动力学 质点运动微分方程
理论力学 第11章 质点运动微分方程
2 d 2ρ dϕ m 2 −ρ = Fρ dt dt 2 d ρ dϕ d ϕ m 2 + ρ 2 = Fϕ dt dt dt
(11.6)
这就是极坐标形式的质点运动微分方程。
11.3 质点动力学的两类基本问题
应用质点运动微分方程,可以求解质点动力学的两 类基本问题。 第一类基本问题 已知质点的运动规律,即已知质点 的运动方程或质点在任意瞬时的速度或加速度,求作用 在质点上的未知力。这一类问题可归结为数学中的微分 问题。 求解该问题比较简单。若已知质点的运动方程,则 只须将它对时间求两次导数即可得到质点的加速度,代 入适当形式的质点运动微分方程,得到一个代数方程组, 求解这个方程组即可得到所求的未知力。
11.1 动力学基本定律
质点动力学的基本定律是牛顿在总结前人特别是伽 利略的研究成果的基础上,1687年在其著作《自然哲学 的数学原理》中提出来的,通常称为牛顿三定律 牛顿三定律。这些 牛顿三定律 定律是动力学的基础。
11.1 动力学基本定律
第一定律 任何质点都保持其静止的或作匀速直线运 动的状态, 动的状态,直到它受到其他物体的作用而被迫改变这 种状态为止。 种状态为止 质点保持静止或匀速直线运动状态的属性称为惯性 惯性, 惯性 质点作匀速直线运动称为惯性运动,因此第一定律又称 惯性运动, 惯性运动 惯性定律。此定律表明:质点必须受到其他物体的作用 惯性定律 时,也就是受到外力的作用时,才会改变其运动状态, 即外力是改变质点运动状态的原因 外力是改变质点运动状态的原因。 外力是改变质点运动状态的原因
《理论力学 动力学》 第十六讲 变质量质点的运动微分方程
变质量动力学曾凡林哈尔滨工业大学理论力学教研组本讲主要内容1、变质量质点的运动微分方程2、变质量动力学在火箭发射中的应用3、变质量质点的动力学普遍定理1、变质量质点的运动微分方程(1) 变质量质点的运动微分方程m 在时刻t ,质点的质量为m ,速度为vv 1在时刻t+d t ,并入速度为v 1的微小质量d mm +d m v 并入后,系统质量变为m +d m ,速度变为v +质点系在t 瞬时的动量:11d m m =+×p v v t +d t 质点系在t+d t 瞬时的动量:2(d )(d )m m =++p v v 根据动量定理有:(e)21d d t=-=p p p F (e)1d d d d d d m m m m t+×+×-×=v v v v F 略去高阶微量d m ·d v ,并在等式两边同时除以d t , 得:(e)1d d ()d d m m t t --=v v v F 式中v 1-v=v r 为微小质量在并入前相对于质点m 的相对速度, 令d d r m t f =F v 则有:(e)d d m tf =+v F F —变质量质点的运动微分方程方程形式与常质量质点运动微分方程相似,仅在右端多了一项F ϕ,它具有力的量纲,常称为反推力。
当d m /d t >0 时,F ϕ与v r 同向;当d m /d t <0 时,F ϕ与v r 反向。
1、变质量质点的运动微分方程(2) 常用的几种质量变化规律i 质量按线性规律变化1)1(0<-=t t m m b b ,由知,其反推力为:b 0d d m t m-=r 0rd d mm t f b ==-F v v 当v r 为常量时,反推力也为常量,且与v r 方向相反。
ii 质量按指数规律变化tm m b -=e 0由知,其反推力为:0d d t m m e t b b -=-r 0rd d tmm e t b f b -==-F v v 令a ϕ表示仅在反推力F ϕ作用下变质量质点的加速度,则:0rrtt m e m m e b f f b b b ---===-F v a v 当v r 为常量时,a ϕ也为常量,即由反推力引起的加速度为常量。
质点运动微分方程
质点运动微分方程
质点运动微分方程是描述质点在运动中位置、速度和加速度之间关系的微分方程。
根据牛顿第二定律,质点的加速度与作用在质点上的合力成正比,与质点的质量成反比。
