13. 已知实数,x y 满足约束条件2027020x x y x y -≥⎧⎪+-≤⎨⎪--≤⎩,则34z x y =+的最大值是__________.14. 在ABC ∆中,c b a ,,分别是角C B A ,,的对边.若c b a ,,成等比数列,且c b a c a )(22-=-,则A 的大小是___________.15. 写出一个同时满足下列性质①②③的数列{}n a 的通项公式:n a =__________. ①{}n a 是无穷数列; ②{}n a 是单调递减数列; ③20n a -<<.16. 设数列{}n a 的前n 项和为n S ,已知1222,(1)2n n n a a a -+=+-=,则60S =_________.三、解答题:本题共6道小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)设命题p :实数x 满足32≤<x ,命题q :实数x 满足03422<+-a ax x ,其中0>a .(1)若1=a ,且q p ∧为真,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.18.(本小题满分12分)在①3213a a a b ++=,②133=S 这两个条件中,任选一个补充在下面的问题中,并解答.已知等差数列}{n a 的各项均为正数,32=a ,且3,1,532++a a a 成等比数列.(1)求数列}{n a 的通项公式;(2)已知正项等比数列}{n b 的前n 项和为n S ,11a b =,_________,求n S .(注:如果选择两个条件并分别作答,只按第一个解答计分.)19.(本小题满分12分)ABC ∆中,c b a ,,分别是角C B A ,,的对边,已知0cos 3sin =+B a A b ,ABC ∠的平分线交AC 于点D ,且2=BD .(1)求B ;(2)若3=a ,求b .20.(本小题满分12分)已知函数)(0,3)2()(2≠+-+=a x b ax x f .(1)若2)1(=f ,且1,0->>b a ,求141++b a 的最小值; (2)若a b -=,解关于x 的不等式1)(≤x f .21.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,112a =,当2n ≥时,11n n n n S S S S --=-. (1)求n S ;(2)设数列2n n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若()292nn T n λ≤+⋅恒成立,求λ的取值范围.22.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,()*322n n a S n n N =+∈.(1)证明:数列{}1n a +为等比数列; (2)设()31log 1n n b a +=+,证明:222121111nb b b ++⋅⋅⋅+<.。

四川省内江市第六中学2021-2022学年高二下学期期中理科数学试题

四川省内江市第六中学2021-2022学年高二下学期期中理科数学试题

14.若命题 "x R, x 2 x a 1 0" 是假命题,则实数 a 的取值范围为___________.
15.已知
1
a x
(2x
1 x
)5
的展开式中各项系数的和为
2,则该展开式中常数项为______.
16.已知两点 A3,0 和 B 3, 0 ,动点 P x, y 在直线 l:y=-x+5 上移动,椭圆 C 以 A,B
9.设双曲线
x a
2 2
y2 b2
1a
0, b
0 的两条渐近线与直线 x
a2 c
分别交于
A, B 两点, F
为该
双曲线的右焦点,若 60 AFB 90 ,则该双曲线离心率 e 的取值范围是
A. 1, 2
B.
2
3 3
,
C. 2,2
D.
2
3 3
,
2
10.关于曲线 C : x4 y2 1,给出下列四个命题:

A.
1 2
B.1
C. 2
D. 5
12.已知四面体 ABCD 的所有棱长均为 2 , M , N 分别为棱 AD, BC 的中点, F 为棱 AB 上
试卷第 2页,共 5页
异于 A, B 的动点.有下列结论: ①线段 MN 的长度为1;
②点 C 到面 MFN 的距离范围为 0,
2 2 ;
③ FMN 周长的最小值为 2 1;

A.若命题 p : n N , n2 2n ,则 p : n N , n2 2n B.“ a b ”是“ ln a ln b ”的必要不充分条件
C.若命题“ p q ”为真命题,则命题 p 与命题 q中至少有一个是真命题

