图论算法 最大流算法和最大匹配算法

合集下载

最大流常见算法

最大流常见算法

最大流常见算法最大流问题是图论中的一个重要问题,其求解方法有多种,本文将介绍最常见的几种算法。

一、最大流问题简介最大流问题是在一个网络中寻找从源点到汇点的最大流量的问题。

网络是由一些节点和连接这些节点的边构成的,每条边都有一个容量,表示该边所能承载的最大流量。

源点是流量的起点,汇点是流量的终点。

在网络中,还可能存在其他节点和边。

二、Ford-Fulkerson算法Ford-Fulkerson算法是最早用于解决最大流问题的算法之一。

该算法基于增广路径来不断增加流量,直到无法再找到增广路径为止。

1. 算法步骤(1)初始化:将所有边上的流量设为0。

(2)寻找增广路径:从源点开始进行深度优先或广度优先搜索,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。

(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。

(4)返回第二步,直到无法找到增广路径为止。

2. 算法分析Ford-Fulkerson算法可以保证在有限步内求解出最大流,但是其时间复杂度与增广路径的选择有关,最坏情况下可能需要指数级的时间复杂度。

三、Edmonds-Karp算法Edmonds-Karp算法是基于Ford-Fulkerson算法的一种改进算法。

该算法使用BFS来寻找增广路径,可以保证在多项式时间内求解出最大流。

1. 算法步骤(1)初始化:将所有边上的流量设为0。

(2)寻找增广路径:从源点开始进行BFS,在搜索过程中只选择剩余容量不为0且没有被标记过的边,并记录路径上容量最小值min。

(3)更新路径上各个边上的流量:将路径上各个边上的流量加上min。

(4)返回第二步,直到无法找到增广路径为止。

2. 算法分析Edmonds-Karp算法相对于Ford-Fulkerson算法来说,在同样的网络中,其时间复杂度更低,可以保证在O(VE^2)的时间内求解出最大流。

但是在某些特殊情况下仍然可能需要指数级时间复杂度。

noi算法范围

noi算法范围

noi算法范围NOI算法范围NOI(National Olympiad in Informatics,全国信息学奥林匹克竞赛)是中国的一项高中生计算机科学竞赛,旨在培养和选拔优秀的计算机科学与技术人才。

NOI算法范围是指在NOI竞赛中所涵盖的算法知识内容。

一、线性结构算法1. 数组:在NOI竞赛中,数组的使用非常广泛。

掌握数组的基本操作,如遍历、查找、插入、删除等,对于解决很多算法问题至关重要。

2. 链表:了解链表的基本概念和操作,如插入、删除、反转等。

链表的灵活性和动态性使得它在某些问题的解决中具有很大优势。

3. 栈和队列:掌握栈和队列的基本操作,如入栈、出栈、入队、出队等。

栈和队列在解决一些特定问题时非常有用,如括号匹配、迷宫问题等。

二、排序和查找算法1. 冒泡排序:掌握冒泡排序的思想和实现方法,了解其时间复杂度和空间复杂度。

2. 快速排序:了解快速排序的思想和实现方法,掌握其时间复杂度和空间复杂度。

快速排序在解决大规模数据排序问题时效率高。

3. 二分查找:掌握二分查找的思想和实现方法,了解其时间复杂度。

二分查找适用于有序数组中的查找问题。

三、图论算法1. 最短路径算法:了解Dijkstra算法和Floyd算法,掌握它们的思想和具体实现方法。

最短路径算法在解决网络中的最短路径问题时非常重要。

2. 最小生成树算法:掌握Prim算法和Kruskal算法,了解它们的思想和实现方法。

最小生成树算法在解决网络中的连通问题时具有很大的应用价值。

四、动态规划算法1. 背包问题:了解0-1背包问题和完全背包问题,掌握它们的动态规划解法。

背包问题在资源分配和优化问题中有广泛的应用。

2. 最长公共子序列:了解最长公共子序列问题的动态规划解法,掌握其实现方法。

最长公共子序列问题在字符串匹配和相似性分析中有很大的作用。

五、搜索算法1. 深度优先搜索(DFS):了解DFS的基本原理和实现方式,掌握其递归和非递归的实现方法。

数学建模常用方法

数学建模常用方法

数学建模常用方法建模常用算法,仅供参考:1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用L i n d o、L i n g o软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理)一、在数学建模中常用的方法:1.类比法2.二分法3.量纲分析法4.差分法5.变分法6.图论法7.层次分析法8.数据拟合法9.回归分析法10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划)11.机理分析12.排队方法13.对策方法14.决策方法15.模糊评判方法、16.时间序列方法17.灰色理论方法18.现代优化算法(禁忌搜索算法、模拟退火算法、遗传算法、神经网络)二、用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。

ISAP

ISAP

ISAP 是图论求最大流的算法之一,它很好的平衡了运行时间和程序复杂度之间的关系,因此非常常用。

约定我们使用邻接表来表示图,表示方法可以见文章带权最短路 Dijkstra, SPFA, Bellman-Ford, ASP, Floyd-Warshall 算法分析或二分图的最大匹配、完美匹配和匈牙利算法的开头(就不重复贴代码了)。

