浮头式换热器课程设计说明书

合集下载

浮头式换热器设计说明书

浮头式换热器设计说明书

浮头式换热器设计说明书设计者:徐凯指导教师:张玲张亚男秦敏系别:机械工程系专业:热能与动力工程日期:2009.11宁夏理工学院前言换热器是非常重要的换热设备。

在国民生产的各个领域得到了广泛的应用。

本设计说明书主要介绍浮头式换热器的原理和设计思路及整个设计过程。

在浮头式换热器中,浮头式换热器的两端的管板,一端不与壳体相连,该端亦称浮头。

管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。

浮头式换热器主要有如下特点:浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动,这个特点在现场就能清楚地看出来。

这种换热器的壳体和管束的热膨胀是自由的,管束可以抽出,便于清洗管间和管内。

其缺点是结构复杂造价高,一般比固定管板高20%左右,在运行中浮头处发生泄漏不易检查处理。

浮头式换热器适应于壳体和管束温差较大或壳程介质易结垢的工作条件下。

本书内容系统、完整,理论与实际并重。

书中对浮头式换热器设计中所需的各学科知识均有简要的介绍和解释。

同时该书对换热器在编写时注重介绍的方法简明扼要,条理清楚,深入浅出,紧密结合工程实际。

期间得秦敏、张春兰、张亚男、张玲等老师的悉心指导。

在此表示真挚的感谢!由于编者水平有限,其中难免不妥之处,恳请各位读者批评指正。

编者:徐凯2009-11-26目录第一章绪论第二章设计任务和设计条件 (1)第三章确定设计方案 (3)3.1 换热器类型的确定 (3)3.2 管程及壳程的流体安排 (3)第四章确定物性数据 (4)4.1定性温度的确定 (4)4.2列表 (6)第五章传热面积的估算 (7)第六章工艺结构尺寸的确定 (9)6.1 管径和管内流速的确定 (9)6.2 管程数和传热管数的确定 (9)6.3 平均传热温差的校正 (10)6.4 传热管排列和分程方法确定 (10)6.5 壳体内径的确定 (11)6.6 折流板的确定 (11)6.7 其它附件的确定 (12)第七章所设计换热器的校核算 (13)7.1 传热热流量的核算 (13)7.2 壁温的校核计算 (15)7.3 换热器内流体的流动阻力的核算 (17)参考文献 (19)换热器原理课程设计心得体会 (21)第一章绪论1.1换热器课程设计的目的和要求课程设计是《换热器原理》课程的一个总结性教学环节,是培养学生综合运用本门课程及有关课程的基本知识去解决某一设计任务的一次训练。

浮头式换热器(过程设备设计课程设计说明书)

浮头式换热器(过程设备设计课程设计说明书)

目录设计题目及工艺参数---------------------------------------------------1一、换热器的分类及特点---------------------------------------------------2二、结构设计-------------------------------------------------------------51、管径及管长的选择---------------------------------------------------52、初步确定换热管的根数n和管子排列方式-------------------------------53、筒体内径确定-------------------------------------------------------54、浮头管板及钩圈法兰结构设计-----------------------------------------65、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------76、外头盖法兰、外头盖侧法兰设计---------------------------------------77、外头盖结构设计-----------------------------------------------------88、接管的选择--------------------------------------------------------------------------------------89、管箱结构设计-------------------------------------------------------810、管箱结构设计------------------------------------------------------811、垫片选择----------------------------------------------------------912、折流板------------------------------------------------------------------------------------------913、支座选取----------------------------------------------------------1014、拉杆的选择--------------------------------------------------------1315、接管高度(伸出长度)确定------------------------------------------1316、防冲板------------------------------------------------------------1317、设备总长的确定----------------------------------------------------1318、浮头法兰---------------------------------------------------------------------------------------1419、浮头管板及钩圈----------------------------------------------------14三、强度计算--------------------------------------------------------------141、筒体壁厚的计算-----------------------------------------------------142、外头盖短节,封头厚度计算-------------------------------------------153、管箱短节、封头厚度计算 --------------------------------------------164、管箱短节开孔补强的核校 --------------------------------------------165、壳体压力试验的应力校核---------------------------------------------166、壳体接管开孔补强校核-----------------------------------------------177、固定管板计算-------------------------------------------------------188、无折边球封头计算 --------------------------------------------------199、管子拉脱力计算-----------------------------------------------------20四、设计汇总-----------------------------------------------------21五、设计体会--------------------------------------------------------------21参考文献--------------------------------------------------------------22设计题目:浮头式换热器工艺参数:管口表:符号公称直径(mm)管口名称a 130 变换气进口b 130 软水出口c 130 变换气出口d 130 软水进口e 50 排尽口设备选择原理及原因:浮头式换热器的结构较复杂,金属材料耗量较大,浮头端出现内泄露不易检查出来,由于管束与壳体间隙较大,影响传热效果。

浮头式换热器设计

浮头式换热器设计

大学生物工程专业《化工原理课程设计》说明书题目名称浮头式换热器的设计专业班级学号学生姓名指导教师2012 年06 月08 日目录1、设计方案.................................................................................. 错误!未定义书签。

2、衡算.......................................................................................... 错误!未定义书签。

2.1确定设计方案 ..................................................................... 错误!未定义书签。

2.1.1换热器的类型................................................................ 错误!未定义书签。

2.1.2 管程安排....................................................................... 错误!未定义书签。

2.2确定物性数据 ..................................................................... 错误!未定义书签。

2.3估算传热面积 ..................................................................... 错误!未定义书签。

2.3.1 热负荷........................................................................... 错误!未定义书签。

2.3.2 热流体用量................................................................... 错误!未定义书签。

浮头式换热器(过程设备设计课程设计说明书)

浮头式换热器(过程设备设计课程设计说明书)

