热处理工艺对马氏体时效钢组织及性能的影响

合集下载

热处理对金属材料的强韧性的影响

热处理对金属材料的强韧性的影响

热处理对金属材料的强韧性的影响引言:金属材料是广泛应用于各个行业领域的重要材料之一。

为了提高金属材料的性能,热处理技术在金属加工中得到了广泛应用。

本文将探讨热处理对金属材料强韧性的影响及其原理。

1. 热处理的概念和分类热处理是通过控制金属材料的加热、保温和冷却过程,以改变材料的组织结构和性能的一种方法。

根据处理温度和冷却速率的不同,热处理可分为退火、淬火、正火等不同类型。

2. 退火对强韧性的影响退火是将金属材料加热到临界温度后保温一段时间,再以适当速率冷却的过程。

退火可以消除材料中的应力和组织缺陷,提高材料的延展性和塑性,从而提高材料的强韧性。

3. 淬火对强韧性的影响淬火是将金属材料加热到临界温度后迅速冷却的过程。

淬火能够使金属材料的组织转变为马氏体,从而提高材料的硬度和强度。

然而,淬火过程中冷却速度过快会导致材料产生裂纹和变脆,因此在淬火后需要通过回火来降低材料的脆性,提高其韧性。

4. 正火对强韧性的影响正火是将金属材料加热到临界温度后以适当速率冷却的过程。

正火可以均匀调整材料的内部组织结构,消除应力和组织缺陷,提高金属材料的强度和韧性。

与淬火相比,正火的冷却速率较慢,因此其适用于对金属材料强韧性要求较高的场合。

5. 其他热处理方法的影响除了上述常见的热处理方法,还存在一些其他方法,如时效处理、表面处理等,它们也对金属材料的强韧性产生一定的影响。

时效处理可以通过调整保温时间和温度,改变材料的晶粒尺寸和组织状态,提高材料的硬度和强度;表面处理可以通过改变金属材料表面的化学成分和物理形态,增加材料的耐磨性和抗腐蚀性,从而间接提高材料的强韧性。

结论:热处理是一种有效的改善金属材料性能的方法,能够显著提高金属材料的强韧性。

不同的热处理方法对金属材料的影响机理不同,通过选择合适的热处理方法和工艺参数,可以使金属材料兼具高强度和良好的韧性,满足各种工程应用的需求。

参考文献:1. 张三,李四. 热处理对金属材料性能的影响研究. 金属材料学报,2008,30(4):403-410.2. 王五,赵六. 热处理对钢的强韧性的影响及机理研究. 机械制造,2012,56(9):51-57.3. Johnson, W. N., & Wang, H. Effect of heat treatment and alloying on the mechanical properties of low carbon steel. Metallurgical and Materials Transactions A, 2008, 39A(2): 177-185.。

热处理对有色金属材料性能的影响

热处理对有色金属材料性能的影响

热处理对有色金属材料性能的影响有色金属及其合金最常用的热处理方法:退火;固溶处理(淬火);时效;变形热处理;化学热处理一.退火在金属材料的半成品或者制成品中常常存在有残余应力、成分不均匀、组织不稳定等缺陷,严重影响合金的工艺性能和使用性能,例如塑性低、耐蚀性差、力学性能差等。

要消除或者减少这些缺陷,则需要进行退火。

退火:加热到适当温度-----保温一定时间-----缓慢速度冷却.去应力退火、再结晶退火和均匀化退火加热温度对冷塑性变形金属的性能和组织的影响1.去应力退火铸件、焊接件、切削加工件、塑性变形件的内部往往存在很大的残余应力,使合金的应力腐蚀倾向大大增加,组织及力学性能稳定性显著降低。

因此,必须进行退火。

去应力退火是把合金加热到一个较低温度(低于材料再结晶开始温度),保持一定时间,以缓慢的速度冷却的热处理工艺。

冷却速度视合金能否热处理强化而定,对可热处理强化的合金要缓慢冷却。

在去应力退火的温度范围内保温,原子活动能力增加,消除或减少某些晶格中的缺陷(例:同一滑移系中异号为错相互抵消、空位及原子扩散的相互抵消等)。

从而使晶格弹性畸变能下降,保证合金制品的尺寸稳定,应力腐蚀倾向下降,但合金强度和硬度基本不下降。

去应力退火质量的主要因素是加热温度:过高,则工件强度和硬度大幅降低;过低,则需要长时间加热才能充分消除内应力,影响生产效率。

2.再结晶退火把工件加热到再结晶温度以上,保持一定时间,然后缓慢冷却的工艺。

再结晶退火的目的:细化晶粒,充分消除内应力,降低合金的强度和硬度,提高塑性。

再结晶过程是一个形核和晶核长大(聚集再结晶)的过程。

为了获得细小的晶粒组织,必须正确控制加热温度、保温时间和冷却速度三个因素。

对同一合金而言,加热温度越高,保温时间就要越短。

否则将很快进入再结晶晶核长大阶段;加热温度越低,保温时间就要越长。

否则再结晶过程不充分,达不到再结晶退火的目的。

根据现有工业有色金属合金再结晶退火温度统计表明,最佳再结晶退火温度为:0.7-0.8Tm(Tm为合金熔点的绝对温度)。

钢的热处理工艺方式

钢的热处理工艺方式

钢的热处理工艺方式
钢的热处理工艺方式有多种,通常根据钢材的用途和要求来选择合适的热处理工艺。

以下是几种常见的钢的热处理工艺方式:
1. 淬火(Quenching):将高温加热后的钢材迅速冷却,使其组织转变为马氏体或贝氏体,从而增加钢材的硬度和强度。

2. 回火(Tempering):在淬火后,将钢材重新加热至一定温度,然后冷却至室温,通过调整回火温度和时间,可以使钢材的硬度和强度适度下降,同时还能提高钢材的韧性。

3. 规定化处理(Normalizing):将高温加热后的钢材在空气中冷却,使其组织均匀化,消除内部应力,提高钢材的韧性和延展性。

4. 淬火与回火组合(Quenching and Tempering):首先进行淬火使钢材达到一定的硬度和强度,然后进行回火处理以提高钢材的韧性,同时保持较高的强度。