2020年黑龙江省齐市地区普高联谊校高二(下)期中数学试卷(理科)

2020年黑龙江省齐市地区普高联谊校高二(下)期中数学试卷(理科)

期中数学试卷(理科)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.在复平面内,复数对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.用反证法证明命题:“若a+b>0,则a,b至少有一个大于0.”下列假设中正确的是()A. 假设a,b都不大于0B. 假设a,b都小于0C. 假设a,b至多有一个大于0D. 假设a,b至少有一个小于03.(-sin x)dx=()A. -2B. -1C. 1D. 24.若(x-2)n(n∈N*)展开式中的二项式系数的和为128,则n=()A. 4B. 5C. 6D. 75.若函数f(x)=e x-ax的单调递增区间为(1,+∞),则实数a的值为()A. 1B. 2C.D. e6.2位运动员和她们各自的教练合影,要求每位运动员与她们的教练站一起,这4人排成一排,则不同的排法数为()A. 10B. 8C. 12D. 167.已知函数f1(x)=sin x,f n+1(x)=f n′(x),则=()A. B. - C. D.8.若a=ln4,,,则a,b,c的大小关系为()A. a>c>bB. a>b>cC. b>a>cD. c>a>b9.已知函数f(x)=2x3-3ax2(a>0)在区间[0,1]上的最大值为0,则实数a的取值范围为()A. B. [1,+∞) C. D. (0,2]10.在如图所示的规律排列的数阵中:若第m行第n列位置上的数记为,则=()A. 286B. 288C. 290D. 29211.若函数f(x)=ae x-x2(a∈R)有三个零点,则实数a的取值范围为()A. (0,)B. (0,)C. (0,e)D. (0,2e)12.若定义在R上的函数f(x)满足f'(x)>f(x)+1其中f′(x)是f(x)的导数,且f(0)=3,则不等式f(x)+1<4e x的解集为()A. (-∞,0)B. (0,+∞)C. (-∞,1)D. (1,+∞)二、填空题(本大题共4小题,共20.0分)13.(1-x)(1+2x)6展开式中,x3的系数为______.14.已知i为虚数单位,则1+i+i2+…+i2019=______.15.若函数f(x)=x3+ax2-ax+1没有极值点,则实数a的取值范围为______.16.某高校大一新生中五名同学打算参加学校组织的“小草文学社”“街舞俱乐部”“足球之家”、“骑行者”四个社团.若每个社团至少一名同学参加,每名同学至少参加一个社团且只能参加一个社团,其中同学甲不参加“街舞俱乐部”,则这五名同学不同的参加方法有______种.三、解答题(本大题共6小题,共70.0分)17.若x∈R,a=x2-x,b=x2-3x+2.证明:a,b至少有一个不小于0.18.已知函数f(x)=x3-x.(1)求曲线y=f(x)在点(1,0)处的切线方程;(2)求过点(1,0)且与曲线y=f(x)相切的直线方程.19.已知函数f(x)=ax3+bx2+x+1,当x=1时,函数f(x)有极值1.(1)求函数f(x)的解析式;(2)若关于x的方程f(x)-m=0有一个实数根,求实数m的取值范围.20.已知数列{a n}满足:a1=1,.(1)求a2,a3,a4,a5,并猜想{a n}的通项公式(不用证明).(2)若数列{a n}的前n项和为S n,当n>1时,求证:S n<n.21.已知函数.(1)证明:x>ln x;(2)若函数f(x)有两个零点,求实数a的取值范围.22.已知函数f(x)=ae x+be-x+cx(a,b,c∈R)的导函数f′(x)为偶函数,且f′(0)=c+2.(1)求a,b的值;(2)若c=-1,请判断函数f(x)的单调性;(3)若函数f(x)有两个极值点,求实数c的取值范围.