目录设计题目及工艺参数---------------------------------------------------1一、换热器的分类及特点---------------------------------------------------2二、结构设计-------------------------------------------------------------51、管径及管长的选择---------------------------------------------------52、初步确定换热管的根数n和管子排列方式-------------------------------53、筒体内径确定-------------------------------------------------------54、浮头管板及钩圈法兰结构设计-----------------------------------------65、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------76、外头盖法兰、外头盖侧法兰设计---------------------------------------77、外头盖结构设计-----------------------------------------------------88、接管的选择--------------------------------------------------------------------------------------89、管箱结构设计-------------------------------------------------------810、管箱结构设计------------------------------------------------------811、垫片选择----------------------------------------------------------912、折流板------------------------------------------------------------------------------------------913、支座选取----------------------------------------------------------1014、拉杆的选择--------------------------------------------------------1315、接管高度(伸出长度)确定------------------------------------------1316、防冲板------------------------------------------------------------1317、设备总长的确定----------------------------------------------------1318、浮头法兰---------------------------------------------------------------------------------------1419、浮头管板及钩圈----------------------------------------------------14三、强度计算--------------------------------------------------------------141、筒体壁厚的计算-----------------------------------------------------142、外头盖短节,封头厚度计算-------------------------------------------153、管箱短节、封头厚度计算 --------------------------------------------164、管箱短节开孔补强的核校 --------------------------------------------165、壳体压力试验的应力校核---------------------------------------------166、壳体接管开孔补强校核-----------------------------------------------177、固定管板计算-------------------------------------------------------188、无折边球封头计算 --------------------------------------------------199、管子拉脱力计算-----------------------------------------------------20四、设计汇总-----------------------------------------------------21五、设计体会--------------------------------------------------------------21参考文献--------------------------------------------------------------22设计题目:浮头式换热器工艺参数:管口表:符号公称直径(mm)管口名称a 130 变换气进口b 130 软水出口c 130 变换气出口d 130 软水进口e 50 排尽口设备选择原理及原因:浮头式换热器的结构较复杂,金属材料耗量较大,浮头端出现内泄露不易检查出来,由于管束与壳体间隙较大,影响传热效果。

浮头换热器的课程设计说明书

浮头换热器的课程设计说明书

化工原理课程设计设计题目:浮头式换热器的设计指导教师李毅学生姓名凌风2010 年 10 月 20 日浮头式换热器设计任务书一、设计题目:浮头式换热器的设计二、设计原始数据操作条件:①大豆油:入口温度133℃,出口温度40℃②冷却介质:循环水,入口温度30℃,出口温度40℃③大豆油处理量:5000kg/h④允许压降:不大于1×105Pa⑤大豆油定性温度下的物性数据:根据液体相对密度共线图查得86.5℃下大豆油的密度为: =925 kg/m3根据液体粘度共线图得86.5℃下大豆油的粘度为:μ=0.000850 Pa/s根据液体比热容共线图得86.5℃下大豆油的定压比热容为:2.052 kJ/(kg·℃)CP0 =查表得86.5℃下大豆油的导热系数为λ=0.1559 W/(m·℃)⑥循环冷却水在定性温度下的物性数据如下:ρ=994 kg/m3密度:i=4.08 kJ/(kg·℃)定压比热容:CPiλ=0.626 W/(m·℃)导热系数:iμ=0.000725 Pa/s粘度:i⑦每年按330天计算,每天24小时连续运行。

三、设备型式浮头式换热器四、设计任务1.编写课程设计说明书2.设计计算列管式换热器的管径尺寸、管内流速、热负荷、传热面积、管程数、管数、壳程数和接管尺寸等3.工艺流程图及换热器工艺条件图4.设计评述目录一、设计方案 (3)1.1选择换热器的类型 (3)1.2流动空间及流速的确定 (3)二、物性数据 (4)三、计算总传热系数 (4)3.1热流量 (4)3.2平均传热温差(逆流) (4)3.3冷却水用量 (4)3.4总传热系数K (4)四、计算传热面积 (5)五、工艺结构尺寸 (5)5.1管径和管内流速 (5)5.2管程数和传热管数 (5)5.3平均传热温差校正系数 (6)5.4传热管排列和分程方法 (6)5.5壳体内径 (6)5.6折流板 (6)5.7接管 (7)六、换热器核算 (7)6.1热量核算 (7)6.2换热器内流体的流动阻力 (9)6.3换热器主要结构尺寸和计算结果 (10)七、主体设备图 (11)八、参考文献 (11)九、主要符号说明 (11)十、总结 (12)一、设计方案1.1选择换热器的类型两流体温度变化情况:入口温度133℃,出口温度40℃循环水,入口温度30℃,出口温度40℃本设计任务为煤油冷却器的设计,两流体在传热过程中无相的变化,该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式换热器;固定管板式换热器结构比较简单,制造简单,制造成本低,管程可用多种结构,规格范围广,在生产中广泛应用。

浮头式换热器课程设计

浮头式换热器课程设计

浮头式换热器课程设计一、教学目标本课程的教学目标是使学生掌握浮头式换热器的基本原理、结构特点、工作流程和应用范围。

通过学习,学生能够理解浮头式换热器在化工、能源等领域的的重要作用,具备分析和解决实际问题的能力。

具体目标如下:1.知识目标:•掌握浮头式换热器的定义和分类;•理解浮头式换热器的工作原理和结构特点;•熟悉浮头式换热器的设计计算方法和应用场景。

2.技能目标:•能够分析浮头式换热器的工作流程和性能指标;•具备利用浮头式换热器解决实际问题的能力。

3.情感态度价值观目标:•培养学生对浮头式换热器技术的兴趣和好奇心;•使学生认识到浮头式换热器在现代工业中的重要性;•培养学生的创新精神和团队合作意识。

二、教学内容本课程的教学内容主要包括浮头式换热器的基本原理、结构特点、工作流程和应用范围。

具体安排如下:1.浮头式换热器的定义和分类;2.浮头式换热器的工作原理和结构特点;3.浮头式换热器的设计计算方法;4.浮头式换热器的应用场景和案例分析;5.浮头式换热器在现代工业中的重要性。

三、教学方法为了提高教学效果,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。

1.讲授法:通过教师的讲解,使学生掌握浮头式换热器的基本原理和知识;2.讨论法:引导学生参与课堂讨论,培养学生的思考和分析能力;3.案例分析法:通过分析实际案例,使学生了解浮头式换热器的应用和解决实际问题的能力;4.实验法:安排实验室实践,使学生亲手操作,加深对浮头式换热器的理解和掌握。