因此,可以得到质点的运动微分方程为 F = ma,即 F(x(t), v(t), t) = m * v'(t),其中 F表示作用在质点上的合力,m表示质点的质量,v(t)表示质点的速度,x(t)表示质点的位移。
解决质点运动微分方程可以得到质点的速度和位移的函数表达式,从而可以进一步分析质点的运动规律和特性。
质点运动微分方程在物理学、工程学等领域中有广泛应用,例如在运动学、力学、电学、热学等方面,都需要使用微分方程来研究质点的运动。
- 1 -。
理论力学 10 质点运动微分方程
矢径为r,加速度为a ,如图10-2所示。
由运动学知:
a
d2 r dt2
代入式(10-3)得
z
M(x,y,z)
v
r
F
y
d2 r
m dt2
F
(10-4)
o x
图10-2
式(10-4)即为质点运动微分方程的矢量形式。
10.2.2 直角坐标形式
把式(10-4)投影到直角坐标系oxyz的三个坐标 轴上(见图10-2),并注意到
的惯性。因此,质量是质点惯性的度量。
在第二定律中,力与加速度是瞬时关系,即只要某
瞬时作用在质点上的合力不为零,则在该瞬时必有确定 的加速度;没有力作用或作用的合力为零,则加速度为 零。
在地球表面,物体受重力G作用而产生的自由落体
加速度 g称为重力加速度。设物体的质量为m ,根据第
二定律则有:
G mg
第二类问题——己知作用在质点上的力,求质点 的运动。
这类问题的求解归结为质点运动微分方程的积分。
如作用于质点上的力是常力,或力为时间、位置坐标、 速度的简单函数,积分一般不会有困难;如果该函数关 系比般复杂,会使积分计算遇到困难,甚至有时只能求 得近似解。此外,要确定积分常数,还需给出质点运动 的初始条件,即质点t = 0时的初始位置,初始速度等。
可表示为
ma F
(10-1) v
式(10-1)称为质点动力学基本方程。当
质点同时受多个力作用时,式(10-1)右
M
a F
端的F应理解为是这些力的合力,即
F F
图 10-1
由该定律可知,以同样的力作用在不同质量的质
点上,质量愈大的质点获得的加速度愈小,也就不易
§1.5 质点运动微分方程
§1.5质点运动微分方程a m F = ),,(t rr F F = ⇒质点动力学内容⎩⎨⎧)已知力求运动规律()已知运动规律求力(21 或二者兼而有之1、自由质点运动微分方程自由质点 不受任何约束 三个自由度 三个独立变量 由r m F= 得⎪⎩⎪⎨⎧===),,,;,,(),,,;,,(),,,;,,(t z y xz y x F z m t z y x z y x F y m t z y x z y x F x m z y x(※) (※)是二阶微分方程组,给出所有可能的运动,经两次积分,存在六个积分常数,满足(※)式的解有若干个;任何质点的实际运动,在任意时刻都有确定的位置和速度,通过0=t 时的000000,,;,,z y x z y x 确定积分常数,定出唯一解(满足初始条件),给出特定条件下的运动规律。
直线运动 ),,(t x x F xm = 平面运动 ⎩⎨⎧==),,;,(),,;,(t y x y x F y m t y x y x F x m y x ⎩⎨⎧=+=-),,;,()2(),,;,()(2t r r F rr m t rr F r r m r θθθθθθθθ2、非自由质点的运动微分方程(1)约束 质点运动所受的限制 受约束质点为非自由质点约束的数学表达式⇒约束方程 ,如0),,,(=t z y x f ;质点受到约束后自由度减少一般一个约束减少一个自由度;约束的数学意义是几何曲线或曲面,物理意义为约束反作用力;约束⇒约束反作用力 非自由质点⇒自由质点约束反作用力为未知量,不完全由约束而定,与质点所受的其它力和运动状态有关 例如 曲面约束⎩⎪⎨⎧+=+=+=z z y y x x R t z y x z y x F z m R t z y x z y x F y m R t z y x z y x F x m ),,,;,,(),,,;,,(),,,;,,(0),,,(=t z y x f (约束方程) 两个自由度 四个方程(2)内禀方程约束力处于法向平面内(,29p 图1.5.1),这时0=b a ,()n b⨯=τa 在密切平面内 选用自然坐标系 对理性约束 0=τR ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+==)3(0)2()1(2b b n n R F R F vm F dt dv m ρτ注意:在理想约束情况下,运动规律和约束反作用力可以分开求!