2.3.1等腰三角形 第1课时 课件(人教版八年级上)(1)

合集下载

2.3 第1课时 等腰三角形的性质定理1及推论

2.3  第1课时  等腰三角形的性质定理1及推论

在△ABC中
∵AB=AC
B
C
∴ ∠B=∠C
例题精讲
A
例1 求等边三角形ABC的内角度数.
解 在△ABC中,
∵ AB=AC (已知)
B
C
∴ ∠C=∠B (同一个三角形中等边对等角)
∵∠A+∠B+∠C=180° ∴∠A=∠B=∠C=180°÷3=60°
推论 等边三角形的各角都相等, 推论也可以和定理、定义、性质、基 并且每一个角都等于60 º 本事实一样作为推理、论证的依据
例2 求证“等腰三角形两底角的平分线相等”.
已知: 如图 ,在△ABC中,AB=AC,
BD, CE分别是∠ABC,∠ACB的平分线 . 求证: BD=CE
BD=CE
∆BCE≌ ∆CBD
BC=CB ∠ABC=∠ACB BC=CB
AB=AC
BD, CE是
△ABC平分线
【想一想】你能证明前两个吗?
等腰三角形 两腰上的中线
相等
等腰三角形 两腰上的高线
相等
等腰三角形两 底角的平分线
相等
课堂小结
1)等腰三角形一个性质定理: 两底角相等 简称:等边对等角
2)等腰三角形一个推论:等边三角形的每个内角都等于60° 3)利用等腰三角形的性质定理 可进行简单的 推理,计算。
随堂演练
1.如图2-3-1所示,在△ABC中,AB=AC,∠B=50°,则∠C的度数
_轴__对___称____图形,它的对称轴是顶角平分线所
底角 底角
B
C
在的直线.底边Fra bibliotek获取新知
等腰三角形的性质定理1
等腰三角形的两个底角相等
在同一个三角形中,等边对等角

2024年人教版八年级上册数学第13章第3节第1课时等腰三角形

2024年人教版八年级上册数学第13章第3节第1课时等腰三角形

感悟新知
知3-讲
特别提醒 1.等腰三角形的定义也是一种判定方法. 2.“等角对等边”是我们以后证明两条线段相
等的常用方法,在证明过程中,经常通过 计算三角形各角的度数,或利用角的关系 得到角相等,从而得到所对的边相等.
感悟新知
知3-讲
3. 已知底边及底边上的高作等腰三角形已知:一个等腰三 角形底边长为a,底边上的高为h(如图13 .3 -9). 求作:这个等腰三角形.
感悟新知
几何语言:如图13 .3 -3,在△ ABC 中, (1)∵ AB=AC,AD ⊥ BC, ∴ AD 平分∠ BAC(或BD=CD); (2)∵ AB=AC,BD=DC, ∴ AD ⊥ BC(或AD 平分∠ BAC); (3)∵ AB=AC,AD 平分∠ BAC, ∴ BD=DC(或AD ⊥ BC).
感悟新知
知2-练
3-1.[中考·宿迁] 如图,已知AB=AC=AD,且AD ∥ BC,求 证:∠ C=2 ∠ D.
感悟新知
证明:∵AB=AC=AD, ∴∠C=∠ABC,∠D=∠ABD. ∵∠ABC=∠ABD+∠CBD, ∴∠ABC=∠CBD+∠D. ∵AD∥BC,∴∠CBD=∠D. ∴∠ABC=∠D+∠D=2∠D. 又∵∠C=∠ABC,∴∠C=2∠D.
知3-讲
感悟新知
知3-练
例6 如图13.3-11, 在△ ABC 中,D 为AC 的中点,DE ⊥ AB,DF ⊥ BC,垂足分别为点E,F,且DE=DF.求 证:△ ABC 是等腰三角形.
解题秘方:利用“等角对等边” 判定等腰三角形,只需证明三 角形两个内角相等即可.
感悟新知
知3-练
证明:∵ DE ⊥ AB,DF ⊥ BC,垂足分别为点E,F, ∴∠ AED= ∠ CFD=9 0 °. ∵ D 为AC 的中点,∴ AD=DC.