答案和解析1.【答案】A【解析】解:∵=,∴复数对应的点的坐标为(),位于第一象限.故选:A.利用复数代数形式的乘除运算化简,求出复数所对应点的坐标得答案.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.【答案】A【解析】解:用反证法证明,应先假设要证命题的否定成立.而要证命题的否定为:若a+b>0,则a,b都不大于0,故选:A.根据用反证法证明数学命题的方法和步骤,应先假设要证命题的否定成立.根据要证命题的否定,从而得出结论.本题主要考查用反证法证明数学命题的方法和步骤,求一个命题的否定,属基础题3.【答案】D【解析】解:,(-sin x)dx=2,故选:D.根据定积分的运算法则求出即可.本题考查定积分的运算,基础题.4.【答案】D【解析】解:(x-2)n的展开式中,二项式系数和为128,∴2n=128,解得n=7.故选:D.展开式的二项式系数和为2n,由此求出n的值.本题考查了二项展开式的二项式系数和的应用问题,是基础题目.5.【答案】D【解析】解:由f′(x)=e x-a,若a≤0,则f′(x)>0,则函数f(x)=e x-ax的单调递增区间为(-∞,+∞),不合题意;∴a>0,又函数f(x)=e x-ax的单调递增区间为(1,+∞),∴e x-a>0的解集为(1,+∞),则f′(1)=e-a=0,即a=e.故选:D.求出原函数的导函数,可得满足椭圆的a>0,再由函数f(x)=e x-ax的单调递增区间为(1,+∞),得f′(1)=e-a=0,从而求得a值.本题考查利用导数研究函数的单调性,考查数学转化思想方法,是中档题.6.【答案】B【解析】解:分别把运动员和各自的教练捆绑在一起,组合复合元素,再全排,故有=8种,故选:B.分别把运动员和各自的教练捆绑在一起,组合复合元素,再全排,问题得以解决.本题考查排列、组合的实际应用,注意分步分析,属于基础题.7.【答案】B【解析】解:由f1(x)=sin x,f n+1(x)=f n′(x)得f2(x)=cos x,f3(x)=-sin x,f4(x)=-cos x,f5(x)=sin x,周期为4,且2019=3+504×4,∴f2019(x)=f3(x)=-sin x,∴.故选:B.根据题意得出:f1(x)=sin x,f2(x)=cos x,f3(x)=-sin x,f4(x)=-cos x,f5(x)=sin x,并且2019=3+504×4,从而得出f2019(x)=-sin x,从而得出答案.本题考查了基本初等函数的求导公式,周期性,已知函数求值的方法,考查了计算能力,属于基础题.8.【答案】B【解析】解:由,令f(x)=x lnx(x>1),有f′(x)=ln x+1>1,故函数f(x)单调递增,由,有a>b>c.故选:B.由,令f(x)=x lnx(x>1),利用导数研究函数的单调性即可得出.本题考查了利用导数研究函数的单调性,考查了推理能力与计算能力,属于基础题.9.【答案】C【解析】解:∵a>0,f′(x)=6x2-6ax=6x(x-a),当x<0或x>a时,f′(x)>0,当0<x<a时,f′(x)<0,∴函数f(x)的增区间为(-∞,0),(a,+∞),减区间为(0,a),又由,可知a≥1,得a≥.故选:C.先求导,再判断函数的单调性,根据由,可知a≥1,解得即可.本题考查了导数和函数的最值之间的关系,考查了运算求解能力和转化与化归能力,属于中档题.10.【答案】C【解析】解:根据题意,其中1,2,4,8,…构成的等比数列的通项公式为,每行的数构成的数列为1,3,5,7,…,17,…2n-1,…前第9行共有个数,故第10行第一个数为282-1=281,所以=290,故选:C.根据题意,其中1,2,4,8,…构成的等比数列的通项公式为,每行的数构成的数列为1,3,5,7,…,17,…2n-1,…根据规律求出即可.本题考查归纳推理的应用,考查了数列找规律,求数列的项,中档题.11.