由(1)式求出运动规律 (),,,z y x v ⇒将v 代入(2)式,利用232)1(1y y '+''=ρnR ⇒;由(3)b R ⇒ 运动规律和约束反作用力全部求出! 〖以平面约束为例证明232)1(1y y '+''=ρ)(x f y = dxy dydxds 2221'+=+=αtg y =' dxy y d '''+=232)1(1α ∴232)1(1y y '+''=ρ〗对非理想约束,即有摩擦存在时,切向方程中增加R f μ=一项,这时运动规律和约束反作用力不能分开求了! 3、运动微分方程的解理论力学中,常见变力,)t ,r,r (F形式复杂;求解二阶微分方程组,则 (1)隔离物体,具体分析(受力,已知,未知);(2)选取坐标系,建立微分方程组(力学问题⇒数学问题); (3)根据初始条件求解方程组; (4)分析结果,阐明物理意义。
第十章 质点及刚体的运动微分方程
§10-3 刚体绕定轴转动的微分方程及转动惯量
解 分别取圆轮和物块A为研究对象 设滑块A有向下加速度a,圆轮有角加速度ε。由运动学知 a=rε 即a =0.4ε 取物块A为研究对象,受力图如图所示,物块有向下的加速 度a做平移运动。列出动力学基本方程
再取圆轮为研究对象,受力图如 图所示, 列出动力学基本方程
F=ma
质点动力学 基本方程
F表示作用于质点上力系的合力,加速 度a的方向与质点合力F的方向相同。
第十章 质点及刚体的运动微分方程
§10-1 动力学基本定律
质点动力学基本方程具有下列几个方面的含义:
(1)作用在质点上的力与质点的加速度是 瞬时关系。两者同瞬时产生,同瞬时 消失;力变化时,加速度随着变化; 若合力为零,质点作惯性运动。
第十章 质点及刚体的运动微分方程
§10-3 刚体绕定轴转动的微分方程及转动惯量
转动惯量 I. 转动惯量的概念
mi代表各质点的质量,ri为各质点 到转动轴线的距离
飞轮
刚体的质量愈大,或质量分布离转轴愈 远,则转动惯量就愈大;反之,则愈小。
第3 刚体绕定轴转动的微分方程及转动惯量
式中,Fx表示作用于质点上的合力沿x轴方向的投影,Fy 表示合力沿y轴方向的投影, ax为加速度在x轴方向的投 影, ay为加速度在y轴方向的投影。 第十章 质点及刚体的运动微分方程
§10-2 质点运动微分方程及其应用
求解质点动力学的两类问题
1.质点动力学的第一类问题---已知运动 求作用力
已知质点的运动(运动方程、速度方程和 加速度),将运动方程或速度方程对时间求 导得到加速度,将加速度代入基本方程,可 求解出质点上的作用力。求解较容易。
第11章动力学基础(牛顿定律质点的运动微分方程).
动力学两 类基本问 题:
(1) 已知运 动求力; (2) 已知力 求运动。
ma F
此外,尚有虚位移原理(分析力学一部分)——用动力学方法求解静力学 问题。
6
(动)力学原理分类:
先了解一下
微分 形式 力学 原理 积分 形式
非变分形式(如牛顿定律、普遍定理、 达朗伯原理、拉氏方程) 变分形式(如虚位移(功)原理、动力 学普遍方程) 非变分形式(如普遍定理、能量守恒原理) 变分形式(如哈密顿原理)
8
三、质点运动微分方程(动力学基本方程)(指惯性参考系下)
即牛二定律的微分形式: ma F
d 2r 矢径式 m 2 F dt
d2 x m 2 X dt 2 d 直角坐标式 m y Y 2 dt d2 z m 2 Z dt
d2s m 2 F dt 2 v 自然坐标式 m Fn 0 Fb
作业:11-3, 11-4
10
如此诸多名称,你一下子记不住,可以在后面学习中 慢慢理解。
7
第11章 动力学基础(牛顿定律 质点的运动微分方程)
牛顿三大定律——动力学的理论基础(相当于静力学的公理)
复习或简介以下内容:
一、牛顿三大定律: 请同学叙述,请其他同学回答叙述是否正确。
问题:牛顿定律对刚体是否成立?
二、(运动)参考系:
提问:①什么是惯性参考系和非惯性参考系?一般如何确定惯性参考系?