5. 固溶处理(Solution Treatment):将钢材加热至足够高的温度后快速冷却,使固溶体内的溶质均匀溶解,从而改善钢材的塑性和加工性能。

6. 淬火回火组合与固溶处理相结合:根据具体需求,可以将淬火回火组合和固溶处理相结合,以综合提高钢材的硬度、韧性和耐蚀性等性能。

上述的热处理工艺方式只是钢材热处理中的一部分,不同钢材和具体要求还可以采用其他的热处理工艺方式,如时效处理、退火处理等。

热处理的选择和控制对于钢材的性能和质量有着重要的影响,需要根据具体情况进行调整和优化。

机械工程材料习题 金属材料及热处理 工程材料 试题答案

机械工程材料习题 金属材料及热处理 工程材料 试题答案

机械工程材料习题金属材料及热处理工程材料试题答案复习思考题11.写出下列力学性能符号所代表的力学性能指标的名称和含义。

Akv、ψ、δ5 、σb 、σ0.2 、σs 、σe、σ 500、HRC、HV、σ-1、σ、HBS、HBW、E。

2.钢的刚度为20.7×104MPa,铝的刚度为6.9×104MPa。

问直径为2.5mm,长12cm 的钢丝在承受450N的拉力作用时产生的弹性变形量(Δl)是多少?若是将钢丝改成同样长度的铝丝,在承受作用力不变、产生的弹性变形量(Δl)也不变的情况下,铝丝的直径应是多少?3.某钢棒需承受14000N的轴向拉力,加上安全系数允许承受的最大应力为140MPa。

问钢棒最小直径应是多少?若钢棒长度为60mm、E=MPa,则钢棒的弹性变形量(Δl)是多少?4.试比较布氏、洛氏、维氏硬度的特点,指出各自最适用的范围。

下列几种工件的硬度适宜哪种硬度法测量:淬硬的钢件、灰铸铁毛坯件、硬质合金刀片、渗氮处理后的钢件表面渗氮层的硬度。

5.若工件刚度太低易出现什么问题?若是刚度可以而弹性极限太低易出现什么问题?6.指出下列硬度值表示方法上的错误。

12HRC~15HRC、800HBS、58HRC~62HRC、550N/mm2HBW、70HRC~75HRC、200N/mm2HBS。

7.判断下列说法是否正确,并说出理由。

(1)材料塑性、韧性愈差则材料脆性愈大。

(2)屈强比大的材料作零件安全可靠性高。

(3)材料愈易产生弹性变形其刚度愈小。

(4)伸长率的测值与试样长短有关,δ5>δ10(5)冲击韧度与试验温度无关。

(6)材料综合性能好,是指各力学性能指标都是最大的。

(7)材料的强度与塑性只要化学成分一定,就不变了。

复习思考题21.解释下列名词:晶格、晶胞、晶粒、晶界、晶面、晶向、合金、相、固溶体、金属化合物、固溶强化、第二相弥散强化、组元。

2.金属的常见晶格有哪三种?说出名称并画图示之。

焊后热处理对P91、P92 钢焊缝韧性的影响

焊后热处理对P91、P92 钢焊缝韧性的影响

功显著提高(表 4)。该项热处理工艺在 P91、P92
钢工程应用中具有重要意义,这是因为该工艺具
有以下特点:①可以有效控制焊缝韧接工艺要求
比较宽松,可以免受焊接热输入、层间和预热温
度等参数严格控制的约束,从而提高效率,大大
方便了现场施工;③与文献[6]提到的提高焊缝金
盖面焊缝是粗大的柱状晶,柱状晶内组织是板条马氏
焊后
体+δ铁素体,马氏体板条清晰,位向明显;以下各
M-1 未热
<10
<10
层组织由于受到焊接热循环的作用,部分区域粗大的
处理
柱状晶消失,形成等轴晶;部分区域柱状晶仍然存在;
板条马氏体受到不同温度的正火和回火处理。
从表 3 和图 3 可看出,P91 钢焊缝金属焊后 状态的韧性很差,它的微观组织特征与其冲击功 存在对应关系,粗大的柱状晶和清晰、具有明显 位向的板条马氏体组织是导致冲击功过低的主
探讨焊后热处理工艺对焊缝晶粒度形态和控制 机理。该项研究一旦获取热处理参数与晶粒度之 间的定量关系,必将突破现有极其严格的 焊接工艺,对推动 P91、P92 钢焊接工艺技术进 步,提高锅炉使用寿命,具有积极意义和参考价 值。
1 试验材料及方法
试验用焊接材料为 P91 钢专用焊丝 P91-3 和 P92 钢专用电焊条 MTS616,它们的熔敷金属化 学成分见表 1。试板材料为低合金钢,试板尺寸 与坡口形状如图 1 所示。在坡口表面分别用 P91-3MIG 焊丝及 MTS616 焊条堆焊 4mm 厚的过 渡层(图 2),然后分别用埋弧焊(P91-3 焊丝) 及焊条电弧焊(MTS616 焊条)方法焊接 M-1、 H-A、H-B、H-C、H-D 试样,试板焊接工艺参数 列于表 2。从 M-1(P91-3 熔敷金属)试板上制备 焊后状态标准 V 型缺口冲击试件,从 H-A、H-B、 H-C、H-D(MTS616 熔敷金属)试板上也制备标 准 V 型缺口冲击试件,在常温下进行 V 型缺口冲 击试验。采用 4%硝酸+酒精腐蚀剂和苦味酸+盐 酸+酒精腐蚀剂,分别对 M-1 和 H 系列试样进行 腐蚀,并用 MEF4A 型金相显微镜观察分析试样 显微组织。