【答案】A【解析】解:函数f(x)=ae x-x2(a∈R)有三个零点,即为f(x)=0有3个实根,可得a=有3个实根,设g(x)=,可得g′(x)=,由0<x<2时,g′(x)>0,g(x)递增;x>2或x<0,g′(x)<0,g(x)递减,可得x=0处g(x)取得极小值0,x=2处取得极大值,画出y=g(x)的图象和直线y=a,可得当0<a<时,y=g(x)和y=a的图象有3个交点,故选:A.由题意可得f(x)=0有3个实根,可得a=有3个实根,设g(x)=,求得导数和单调性、极值,画出y=g(x)的图象和直线y=a,即可得到所求范围.本题考查函数方程的转化,以及函数的导数的运用,考查数形结合思想,属于中档题.12.【答案】A【解析】解:令,有,故函数g(x)为增函数,由g(0)=f(0)+1=4,不等式f(x)+1<4e x可化为,即g(x)<g(0),故不等式f(x)+1<4e x的解集为(-∞,0),令,则g′(x)>0⇒函数g(x)为增函数,不等式f(x)+1<4e x可化为,即g(x)<g(0),从而可得答案.本题考查了利用导数研究函数的单调性,构造函数是关键,考查等价转化思想,考查构造法及运算能力,属于中档题.13.【答案】100【解析】解:(1-x)(1+2x)6=(1-x)•(1+12x+60x2+160x3+240x4+192x5+64x6),故x3的系数为160-60=100,故答案为:100.把(1+2x)6展开按照二项式展开,可得(1-x)(1+2x)6展开式中,x3的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.【答案】0【解析】解:.故答案为:0.利用等比数列的前n项和结合虚数单位i的运算性质求解.本题考查虚数单位i的运算性质,考查等比数列的前n项和,是基础题.15.【答案】[-3,0]【解析】解:f′(x)=3x2+2ax-a,由函数f(x)=x3+ax2-ax+1没有极值点,可得△=4a2+12a≤0,可得-3≤a≤0.故答案为:[-3,0].由f′(x)=3x2+2ax-a,由函数f(x)=x3+ax2-ax+1没有极值点,可得△≤0,可得a范围.本题考查了利用导数研究函数的单调性极值、不等式的解法,考查了推理能力与计算能力,属于基础题.16.【答案】180【解析】解:同学甲参加“街舞俱乐部”的有种,所以同学甲不参加“街舞俱乐部”的方法数为.故答案为:180.利用间接法,先求出甲参加“街舞俱乐部”,再用总的方法,排除即可.本题考查排列组合的问题,考察了间接法,属于中档题.17.【答案】证明:利用反证法.假设a,b均小于0,即a<0,b<0,则有a+b<0,而a+b=(x2-x)+(x2-3x+2)=2x2-4x+2=2(x-1)2≥0,这与a+b<0矛盾,所以假设不成立,故a,b至少有一个不小于0.【解析】利用反证法.假设a,b均小于0,即a<0,b<0,则有a+b<0,计算a+b即本题考查了反证法的应用、不等式的性质,考查了推理能力与计算能力,属于基础题.18.【答案】解:(1)f(x)=x3-x的导数为f′(x)=3x2-1,可得在点(1,0)处的切线斜率为2,则在点(1,0)处的切线方程为y=2x-2:(2)设切点为(m,n),可得切线的斜率为3m2-1,切线方程为y-(m3-m)=(3m2-1)(x-m),代入点(1,0),可得-(m3-m)=(3m2-1)(1-m),化为2m3-3m2+1=0,即(m-1)2(2m+1)=0,解得m=1或m=-,可得切线的斜率为2或-,则切线方程为y=2x-2或y=-x+.【解析】(1)求得函数的导数,可得切线的斜率,由点斜式方程可得切线方程;(2)设切点为(m,n),可得切线的斜率为3m2-1,求得切线方程,代入(1,0),解方程可得m,可得切线的斜率,进而得到所求切线方程.本题考查导数的运用:求切线方程,注意区别在某点处和过某点的切线,考查方程思想和运算能力,属于基础题.19.