4
哲 学 家 云: 静止是相对的,运动是绝对的 物理学家云:静止是相对的,运动也是相对的
运动学——仅从几何角度 研究 物体 的 运动规律。
(动)点 刚体 (无质量) 绝对法 合成法 点的 运动 学
运动微分方程
F = ma
铁球在未离开筒壁前m的vR2速度F,N等mvgcoRwsq πnR
于筒壁上与其重合点的速度。即
30
运动微分方程
mvR2 FNmgcosq
v Rw πnR
30
1
nπ3R0m R(FNmgcoqs)2
当θ=θ0 时铁球将落下,这时FN =0,于是得滚筒转速
n9.549 Rg cosq0
q0 F
速度成正比:F=cv,c为常数。求回收舱到达地
面时的速度和加速度。
运动微分方程
例题粉碎机滚筒半径为R,绕通过中心的水平
匀速转动,筒内铁球由筒壁上的凸棱带着上升。
为了使铁球获得粉碎矿石的能量,铁球应在θ=θ0 时(如图)才掉下来。求滚筒每分钟的转数n。
q0 F
n
FN mg
视铁球为质点。铁球被旋 转的滚筒带着沿圆弧向上运动, 当铁球到达某一高度时,会脱 离筒壁而沿抛物线下落。
aC
Fe
OC
O'
R
这就是小环 M 相对于大圆环的运动微分方程。
应用循环变换q q dq,将式( a )的变量分离并代
dq
入初始条件进行积分
运动微分方程
q q dq dq
qw2siqn
qqdqqw2siqndq
2w
0
q w q 222(1co)s
w O
art
vr
FN M
ae
aC
Fe
arn qFC s
牛顿定律的适用范围: 惯性坐标系; 速度远远小于光速; 宏观物体; 质点(平动刚体)
动力学理论有着广泛的应用。航天航空中的动力学计 算、结构的动荷响应、高速转动机械的动力学行为分 析等都需要有动力学的知识作为基础。
(导学)10质点运动微分方程
g e
。
工程力学导学 动力学
动力学基本定律 质点运动微分方程
20
8 战斗机重力为P1=29.4kN,引擎的推进力为F1=14.7kN,其 起飞速度为v=36.1m/s。空气阻力与速度的平方成正比,为 FR=kv2,单位为N,阻力方向与速度方向相反,其中,k=1.96。 为使战斗机能在舰船上起飞,采用弹射器以减少飞机的滑行路 程,假定弹射器的附加推力等于F2=4.9kN,试问战斗机起飞跑 道的长度可缩短多少?
工程力学导学 动力学
动力学基本定律 质点运动微分方程
4
2) 质点运动微分方程的常用表达式
形式 矢量 O
r
图例 M
a
F
运动微分方程
d2 r m 2 F dt
适用 空间曲线
z
直角坐标
az Fy
Fx
Fz
M
z
x
ay
y
x
弧坐标
(自然法)
O
y
ax
s (-)
O a n (+) Fn
Fr
答案
Fmax=102kN,F=99kN。
工程力学导学 动力学
动力学基本定律 质点运动微分方程
17
5 筛粉机如图所示。已知曲柄OA以匀角速度转动, OA=AB=l,石料与筛盘间的摩擦因数为fs,为使碎石料在筛盘 中来回运动。试求曲柄OA的角速度至少应多大?
答案
gf s 2l
。
工程力学导学 动力学
切线方向:
mq r mg sin q
q g sin q / r
积分(注意分离变量):
dq dq dq dq q q dt d q d t dq
10 质点的运动微分方程
dy 1 2 = gt + c3 , y = gt + c3t + c4 dt 2
再积分式(2),有 v y =
理论力学电子教程
第十章 质点运动微分方程
当t=0时, y = y 0 = 0, v y = v0 y = v0 sin α 代入上式得:
1 2 于是有 y = v 0 t sin α gt (4) 2 式(3)、(4)为所求的炮弹运动方程。
2
b
an
Fn
n
a
M
F
aτ
Fτ
上式即为自然轴投影式的质点运动微分方程。
τ
理论力学电子教程
第十章 质点运动微分方程
§10- 3质点动力学两类基本问题 10-
用质点运动微分方程的投影式可解决质点动力学问题,解 题时要注意根据问题的条件对质点进行受力分析合运动分析。 包括两类问题 ①已知质点的运动规律,求作用于质点的力。此类问题仅 用到微分运算,故又称为微分问题。 ②已知作用于质点的力,求质点的运动规律。此类问题需 对质点运动微分方程进行积分,故又称为积分问题。 第二类问题比较复杂。除了要给知作用于质点的力外,还 须给运动的初始条件,这样才能确定质点的运动。
【思考题】
1.选择题 (1)如图所示,质量为m的质点受力F作用,沿平面曲线运 动,速度为v。试问下列各式是否正确?