四、教学资源为了支持本课程的教学内容和教学方法,将选择和准备以下教学资源:1.教材:选用权威、实用的浮头式换热器教材作为主要教学资源;2.参考书:提供相关的参考书籍,丰富学生的知识体系;3.多媒体资料:制作精美的课件、动画等多媒体资料,提高学生的学习兴趣;4.实验设备:准备浮头式换热器的实验设备,为学生提供实践操作的机会。

五、教学评估为了全面、客观地评估学生的学习成果,本课程将采用多种评估方式,包括平时表现、作业、考试等。

浮头式换热器课程设计

浮头式换热器课程设计

目录一 设计任务书某生产过程中,需将6000kg/h 的原油从175℃冷却至130℃,压力为0.4MPa ;冷却介质采用循环水,循环冷却水的压力为0.3MPa ,循环水进口温度25℃,出口温度为55℃。

试设计一台列管式换热器,完成该生产任务。

二 设计计算2.1确定设计方案2.11 选择换热器类型 两流体的温度变化情况:原油进口温度175℃,出口温度130℃; 循环冷却水进口温度25℃,出口温度55℃。

考虑到换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。

2.12 管程安排由于循环冷却水较易结垢,若其流速太低,将会加速污垢增长速度,使换热器的热流量下降,故总体考虑,应使循环冷却水走管程,原油走壳程。

2.2 确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。

故 壳程原油的定性温度为:5.1522)130175(=+=T ℃ 管程循环冷却水的定性温度为:402)5525(=+=t ℃ 已知原油在定性温度下的有关物性数据如下: 密度 0ρ=820kg/m 3 导热系数 0λ=0.128W/m ℃ 定压比热容 0p C =2.20kJ/kg ℃ 粘度 0μ=0.665mPa ﹒s 循环冷却水在40℃下的物性数据如下:密度 i ρ=992.2kg/m 3 导热系数 0λ=0.634W/m ℃ 定压比热容 0p C =4.1744KJ/kg ℃ 粘度 0μ=0.656mPa ﹒s2.3 估计传热面积2.31 热流量 (忽略热损失)h kj t C m Q p /452.260000000⨯⨯==2.32 冷却水的用量h kg t C Q m p i /2.4773301744.459400000=⨯==2.33 平均传热温差 先按照纯逆流计算得:36.112105120ln )105120('=-=mt ℃ 2.34 初算传热面积由总传热系数的选择表可得:K 的取值范围为290 ~698)/(02C m W ,在K 的取值范围内,取K=320)/(02C m W 。

浮头式换热器课程设计说明书

浮头式换热器课程设计说明书

浮头式换热器课程设计说明书(共25页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.方案确定选择换热器的类型浮头式换热器:主要特点是可以从壳体中抽出便于清洗管间和管内。

管束可以在管内自由伸缩不会产生热应力。

换热面积的确定根据《化工设备设计手册》选择传热面积为 400m 2换热管数N 的确定我国管壳式换热器常用碳素钢、低合金钢钢管,其规格为φ19× 2、φ25× 、φ32× 3、φ38 × 3、φ57 × 等,不锈钢钢管规格为φ19 × 2、φ25 × 2、φ32 × 2、φ38 × 、φ57 × 。

换热管长度规格为、、、、、、、、等。

换热器换热管长度与公称直径之比,一般在 4~25 之间,常用的为 6~10。

管子的材料选择应根 据介质的压力、温度及腐蚀性来确定。

选用32×3mm 的无缝钢管,材质为 0Cr18Ni9,管长为 6000mmn=A/πd 0L 3-5式 3-5:n —换热管数 A —换热面积m 2 d0—换热管外径mm L —换热管长度mm故 -3-3400n==6133.1432600010⨯⨯10⨯⨯根表拉杆直径 /mm表拉杆数量换热器公称直径DN/mm400<d400≤d<700700≤d<900900≤d<2600 44810拉杆需 10根。

换热管的排布与连接方式的确定换热管排列形式如图所示。

换热管在管板上的排列形式主要有正三角形、正方形和转正三角形、转三角形。

正三角形排列形式可以在同样的管板面积上排列最多的管数,故用的最为广泛,但管外不易清洗。

为便于管外便于清洗可以采用正方形或转正方形的管束。

换热管中心距要保证管子与管板连接时,管桥有足够的强度和宽度。

管间需要清洗时还要留有进行清洗的通道。

换热管中心距宜不小于倍的换热管的外径。

浮头式换热器设计说明书

浮头式换热器设计说明书

1 绪论1.1 换热设备在工业中的应用在炼油、化工生产中,绝大多数的工艺过程都有加热、冷却和冷凝的过程,这些过程总称为换热过程。

传热过程的进行需要一定的设备来完成,这些使传热过程得以实现的设备就称之为换热设备。

据统计,在炼油厂中换热设备的投资占全部工艺设备总投资的35%~40%,因为绝大部分的化学反应或传质传热过程都与热量的变化密切相关,如反应过程中:有的要放热、有的要吸热、要维持反应的连续进行,就必须排除多余的热量或补充所需的热量。

工艺过程中某些废热或余热也需要加以回收利用,以降低成本。

综上所述,换热设备是炼油、化工生产中不可缺少的重要设备。

换热设备在动力、原子能、冶金及食品等其他工业部门也有着广泛的应用。

1.2 换热设备的分类1.2.1按作用原理或传热方式可分为:直接接触式、蓄热式、间壁式。

1.2.1.1直接接触式换热器,如下图所示热流体图1.1其传热的效果好,但不能用于发生反应或有影响的流体之间。

蓄热式换热器,如下图所示图1.2其适用于温度较高的场合,但有交叉污染,温度被动大。

1.2.1.3 间壁式换热器,又称表面式换热器利用间壁进行热交换。

冷热两种流体隔开,互不接触,热量由热流体通过间壁传递给冷流体。

1.2.2 按其工艺用途可分为:冷却器(cooler)、冷凝器(condenser)、加热器(一般不发生相变)(heater)、蒸发器(发生相变)(evaporator)、再沸器(reboiler)、废热锅炉(waste heat boiler)。