在下文中,图的源点(source)表示为s,汇点(sink)表示为t,当前节点为u。

建图时,需要建立双向边(设反向的边容量为0)才能保证算法正确。

引入求解最大流问题的一个比较容易想到的方法就是,每次在残量网络(residual network)中任意寻找一条从s到t的路径,然后增广,直到不存在这样的路径为止。

这就是一般增广路算法(labeling algorithm)。

可以证明这种不加改进的贪婪算法是正确的。

假设最大流是f,那么它的运行时间为O( f⋅∣E∣)。

但是,这个运行时间并不好,因为它和最大流f有关。

人们发现,如果每次都沿着残量网络中的最短增广路增广,则运行时间可以减为O(∣E∣2⋅∣V∣) 。

这就是最短增广路算法。

而 ISAP 算法则是最短增广路算法的一个改进。

其实,ISAP 的意思正是「改进的最短增广路」 (Improved Shortest Augmenting Path)。

顺便说一句,上面讨论的所有算法根本上都属于增广路方法(Ford-Fulkerson method)。

和它对应的就是大名鼎鼎的预流推进方法(Preflow-push method)。

其中最高标号预流推进算法(Highest-label preflow-pushalgorithm)的复杂度可以达到O(∣V∣2∣E∣−−−√)。

虽然在复杂度上比增广路方法进步很多,但是预流推进算法复杂度的上界是比较紧的,因此有时差距并不会很大。

算法解释概括地说,ISAP 算法就是不停地找最短增广路,找到之后增广;如果遇到死路就 retreat,直到发现s, t不连通,算法结束。

程序设计竞赛常用算法

程序设计竞赛常用算法

程序设计竞赛常用算法1.排序算法:排序是一个基本的算法问题,常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。

这些排序算法有各自的优势和适用场景,需要根据具体问题需求选择合适的算法。

2.图论算法:图论是程序设计竞赛中经常出现的重要领域。

常见的图论算法有深度优先(DFS)、广度优先(BFS)、Dijkstra算法、Floyd-Warshall算法、拓扑排序、最小生成树等。

这些算法可以用于解决最短路径、连通性、最大流最小割等问题。

3.动态规划:动态规划是一种常用于解决优化问题的算法。

该算法通过将问题分解成子问题,并记录子问题的解来求解原问题的最优解。

常见的动态规划算法有背包问题、最长公共子序列(LCS)、最大子序列和等。

4.字符串处理算法:字符串处理是程序设计竞赛中常见的问题。

常见的字符串处理算法有KMP算法、哈希算法、字符串匹配等。

这些算法可以用于解决模式匹配、字符串、字符统计等问题。

5.数学算法:数学算法在程序设计竞赛中也经常被使用。

常见的数学算法有质因数分解、素数筛、快速乘法、高精度计算等。

这些算法可以用于解决数论、计算几何、概率等问题。

6.图形算法:图形算法主要用于处理图像和几何图形。

常见的图形算法有扫描线算法、凸包算法、几何运算等。

这些算法可以用于解决图像处理、三维建模等问题。

7.树和图的遍历算法:树和图的遍历算法是程序设计竞赛中常用的算法之一、常见的树和图的遍历算法有先序遍历、中序遍历、后序遍历、深度优先(DFS)、广度优先(BFS)等。

这些算法可以用于解决树和图的构建、路径等问题。

8.最大匹配和最小割算法:最大匹配算法用于求解二分图的最大匹配问题,常见的算法有匈牙利算法。

最小割算法用于求解图的最小割问题,常见的算法有Ford-Fulkerson算法。

这些算法可以用于解决网络流和二分图匹配等问题。

9.贪心算法:贪心算法是一种常用于优化问题的算法。

该算法通过每一步选择局部最优解来达到全局最优解。

最大流算法

最大流算法

1
基本概念



这是一个典型的网络流模型。为了解答此题,我们先了解网 络流的有关定义和概念。 若有向图G=(V,E)满足下列条件: 1. 有且仅有一个顶点S,它的入度为零,即d-(S) = 0,这 个顶点S便称为源点,或称为发点。 2. 有且仅有一个顶点T,它的出度为零,即d+(T) = 0,这 个顶点T便称为汇点,或称为收点。 3. 每一条弧都有非负数,叫做该边的容量。边(vi, vj)的容 量用cij表示。 则称之为网络流图,记为G = (V, E, C)
如何求最小费用可改进路



设带费用的网络流图G = (V, E, C, W),它的一个可行流是f。我们构造 带权有向图B = (V’, E’),其中: V’ = V。 若<Vi, Vj>∈E,fij<Cij,那么<Vi, Vj>∈E’,权为Wij。 若<Vi, Vj>∈E,fij>0,那么<Vj, Vi>∈E’,权为-Wij。 显然,B中从S到T的每一条道路都对应关于f的一条可改进路;反之, 关于f的每条可改进路也能对应B中从S到T的一条路径。即两者存在 一一映射的逻辑关系。 故若B中不存在从S到T的路径,则f必然没有可改进路;不然,B中从S 到T的最短路径即为f的最小费用可改进路。 现在的问题变成:给定带权有向图B = (V’, E’),求从S到T的一条最短路 径。
算法