人教版八年级数学上册课件 第十三章 轴对称 等腰三角形 等边三角形 第1课时 等边三角形的性质与判定

人教版八年级数学上册课件 第十三章 轴对称 等腰三角形 等边三角形 第1课时 等边三角形的性质与判定

27 2
(cm)
17.(14分)(原创题)已知△ABC是等边三角形,点D是直线BC上一点, 以AD为一边在AD的右侧作等边三角形ADE.
(1)如图①,点D在线段BC上移动时,求证:CE+CD=AB; (2)如图②,点D在线段BC的延长线上移动时,那么: ①线段CE,CD,AB之间有怎样的数量关系?请加以证明; ②∠DCE的度数为___6_0_°___; (3)如图③,点D在线段BC的反向延长线上移动时,∠DCE的大小是否 发生变化?线段CE,CD,AB之间又有怎样的数量关系?请直接写出结 论.
2.(3分)如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,
则∠ADB的度数为( ) D
A.25°
B.60°
C.85°
D.95°
3.(3分)如图,已知△ABC是等边三角形,点B,C,D,E在同一直线 上,且CG=CD,DF=DE,则∠E=___1_5_°___.
4 . (3 分 ) 如 图 , 在 等 边 三 角 形 ABC 中 , CD⊥AB 于 点 D , 过 点 D 作 DE∥BC交AC于点E,若△ABC的边长为2,则△ADE的周长是__3__.
∠E,∴DB=DE
6.(3分)下列四个说法中,正确的有( D ) ①三个角都相等的三角形是等边三角形;②有两个角等于60°的三角形 是等边三角形;③有一个角是60°的等腰三角形是等边三角形;④有两个 角相等的等腰三角形是等边三角形. A.0个 B.1个 C.2个 D.3个
7.(3分)等腰三角形补充下列条件后,仍不一定成为等边三角形的是 ( C)
14.(台州中考)如图,等边三角形纸片ABC的边长为6,E,F是边BC 上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪 下的△DEF的周长是___6_.

八年级上册数学1等腰三角形(人教版)

八年级上册数学1等腰三角形(人教版)
解:∵AB=AC,BD=BC=AD, ∴ ∠ABC=∠C=∠BDC, ∠A=∠ABD(等边对等角)
设∠A=x,则 ∠BDC=∠A+∠ABD=2x
从而 ∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有 ∠A+∠ABC+∠C=x+2x+2x=180°
解得x=36° 所以, 在△ABC中,∠A=36°, ∠ABC=∠C=72°
在等腰三角形性质的探索过程和证明过程中,“折 痕”“辅助线”发挥了非常重要的作用,由此,你能发 现等腰三角形具有什么特征?
等腰三角形是轴对称图形,底边上的中线(顶角平 分线、底边上的高)所在直线就是它的对称轴.
例 如图,在△ABC中,AB=AC,点D在AC上, 且BD=BC=AD.求△ABC各角的度数
∵ ∠ADB +∠ADC =180°, 例 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.
的中线.求证:∠BAD =∠CAD,AD⊥BC. 证明:作底边的中线AD.
(1)你能根据结论画出图形,写出已知、求证吗? 你还有其他方法证明性质1吗?
(3)已知等腰三角形的一个内角为70°,则它的另外两 探索并证明等腰三角形的性质
∴ ∠B =∠C.

C
D
探索并证明等腰三角形的性质
你还有其他方法证明性质1吗? 可以作底边的高线或顶角的角平分线.
A

C
D
探索并证明等腰三角形的性质
性质2可以分解为三个命题,本节课证明“等腰三 角形的底边上的中线也是底边上的高和顶角平分线”.
探索并证明等腰三角形的性质
已知:如图,△ABC 中,AB =AC,AD 是底边BC
探索并证明等腰三角形的性质 2.能利用性质证明两个角相等或两条线段相等.

中小幼2.3等腰三角形的性质定理(1课时)公开课教案教学设计课件【一等奖】

中小幼2.3等腰三角形的性质定理(1课时)公开课教案教学设计课件【一等奖】

不改变图形的形状和大小.
B
C D
等腰三角形的性质定理1
等腰三角形的两个底角相等.也就 是说,在同一个三角形中,等边对 等角.
等腰三角形的两个底角相等
• 例1 已知ABC是等边三角形 .求它三个内角 的度数.
A
B
C
等边三角形的各个内角都等于60°.
例2 求证:等腰三角形两底角的平分线相等.
已知: 如图,在△ABC中, AB=AC,BD 和CE是△ABC的两 条角平分线. 求证:BD=CE.
等腰三角形的底角可以是直 角或钝角吗?为什么?
(不能,因为等腰三角形两底角相等,若底角 是直角或钝角,则三角形的内角和大于180°.)
试一试
1.等腰三角形一个底角为75°,它
的另外两个角为7__5_°__,_3_0.°
⒉等腰三角形一个角为70°,它的
另外两个角为_7_0_°__,4_0_°__或__5_5_°__,_5_5_°.
第1题