【答案】解:(1)由f′(x)=3ax2+2bx+1,有f′(1)=3a+2b+1=0,又有a+b+2=1,解得:a=1,b=-2,故函数f(x)的解析式为f(x)=x3-2x2+x+1.(2)由(1)有f′(x)=3x2-4x+1=(x-1)(3x-1)故函数f(x)的增区间为,减区间为,则,f(x)极小值=f(1)=1,x→+∞因为x→+∞时,f(x)→+∞,x→-∞时,f(x)→-∞,由一元三次函数的性质可知,实数m的取值范围为(-∞,1).【解析】(1)先对函数求导,然后结合极值存在的条件代入可求a,b即可求解函数的解析式;(2)分离参数后转化为求解相应函数的范围问题,结合导数可求.本题主要考查了函数极值存在条件的应用及利用分离参数法求解函数的零点问题.20.【答案】解:(1)由得a2==-,a3==-1,a4==-,a5==-,.猜想;(2)证明:由(1)知a n=-2,所以n>1,n∈N时,S n=3(1+++…+)-2n<3(1+1+1+…+1)-2n=3n-2n=n,故S n<n.【解析】(1)分别代入计算数列的a2,a3,a4,a5,猜想;(2)由(1)可得a n=-2,可得S n,再由放缩法和不等式的性质,即可得证.本题考查数列的通项公式的求法,注意运用归纳法,考查数列不等式的证明,注意运用放缩法和不等式的性质,考查运算能力、推理能力,属于中档题.21.【答案】证明:(1)令g(x)=x-ln x,有,令g′(x)>0可得x>1,令g′(x)<0可得0<x<1,故函数g(x)的增区间为(1,+∞)减区间为(0,1),∴g(x)≥g(1)=1,故有x>ln x.解:(2)由①当a≤0时,f′(x)<0,此时函数f(x)的减区间为(0,+∞),②当a>0时,令f′(x)>0可得x>,此时函数f(x)的增区间为(,+∞),减区间为(0,).若函数f(x)有两个零点,必须a>0且f()=+ln<0,可得0<a<,此时>又由f()=+1>0,当x>时,由(1)有f(x)>ax2-x=x(ax-2)>0,取x0=max{,}时,显然有,当t>x0时f(t)>0,故函数f(x)有两个零点时,实数a的取值范围为(0,).【解析】(1)令g(x)=x-ln x,利用导数求出函数的最值即可证明;(2)求得f(x)的导数,讨论a≥0,a<0,判断f(x)的单调性和极值、最值,结合题意,可令最大值大于0,解不等式即可得到所求范围.本题考查导数的运用:求切线方程和单调性、极值和最值,考查分类讨论思想和转化思想,考查方程思想和运算能力,属于中档题.22.【答案】解:(1)由f′(x)=ae x-be-x+c,又由导函数f′(x)为偶函数,可知ae x-be-x+c=ae-x-be x+c,整理为:a(e x-e-x)=b(e-x-e x)①,又f′(0)=a-b+c=c+2②,联立①②,解方程组,得;(2)由(1)知f′(x)=e x+e-x-1≥2-1=1>0,可得此时函数f(x)的增区间为(-∞,+∞).(3)由(1)知f′(x))=e x+e-x+c=,x-x有极值点.②当c<-2时,f′(x)=,由>0,<=0,故此时函数f(x)有两个极值点,由上知实数c的取值范围为(-∞,-2).【解析】(1)依题意,f′(x)=ae x-be-x+c为偶函数,可得ae x-be-x+c=ae-x-be x+c,即a (e x-e-x)=b(e-x-e x)①,结合f′(0)=a-b+c=c+2②,联立①②即可求得a与b的值;(2)由(1)知f′(x)=e x+e-x-1,利用基本不等式可得f′(x)≥2-1=1>0,由此知函数f(x)在(-∞,+∞)单调增;(3)由(1)知f′(x))=e x+e-x+c=,分c≥-2与c<-2两类讨论,满足函数f(x)有两个极值点,即可求得实数c的取值范围.本题考查利用导数研究函数的单调性和极值,考查分类讨论思想与函数与方程思想的运用,考查逻辑思维能力与综合运算能力,属于难题.。