1.2.3 按材料分类:分为金属材料和非金属材料换热器。

1.3 国内外的研究现状上个世纪70年代初发生世界性能源危机,有力地促进了传热强化技术的发展。

为了节能降耗,提高工业生产的经济效益,要求开发适用不同工业过程要求的高效能换热设备。

因此,几十年来,高效换热器的开发与研究始终是人们关注的课题,国内外先后推出了一系列新型高效换热器。

近年来,国内已经进行了大量的强化传热技术的研究,但在新型高效换热器的开发方面与国外差距仍然较大,并且新型高效换热器的实际推广和应用仍非常有限。

浮头式换热器设计说明书

浮头式换热器设计说明书

1 绪论1.1 换热设备在工业中的应用在炼油、化工生产中,绝大多数的工艺过程都有加热、冷却和冷凝的过程,这些过程总称为换热过程。

传热过程的进行需要一定的设备来完成,这些使传热过程得以实现的设备就称之为换热设备。

据统计,在炼油厂中换热设备的投资占全部工艺设备总投资的35%~40%,因为绝大部分的化学反应或传质传热过程都与热量的变化密切相关,如反应过程中:有的要放热、有的要吸热、要维持反应的连续进行,就必须排除多余的热量或补充所需的热量。

工艺过程中某些废热或余热也需要加以回收利用,以降低成本。

综上所述,换热设备是炼油、化工生产中不可缺少的重要设备。

换热设备在动力、原子能、冶金及食品等其他工业部门也有着广泛的应用。

1.2 换热设备的分类1.2.1按作用原理或传热方式可分为:直接接触式、蓄热式、间壁式。

1.2.1.1直接接触式换热器,如下图所示热流体图1.1其传热的效果好,但不能用于发生反应或有影响的流体之间。

蓄热式换热器,如下图所示图1.2其适用于温度较高的场合,但有交叉污染,温度被动大。

1.2.1.3 间壁式换热器,又称表面式换热器利用间壁进行热交换。

冷热两种流体隔开,互不接触,热量由热流体通过间壁传递给冷流体。

1.2.2 按其工艺用途可分为:冷却器(cooler)、冷凝器(condenser)、加热器(一般不发生相变)(heater)、蒸发器(发生相变)(evaporator)、再沸器(reboiler)、废热锅炉(waste heat boiler)。

1.2.3 按材料分类:分为金属材料和非金属材料换热器。

1.3 国内外的研究现状上个世纪70年代初发生世界性能源危机,有力地促进了传热强化技术的发展。

为了节能降耗,提高工业生产的经济效益,要求开发适用不同工业过程要求的高效能换热设备。

因此,几十年来,高效换热器的开发与研究始终是人们关注的课题,国内外先后推出了一系列新型高效换热器。

近年来,国内已经进行了大量的强化传热技术的研究,但在新型高效换热器的开发方面与国外差距仍然较大,并且新型高效换热器的实际推广和应用仍非常有限。

浮头式换热器设计说明书

浮头式换热器设计说明书
(4)缠绕管式换热器
这类换热器是在芯筒与外筒之间的空间内将传热管按螺旋线形状交替缠绕而成,相邻两层螺旋状传热管的方向相反,并采用一定形状的定距件使之保持一定的间距。它适用于同时处理多种介质、在小温差下需要传递较大量且管内介质操作压力较高的场合。
1.
在换热器向高参数、大型化发展的今天,管壳式换热器仍占主导地位。它的基本结构是在壳体内放置了许多管子组成的管束,管子的两端(或一端)固定在管板上,管子的轴线与壳体的轴线平行。为了增加流体在管外空间的流速并支撑管子,改善传热性能,在筒体内间隔安装多块折流板,用拉杆和定距管将其与管子组装在一起。换热器的壳体上和两册的端盖上装有流体的进出口。
(1)实现所规定的工艺条件
(2)强度足够及结构可靠
(3)便于制造、操作与维修
(4)经济上合理
1.3
在进行换热器设计时,对换热器各种零,部件的材料,应根据设备操作压力,操作温度,流体的腐蚀性能以及对材料的制造工艺性能等的要求来选取。当然,最后还要考虑材料的经济合理性。一般为了满足设备操作压力和操作温度,即从设备的强度和刚度的角度来考虑,是比较容易达到的,但对于材料的耐腐蚀性能,有时往往成为一个复杂的问题。如在这方面考虑不周,选材不妥,不仅会影响换热器的使用寿命,而且也大大提高设备的成本。至于材料的制造工艺性能,是与换热器的具体结构有着密切关系。
管壳式换热器虽然在换热效率,设备结构的紧凑性和单位面积的金属消耗量等方面都不如其它新型换热器,但它具有结构坚固、可靠性高、适应性广、易于制造、处理能力大、生产成本低、选用的材料范围广、换热表面的清洗比较方便、能承受较高的操作压力和温度。在高温、高压和大型换热器中,管壳式换热器仍占绝对优势,是目前使用最广泛的一类换热器。根据热补偿方法的不同,管壳式换热器有下面几种形式

浮头式换热器设计说明书

浮头式换热器设计说明书

浮头式换热器设计说明书摘要本设计说明书是关于浮头式换热器的设计,主要是进行了换热器的工艺计算、换热器的结构和强度设计。

设计的前半部分是工艺计算部分,主要是根据给定的设计条件估算换热面积,从而进行换热器的选型,校核传热系数,计算出实际的换热面积,最后进行压力降和壁温的计算。

设计的后半部分则是关于结构和强度的设计,主要是根据已经选定的换热器型式进行设备内各零部件(如接管、折流板、定距管、钩圈、管箱等)的设计,包括:材料的选择、具体尺寸确定、确定具体位置、管板厚度的计算、浮头盖和浮头法兰厚度的计算、开孔补强计算等。

关于浮头式换热器设计的各个环节,设计说明书中都有详细的说明。

浮头式换热器:其结构如图2所示。

管子一端固定在一块固定管板上,管板夹持在壳体法兰与管箱法兰之间,用螺栓连接;管子另一端固定在浮头管板上,浮头管板夹持在用螺柱连接的浮头盖与钩圈之间,形成可在壳体内自由移动的浮头,故当管束与壳体受热伸长时,两者互不牵制,因而不会产生温差应力。