第2题
今天所做之事,勿候明天; 自己所做之事,勿候他人。 要做一番伟大的事业,总得 在青年时代开始。
——歌德
2013年9月
⒊等腰三角形一个角为110°,它的 另外两个角为_3_5_°__,3_5.°
1.填空题:
(1)如图,在△ ABC中,AB=AC,外角∠ ACD=100,则∠ B=____度
(2)如图,在等腰三角形ABC中,AB=AC,D
为BC的中点,则点D到AB,AC的距离相
等.请说明理由.

A
100 ° B CD
(1)若将△ABD作关于直线AD的轴对称变换,所得的像
是什么? 所得的像是△ACD

人教版八年级数学上册第十三章 1 13. 第1课时 等腰三角形的性质

人教版八年级数学上册第十三章 1 13. 第1课时 等腰三角形的性质

1
2
2.等腰三角形的性质及其应用 【例2如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点 E,DF⊥AC于点F.求证:DE=DF.
分析:利用等腰三角形三线合一的性质及角平分线的性质进行证 明.
1
2
证明:连接AD(图略). ∵D为BC的中点,AB=AC, ∴AD平分∠BAC. 又DE⊥AB,DF⊥AC, ∴DE=DF. 点拨:此题解法灵活,也可以直接利用等腰三角形的性质证明 △BDE≌△CDF.另外,作底边上的中线(或顶角的平分线、底边上的 高)是解决与等腰三角形有关问题时常用的辅助线.
相等
(简写成“等边对等角”);
性质2:等腰三角形的顶角平分线、 底边上的中线 、底边
上的高相互重合(简写成“三线合一”).
2.等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上
的高)所在的 直线 就是它的对称轴.
知识梳理 预习自测
1.下列说法正确的是( ). A.等腰三角形的高、中线、角平分线互相重合 B.顶角相等的两个等腰三角形全等 C.等腰三角形的一边不可以是另一边的2倍 D.等腰三角形的两个底角相等
.
66°
关闭
答案
1
2
1.等腰三角形的边、角的计算 【例1】 已知一个等腰三角形的两角分别为(2x-2)°,(3x-5)°,求这 个等腰三角形各角的度数. 分析:应考虑3种情况,即(2x-2)°作顶角或(3x-5)°作顶角或(2x-2)° 和(3x-5)°均不是顶角. 解:若2x-2=3x-5,得x=3. 故三角形的三个内角分别为4°,4°,172°; 若2(2x-2)=180-(3x-5),得x=27. 故三角形的三个内角分别为52°,52°,76°; 若2(3x-5)=180-(2x-2),得x=24. 故三角形的三个内角分别为46°,67°,67°.

人教版八年级上册数学课件 第十三章轴对称 等腰三角形 等腰三角形 第1课时 等腰三角形的性质 (2)

人教版八年级上册数学课件 第十三章轴对称 等腰三角形 等腰三角形 第1课时 等腰三角形的性质 (2)
(3)结论:∠BAD=2∠EDC. 理由:∵AE=AD,AB=AC, ∴∠B=∠ACB=∠DCE,∠E=∠ADE=∠ADC+∠EDC. ∵∠B+∠BAD+∠ADB=∠ECD+∠E+∠EDC=180°,∴∠B+ ∠BAD+∠ADB=∠ECD+∠ADB+∠EDC+∠EDC, ∴∠BAD=2∠EDC
A.∠B=∠C
B.AD⊥BC
C.AD平分∠BAC D.AB=2BD
(2)若∠BAD=35°,则∠C的度数为( C )
A.35° B.45° C.55° D.65°
7.(4分)如图,△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD =4,则△ABC的周长是__2_0_.
8.(8分)如图,在△ABC中,AB=AC,D为BC边的中点,DE⊥AB. (1)求证:∠BAD=∠BDE; (2)若AC=6,DE=2,求△ABC的面积.
16.(15分)如图,在△ABC中,AB=AC,D是射线BC上一点,E是射 线AC上一点,且AD=AE.
(212).如5°图 ① , 若 ∠ BAC = 90° , D 是 BC 中 点 , 则 ∠ EDC 的 度 数 为 _________;
(2)如图②,当点D在线段BC上时,若∠BAD=40°,求∠EDC的度数; (3)如图③,当点D在线段BC延长线上时,试判断∠BAD和∠EDC的数 量关系,并证明.
13.(易错题)(青海中考)等腰三角形的一个内角为70°,则另外两个内 角的度数分别为____5_5_°__,__5_5_°__或__7_0_°__,__4_0_°____________________.
【变式】等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三
角形的底角的度数为___6_3_°__或__2_7_°________.