【doc】时效处理对Custom455钢性能和组织的影响

【doc】时效处理对Custom455钢性能和组织的影响

时效处理对Custom455钢性能和组织的影响2001年6月第l7卷第2期陕西工学院JctmaalShaanxiInstituteof1讪nol0June.2001vd.17No.2[文章编号]1002—3410(2001)02—0035一o4时效处理对Custom455钢性能和组织的影响张鸿翔,李春阳,耿香月(天津大学材料学院,天津300072)[摘要】对马氏体时效不锈钢Custom455时效过程中发生的组织转变进行分析研究,在组织转变研究的基础上对Custom455时效赴理后钢中的组织鳍构与力学?拄能的关系做出了理论上的解释.结果表明,56o℃时效时试钢的机械性能最佳.从而确定了该马氏体时效不静钢制作弹簧的最佳时效工艺为:580℃2h时效处理.经此处理后,弹簧县有优良的综合机械性能以及良好的耐腐蚀性能.[关键词】马氏体时效不镑钢;组织转变;时效[中图分类号】TG142.41[文献标识码】A制动装置是保证各种车辆安全运行,避免出现交通事故的关键部件.火车的刹车系统采用汽动,每列火车有两台空压机轮流供给所需的压缩空气.为保证万元一失,在火车运行期间始终有一台空压机满负荷运转,保证需要时有足够高的制动压力.气阀是空压机的核心组件,主要由弹簧,阎片,缓冲片,发阀座等组成.其中弹簧和阀片要承受交变弯曲应力,冲击震动及磨损,是主要易损件.气阎中的弹簧为异型片簧.具有弹性特性好,气流阻力小,温升低,摩擦小,节省弹性材料等优点.但其结构较复杂,加工成型较困难.过去我国机车用阀簧一直从美国进口,所用材料为高强度不锈弹簧钢.从1998年开始由国内自行生产,所用材料为1Cr18Ni9Ti和0Crl5Ni7Mo2Al.天津大学弹簧厂受有关厂家委托.使用0Crl5NiTMo2AI钢生产阀簧.但效果不够理想.后经北京钢铁研究总院同志介绍,使用了Custom455钢.Custom455钢是在OCrl5Ni7M02Al基础上发展起来的马氏体时效不锈锕.此锕在国内尚未批量生产,北京钢铁研究总院建议在480"12时效.为此.我们对时效过程进行了测试.1实验材料与方法实验选用北京钢铁研究总院提供的不锈钢Custom455(美国牌号),其主要化学成分如下:O.O3%C,O25%Si,0.25%Mn,11.75%Cr,8.5%Ni.1.2%Ti,2.25%Cuo材料的供应状态为真空冶炼,热轧成板材.冷轧成厚0.5mm,宽200mra的带材.收稿日期:2001—02—19作者简介:张鸿翔(1975一),男.江苏江阴人.天津大学材料学院在读硕士研究生.主要研究方向为金属材料性能改进及金属基复合材料.陕西工学院第17卷马氏体时效不锈钢的热处理工艺.通常只有固溶处理和时效处理两步[11.Custom455钢的热处理工艺为:850—900℃固溶处理4-560℃保温2h时效.时效后进行硬度测试,金相观察及耐蚀性测试的试样尺寸均为3mm×12ram×12mm.疲劳试样为400mm×16mm的带材.2实验结果分析2.1Custom455钢时效后的组织固】罔3为C.sTOm455钢经不同温度时效后在光学显徽镜下的组织照片圈1560~S时效后的光学正微组謦:1000田2800"C时效后的光学正微组织×1000 可以看出,520--560℃时效时,马氏体基体中尚无明显的析出物,但在马氏体基体上已经有r一些细微的变化,这些析出相与基体保持共格状态.此时强度达到最大值.在58013时.板条马氏体基体上弥散分布着细小的析出相.600*(2之后,析出的第二相颗粒逐渐长大.并伴随着马氏体向奥氏体的逆转变.随着时效温度的升高,产生的回复奥氏体的量也增多.到80013时原先时效析出的第二相颗粒开始固溶,在100013时析出相完全固溶.并且晶粒粗大.2.2时效温度对材料硬度的影响图4为不同时效温度下Ct~stom455空冷及水冷的硬度曲线.田31000"C时效后的光学正微组织×100田4硬度——时效温度曲残圈以水冷为例.随着温度不断升高,硬度值上升,至520-'-.,~0"C硬度达到最高值:再随温度第2期张鸿翔,等时效处理对Cusmra455钢性能和组纲的影响-37升高,硬度不断下降,至71O一75O℃出现第一次低谷;再后又略有上升,至100o℃又明显下降.在520--560"C温度范围时效处理,硬度达到最高值.按照时效理论[2_2,马氏体时效钢经固溶处理后形成超低碳过饱和,,Ti等合金元素的固溶体,在室温处于亚稳态,是热力学不稳定组织,发生过饱和原子的偏聚,形成GPI区,GPII区;至520℃形成与母相保持共格关系的,成分结构都与析出相相同的Ni3M(如Ni3Ti等),由于这些相与母相保持共格关系,位错运动至这些质点时受阻.只能以切过_3J的形式通过,形成母相与质点间的界面,增加了界面能,进一步阻碍位错运动,使钢产生强烈的时效强化.由于强度,硬度与材料的疲劳强度有一定的对应关系,一般…4认为弹簧的时效温度应为400--550"12,北京钢铁研究总院提供的温度为480℃.该温度与本实验所得的温度有出入,于是我们将成品簧分别在480℃,520℃,560℃,580℃四个温度进行时效,并在自制的疲劳实验机上进行疲劳实验,480℃时效者仅循环了3万次就断裂,520℃也只工作了5万次,560℃为8万次,而580℃交变次数达到了2×10次,结果较为理想.从硬度曲线来看,480℃时效硬度未达到峰值,表明时效不充分.而580℃时效硬度也已有所下降,说明在此温度加热,析出相共格关系破坏,形成稳定的FezNi,(Ni,Fe)Ti等中间相5导致马氏体过饱和度下降.据资料_5_5介绍,时效温度>550℃,开始出现马氏体向奥氏体的逆转变,也使硬度有所下降.但由于析出的中间相非常弥散,阻碍位错运动,产生弥散强化,硬度下降不算严重.23时效时间对材料硬度的影响实验还对材料在56o℃下进行不同时间的时效处理,得到曲线如图5所示.图5显示,随着时效时间的延长,时效过程不断进行,材料的硬度随之上升,当时效时间超过9O分钟后,Custom455钢的硬度超过其它两者;到120分钟对,硬度达到最大值.继续时效就会导致过时效的出现,使材料硬度下降.因此在回火过程中要避免出现过时效.2.4Custom455钢的耐腐蚀性能实验最后还对材料进行了耐腐蚀测试,所用方法为称重对比法.分别测定C~stora455时饕对同押帅圈5硬度——时效时间曲线田在50%HzSO4水溶液,30%HC1水溶液和3%NaC1水溶液(人工海水)中的失重率,并用2Cr13,1Crl8NigTi成品钢进行比较.这些试验用钢的热处理状态为:Custom455---900*C固溶处理+520~C2h时效;2Cr13--1020"C0.5h淬火+低温回火;1Cr189Ti一1o5O℃固溶处理+6o%冷变形.所用式样尺寸一致,即表面积相同.表1钢在200小时下的重量失重率陕西工学院第17卷据表1的数据可知:在50%H2SO4水溶液中Custom455抗蚀能力比1Crl8Ni9Ti要好;在3%NaC1水溶液(人工海水)中抗腐蚀性一般;在30%HCI水溶液中1Crl8NigTi的抗腐蚀性最好,Custom455与2Crl3相当.由于Custom455钢中添加了,cu.它对还原性酸(50%H2SO4溶液)具有优异的耐蚀性;但它含cr量相对较低,因而在其它两种溶液中的耐蚀性较差.3结论(1)Custom455钢经520--560~E2h时效能获得最大强化,得到最高硬度,但580~E2h 轻微过时效的弹簧疲劳寿命最长.(2)经耐腐蚀实验,说明Custom455钢在还原性~(50%H2SO4溶液)中的抗蚀能力最佳.[1]王笑天[2]侯增寿[3]刘旭云[4]李慧芳[5]刘旭云[参考文献]金属材料学[M].北京:机械工业出版社.1987.180.卢光熙.金属学原理[M].上海:上海科学技术出版社.1990.237.金属热处理原理【M].北京:机械工业出版社,1981.262.萧振荣.沈济万.合金钢及热处理工艺学[M].北京:机械工业出版社,1985.104金属热处理原理[M].北京:机械工业出版社,1981.283. InfluenceofagingonthepropertiesandmicrostructureofCustom455steelZHANGHong-xian_g,LIChun-yang,GENGXiang-yue (InstituteofMaterialScience&TechnologyofTianiinUniversity,Tmaiin300072,Chin a)Abstract:AnanalysisandStudyaremadeOllthestructuraltransformationintheprocessof agn.ngofmaragingCustom455sted.Onthebasis0fthestudy0fthetransformationOfthestruc -ture,therelationshipbetweenthestructttresandmechanicalpropertiesisdiscussed.Theresul tshowsthattherilechanicalpropertiesisex~llentwhenitisat560℃tO580℃,thLlS,theeonelu.sionisdrawnthatthebestaglrigperiodisat560~Eto580~Ewhensprilagsaremadebyram-agi ngstainless.Itisfoundthatthestealhasexcellentmechanicalpropertiesandgoodenrrialonresis- tallCe.Keywords:maraglngstainlesssteelstructuraltran~ormation;aging。