浮头部分是由浮头管板,钩圈与浮头端盖组成的可拆联接,因此可以容易抽出管束,故管内管外都能进行清洗,也便于检修。

由上述特点可知,浮头式换热器多用于温度波动和温差大的场合,尽管与固定管板式换热器相比其结构更复杂、造价更高。

1.1设计任务根据给定的工艺设计条件,此设计为无相变热、冷流体间换热的浮头式换热器设计任务。

1.2总体设计①确定结构形式。

由于介质换热温差较大,因此选用浮头式换热器。

②合理安排流程。

安排冷的污水走壳程,处理过的热清水走管程。

1.3热工计算①原始数据○2定性温度与物性参数○3物料与热量恒算○4有效平均温差○5初算传热面积○6换热器结构设计○7管程传热与压降○8壳程传热与压降结构设计与强度设计1)换热流程设计:采用壳程为单程、管程为单程的结构型式.2)换热管及其排列方式:采用的无缝钢管,材料为2520钢,热管排列方式为三角形排列,如图所示,共101根。

另外6根拉杆,共排列107根。

浮头式换热器设计说明书

浮头式换热器设计说明书

4746/168400 T JB MnR EHA -⨯装订线4. 管板与换热管的连接:管板与换热管采用胀接的形式,胀接长度mml37=,对于规格为5.225⨯φ换热管,由于管板壁厚2540>,为5.0322==+Kmml,,连接方式如下:5. 换热管中心距:由换热管外径mmd25=外,中心距mmt32=,根据GB151-1999标准,可查得分隔板槽两侧相邻管中心距mmSn44=6. 布管限定圆:根据GB151-1999标准,对于浮头式换热器,其布管限定圆直径为:)21(2bbbDDnL++-=b1=3b2=4b=11.52575.0min⋅≥δmm75.18=21075.18++≥δmm75.30=取标准设计值:mm40=δ装订线7. 管板管孔:根据GB151-1999标准,Ⅰ级管束(碳素钢管),当换热器mmd25=外时,其管孔直径mmd25.25=孔,允许偏差为:0~15.0+8. 管板连接:根据GB151-1999标准,管板与壳程圆筒、管板与法兰之间选择a型连接方式a型连接方式为:管板通过垫片于壳体法兰何管箱法兰连接管板与管箱用螺柱、垫片平面密封连接9. 壳体接管:由前已知壳体接管mmd1001=,管箱接管mmd802=,363=LD装订线16球冠形封头钩圈式浮头换热器外头盖推荐使用球冠形封头,根据《JB04746T.02钢制压力容器用封头》标准,取封头为DN500⨯8的PSH球冠形封头,总深度H=65mm,内表面积22033.0mA=,容积30063.0mV=,封头质量kgM9739.12=R=50017. 容器法兰1:根据JB-T4701-2000标准选取长颈对焊法兰,形式为突面密封面类型,则取MPaPN0.1=,mmDN400=,规格为:4559550054031====DHDD 23344524===dD  δ,配合螺柱为:20M20个结构如图所示:mmA1383≤即可装订线2:根据JB-T4701-2000标准选取长颈对焊法兰,形式为凹凸面密封面类型,则取MPaPN0.1=,mmDN500=,规格为:55510060064031====DHDD 23385524===dD  δ,配合螺柱为:20M20个结构如图所示:3:根据JB-T4721-92外头盖侧法兰,形式为凸面密封面类型,则取MPaPN0.1=,mmDN400=,规格为:5559060064031====DHDD 23325524===dD  δ,配合螺柱为:20M20个结构如图所示:4钩圈式浮头法兰480800=+=i f D D372)104(2400)1(2=+-=++=bn b D D i fi426186290=+=b D3946400=-=c Dmm D G 384)53200(2=--=18钩圈 选择A 型钩圈t t ][σ=113直径比K=1.29查GB150-1998第九章,得Y=7.77120)](5.0[5.0=+-=fi c b D D D La厚度δ=42mm19管板计算:对延长部分兼做法兰的固定管板根据GB151-1999,初始数据:垫片压紧力作用中心圆直径384mm管子: 管子外径:mm d 25=外 管子壁厚:mm5.2=δ管子根数:mm n68=浙江工业大学课题:浮头式换热器设计班级:过控0601学号:200602060120设计者:徐庆清。

浮头式换热器说明书

浮头式换热器说明书

第一章绪论1.1 换热器技术概况近年来,由于新科学技术和节约能源的发展,对被广泛应用的换热器,提高换热器的传热性能和开发新的节能型换热器,已成为换热器设计、制造方面的重要课题,我国石化行业的换热设备以管壳式换热器为主,而且传统弓形折流板换热器占到总量的70%~80%。

弓形折流板换热器固然有其优点,并在产业节能方面做出了巨大贡献,但在新的节能减排形势下,其缺点(压降大、存在大量流动死区、振动大、传热效率低等)严重限制了自身的生存和发展空间,同时也推进了强化传热理论和换热器的发展。

强化传热理论的工程应用根据强化传热理论…,在管的两侧范围内,需要增大传热系数较小的一侧才能有效改进总传热系数。

由于无法确定所有工况下,需要增大管内或管外的传热系数以得到最高的总传热系数,因此,强化传热理论在工程中的应用不是单一的模式,而是呈现出 3种趋势,即对管内、管外、管束整体的强化传热。

无论是那种类型的强化传热结构,都已经细化出许多更新类型,且其适用的工作环境和强化效果各异。

因此,几十年来,换热器的开发与研究始终是人们关注的课题,国内外先后推出了一系列新型高效换热器。

比如:气动喷涂翅片管换热器,焊接式板式换热器,螺旋折流板换热器,新型麻花管换热器和Titan绕丝花环换热器等。

而管壳式换热器由于应用广泛,发展也较迅速。

管壳式换热器又称列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。

虽然它在换热效率、结构紧凑性和金属材料消耗等方面,不如其它新型换热设备,但它具有结构坚固、操作弹性大、适应性强、可靠程度高、选材范围广、处理能力大、能承受高温和高压等特点,在换热设备中始终占有约70%的主导地位。

管壳式换热器是当前应用最广、理论研究和设计技术完善,运用可靠性良好的一类换热器,目前各国为改善该换热器的性能对其强化传热技术开展了大量的研究。

111管壳式换热器的研究和发展主要表现在两方面:一是新型高效传热管(如螺纹管、横纹管、波纹螺旋管、缩放管、绕丝花环管、异形翅片管)等的开发和应用,以强化管程传热。