八年级数学等腰三角形课件.

八年级数学等腰三角形课件.

∴∠B=∠C(等边对等角)
第十四页,共24页。
证法欣赏
方法一:作顶角∠BAC的平分线AD。
A ∵AD平分∠BAC
方法二:作底边BC的高AD。
∵AD⊥BC
A
∴∠1=∠2 在△ABD与△ACD中
1
∴ ∠ADB =∠ADC=90°
2
在△ABD与△ACD中
AB=AC(已知)
∠ADB =∠ADC=90°
∠1=∠2(已证) B
分?并指出重合的部分是什么?
(3)由这些重合的部分,你能发现等腰三角形的性质吗?说一说你的猜想。
第四页,共24页。
动画演示
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有 没有重合的部分?并指出重合的部分是什么?
A
B
C
第五页,共24页。
动画演示
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有 没有重合的部分?并指出重合的部分是什么?
∴∠ABC=∠C=∠BDC=2 x
∴∠A+∠ABC+∠C= x 2x 2x 1800
x 360
在△ABC中∠A=36度 ∠ABC=∠C=72度
第十八页,共24页。
基础训练
(1)已知等腰三形的一个顶角为36° ,则它的两个底角
分别为
72° 、72° .
(2)已知等腰三角形的一个角为40°,则其它两个角
A
B
C
第六页,共24页。
动画演示
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有没
有重合的部分?并指出重合的部分是什么?
A
B
C
第七页,共24页。
动画演示
(2)把剪出的等腰三角形△ABC沿折痕对折,除两腰重合外还有 没有重合的部分?并指出重合的部分是什么?

八年级数学等腰三角形(1)

八年级数学等腰三角形(1)
本文来源于:易久学https:/// 易久学移动版https:/// [单选]在我国企业对外会计报表种类、格式和编制方法由()制定。A.财政部B.各地财政部门C.企业D.各地证券监督管理部门 [单选,A2型题,A1/A2型题]右心衰竭心功能变化的指标是()ABCDE [单选]热力管道安装工程中,()活动侧管道的支架应为导向支架,使管道不致偏离中心线,并保证能自由伸缩。A.填料式补偿器B.波形补偿器C.方形补偿器D.自然补偿器 [单选]以下符合类风湿关节炎的分类标准的是()。A.对称性关节肿、3个以上关节肿≥6周B.晨僵至少2小时≥6周C.腕、掌指关节或远端指间关节肿≥6周D.手X线片改变,至少有骨质疏松和关节间隙的狭窄E.类风湿因子阳性(滴度>1:16) [单选]微波中继通信中继方式中,适于上下话路的方式是().A.直接中继B.外差中继C.基带中继 [单选]下列哪个命令可进行网格渲染:()A.FacedB.WireC.2-sidedD.FaceMap [填空题]旅客乘车区间中,要求一段乘坐硬座车,一段乘坐软座车时,全程发售(),乘坐软座时,另收软座区间的()票价差额。 [单选]分包工程发包人没有将其承包的工程进行分包,在施工现场所设项目管理机构的①项目负责人、②技术负责人、③项目核算负责人、④质量管理人员、⑤安全管理人员不是工程承包人本单位人员的,视同()。A.肢解发包B.劳务分包C.再分包D.允许他人以本企业名义承揽工程 [单选]建设工程勘察单位在编制建设工程勘察文件时,不作为编制依据的是()。A.项目批准文件B.城市规划C.项目投资概算D.国家规定的建设工程勘察深度要求 [单选]要定量检测人血清中的生长激素,采用的最佳免疫检测法是()A.免疫荧光法B.免疫酶标记法C.细胞毒试验D.放射免疫测定法E.补体结合试验 [单选,A2型题,A1