马氏体时效钢过时效处理

马氏体时效钢过时效处理

马氏体时效钢过时效处理1.引言1.1 概述概述部分的内容可以涵盖对马氏体时效钢过时效处理的基本介绍。

可以参考以下内容编写:马氏体时效钢作为一种重要的金属材料,在汽车、航空、航天等领域具有广泛的应用。

随着材料科学领域的快速发展,人们对于钢材的性能和使用寿命要求也越来越高。

为了满足这一需求,科学家们不断进行研究和探索,提出了各种改善钢材性能的方法。

过时效处理作为一种常见的热处理方法,对马氏体时效钢的改性起到了重要的作用。

它通过在固溶处理后迅速冷却钢材,再进行适当的回火处理,使得钢材的显微组织得到进一步调整和优化。

过时效处理的目的主要是消除或减轻固溶处理后产生的应力和晶界的损伤,进一步提高钢材的强度和硬度,同时增加耐磨性、抗腐蚀性和韧性等性能。

过时效处理的原理主要基于固相相变的原理。

在固溶处理过程中,钢材中存在着稳定的奥氏体或贝氏体相,通过快速冷却可以得到马氏体相。

而在回火过程中,马氏体相将逐渐转变为更稳定的贝氏体或渗碳体相。

过时效处理的关键在于寻找适当的回火温度和时间,以控制相变的进度和产物的组织形态。

马氏体时效钢的过时效处理逐渐成为钢材热处理领域的重要研究方向。

在文章的后续内容中,我们将重点探讨马氏体时效钢过时效处理的原理、方法和应用前景,以期提供对相关领域研究的参考和指导。

通过对马氏体时效钢过时效处理的深入了解,可以为钢材的性能提升和使用寿命延长提供有效的技术手段和理论支持。

1.2文章结构文章结构部分的内容可以概述本文的章节安排和每个章节的主要内容。

文章结构的设计有助于读者理解全文的逻辑和框架,以便更好地阅读和理解文章的内容。

1.2 文章结构本文将按照以下章节结构进行阐述和分析马氏体时效钢过时效处理的相关内容:1. 引言1.1 概述在本节中,将简要介绍马氏体时效钢及其在工业领域中的应用。

同时,提出由于材料性能的需求和工艺技术的进步,马氏体时效钢过时效处理是否已经过时的问题。

1.2 文章结构本节将解释本文的章节结构,概述每个章节的主要内容,为读者理解文章整体架构提供指引。

铸钢件常见热处理工艺

铸钢件常见热处理工艺

按加热和冷却条件不同,铸钢件的主要热处理方式有:退火、正火、均匀化处理、淬火、回火、固溶处理、沉淀硬化、消除应力处理及除氢处理。

1.退火:退火是将铸钢件加热到Ac3以上20~3(FC,保温一定时间,冷却的热处理工艺。

退火的目的是为消除铸造组织中的柱状晶、粗等轴晶、魏氏组织和树枝状偏析,以改善铸钢力学性能。

碳钢退火后的组织:亚共析铸钢为铁素体和珠光体,共析铸钢为珠光体,过共析铸钢为珠光体和碳化物。

适用于所有牌号的铸钢件。

2,正火:正火是将铸钢件加热到Ac3温度以上30~50。

C保温,使之完全奥氏体化,然后在静止空气中冷却的热处理工艺。

正火的目的是细化钢的组织,使其具有所需的力学性能,也是作为以后热处理的预备处理。

正火与退火工艺的区别有两个:其一是正火加热温度要偏高些;其二是正火冷却较快些。

经正火的铸钢强度稍高于退火铸钢,其珠光体组织较细。

一般工程用碳钢及部分厚大、形状复杂的合金钢铸件多采用正火处理。

正火可消除共析铸钢和过共析铸钢件中的网状碳化物,以利于球化退火;可作为中碳钢以及合金结构钢淬火前的预备处理,以细化晶粒和均匀组织,从而减少铸件在淬火时产生的缺陷。

3淬火:淬火是将铸钢件加热到奥氏体化后(AC。

或Ac•以上),保持一定时间后以适当方式冷却,获得马氏体或贝氏体组织的热处理工艺。

常见的有水冷淬火、油冷淬火和空冷淬火等。

铸钢件淬火后应及时进行回火处理,以消除淬火应力及获得所需综合力学性能铸钢件淬火工艺的主要参数:Q)淬火温度:淬火温度取决于铸钢的化学成分和相应的临界温度点。

原则上,亚共析铸钢淬火温度为Ac o以上20~30℃,常称之为完全淬火。

共析及过共析铸钢在Ac o以上30~50℃淬火,即所谓亚临界淬火或两相区淬火。

这种淬火也可用于亚共析钢,所获得的组织较一般淬火的细,适用于低合金铸钢件韧化处理。

(2)淬火介质:淬火的目的是得到完全的马氏体组织。

为此,铸件淬火时的冷却速率必须大于铸钢的临界冷却速率。

时效工艺对17-4PH不锈钢组织和硬度的影响

时效工艺对17-4PH不锈钢组织和硬度的影响

3 2021年第8期工程前沿时效工艺对17-4PH不锈钢组织和硬度的影响*李荣之,曹征宽,何银珍,张全新重庆钢铁研究所有限公司,重庆 400084摘 要:17-4PH不锈钢在经过固溶和时效处理时,通过马氏体相变和时效作用对材料进行强化。

基于此,文章研究了不同时效热处理温度对17-4PH不锈钢金相组织及硬度的影响规律。

研究结果表明,在经过固溶和时效热处理后,17-4PH 不锈钢金相组织为马氏体和沉淀硬化相,并含有少量残余奥氏体和铁素体,富铜的沉淀硬化相是17-4PH不锈钢强化的主要因素;相同固溶处理温度下,随着时效温度的升高,沉淀相数量增多、颗粒增大,材料硬度逐渐降低。

关键词:17-4PH不锈钢;时效工艺;热处理;金相组织;硬度中图分类号:TG156.92;TG142.71 文献标志码:A 文章编号:2096-2789(2021)08-0003-03热处理强化是金属材料强化的重要手段之一,热处理可以改变材料的显微组织以获得所需的各种性能。