理论力学电子教程
第十章 质点运动微分方程
dv dv a.m = Fτ , b.m = F dt dt
A.a、b都正确。 B.a、b都不正确。 C.a正确,b不正确。 D.a不正确,b正确。
第十章 质点运动微分方程
1.直角坐标系的投影式 1.直角坐标系的投影式 将(3)式投影至固定的直角坐标系oxyz坐标轴上:
理论力学11 质点运动微分方程
质点。
2.质点系 质点系:由有限或无限个有着一定联系 质点系 的质点组成的系统。 刚体是一个特殊的质点系,由无数个相互间保持距离 刚体 不变的质点组成,又称为不变质点系。
1
自由质点系:质点系中各质点的运动不受约束的限制。 非自由质点系:质点系中的质点的运动受到约束的限制。 质点系是力学中最普遍的抽象化模型;包括刚体,弹性体,流体。 三.动力学分类: 质点动力学
5
二. 第二定律(力与加速度关系定律) 第二定律(力与加速度关系定律) 质点受力作用时所获得的加速度的大小与作用力的大 小成正比,与质点的质量成反比, 小成正比,与质点的质量成反比,加速度的方向与力的方 向相同。 向相同。
即:
r r F a= m
r r 或 ma = F
由于上式是推导其它动力学方程的出发点,所以通常称上式 为动力学基本方程 动力学基本方程。 动力学基本方程 注意: 注意:当质点同时受几个力的作用时,式中的F 为这ቤተ መጻሕፍቲ ባይዱ力的合力。
2
授课教师:薛齐文 授课教师: 土木与安全工程学院力学教研室
3
第十一章
质点运动微分方程
§11–1 动力学基本定律 §11–2 质点运动微分方程
4
§11.1 动力学基本定律 动力学的理论基础:是牛顿三大定律,它们也被称为 动力学的理论基础 动力学的基本定律。 第一定律(惯性定律) 一. 第一定律(惯性定律) 任何质点如不受力作用, 任何质点如不受力作用,则将保持其原来静止的或匀速 直线运动的状态不变。 直线运动的状态不变。 质点保持其原有运动状态不变的属性称为惯性 称为惯性 事实上,不存在不受力的质点,若作用在质点上的力系为 平衡力系,则等效于质点不受力。 该定律表明:力是改变质点运动状态的原因。 该定律表明:力是改变质点运动状态的原因。
关于质点系运动微分方程的应用
应用质点系运动微分方程的研究技术一、质点系运动微分方程的定义质点系运动微分方程是一种描述物体在特定的空间内的运动轨迹的数学方程。
它是一种描述物体运动的微分方程,可以用来求解物体在特定条件下的运动轨迹。
它是一种描述物体运动轨迹的一般微分方程,可以用来解决质点系的运动问题,它可以用来求解物体在特定条件下的运动轨迹。
质点系运动微分方程的定义是:当物体处于一定的空间中,它的运动轨迹可以用一个特殊的微分方程来描述,这个微分方程就是质点系运动微分方程。
它由一个或多个未知函数的求导与一个或多个已知函数的乘积组成,这些函数可以是时间函数、位置函数或速度函数等,只要它们满足物体运动的物理规律。
例如,用质点系运动微分方程来描述一个抛物运动的物体,可以得到一个如下的微分方程:\frac{d^2x}{dt^2}=-g,其中,g表示重力加速度。
又如,用质点系运动微分方程来描述一个摆动运动的物体,可以得到一个如下的微分方程:\frac{d^2x}{dt^2}=-\frac{g}{l}sin(x),其中,g表示重力加速度,l表示摆的长度。
总之,质点系运动微分方程是一种描述物体在特定的空间内的运动轨迹的数学方程,它由一个或多个未知函数的求导与一个或多个已知函数的乘积组成,它可以用来求解物体在特定条件下的运动轨迹。
二、质点系运动微分方程的常见形式质点系运动微分方程是一组常见的微分方程,它们描述了质点系的运动。
它们的形式是一般的欧拉方程,也就是一阶微分方程组,其中有n个未知函数,每个函数有m个变量。
它们的具体形式是:$$\frac{d \mathbf{x}}{dt} = \mathbf{f}(\mathbf{x},t)$$其中,$\mathbf{x}$ 是质点系的状态变量,$\mathbf{f}$ 是质点系的动力学方程,描述了质点系的运动规律。