人教版八年级数学上册《等腰三角形》(第1课时)课件

人教版八年级数学上册《等腰三角形》(第1课时)课件

底边BC上的高AF,得出AF是顶角∠BAC的
平分线,再证AF∥DE即可. 1
1
2
证明:过点A作AF⊥BC于F,
∵AB=AC,AF⊥BC于F,
F
∴AF平分∠BAC,∴∠1= ∠BAC.
又∵∠BAC=∠D+∠AED,AD=AE, ∴∠D=∠AED,∴∠AED= 1 ∠BAC.
2 ∴∠1=∠AED, ∴AF∥DE, ∴DE⊥BC.
20cm或22cm
20 36°或90°
70°或40°
解:设∠A=x, ∵CD=AD,∴∠ACD=∠A=x, 又∵∠BDC=∠A+∠ACD=2x, ∵CD=CB,∴∠B=∠BDC=2x, 在△ABC中,∵AB=AC,∴∠B=∠BCA=2x, 又∵∠A+∠B+∠BCA=180°, ∴x+2x+2x=180°,x=36°, ∴∠A=36°,∠B=∠BCA=72°
13.3.1 等腰三角形
(第一课时)
1.了解等腰三角形的概念. 2.掌握等腰三角形的性质. 3.会运用等腰三角形的概念和性质解决有关问题.
重点:等腰三角形的概念和性质及其应用. 难点:等腰三角形的“三线合一”的性质的理解及 其应用.
阅读课本P75-77页内容,了解本节主要内容.
等腰
轴对称 底边上的高(顶角的平分线或底边上的中线) 所在的直线;
例1:如图,在△ABC中,AB=AC,点D在AC上,且BD =BC=AD.求△ABC各角的度数. 解析:根据等腰三角形的性质,两底角相 等,利用三角形内角和定理建立方程. 解:设∠A=x°,
∵AD=BD,∴∠ABD=∠A=x°, ∴∠BDC=∠A+∠ABD=2x°.
∵BD=BC,∴∠C=∠BDC=2x°.
∵AB=AC,∴∠ABC=∠C=2x°. 在△ABC中, ∵∠A+∠ABC+∠C=180°,x°+2x°+2x°=180°, ∴x=36°,∴∠A=36°, ∴∠ABC=∠C=72°.

2.3.1等腰(边)三角形的性质

2.3.1等腰(边)三角形的性质
∵△ABC 为 等 边 三 角 形 , BD 是 AC 边 上 的 中 线 , 1 ∴BD 平 分 ∠ABC, 则 ∠DBE = ∠ABC= 30°.∴∠BDC= 90°. 2 ∵CD= CE, ∴∠CDE= ∠E . ∵∠ACB= 60°, 且 ∠ACB 为 △CDE 的 外 角 , ∴∠CDE+ ∠E = 60°, ∴∠CDE = ∠E = 30°, ∴∠BDE= ∠BDC+ ∠CDE= 90°+ 30°= 120°.
3.等腰三角形的两底角_________( 相等 简称“等边对等角”).
2.3.1
等腰(边)三角形的性质
知识点二
等边三角形的性质
等边三角形的三个内角______ 60° . 相等 ,且都等于_________ 由于等边三角形是____________________________ ,因此 特殊的等腰三角形
2.3.1
等腰(边)三角形的性质
[归纳总结]等边三角形的性质常用于证明边相等,角相等 ,线段或直线垂直.
2.3.1
等腰(边)三角形的性质
活动二
教材导学
如图2-3-1,把一张长方形纸片按图中虚线向下对 折,并剪去阴影部分,再把剩余部分展开,得到的 △ABC有什么特点?
图2-3-1
2.3.1
等腰(边)三角形的性质
把上面活动中剪去的△ ABC 对折,折痕为 AD ,对称轴为 ____ AD ,找出其中重合的线段和角填入表中: 你发现了什么? 重合的线段 AB=AC BD=DC 重合的角 ∠B=∠C ∠BAD=∠CAD ∠ADB=∠ADC
2.3.1
等腰(边)三角形的性质