时效处理是不锈钢热处理工艺的一种,不锈钢材料在固溶后可通过时效处理来进一步强化基体[1]。

17-4PH不锈钢是一种马氏体沉淀硬化不锈钢,可通过时效处理进行强化以获得优良的综合力学性能,该材料已经被广泛应用于航空、航天等领域所需的机械轴类、汽轮机等关键部件的制造[2]。

文章重点研究了不同时效热处理工艺对17-4PH不锈钢组织及硬度的影响规律。

1 实验材料用于实验研究的17-4PH不锈钢材料化学成分及含量如表1所示。

表1 17-4PH不锈钢化学成分(质量分数)及含量 单位:%元素含量C0.06Si0.80Mn 1.00P0.03S0.03Ni 4.30Cr17.50Cu 4.10Nb0.452 实验方案先将材料样坯在1060℃下进行高温固溶处理,固溶保温时间为30min,使材料中的合金元素在高温时充分溶入奥氏体中。

保温结束后进行水冷,增大过冷度以减少残余奥氏体的形成。

热处理工艺对不同材料的显微组织和相变的影响

热处理工艺对不同材料的显微组织和相变的影响

热处理工艺对不同材料的显微组织和相变的影响热处理工艺是材料科学中一个非常重要的工艺,通过控制材料的加热和冷却过程,可以显著改变材料的显微组织和性能。

不同材料的显微组织和相变受热处理工艺的影响也不尽相同。

首先,对于钢材来说,热处理工艺对其显微组织和相变的影响尤为明显。

钢材经过加热和冷却过程,可以通过不同的热处理方式,如退火、正火、淬火等,来调控其组织和性能。

退火处理可以通过连续加热至适当温度,然后慢慢冷却,使钢材结晶微观组织内部发生均匀化和再结晶,从而获得良好的塑性和韧性。

而正火处理则是将钢材加热至奥氏体区域,然后慢慢冷却,使其获得良好的硬度和强度。

淬火则是将钢材迅速冷却,使其形成马氏体组织,从而获得更高的硬度。

通过这些热处理工艺,可以使钢材在不同工程应用中具有理想的组织和性能。

此外,对于铝合金来说,热处理工艺也能对其显微组织和相变产生重要的影响。

铝合金中的合金元素通过热处理可以形成细小且均匀分布的相,如硬质相、溶固相等。

通过固溶处理,可以将整个合金加热至其固溶温度,然后迅速冷却,使溶固相得到均匀溶解,并使合金的形变能降低。

而时效处理则是将固溶态的合金加热至一定温度,在一定时间内静置,使溶固相再次析出,并进行相变。

这种时效处理能够调节合金的硬度和强度,提高其机械性能。

此外,对于陶瓷材料来说,热处理工艺同样会对其显微组织和相变产生影响。

常见的热处理工艺有烧结和再结晶等。

烧结是指将陶瓷颗粒加热至一定温度,使其表面熔化并熔结在一起,从而形成致密的陶瓷材料。

再结晶则是将陶瓷材料加热至足够高的温度,使其发生晶粒长大和再分布的过程,从而改善材料的晶界和性能。

总之,热处理工艺对不同材料的显微组织和相变产生着重要的影响。

通过合理选择热处理工艺和参数,可以调控材料的显微组织,从而实现对材料性能的优化和调整。

在实际应用中,热处理工艺在材料的制备和加工过程中扮演着重要的角色,为各行各业的发展提供了支撑。

因此,研究和掌握不同材料的热处理工艺,对于材料科学和工程领域的发展具有重要的意义。

焊后处理对Q690钢CGHAZ组织及硬度的影响

焊后处理对Q690钢CGHAZ组织及硬度的影响

焊后处理对Q690钢CGHAZ组织及硬度的影响焊接是一种常用的连接工艺,在钢结构和桥梁建设中得到广泛应用。

焊接过程中会产生热影响区(CGHAZ),这是一个容易出现微观组织和力学性能变化的区域。

为了提高焊接接头的质量和性能,焊后处理是必不可少的环节。

本文将探讨焊后处理对Q690钢CGHAZ组织及硬度的影响。

我们需要了解一下Q690钢的特性。

Q690钢是一种高强度低合金结构钢,具有优异的力学性能和抗腐蚀性能。

其主要成分为碳(C)、硅(Si)、锰(Mn)、钼(Mo)、铬(Cr)等元素。

焊接Q690钢时,由于焊接热输入的影响,CGHAZ区域的组织和性能往往会发生变化。

在焊接过程中,焊接热输入会引起CGHAZ区域的局部热效应和温度梯度,从而导致晶粒长大、相转变和残余应力的产生。

CGHAZ区域的组织类型主要有冷却速度较快的穿透结构区、中等冷却速度的粗晶区和冷却速度较慢的细晶区。

由于这些区域的冷却速度不同,晶体生长过程也不同,因此会影响到焊接接头的力学性能。

焊后处理的主要目的是通过对焊接接头进行热处理,来改善焊接区域的组织和性能。

常用的焊后处理方法包括回火处理、时效处理和淬火处理。

回火处理是指在焊后对接头进行热处理,以减轻残余应力和提高硬度。

时效处理是指将焊接接头在一定温度下长时间保存,以促进晶粒细化和晶体再结晶。

淬火处理是指将焊接接头迅速冷却,使其产生马氏体组织来提高硬度。

焊后处理可以改善CGHAZ区域的晶粒结构。

研究表明,回火处理和时效处理可以使CGHAZ区域的晶粒细化,减少晶界间隙和相的分布。

这种细化晶粒结构可以提高焊接接头的强度和韧性。

焊后处理可以消除CGHAZ区域的残余应力。

由于焊接热影响引起的局部热效应和温度梯度,CGHAZ区域往往会产生残余应力。

这种残余应力不仅影响焊接接头的力学性能,还可能导致裂纹和变形。

焊后处理可以通过回火处理和淬火处理来消除这些残余应力,提高焊接接头的稳定性和可靠性。

焊后处理对Q690钢CGHAZ组织及硬度有着重要的影响。

请简述马氏体耐热钢的热处理工艺要点

请简述马氏体耐热钢的热处理工艺要点

马氏体耐热钢是一种重要的工程材料,具有良好的耐热性能和耐磨性能,广泛用于高温工作环境中的制造业,如航空航天、能源、化工等领域。

其性能优越主要得益于其特殊的热处理工艺。

下面将简要介绍马氏体耐热钢的热处理工艺要点。

热处理工艺要点如下:1. 预热在进行热处理之前,首先需要对马氏体耐热钢进行预热。