浮头式换热器计算说明书

浮头式换热器计算说明书

课程设计题目:浮头式换热器院系:机械工程学院专业:过程装备与控制工程班级:1003班学生姓名:尹以龙指导教师:***目录第一部分任务书 (1)第二部分计算说明书 (2)1.传热工艺计算 (2)1.1.原始数据 (2)1.2.定性温度及物性参数 (3)1.3.传热量和冷水流量 (3)1.4.有效平均温度 (3)1.5.管程传热面积计算 (4)1.6.结构初步设计 (4)1.7.壳程换热系数计算 (5)1.8.总传热系数计算 (6)1.9.结构初步设计 (7)1.10.壳程换热系数计算 (7)1.11.总传热系数计算 (8)1.12.核算管程压强降 (8)1.13.核算壳程压强降 (9)2.强度计算 (11)2.1.换热管材料及规格的选择和根数的确定 (11)2.2.确定筒体内径 (11)2.3.确定筒体壁厚 (12)2.3.1.筒体液压试验 (13)2.4.管箱封头厚度计算 (13)2.5.浮头侧封头厚度计算 (14)2.6.设备法兰的选择 (15)2.6.1.管箱侧法兰的选择 (15)2.6.2.浮头侧法兰的选择 (16)2.6.3.壳体上与浮头侧连接的法兰 (17)2.6.4.接管法兰的选择 (17)2.7.管板的设计 (18)2.8.钩圈式浮头 (22)2.8.1浮头法兰的计算 (24)2.8.2管程压力作用下浮头盖的设计 (28)2.9.浮动管板 (29)2.10.钩圈的选择 (30)2.11.折流板的选择 (31)2.12.拉杆和定距管的确定 (32)2.13.防冲板 (32)2.14.管箱短节壁厚的计算 (32)2.15.筒体、管箱的耐压试验的校核计算 (33)2.16.接管及开孔补强 (33)2.16.1 a,b孔的补强 (33)2.16.2 d,h孔的补强 (35)2.17. 支座择及应力校核 (37)2.17.1 支座的选择 (37)2.17.2 支座的应力校核 (38)2.18. 整体尺寸布局 (40)第一部分任务书一、设计题目设计题目:用水冷却煤油产品的浮头式换热器的设计二、设计条件(1)使煤油从180℃冷却到40℃,压力1.0MPa;(2)冷却剂为水,水压力为0.5MPa。

浮头式换热器设计说明书

浮头式换热器设计说明书

浮头式换热器设计说明书————————————————————————————————作者:————————————————————————————————日期:武汉工程大学邮电与信息工程学院毕业设计(论文)说明书论文题目 BES-900-1.0-165-4.5/25-2Ⅱ浮头式换热器设计学号 1002050314 学生姓名刘成专业班级 10过程装备与控制工程03班指导教师刘丽芳总评成绩2014年 6 月 1 日摘要 (2)Abstract (3)绪论 (4)一换热器的简单介绍 (4)二换热器的应用 (4)三管壳式换热器的分类及其特点 (4)四换热器在化学工业中的应用 (5)五换热器的选型 (7)第一章结构及强度计算 (8)1.1筒体的计算 (8)1.2管箱的结构设计 (9)1.3 浮头盖的设计 (14)1.4管板的计算 (27)1.5外头盖的计算 (32)1.6开孔补强计算 (33)1.7其他零部件设计 (36)第二章浮头式换热器的制造工艺 (41)2.1 总体制造工艺 (41)2.2 管箱、壳体、头盖的制造工艺 (41)2.3 换热管的制造工艺 (41)2.4 管板与折流板的制造工艺 (41)第三章浮头式换热器的检验、安装、使用和维修 (43)3.1换热管的水压试验 (43)3.2安装 (43)3.3使用 (44)3.4维护 (44)设计总结 (45)致谢 (46)参考文献 (47)附录 (48)换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器的应用广泛,它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。

换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如氨合成塔内的热交换器。

本设计说明书是关于浮头式换热器的设计,主要是进行了换热器的结构和强度设计。

这部分主要是根据设计课题和课题给定条件进行设备内各零部件(如管箱、浮头钩圈、管板、接管、折流板、隔板、定距管等)的设计,包括:材料的选择、具体尺寸确定、确定具体位置、管板厚度的计算、浮头盖和浮头法兰厚度的计算、开孔补强计算等。

浮头式换热器设计说明书

浮头式换热器设计说明书

武汉工程大学邮电与信息工程学院毕业设计(论文)说明书论文题目 BES-900-1.0-165-4.5/25-2Ⅱ浮头式换热器设计学号 1002050314学生姓名刘成专业班级 10过程装备与控制工程03班指导教师刘丽芳总评成绩2014年 6 月 1 日摘要 (2)Abstract (3)绪论 (4)一换热器的简单介绍 (4)二换热器的应用 (4)三管壳式换热器的分类及其特点 (4)四换热器在化学工业中的应用 (5)五换热器的选型 (7)第一章结构及强度计算 (8)1.1筒体的计算 (8)1.2管箱的结构设计 (9)1.3 浮头盖的设计 (14)1.4管板的计算 (27)1.5外头盖的计算 (32)1.6开孔补强计算 (33)1.7其他零部件设计 (36)第二章浮头式换热器的制造工艺 (41)2.1 总体制造工艺 (41)2.2 管箱、壳体、头盖的制造工艺 (41)2.3 换热管的制造工艺 (41)2.4 管板与折流板的制造工艺 (41)第三章浮头式换热器的检验、安装、使用和维修 (43)3.1换热管的水压试验 (43)3.2安装 (43)3.3使用 (44)3.4维护 (44)设计总结 (45)致谢 (46)参考文献 (47)附录 (48)换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器的应用广泛,它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。

换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如氨合成塔内的热交换器。

本设计说明书是关于浮头式换热器的设计,主要是进行了换热器的结构和强度设计。

这部分主要是根据设计课题和课题给定条件进行设备内各零部件(如管箱、浮头钩圈、管板、接管、折流板、隔板、定距管等)的设计,包括:材料的选择、具体尺寸确定、确定具体位置、管板厚度的计算、浮头盖和浮头法兰厚度的计算、开孔补强计算等。