[归纳总结]等腰三角形中常作的辅助线有底边上的高
、中线、顶角的角平分线.
2.3.1

13.3.1等腰三角形(第一课时)

13.3.1等腰三角形(第一课时)

教学设计13.3.1等腰三角形(第一课时)项目概要部分课题 13.3.1等腰三角形(第一课时)教材数学学科人教版八年级上册第十三单元课题3教学目标一、知识与技能:通过学习等腰三角形的概念及性质,会应用等腰三角形的性质计算、证明。

二、过程与方法:1、经历等腰三角形性质的探究,学生通过实践、操作、观察、猜想、论证,发展了合情推理的水平和演绎推理的水平,同时增强了语言表达水平。

2、在应用等腰三角形性质的过程中,培养了学生应用数学的意识。

三、情感、态度与价值观:在活动中,培养学生自主探究,合作交流的意识,提升学习的兴趣。

任务分析1.本节的学习任务比较重要,有等腰三角形性质的推导、性质的应用,所以针对学生的特点,能充分地发挥学生主观能动性,让学生自己去发现、去联想.2. 通过学生自己动手实验得到等腰三角形性质的内容,能够使他们比较好的掌握知识、提升学习数学的兴趣,达到了事半功倍之效.3. 在整个教学过程中,利用直观教具及电化教学手段,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯.教学重点探索并证明等腰三角形的性质。

教学难点性质1证明中辅助线的添加和对性质2的理解。

预习设计1、有两边相等的三角形叫,相等的两边叫,另一边叫两腰的夹角叫,腰和底边的夹角叫2、如图,在△ABC中,AB=AC,标出各部分名称。

3、把活动中剪出的△ABC沿折痕AD对折,找出其中重合的线段和角,填入下表4、归纳等腰三角形的性质:性质 1 等腰三角形的两个相等(简写成“”)性质2 等腰三角形、、互相重合。

重合的线段重合的角产出学生能利用等腰三角形的两个性质解决问题,提升使用知识和技能解决问题的水平。

课前教学准备提示1.教具:长方形纸,剪刀,幻灯片、尺子。

2.学具:长方形纸。

学习过程(学生活动)学习指导(教师活动)内容和目标提示[活动一]回顾知识等腰三角形:有两条边相等的三角形是等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰所夹的角叫做底角。

数学人教版八年级上册 12.3等腰三角形(第1课时)PPT课件

数学人教版八年级上册 12.3等腰三角形(第1课时)PPT课件
习题12.3 1, 2, 4, 7
(简称为”三线合, 点D在AC上, 且 BD=BC=AD求△ABC各角的度数. 解:
∵AB=AC, BD=BC=AD ∴∠ABC=∠C=∠BDC
∠A=∠ABD 设∠A=x,则
∠BDC=∠A+∠ABD=2x 从而∠ABC=∠C=∠BDC=2x 于是在△ABC中, 有
探究
如图12.3-1拿出一张长方形的纸按图中虚线对 折, 并剪去阴影部分, 再把它打开, 得到的三角 形ABC有什么特点?
概念:
有两边相等的三角形叫做等腰三角 形。
(如AB=AC, △ABC为等腰三角形)
A
腰—相等的两边

腰 角 腰 底—除腰外的一边
B 底角 底角 C 顶角—两腰的夹角
底边
底角—腰与底的夹角
想一想
1、上面剪出的等腰三角形是抽对称图形吗? 2、把剪出的等腰三角形ABC沿折痕对折, 找出 其中重合的线段和角。
3、由这些重合的线段和角, 你能发现等腰三角 形的哪些性质呢? 说一说你的猜想。
我们可以发现等腰三角形的性质:
性质1: 等腰三角形的两个底角相等(简写为“等边对 等角”)
性质2: 等腰三角形的顶角平分线、底边上的中线、底 边上的高线相互重合。
说一说
通过本节课的 学习, 你们都 有哪些收获?
小结
概念: 有两条边相等的三角 形是等腰三角形
1. 等腰三角形
等腰三角形是轴对称图形, 顶角平 分线(或底边中线或底边上的高线 )所在直线是它的对称轴.
2. 能根据等腰三角形的概念与性质求等腰三 角形的边长、周长及其知道一角求其它两角
【作业设计】
∠A+∠ABC+∠C=x+2x+2x=180 解得x=36 在△ABC中, ∠A=36, ∠ABC=∠C=72