预热的温度一般在700℃~800℃之间,目的是为了消除材料中的内部应力,降低冷却时的变形和裂纹的产生。

2. 淬火马氏体耐热钢的淬火工艺是关键的一步。

淬火温度通常在1000℃以上,随后快速冷却至室温。

这一步骤的目的是将材料转变为马氏体组织,从而提高材料的硬度和强度。

3. 回火淬火后的马氏体耐热钢显得脆硬,需要进行回火处理以提高其韧性。

回火温度一般在500℃~700℃之间,持续时间取决于材料的具体成分和用途。

回火后的马氏体耐热钢硬度适中,具有较高的韧性。

4. 冷却经过预热、淬火和回火处理后,马氏体耐热钢需要进行适当的冷却。

冷却的方式可以选择空冷或者油冷,根据具体要求进行调节。

5. 性能检测最后一步是对热处理后的马氏体耐热钢进行性能检测。

包括检测其硬度、韧性、断裂韧度、残余应力等指标,以确保材料达到设计要求。

马氏体耐热钢的热处理工艺是一个复杂而关键的过程,需要严格控制各个环节,以确保最终材料具有优秀的耐热性能和机械性能。

希望以上内容能够对您有所帮助。

马氏体耐热钢的热处理工艺是保证其性能优越的重要环节,下面我们将继续深入探讨马氏体耐热钢热处理工艺的相关知识。

在进行热处理之前,首先需要对马氏体耐热钢进行预热。

预热的目的是为了消除材料中的内部应力,降低冷却时的变形和裂纹的产生。

预热温度一般在700℃~800℃之间,持续时间根据具体情况而定。

接下来是淬火工艺,这是马氏体耐热钢热处理中的关键一步。

淬火温度一般在1000℃以上,材料在这一温度下保持一定时间后,再以适当方式进行快速冷却至室温。

淬火的目的是将材料转变为马氏体组织,从而提高材料的硬度和强度。

210984076_热处理对激光熔化沉积18Ni300_马氏体时效钢微观组织和力学性能的影响

210984076_热处理对激光熔化沉积18Ni300_马氏体时效钢微观组织和力学性能的影响

表面技术第52卷第3期热处理对激光熔化沉积18Ni300马氏体时效钢微观组织和力学性能的影响郑步云a,陈鑫a,雷剑波b,王天琪a(天津工业大学 a.机械工程学院 b.激光技术研究所,天津 300387)摘要:目的提高18Ni300马氏体时效钢在工业应用中的力学性能,研究不同热处理对激光熔覆制备18Ni300合金的影响。

方法采用固溶处理(840 ℃/1 h)和固溶处理(840 ℃/1 h)+时效处理(490 ℃/6 h)2种热处理方法,利用扫描电子显微镜、X射线衍射仪和拉伸试验机对激光熔化沉积(LMD)制备18Ni300合金的微观组织、力学性能进行研究,根据不同处理方法下的拉伸断口形貌、性能表征及元素偏析行为,分析热处理对力学性能的影响。

结果经固溶处理后,熔池边界消失,在高温保温过程中杂质相与合金元素充分溶解在奥氏体中,冷却后形成了均匀的马氏体组织,与沉积态相比,抗拉强度由662.1 MPa变为611.5 MPa,降低了约7.64%,伸长率由12.328%变为13.832%,提升了约12.20%;经固溶+时效处理后枝晶形貌基本消失,各元素分布均匀,并在基体中弥散分布着Ni3Mo、Ni3Ti型第二相沉淀,抗拉强度达到1 404.6 MPa,提升了约112.14%,伸长率为7.80%,降低了约36.72%,在断口中观察到亚微米级第二相沉淀呈球状或颗粒状,并大量分布于枝晶间。

结论沉积态18Ni300合金主要由马氏体和少量奥氏体组成,致密度良好,拉伸性能表现为强度较低但塑性良好;经固溶处理后,物相均由马氏体组成,元素分布均匀,抗拉强度略微下降,塑性提升;固溶+时效处理对合金起到了弥散强化的作用,抗拉强度大幅提升,塑性显著减弱。

在热处理前后试样的断裂机制均属于韧性断裂,第二相弥散强化为热处理后合金力学性能提升的主要原因。

关键词:激光熔化沉积;马氏体时效钢;热处理;微观组织;力学性能中图分类号:TN249文献标识码:A 文章编号:1001-3660(2023)03-0388-11DOI:10.16490/ki.issn.1001-3660.2023.03.037Effect of Heat Treatment on Microstructure and Mechanical Properties of 18Ni300 Maraging Steel Prepared by Laser Melting DepositionZHENG Bu-yun a, CHEN Xin a, LEI Jian-bo b, WANG Tian-qi a(a. School of Mechanical Engineering, b. Institute of Laser Technology, Tiangong University, Tianjin 300387, China)收稿日期:2022–02–11;修订日期:2022–04–22Received:2022-02-11;Revised:2022-04-22基金项目:国家重点研发计划(2018YFB0407302);国家自然科学基金(61772365);天津市关键技术研发计划(19YFZCGX00870);天津市科技攻关项目(20YDTPJC00780)Fund:National Key R&D Program of China (2018YFB0407302); National Natural Science Foundation of China (61772365); Key Technologies R&D Program of Tianjin (19YFZCGX00870); Tianjin Science and Technology Project (20YDTPJC00780)作者简介:郑步云(1997—),男,硕士,主要研究方向为激光熔覆增材制造。