质点系运动微分方程有许多不同的形式,比如牛顿运动方程,描述了质点受到外力时的运动规律:$$m \frac{d^2 \mathbf{x}}{dt^2} = \mathbf{F}(\mathbf{x}, t)$$这里,$m$ 是质量,$\mathbf{F}$ 是外力。
质点运动微分方程
式中:m——质点的质量; F——作用于质点上的所有力的合力; a——质点获得的加速度。 该式是研究质点动力学问题的基本依据,称为动力学基本方程。
目录
质点与刚体的运动微分方程\质点运动微分方程 根据动力学基本方程,当质点不受力的作用(合力为零)时,其
加速度必为零,此时质点将保持静止或匀速直线运动状态不变。 物体的这种保持运动状态不变的属性称为惯性。两个质点受力相 同时,质量大的加速度小,说明其运动状态不容易改变,即它的 惯性大;质量小的加速度大,说明其运动状态容易改变,即它的 惯性小。因此,质量是质点惯性的度量。
目录
质点与刚体的运动微分方程\质点运动微分方程
1.3 刚体平行移动微分方程
v0 v
0
解得活塞的速度为 v=v0e-kt
目录
质点与刚体的运动微分方程\质点运动微分方程
将上式写为
dx dt
v0ekt
再次积分
x
t
dx v0ektdt
解得
0
0
x v0 (1 ekt )
k
即为活塞的运动规律。
当t→∞时,e-kt→0,由v=v0e-kt 可知,活塞的速度趋于零;由上 式可知,此时x趋于最大值。由此确定液压缸的长度为
质点与刚体的运动微分方程\质点运动微分方程
解 把活塞看作一质点,作用于活塞上
的力为液体的阻力F。如图所示,取活塞初 始位置为坐标原点,建立x轴。列出活塞的 运动微分方程
m d2x F dt 2
或
m d2x v
dt 2
令k
m
,则上式成为
dv kv dt
分离变的方向恒指向椭圆中心,这种力称为有心力。
目录
质点与刚体的运动微分方程\质点运动微分方程 例7.2 液压减振器 (如图)的活塞在获得初速度v0后,在液压
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★ 牛顿在光学上的主要贡献是发现了太阳光是由7种 不同颜色的光合成的,他提出了光的微粒说。 ★ 牛顿在数学上的主要贡献是与莱布尼兹各自独立 地发明了微积分,给出了二项式定理。 ★ 牛顿在力学上最重要的贡献,也是牛顿对整个自 然科学的最重要贡献是他的巨著《自然哲学之数学原 理》。这本书出版于1687年,书中提出了万有引力理 论并且系统总结了前人对动力学的研究成果,后人将 这本书所总结的经典力学系统称为牛顿力学。
Theoretical Mechanics 返回首页
9.1 牛顿定律 第一定律(惯性定律) 任何质点如不受力作用,则将保持其原来静止 的或匀速直线运动的状态不变。 质点保持其原有运动状态不变的属性称为惯性。
事实上,不存在不受力的质点,若作用在质点上 的力系为平衡力系,则等效于质点不受力。
该定律表明:力是改变质点运动状态的原因。
G mg
m G g
g 式中 G 是物体所受重力的大小,称为物体的重量, 是重力加速度的大小。通常取 g 9.8 m s 2 。
在国际单位制中,长度、质量和时间的单位是 基本单位,分别取米、千克和秒;力的单位是导出 单位,为牛顿。即:1( N ) 1( Kg ) 1(m s 2 )
Theoretical Mechanics 返回首页
Theoretical Mechanics
返回首页
第四篇 动 力 学 力学模型∶质点、刚体和质点系
引
言
质点:只有质量而无大小的物体。
在下面两种情况下,可以把物体视为质点: 物体作平移的时候; 当物体的运动范围远远大于它自身的尺寸、忽 略其大小对问题的性质无本质影响的时候。 刚体:有质量、不会变形的物体。 质点系:由若干个质点组成的、有内在联系的系统。
Theoretical Mechanics 返回首页
工程实际中的动力学问题
ቤተ መጻሕፍቲ ባይዱ
舰载飞机在发动机和弹射器推力 作用下从甲板上起飞
返回首页
Theoretical Mechanics