初中数学人教版八年级上册 等腰三角形(第1课时)

初中数学人教版八年级上册 等腰三角形(第1课时)

巩固练习
(1)解:∵AB=AC,AD是BC边上的中线,
∴∠BAD=∠CAD,∴∠BAC=2∠BAD=50°.
∵AB=AC,
∴ ∠C=∠ABC = ×(180°– ∠BAC)
1
2 = ×(180°– 50°)=65°.
(2)证明:∵AB=AC,AD是BC边上的中线,
1
∴ED⊥BC,
2
又∵BG平分∠ABC,EF⊥AB,
A
∴ ∠C= ∠B=30°,
∵BD = CD,∴AD⊥BC,
∴∠ADB=∠ADC = 90°.
B
D
C
∴∠ BAD =90°– ∠B = 60°.
课堂检测
2.如图,已知△ABC为等腰三角形,BD、CE为底角的平分线,
且∠DBC=∠F,求证:EC∥DF.
证明:∵△ABC为等腰三角形,AB=AC, ∴∠ABC=∠ACB.
人教版 数学 八年级 上册
13.3 等腰三角形
13.3.1 等腰三角形 (第1课时)
导入新知
导入新知
看到下面三角形了吗,它有何特点呢?

顶 角

底角 底角 底边
我们今天来探讨一下等腰三角形的性质.
素养目标
2.会运用等腰三角形的概念和性质解决有 关问题.
1. 探索并掌握等腰三角形的两个性质.
探究新知
知识点 等腰三角形的性质 把一张长方形的纸按图中的虚线对折,并剪去阴 影部分(一个直角三角形),再把得到的直角三角形
展开,得到的三角形ABC有什么特点?
探究新知
B
A
AB=AC
等腰三角形
C
探究新知 【思考】△ABC 是轴对称图形吗?它的对称轴是什么?