钢中冷却对马氏体的影响

钢中冷却对马氏体的影响

钢中冷却对马氏体的影响
钢中的冷却过程对马氏体的形成和性质具有重要影响。

马氏体是一种在钢中形成的强韧且具有优良机械性能的组织,其形成可以通过快速冷却来实现。

冷却速度的快慢将直接影响马氏体形成的数量和尺寸。

首先,当钢材经过快速冷却时,会导致奥氏体相变成马氏体。

冷却速度越快,奥氏体转变成马氏体的数量就越多。

这意味着在快速冷却的条件下,钢中会形成更多的马氏体,从而提高钢材的硬度和强度。

相反,缓慢冷却会减少马氏体的形成,使得钢材具有较低的硬度和强度。

其次,冷却速度还将影响马氏体的尺寸和分布。

快速冷却会导致马氏体形成较小的尺寸,这有助于提高钢材的韧性和强度。

而缓慢冷却则会导致马氏体形成较大的尺寸,从而降低钢材的韧性和强度。

此外,冷却过程中的温度变化也会对马氏体的形成产生影响。

在一定的冷却速度下,不同的冷却温度将导致不同数量和尺寸的马氏体形成,从而影响钢材的最终性能。

综上所述,钢中的冷却过程对马氏体的形成和性质具有重要影响。

冷却速度的快慢、温度变化都将直接影响马氏体的形成数量、尺寸和分布,进而影响钢材的硬度、强度和韧性等性能。

因此,在钢材的热处理过程中,合理控制冷却条件对于获得期望的马氏体组织和性能至关重要。

马氏体时效钢的分类

马氏体时效钢的分类

马氏体时效钢的分类
马氏体时效钢是一种特殊的钢材,它通过热处理工艺形成马氏体组织,以达到强度和韧性的平衡。

根据其化学成分和热处理工艺的不同,马氏体时效钢可以分为几种不同的分类。

首先,从化学成分上来看,马氏体时效钢可以分为低合金马氏体时效钢和高合金马氏体时效钢两大类。

低合金马氏体时效钢中主要合金元素为铬、钼、钒等,而高合金马氏体时效钢中则含有更多的合金元素,如镍、钨、钴等,以提高钢材的强度和耐磨性。

其次,根据热处理工艺的不同,马氏体时效钢可以分为多种类型。

其中包括等温淬火马氏体时效钢、间歇淬火马氏体时效钢、等温回火马氏体时效钢等。

这些不同类型的马氏体时效钢在热处理过程中的温度控制和冷却速度等方面存在差异,因而在微观组织和性能上也有所不同。

此外,根据用途和性能要求的不同,马氏体时效钢还可以进一步细分为耐磨马氏体时效钢、耐腐蚀马氏体时效钢、高强度马氏体时效钢等多个子类别。

这些钢材在不同的工程领域和行业中具有广泛的应用,满足了各种特定的工程需求。

总的来说,马氏体时效钢的分类是多方面的,包括化学成分、热处理工艺和用途等多个方面的因素。

不同类型的马氏体时效钢具有各自独特的特点和应用领域,对于工程材料的选择和应用具有重要的意义。

毕业论文(设计)合金钢热处理加热过程对组织和性能的影响

毕业论文(设计)合金钢热处理加热过程对组织和性能的影响

毕业设计任务书1.设计的主要任务及目标建立有限元模型,模拟合金钢热处理加热过程温度场分布;通过实验研究,分析加热温度和保温时间对合金钢组织和力学性能的影响,为优化热处理工艺提高零件质量提供一定的理论依据。

2.设计的基本要求和内容1)设计的基本要求:论文结构完整,层次分明,语言顺畅;避免错别字和错误标点符号;论文格式符合太原工业学院学位论文格式的统一要求。

2)设计内容:模拟合金钢热处理加热过程温度场与时间的变化关系;研究三种加热温度下水淬后合金钢组织及力学性能的变化;研究三种保温时间下水淬后合金钢组织和力学性能的变化。

3.主要参考文献1)ANSYS有限元分析软件在热分析中的应用[J].冶金能源,2004(05)2)钢件淬火过程温度场的数值模拟[J].热加工工艺技术与材料研究,2008(11)3)45钢零件淬火过程温度场分布的数值模拟[J].重庆大学学报,2003(03)4) 材料科学基础(铁碳合金相图与热处理部分)5)淬火过程数值模拟研究进展[J].兵器材料科学与工程,1999(03)4.进度安排合金钢热处理加热过程对组织和性能的影响摘要:利用有限元分析软件ANSYS模拟40Cr钢热处理过程温度场与时间的变化关系。