工程实际中的动力学问题
若已知推力和跑道可能 长度,则需要多大的初 速度和一定的时间隔后 才能达到飞离甲板时的 速度。 若已知初速度、一定 的时间间隔后飞离甲板 时的速度,则需要弹射 器施加多大推力,或者 确定需要多长的跑道。
第九章 质点运动微分方程
目 录
引 言
§ 9-1
§ 9-2
牛顿定律
质点运动微分方程
§ 9-3
质点动力学的两类基本问题
Theoretical Mechanics
返回首页
第四篇 动 力 学
引
言
动力学研究物体的机械运动与作用在该 物体上的力之间的关系。 在研究动力学问题中一般选取牛顿的运 动三定律作为动力学的基础,并称之为牛顿 定律或动力学基本定律。
Theoretical Mechanics 返回首页
工程实际中的动力学问题
v1
F
v2
棒球在被球棒击 打后,其速度的大 小和方向发生了变 化。如果已知这种 变化即可确定球与 棒的相互作用力。
Theoretical Mechanics
返回首页
工程实际中的动力学问题 载人飞船的交会与对接
v2
v1
B A
引
言
动的初始条件,求物体的运动规律。
Theoretical Mechanics
返回首页
牛顿及其在力学发展中的贡献
牛顿出生于林肯郡伍尔索朴城的一个中等农户家 中。在他出生之前父亲即去世,他不到三岁时母亲改 嫁了,他不得不靠他的外祖母养大。 1661年牛顿进入了剑桥大学的三一学院,1665年 获文学学士学位。在大学期间他全面掌握了当时的数 学和光学。1665-1666的两年期间,剑桥流行黑热病, 学校暂时停办,他回到老家。这段时间中他发现了二 项式定律,开始了光学中的颜色实验,即白光由7种 色光构成的实验。而且由于一次躺在树下看到苹果落 地开始思索地心引力问题。在30岁时,牛顿被选为皇 家学会的会员,这是当时英国最高科学荣誉。
Theoretical Mechanics
返回首页
9.1 牛顿定律 第二定律(力与加速度关系定律) 质点受力作用时所获得的加速度的大小与作 用力的大小成正比,与质点的质量成反比,加速 度的方向与力的方向相同。 即:
F a m
或 ma F
由于上式是推导其它动力学方程的出发点,所以通常 称上式为动力学基本方程。
Theoretical Mechanics 返回首页
当质点同时受几个力的作用时上式中的F 应理解 为这些力的合力。
Theoretical Mechanics 返回首页
9.1 牛顿定律 该定律表明: 1、力与加速度的关系是瞬时关系,即力在某瞬时 对质点运动状态的改变是通过该瞬时确定的加速度表 现的。作用力并不直接决定质点的速度,速度的方向 可以完全不同于作用力的方向。
Theoretical Mechanics
返回首页
工程实际中的动力学问题
航空航天器 的姿态控制
Theoretical Mechanics
返回首页
工程实际中的动力学问题
高速列车的振动问题
Theoretical Mechanics 返回首页
第四篇 动 力 学 动力学主要研究以下两类基本问题 动力学正问题-已知物体的运动规律,求作 用在物体上的力; 动力学反问题-已知作用在物体上的力及运
9.1 牛顿定律 必须指出的是:质点受力与坐标无关,但质点的 加速度与坐标的选择有关,因此牛顿第一、第二定 律不是任何坐标都适用的。凡牛顿定律适用的坐标 系称为惯性坐标系。反之为非惯性坐标系。 第三定律(作用与反作用定律) 两个物体间相互作用的作用力和反作用力总是 大小相等、方向相反,沿着同一作用线同时分别作 用在这两个物体上。 以牛顿定律为基础所形成的力学理论称为古典力 学。
2、若相等的两个力作用在质量不同的两个质点上, 则质量越大,加速度越小;质量越小,加速度越大。
这说明:质量越大,保持其原来运动状态的能力越强, 即质量越大,惯性也越大。因此,质量是质点惯性大 小的度量。
Theoretical Mechanics
返回首页
9.1 牛顿定律 在重力场中,物体均受重力作用。物体在重力作用 下自由下落所获得的加速度称为重力加速度,用g 表示。由第二定律有