2.3 等腰三角形的性质定理第1课时 等腰三角形性质定理1及等边三角形性质课件

2.3 等腰三角形的性质定理第1课时 等腰三角形性质定理1及等边三角形性质课件

新课讲解
几何语言
A
∵AB=AC,
∴∠B=∠C(等边对等角). B
C
巩固练习
1、等腰三角形一个底角为70°,它的顶角为__4_0__°_. 2、等腰三角形一个角为70°,它的另外两个角为 __7_0_°__,__4_0_°__或___5_5_°__,__5_5_°. 3、等腰三角形一个角为110°,它的另外两个角为 _______3_5_°__,__3_5__°_______.
证明:作顶角的平分线AD. 在△BAD和△CAD中,
AB=AC ( 已知 ),
∵ ∠1=∠2 ( 辅助线作法 ),
AD=AD (公共边) , ∴ △BAD ≌ △CAD (SAS). ∴ ∠B=∠C (全等三角形的对应角相等).
A 12 BDC
新课讲解
等腰三角形性质定理1
等腰三角形的两个底角相等. 也就是说,在同一个三角形中,等边对等角.
B
C
合作探究
探究1、任意画一个等腰三角形,用量角器测量一下它的
内角度数,你发现了什么? A
46°
两个底角 度数相等
67°67°
B
C
合作探究
探究2、把等腰三角形沿顶角平分线所在直线折叠,你有
什么发现?
A
两个底角
重合
猜想:等腰三角形
B
C
的两个底角相等.
验证猜想
已知:△ABC中,AB=AC.求证:∠B=∠C.
又∵∠3=∠1+∠A,
∴∠3=2∠1,
A
∴∠ABC=2∠1,即∠1=∠2,
∴在△BDC中,∠3+∠2+∠C=180°,即5∠2=180°,
解得,∠2=36°. ∴在△ABC中,∠A=∠2=36°,∠C=∠ABC=72°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴△ACF≌△AБайду номын сангаасE(SAS). ∴BE=CF.
【想一想】 等腰三角形底角的平分线、腰上的中线和腰上的高互相重合吗? 提示:不一定重合.
【微点拨】证明两条线段相等的思路
1.当两条线段在两个三角形中时,考虑两个三角形全等.
2.当两条线段在一个三角形中时,考虑三角形是不是等腰三角
形的两腰或者应用等腰三角形三线合一的性质来证明 .
顶角平分线 、 (2)“三线合一”:等腰三角形的___________
底边上的中线 、底边上的高 _____________ ___________相互重合. (3)轴对称图形:等腰三角形是轴对称图形,对称轴是
顶角平分线(底边高或中线)所在的直线 ___________________________________.
【方法一点通】 等腰三角形的性质在证明中的应用 1.在证明边或角相等时,常考虑利用三角形全等,等腰三角形 的两个底角相等常常是隐含条件,注意挖掘和应用 . 2.利用等腰三角形三线合一的性质,不仅能够证明相关的线段 或角相等,还可以证明有关的线与线之间的关系 .
【思维诊断】(打“√”或“×”)
1.等腰三角形的角平分线、中线和高互相重合.( × )
2.等腰三角形的底边长为3cm,腰长为1cm,则周长为
5cm.( × )
3.有一个角是60°的等腰三角形,其他两个内角也是
60°.( √ ) 4.等腰三角形的底角都是锐角.( √ ) 5.钝角三角形不可能是等腰三角形.( × )
【互动探究】如上题图,在等腰△ABC中,AB=AC,∠A=50°, 边AB的垂直平分线交边AC于点E,求∠EBC的度数. 【解析】∵△ABC是等腰三角形,∴∠ABC=∠ACB, ∠ABC+∠ACB+∠A=180°,∵∠A=50°,∴∠ABC=65°,又因 为DE垂直且平分AB,∴∠ABE=∠A=50°,∴∠EBC=65°50°=15°.
【方法一点通】 等腰三角形求角的度数的“三种方法” 1.利用等边对等角得相等的角. 2.利用外角等于不相邻两内角之和导出各角之间的关系 . 3.利用三角形内角和定理列方程.
知识点二
应用等腰三角形性质证明
【示范题2】(2014·东城区一模)如图, 在△ABC中,AB=AC,点D是BC的中点, 作∠EAB=∠BAD,AE边交CB的延长线于 点E,延长AD到点F,使AF=AE,连接CF. 求证:BE=CF.
【思路点拨】根据等腰三角形的性质可得∠CAD=∠BAD,由等 量关系可得∠CAD=∠EAB,根据SAS可证△ACF≌△ABE,再根据 全等三角形的对应边相等即可得证.
【自主解答】∵AB=AC,点D是BC的中点,
∴∠CAD=∠BAD.
又∵∠EAB=∠BAD,
∴∠CAD=∠EAB.
AC AB, 在△ACF和△ABE中,CAF BAE, AF AE,
13.3 等腰三角形 13.3.1 等腰三角形 第1课时
1.等腰三角形的相关概念:
两边 相等的三角形. (1)定义:有_____ 相等 的两边叫做腰, (2)腰、底边:_____ 底边 另外一边叫做_____. 两腰 的夹角. (3)顶角:_____
底边 的夹角. (4)底角:腰与_____
2.等腰三角形的性质: 相等 (1)等边对等角:等腰三角形的两个底角_____.
2 2
【尝试解答】∵AB=AC,∠A=36°, ∴∠ABC=
1 1 (180°-∠A)= ×(180°-36°)=72°, 2 2
∵DE是AB的垂直平分线, ∴AE=BE,∴∠ABE=∠A=36°, ∴∠EBC=∠ABC-∠ABE=72°-36°=36°. 答案:36°
【想一想】 1.等腰三角形的顶角α 与底角β 有什么关系? 提示:α=180°-2β. 2.等腰直角三角形两个底角相等吗?它们是多少度? 提示:相等,两个底角都是45°.
知识点一
应用等腰三角形性质计算
【示范题1】如图,在△ABC中,AB=AC, ∠A=36°,AB的垂直平分线交AC于点E, 垂足为点D,连接BE,则∠EBC的度数

.
【解题探究】1.根据线段垂直平分线的性质,由“AB的垂直平 分线交AC于点E”,除AD=BD外,你能得到哪些相等的线段? 提示:AE=BE. 2.根据1中的结论和∠A=36°,你能求出∠ABE的度数吗? 提示:∵AE=BE,∴∠ABE=∠A=36°. 3.根据“AB=AC,∠A=36°”,你能求出∠ABC的度数吗? 提示:∵AB=AC,∴∠ABC=∠C, ∴∠ABC= 1 (180°-∠A)= 1 (180°-36°)=72°.
相关文档
最新文档