浮头式换热器设计说明

浮头式换热器设计说明

浮头式换热器1;浮头式换热器设计概述2;浮头式换热器国外研究现状和发展趋势3;设计研究技术路线和目标4;研究容和拟解决的关键问题5;计划安排和预期成果6;参考文献成人高等教育毕业设计(论文)题目__________________________________________________________________学生_________________________________联系指导教师_________________________________评阅人_________________________________教学站点_________________________________专业_________________________________完成日期_________________________________成人高等教育毕业设计(论文)任务书年月日浮头式换热器的设计摘要本次设计的题目为浮头式换热器。

浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。

浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗。

在化工工业中应用非常广泛。

本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,采用了2-4型,即壳侧两程,管侧四程。

首先,通过换热计算确定换热面积与管子的根数初步选定结构。

然后按照设计的要求以及一系列国际标准进行结构设计,设计的前半部分是工艺计算部分,主要设根据设计传热系数.压强校核.壳程压降.管程压降的计算。

设计的后半部分则是关于结构和强度的设计,主要是根据已经选定的换热器型式进行设备各零部件(如壳体. 折流板. 管箱固定管板.分程隔板.拉杆.进出口管.浮头箱.浮头.支座.法兰.补强圈)的设计,[关键词]换热器;浮头;管壳工况:一种浮头式换热器,它由壳体、换热管束、管板、浮头、外接管、法兰螺栓连接件、膨胀件等组成,其特点是壳体与换热管束之间可连接一个膨胀节,以消除热膨胀差,浮头直接与外接管相接,以减小流阻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1•方案确定选择换热器的类型浮头式换热器:主要特点是可以从壳体中抽出便于清洗管间和管内。

管束可以在管内自由伸缩不会产生热应力1.1换热面积的确定根据《化工设备设计手册》选择传热面积为40(m21.2换热管数N的确定我国管壳式换热器常用碳素钢、低合金钢钢管,其规格为u 19X、2 u 25X 2、5 u 32X、3 u 38 X3、u 57 X 3等,不锈钢钢管规格为u 19 X 2u 25 X 2u 32 X、2u 38 X 2.5u 57 X 2.5 换热管长度规格为1.0、1.5、2.0、2.5、3.0、4.5、6.0、7.5、9.0m等。

换热器换热管长度与公称直径之比,一般在4〜25之间,常用的为6〜10。

管子的材料选择应根据介质的压力、温度及腐蚀性来确定。

选用32X3mm的无缝钢管,材质为0Cr18Ni9,管长为6000mmn=A/ n d L 3-5式3-5: n—换热管数A—换热面积m2 d0—换热管外径mm L—换热管长度mm400=613 根33.14 32 " 6000 10表 1.1拉杆直径/mm换热管外径d 10Wd 1515< d < 2525v d < 27拉杆直径nd101216表1.2拉杆数量 换热器公称直径DN/mm400v d 400 Wd 700700 Wd 900900 Wd 260044810拉杆需10根。

1.3换热管的排布与连接方式的确定换热管排列形式如图3.1所示。

换热管在管板上的排列形式主要有正三角形、正方形和 转正三角形、转三角形。

正三角形排列形式可以在同样的管板面积上排列最多的管数,故用 的最为广泛,但管外不易清洗。

为便于管外便于清洗可以采用正方形或转正方形的管束。

换热管中心距要保证管子与管板连接时,管桥有足够的强度和宽度。

管间需要清洗时还要留有进行清洗的通道。

换热管中心距宜不小于 1.25倍的换热管的外径。

换热管排列形式 如图1.1所示:转角正方形 图1.1换热管排列形式正三角形 转角三角形正方形图1.2管子成三角形排列本换热器采用正三角形排列,由表1.3,取管间距a=40mm。

表1.3换热管中心距(mm)2. 换热器壳体壁厚的设计计算压力容器选材:本设备为冷凝器,由于设计压力在低范围内,工作温度不高,介质为乙烯,所以选用Q235-B材料,且满足其使用要求。

一般来说,换热器的壳体和管箱公称直径大于等于400mm 时,其筒体使用板材卷制。

当换热器的公称直径小于400mm时,其筒体使用管材制。

由于本次设计的换热器直径为1200mm,所以我选用板材卷制的筒体。

2.1壳程壁厚的设计计算1. 名义壁厚计算、二P C Di一4-1查表得[(T ]t=170MPa2[屮-Q取设计压力p =1.1采.6=1.76 MPa= 1 . 7612 0 0 '=2 1 70 0.-8 5: n =' +C 1 - C 2故、n =C 亍 7. 3 5 0. 8 1 m.rnU 5 按照GB151-89对固定管板式换热器最小壁厚的规定,取12mm 。

2.有效壁厚计算、e-Ln-G -C 2 =12-0.8-1=10.2mm3. 最小壁厚计算®,min对于合金钢容器,规定最小壁厚不能小于 2mm 。

-n,min='min +C^22 = 4mmFin >:i n,min所以壳程的名义厚度取12m m 合格。

2.2管箱壁厚设计计算换热器的管箱封头一般为椭圆形或平盖形。

平盖容易拆卸,维修关程时不必拆卸管道。

一般大直径压力高,检修情况允许时,倾向于使用平盖。

在压力不高的情况下,换热器直 径小于等于900m 时,用椭圆形封头;换热器直径大于900mm 通常使用平盖。

因为本换热器 直径为1200m m 所以选用椭圆形封头。

1. 名义壁厚计算管箱选材为Q235-A ,有参考文献⑷公式4-2P c D 2 [汀-P c式4-4:—管箱计算壁厚,mmD i —圆筒内径,mm查得[0]70MPaU —旱缝系数,焊缝采用双面焊,局部无损探伤,取U = 0.85取设计压力 p=1.76MPa1.76 1 2 00=21 7 0 0 •七 5 "n= +C 1 C 2查得:G = 0.8mmC 2 =1 m m=7. mm 1.764-27.3mm1.76、n 二 +G C 2 = 7.35 0.8 1=9.15mm按照GB151-89对固定管板式换热器最小壁厚的规定,:,取12mm2. 有效壁厚计算 飞 、e = n -G-C 2 = 12-0.8-1 = 10.2mm3. 最小壁厚计算6n,min对于碳素钢容器,规定最小壁厚< 3mm、n,min = ''min' C 2 = 3 ' 2 = 5mm■:;min -:; n,min所以管箱的名义厚度取12m 合格。

4.管箱水压试验较核:由参考文献⑷知,内压容器水压试验公式:P T (D +、e ) 2 e式4-6: p c —取壳程与管箱中计算压力较大者,即 p c =1.76MPa [汀—设计温度下材料的许用应力,MPa 。