(整理版)二中高二期中考试数学试卷(理科)

(整理版)二中高二期中考试数学试卷(理科)

高二期中考试数学试卷〔理科〕一、选择题〔本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪项符合题目要求的。

〕1、x >y >z ,且2=++z y x ,那么以下不等式恒成立的是〔 〕 A 、xy >yz B 、xz >yz C 、xy >xz D 、y x >y z2、ab >0,ac <0,那么直线0=++c by ax 一定不经过〔 〕A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、两圆相交于两点)3,1(和)1,(-m ,且两圆的圆心都在直线0=+-c y x 上,那么c m +的 值为〔 〕A 、3B 、1-C 、2D 、04、圆锥曲线1422=+a y x 的一条准线方程为8=x ,那么a 的值为〔 〕 A 、415± B 、47 C 、27 D 、4155、1F 、2F 为椭圆12222=+by a x 〔a >b >0〕的焦点,M 为椭圆上一点,1MF 垂直于x 轴,且02160=∠MF F ,那么椭圆的离心率为〔 〕A 、21 B 、22 C 、33 D 、23①假设直线l ∥面α,l ∥面β,那么α∥β; ②各侧面都是正方形的棱柱一定是正棱柱;③一个二面角的两个半平面所在的平面分别垂直于另一个二面角两个半平面所在的平面,那么这两个二面角的平面角相等;④平面α内的任一直线都平行于平面β,那么α∥β。