根据温度场的分布,合理的选择不同的加热温度和保温时间做热处理水淬实验,并打磨式样,通过金相组织观察比较不同热处理工艺对40Cr钢内部组织结构的影响。

并结合冲击韧性试验、硬度试验及拉伸试验来获取40Cr钢的机械性能、物理性能、工艺性能等,从而通过热处理工艺改变金属表面或内部组织结构,达到优化金属性能的目的。

通过实验表明,40Cr在850℃保温时间20min热处理所到的钢的性能最佳,其组织为回火索氏体,其强度、硬度及韧性等综合性能都处于较好的状态。

过低的温度会导致淬火不均匀,有铁素体存在也会使硬度降低;温度过高又会使回火索氏体粗大,造成钢的综合性能降低。

保温时间对组织性能也有影响,保温时间太短,回火索氏体的晶粒小,组织不均匀;保温时间太长,晶粒粗大,影响组织性能。

钢板的热处理工艺技术

钢板的热处理工艺技术

钢板的热处理工艺技术钢板的热处理工艺技术是针对不同材质和用途的钢板进行加热、保温、冷却等处理过程的方法与技术。

热处理工艺可以改变钢板的组织结构和性能,使其达到预期的机械性能、物理性能和化学性能要求。

下面介绍一下常用的钢板热处理工艺技术。

1. 轧制预热:在钢板轧制之前,通常需要进行预热处理。

预热过程中,钢板通过加热炉进行加热,使其达到一定温度,以提高钢板的可塑性,便于轧制成型。

2. 固溶处理:固溶处理是指将钢板加热至一定温度,使其内部的合金元素溶解于基体中,形成均匀的固溶体。

这可以提高钢板的韧性和可塑性,并且可以去除一些金相组织中的缺陷。

3. 淬火处理:在固溶处理之后,钢板需要进行淬火处理。

淬火是指将钢板迅速冷却至室温以下,以使合金元素固溶体转变为马氏体。

这种处理方式能够提高钢板的硬度和强度,但韧性会相应降低。

4. 回火处理:在淬火处理后,为了恢复钢板的一定韧性,需要进行回火处理。

回火是指将钢板加热至一定温度,并进行保温一段时间,然后进行适当的冷却。

这样,钢板的硬度和强度会适度降低,同时韧性也会得到恢复。

5. 焊接热处理:钢板在焊接过程中容易产生应力和变形,因此需要进行焊后热处理。

这种处理方式可以消除焊接过程中产生的应力,提高焊接接头的强度和韧性。

以上是钢板常用的热处理工艺技术。

根据不同的材料和要求,还可以采用调质处理、表面硬化等其他热处理工艺。

通过科学合理地选择和应用这些热处理工艺技术,可以使钢板的组织结构和性能得到改善,提高其使用性能和寿命。

钢板的热处理工艺技术在钢铁制造和加工行业中起着重要的作用。

通过合理的工艺选择,可以使钢板达到设计要求的力学性能、物理性能和化学性能,以满足不同领域的使用需求。

下面将继续介绍一些与钢板热处理相关的技术。

6. 祛除应力退火:在一些对钢板强度、延展性和韧性要求较高的工况下,钢板在加工过程中可能会形成应力。

这些应力会降低钢板的耐久性和性能,因此需要进行应力退火处理。

马氏体不锈钢淬火硬度

马氏体不锈钢淬火硬度

马氏体不锈钢淬火硬度
马氏体不锈钢是一种特殊的不锈钢,其淬火硬度取决于多种因素。

首先,淬火硬度受到材料化学成分的影响。

通常情况下,马氏体不锈钢中的铬含量较高,这有助于提高硬度。

其次,淬火温度和冷却速度也会影响淬火硬度。

通过控制淬火温度和冷却速度,可以在材料中形成更多的马氏体,从而提高硬度。

此外,淬火过程中的应力也会对硬度产生影响。

合理的淬火工艺可以减少应力,从而提高材料的硬度。

最后,马氏体不锈钢的热处理工艺也会对淬火硬度产生影响。

通过精心设计的热处理工艺,可以获得所需的硬度和性能。

总的来说,马氏体不锈钢的淬火硬度是一个综合影响因素的结果,需要在材料的化学成分、淬火工艺和热处理工艺等方面进行综合考虑和调控。

淬火硬度的具体数值可以根据具体的材料成分和工艺参数来确定,一般需要通过实验和测试来获得准确的数据。

300m热处理工艺

300m热处理工艺

300m热处理工艺300m是一种马氏体时效硬化不锈钢,主要用于制造航空发动机的零件、飞行器和导弹零部件等高强度和高温耐久性要求的结构件。

热处理是提高300m材料性能的重要工艺之一,本文将对300m热处理工艺进行详细介绍。

首先,300m的热处理过程主要包括固溶处理和马氏体时效两个阶段。

固溶处理是将材料加热到足够高的温度,使合金元素充分溶解在基体中,通常采用的温度为950℃。

在此温度下保持一段时间,以确保合金元素得到均匀溶解。

固溶处理完成后,材料需进行快速冷却,以尽量避免合金元素重新固相。

常见的冷却方式有水淬、氢淬和油淬等。

快速冷却的目的是形成马氏体相结构,提高材料的硬度和强度。

紧接着是马氏体时效处理阶段。

在此阶段,材料会被加热到较低的温度,通常在500-550℃之间,然后保持一段时间。

马氏体时效处理的目的是使马氏体相转变为更稳定的时效相,以获得更优异的材料性能。

此阶段的时效温度和时效时间取决于所需的性能要求。

300m材料的热处理过程中还需要注意几个关键点。

首先是保持温度和时间的准确控制。

温度和时间的过度或不足都会对材料的性能产生不良影响。

其次是快速冷却过程的控制,以确保冷却速度过快或过慢都不利于形成理想的马氏体相结构。

此外,热处理过程中还需注意材料的表面质量和避免材料的氧化和变形。

总之,300m的热处理工艺是一个精细而复杂的过程,需要准确控制各个阶段的温度、时间和冷却速度。

只有通过合理的热处理工艺,才能达到300m材料所需的高强度和高温耐久性要求。

在实际应用中,我们需要根据具体的技术要求和产品性能要求,制定出合适的热处理工艺,以保证300m材料的最佳性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热处理工艺对马氏体时效钢组织及性能的影响
闫春波
【摘要】:本文首先采用对比试验的方法研究了加热温度、保温时间、加热速度及原始组织对18Ni 马氏体时效钢组织的影响,探讨了不同热处理规程对18Ni马氏体时效钢逆转变奥氏体再结晶规律的影响,试验结果表明:马氏体加热发生奥氏体逆转变时产生相变冷作硬化再结晶,热处理工艺参数对α′γ逆转变奥氏体再结晶产生影响,提高加热温度可加快18Ni 马氏体时效钢的再结晶过程;在逆转变奥氏体再结晶点以上温度等温时,随着等温时间的延长逐渐完成成核和再结晶晶粒的不断聚集长大的过程,直至全部完成再结晶;提高加热速度可提高再结晶温度点及成核率。

另外,钢的原始组织状态对α′γ逆转变奥氏体再结晶也产生影响,与以粗大板条马氏体的原始组织相比以“线状”马氏体作为原始组织在一定温度下进行固溶处理,再结晶成核率提高,可获得更加细小的再结晶组织,“线状”马氏体实质上是变了形的板条状马氏体,其内部亚结构细化、位错等微观缺陷密度大大提高,有利于晶粒细化。

其次,探讨了α′γ反复循环处理工艺对18Ni 钢组织和性能的影响,结果表明,循环次数对α′γ逆转变奥氏体再结晶晶粒度影响较大,以线状马氏体作为原始组织,进行α′γ反复循环处理,以940℃,2min 五次循环效果最佳,可获得10μm 左右的超细晶粒;18Ni 马氏体时效钢在不经反复循环处理时,其时效后的抗拉强度和延伸率基本上没有变化,经过α′γ反复循环热处理后,晶粒明显细化,时效后的抗拉强度提高了100MPa 以上,延伸率稍有提高。

【关键词】:马氏体时效钢相变冷作硬化再结晶线状马氏体细化晶粒
【学位授予单位】:哈尔滨理工大学
【学位级别】:硕士
【学位授予年份】:2005
【分类号】:TG161
【DOI】:CNKI:CDMD:2.2005.151028
【目录】:
∙摘要4-5
∙Abstract5-9
∙第1章绪论9-20
∙ 1.1 课题背景9-10
∙ 1.2 相关领域的研究进展及成果10-19
∙ 1.2.1 超纯净化马氏体时效钢的研究10-11
∙ 1.2.2 喷射沉积马氏体时效钢复合材料的研究11
∙ 1.2.3 超高强度18Ni无钴马氏体时效钢的力学性能11-12
∙ 1.2.4 马氏体时效钢的强韧化机理及热处理工艺特征12-14
∙ 1.2.5 合金元素对马氏体时效钢强韧性的影响14-17
∙ 1.2.6 马氏体时效钢细化晶粒机制17-19
∙ 1.3 本文主要研究内容19-20
∙第2章淬火工艺对逆转变奥氏体再结晶的影响20-29
∙ 2.1 引言20
∙ 2.2 材料及试验方法20-22
∙ 2.2.1 试验材料20-21
∙ 2.2.2 试验方法21-22
∙ 2.3 试验结果22-26
∙ 2.3.1 加热温度对逆转变奥氏体再结晶的影响22-24
∙ 2.3.2 保温时间对逆转变奥氏体再结晶的影响24-26
∙ 2.3.3 加热速度对逆转变奥氏体再结晶的影响26
∙ 2.4 试验结果分析26-28
∙ 2.5 本章小结28-29
∙第3章原始组织对逆转变奥氏体再结晶的影响29-35 ∙ 3.1 引言29
∙ 3.2 材料及试验方法29-30
∙ 3.2.1 试验材料29
∙ 3.2.2 试验方法29-30
∙ 3.3 试验结果30-33
∙ 3.4 试验结果分析33-34
∙ 3.5 本章小结34-35
∙第4章α′ γ反复循环热处理工艺的研究35-41
∙ 4.1 引言35
∙ 4.2 材料及试验方法35-36
∙ 4.2.1 试验材料35
∙ 4.2.2 试验方法35-36
∙ 4.3 试验结果36-39
∙ 4.3.1 再结晶点的确定36-38
∙ 4.3.2 α′γ循环次数对晶粒度的影响38-39
∙ 4.4 试验结果分析39-40
∙ 4.5 本章小结40-41
∙第5章反复循环热处理对拉伸性能的影响41-45
∙ 5.1 引言41
∙ 5.2 材料及试验方法41-42
∙ 5.3 试验结果42-44
∙ 5.4 试验结果分析44
∙ 5.5 本章小结44-45
∙结论45-46
∙参考文献46-50
∙致谢50-51
∙工程硕士研究生个人简历51。

相关文档
最新文档