由于壳程与管箱采用相同的材料,所以[冷町p T = 1. 25 1. 7 6MP.c20.9「s =0.9 235 0.85=179.8/IPa因为匚T <0.9「s''所以该换热器壳体水压试验合格。

2.3封头的选择及计算容器封头又称端盖,按其形状可分为三类:凸形封头、锥形封头、平板形封头。

其中 凸形封头包括半球形封头、椭圆形封头、碟形封头(或称带折边的球形封头)和球冠封头 (或称无折边球形封头)四种。

1. 球形封头从受力分析来看,球形封头是最理想的结构形式。

但缺点是深度大,当直径较小时,整 体冲压困难,大直径采用分瓣冲压其拼焊工作量也大。

半球形封头常用在高压容器。

如下 图所示:对于内压容器P T =1・25P c[匚]所以—(1 20 0幽列册a2 1 0. 22. 椭圆形圭寸头椭圆形封头是由椭圆面和短圆筒组成,直边段的作用是避免封头和圆筒的连接焊缝处 出现经向曲径半径突变,以改善焊缝的受力状况。

由于封头的椭圆部分经线曲率变化平滑连 续,所以应力分布比较均匀,且椭圆形封头深度较半球形深度封头小得多,易于冲压成型, 是目前中、低压容器中应用最为普遍的封头之一。

如下图所示:3. 平盖在理论分析时平板的周边支承被认为固支或简支,但实际上平盖与圆筒连接时,真实的支承既不是固支也不是简支,而是介于固支和简支之间。

平盖的集合形状包括圆形、椭圆形、长圆形、矩形及正方形等几种,平盖的最大应力既可能出现在中心部位, 也可 能在圆筒与平盖的连接部位。

比较以上几种封头形式,选用标准椭圆形封头,为了便于焊接封头及经济性要求,Q235-B 容器设计压力P W 1.6MPa 使用温度在0 ~350 C ;壳体厚度小于16mm 不得用于 盛 装液化石油气介质以及毒性程度为高度或极度危害介质。

采用材料为Q235-B 。

1.封头名义壁厚计算由参考文献⑷得、=t PD —2[打-0.52上式中[0—设计温度下材料的许用应力,MPa查得[0]i7OMPaU —旱缝系数,焊缝采用双面焊,局部无损探伤,取U = 0.85取设计压力p=p w =1.76MPa、 1.76 1200、•=2 1 7 0 0 •七 5 0 . 5T+G C6 = 6 +C^ C 2= 7. 3 3 + 0. 8+r1m9. 1 按照GB151-89对固定管板式换热器最小壁厚的规定,旳取12mm2.有效壁厚计算=12-0.8-1 =10.2mm3. 最小壁厚计算fe , min7.3r3n 1.76对于碳素钢容器,规定最小壁厚不能小于 3mmS\min =餡in =3+2=5mm 各nin > 6i,min 所以封头的名义厚度取12mm 合格 4•封头的选择 2.4壳体水压试验校核 由参考文献⑷知,内压容器水压试验公式: = PT® ①"-'T -----------T 2e 对于内压容器 卩丁=1.25卩。

叫[町[c]t 设计温度下材料的许用应力,"Pa 。

由于壳程与管箱采用相同的材料,所以[c ]t =[ 门P T =1.25 銘76=2.2MPa所以 故 ^T=2^(1200+10-2)2 10.2=130.5MPa0.9 cu =0.9235X).85=179.115MPa因为 OT <0.9 c su所以该换热器壳体水压试验合格 3•密封装置设计及选型3.1法兰的选型与设计法兰联接是作为容器的筒体与封头、筒体与筒体、管道间、管道与阀门管件等的可拆性 联接。

它是由一对法兰、数个螺栓、螺母和一个垫片组成。

由于强的密封性能和较好的强度, 故应用广泛。

缺点是不能快速拆卸,制造成本较高。

常见的整体法兰形式有两种即平焊法兰和对焊法兰。

平焊法兰结构能保证壳体与法兰同时受力,使法兰厚度可适量减薄,但会在壳体上产生较大应力,适用于( PNC 4.0MPS)的低压容器。

甲型平焊法兰与乙型平焊法兰的区别在于乙型平焊法兰有一个壁厚不小于16mm的圆筒形短节,因而乙型平焊法兰的刚性比甲型平焊法兰好,甲型法兰在( PN C0.6MPS)时,适用的容器直径范围为(DN=300~1200),乙型法兰性能更优。

由于本次设计的换热器压力低,属于一类容器DN=1200mm,所以选用甲型平焊法兰。

32法兰压紧面的选择凹凸面(如图5-2 )安装时易于对中,还能有效地防止垫片被挤出压紧面,适用于pN < 6.4MPa的容器法兰和管法兰。

综上所述,选用凹凸面压紧面。

如图 3.1:图3.1法兰(1)法兰材料选用Q235-A,许用应力为:[c]=170MPa, [(r t=170MRa其中:[c]—常温下法兰的许用应力,MPa;[c]—设计温度下法兰的许用应力,MPa(2)法兰力矩由前面法兰尺寸可知D b=D^1280:\ 2 2R=4D i P=0.7还他。

心75=31086°NF2 (D G -D:)P =0.785 (12802 -12002) 0.275 = 42830N4P3=2二D G bmP=2 3.14 1221 8 2 0.275=33739N 1280 -120040mm2操作时法兰力矩:M P=P1I什P2b+P3l3=310860 >40+42830 >35+33739 >30=14945620.N mm 预紧时法兰力矩:W = A m+Ab^7]^1274 70217^ 167960 N2 2M^Wl^ 167960 30 =5038800N *mm则法兰设计力矩:取MP14945620 Nmm 与Ma=5038800 N-mm 中最大值,则取M=Ma=5038800N mm式中:P1—内压作用在内径截面上的轴相力,N ; P2—内压作用在法兰端面上的轴相力,N ; P3—垫片支反力,N ;Db —螺栓中心圆直径,mm;MP—操作时法兰力矩,N mm ;W—预紧状态螺栓的设计载荷,N ;Ma —预紧时法兰力矩,N・mm;M—法兰设计力矩,N mm。

相关文档
最新文档