A 、1个B 、2个C 、3个D 、4个7、如图将正方形ABCD 沿对角线AC 折成一个直二面角, 那么异面直线AB 和CD 所成的角是〔 〕A 、030B 、045C 、060D 、0908、nx ⎪⎪⎭⎫ ⎝⎛-261的展开式中第五项系数与第七项系数相等,那么n 等于〔 〕A 、8B 、9C 、10D 、119、设三棱柱111C B A ABC -的体积为V ,P 、Q 分别为侧棱1AA 、1CC 上的点,且1QC PA =,那么四棱锥APQC B -的体积为〔 〕A 、V 21B 、V 31C 、V 41D 、V 6110、棱长为1的正方体1111D C B A ABCD -及其内部一动点P ,集合{}1≤=PA P Q , 那么集合Q 构成的几何体的外表积为〔 〕A 、45π B 、4π C 、2πD 、π 二、填空题〔本大题共5小题,每题5分,共25分,把答案填写在答题卡的相应位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012——2013年高二上学期期中考试数学试卷(理科)
命题人:江俊杰
一、选择题:(本大题共10小题,每小题5分,共50分)
1. 椭圆25x 2+16y 2=1的焦点坐标是( )
A . (±3, 0)
B .(±31, 0)
C . (±
203, 0) D . (0, ±203) 2.已知焦点在x 轴上的椭圆的离心率为12,且它的长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的
标准方程是( )
A . x 24+y 23=1
B .x 216+y 212=1
C . x 24+y 2=1
D . x 216+y 24=1 3. 已知双曲线22
:1916
x y C -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于( )
A .24
B .36
C .48
D .96
4. 曲线221(6)106x y m m m +=<--与曲线221(59)59x y m m m
+=<<--的( ) A.焦距相等 B.离心率相等 C.焦点相同 D.准线相同
5.抛物线,42F x y 的焦点为=准线为l ,l 与x 轴相交于点E ,过F 且倾斜角等于60°的直线与抛物线在x 轴上方的部分相交于点A ,AB ⊥l ,垂足为B ,则四边形ABEF 的面积等于( )
A .33
B .34
C .36
D .38
6. 已知双曲线12
222=-y x 的
1422
2=+b y x 的焦点,若直线y=kx +2与椭圆至多有一个交点,则k 的取值范围是( )
A .K ]21,21[-∈
B .K ),21[]21,(+∞⋃--∞∈ C.K ]22,22[-∈ D .),2
2[]22,(+∞⋃-∞∈K 7. 直线y=x+3与曲线 14
92=⋅-x x y 的交点个数为( ) A. 0 B.1 C.2 D. 3
8. 椭圆22
221()x y a b a b
+=>>0的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) A.20,
2⎛⎤ ⎥ ⎝⎦ B.10,2⎛⎤ ⎥⎝⎦ C. )
21,1⎡-⎣ D. 1,12⎡⎫⎪⎢⎣⎭ 9. 点P(-3,1)在椭圆22221(0)x y a b a b
+=>>的左准线上,过点P 且方向向量为(2,5)a =- 的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为( )
A.33
B.13
C.22
D.12 10. 若直线y=x+b 与曲线234y x x =--有公共点,则b 的取值范围是( ) A. 1,122⎡⎤-+⎣⎦ B. 122,122⎡⎤-+⎣⎦ C. 122,3⎡⎤-⎣⎦ D. 12,3⎡⎤-⎣⎦
二、填空题:(本大题共5小题,每小题5分,共25分)
11. 已知两定点1(1,0)F -、2(1,0)F 且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是:______
12. 已知以F 为焦点的抛物线2
4y x =上的两点A 、B 满足3AF FB = ,则弦AB 的中点到准线的距离为____ 13. 已知4x 2+9y 2=36,那么│2x -3y -12│的最大值为_____________.
14. 过抛物线y 2=2px(p >0)的焦点的直线x-my+m=0与抛物线交于A 、B 两点,且△OAB(O 为坐标原点)的面积为,则m 6+m 4=__________.
15. 已知双曲线22
221,(0,0)x y a b a b
-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 .
16. 已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .
(1)求动点C 的轨迹方程;
(2)过点F 的直线l 2交轨迹于两点P 、Q ,交直线l 1于点R ,求RP →·RQ →的最小值.
17. 已知椭圆C 的中心在原点,一个焦点为F (-2,0),且长轴长与短轴长的比是2: 3.
(1)求椭圆C 的方程;(2)设点M (m,0)在椭圆C 的长轴上,点P 是椭圆上任意一点.当|MP →|最小时,点P 恰
好落在椭圆的右顶点,求实数m 的取值范围.
18. 过抛物线x y =2的顶点O 作两条互相垂直的弦OA 、OB 。

(1)求证:直线AB 恒过定点;(2)求弦AB 中点N 的轨迹方程;
19. 已知中心在原点的双曲线C 的一个焦点是()0,31-F ,一条渐近线的方程是025=-y x .
(Ⅰ)求双曲线C 的方程;(Ⅱ)若以()0≠k k 为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,线段MN 的垂直平分线与两坐标轴围成的三角形的面积为2
81,求k 的取值范围.
20.. 已知双曲线C :)0,0(12222>>=-b a b
y a x 的两个焦点为21,F F ,点P 是双曲线C 上的一点,021=⋅PF PF ,且
212PF PF =. (1)求双曲线的离心率e ;(2)过点P 作直线分别与双曲线的两渐近线相交于21,P P 两点,若12274OP OP ⋅=- ,1220PP PP += ,求双曲线C 的方程.
21. 已知椭圆)52(11
22≤≤=-+m m y m x 过其左焦点且斜率为1的直线与椭圆及准线从左到右依次变于A 、B 、C 、D 、设f(m)=
CD AB -,(1)求f(m),(2)求f(m)的最值。

相关文档
最新文档