求最小费用最大流的基本思想是贪心法。即:对于流f,每次 选择最小费用可改进路进行改进,直到不存在可改进路为止。 这样的得到的最大流必然是费用最小的。 算法可描述为: 第1步. 令f为零流。 第2步. 若无最小费用可改进路,转第5步;否则找到最小 费用可改进路,设为P。 第3步. 根据P求delta(改进量)。 第4步. 放大f。转第2步。 第5步. 算法结束。此时的f即最小费用最大流。

图论在网络优化中的应用

图论在网络优化中的应用

图论在网络优化中的应用一、概述图论是数学中的一个研究领域,主要研究的对象是图。

图是由顶点和边组成的,常用来描述事物之间的关系。

在网络优化中,图论可以帮助我们分析网络结构、优化网络流量以及解决其他相关问题。

二、最短路径算法在网络中,我们经常需要找到两个节点之间最短的路径。

这时,最短路径算法可以派上用场。

最短路径算法包括迪杰斯特拉算法和弗洛伊德算法等,它们都是基于图论的算法。

通过这些算法,我们可以高效地找到网络中节点之间的最短路径,从而优化网络通信效率。

三、最大流问题在网络中,我们需要考虑流量的问题。

最大流问题是指在网络中的一个节点到另一个节点之间的最大流量。

图论中的最大流算法可以帮助我们解决这个问题。

通过寻找网络中的最大流,我们可以优化网络资源的利用,提高网络的吞吐量。

四、最小生成树最小生成树是一个连通图中生成树的总权值最小的生成树。

在网络优化中,最小生成树可以用于构建最优的网络拓扑结构。

通过图论中相关的算法,我们可以找到网络中的最小生成树,并且实现对网络的优化。

五、网络分析除了上述提到的算法之外,图论在网络优化中还有许多其他的应用。

例如,通过网络分析,我们可以了解网络结构的特点,找到网络中的关键节点,优化网络连接方式等。

这些都可以帮助我们改进网络的性能和效率。

六、总结综上所述,图论在网络优化中具有重要的应用价值。

通过图论算法,我们可以解决网络中的各种问题,优化网络的性能,提高网络的效率。

图论的应用不仅局限于网络领域,还可以在其他领域发挥重要作用。

希望未来可以进一步深入研究图论的应用,为网络优化和其他相关领域的发展做出更大的贡献。

算法的分类

算法的分类

算法的分类算法是计算机科学中的重要概念,是指在一系列规则或指示下,通过一定的计算方式,解决特定的问题或完成特定的任务。

算法的分类可以根据不同的特征进行划分,下面将就这个话题进行详细探讨。

一、按照算法的基本操作方式分类1.递推算法递推算法是指根据已知的数据推算出未知数据的方法,其计算比较简单,容易理解。

常见的递推算法有斐波那契数列、汉诺塔问题等。

2.分治算法分治算法是把大问题不断分解成小问题,直到小问题可以简单的解决,然后逐步合并解决小问题的解法,得到原大问题的计算结果。

常见的分治算法有快速排序、归并排序等。

3.回归算法回归算法是通过分析已有数据的相关性,预测未来结果的算法。

主要用于统计分析和经济学领域。

枚举算法是指把所有的可能性都列出来,一一列举分析,得出结果的算法。

常见的枚举算法有全排列问题、最短路径问题等。

5.贪心算法贪心算法是通过对每一个问题选择当前最好的解决方法,在所有结果中找到最优解的算法。

常见的贪心算法有背包问题、最小生成树问题等。

6.动态规划算法动态规划算法是通过把大问题分解成一系列子问题,依次求解每个子问题的最优解,从而得出整个问题的最优解的算法。

常见的动态规划算法有最长公共子序列问题、最长上升子序列问题等。

二、按照算法的应用场景分类1.排序算法排序算法是指将一定序列的元素按照指定的大小关系进行排序的算法。

常见的排序算法有冒泡排序、选择排序、快速排序、堆排序等。

图论算法是指对图的相关概念及其表示方法进行研究的算法。

常见的图论算法有最短路径算法、最小生成树算法、最大流算法等。

3.字符串算法字符串算法是指对字符串相关概念及其处理方式进行研究的算法。

常见的字符串算法有字符串匹配算法、子串查找算法等。

4.数值计算算法数值计算算法是指对数值计算问题进行研究的算法。

常见的数值计算算法有数值积分算法、线性方程组求解算法、常微分方程数值解法等。

5.人工智能算法人工智能算法是指通过对人类智能的模拟,实现特定任务的算法。

数学建模中常见的十大模型

数学建模中常见的十大模型

数学建模中常见的十大模型集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#数学建模常用的十大算法==转(2011-07-24 16:13:14)1. 蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。

4. 图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。

这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7. 网格算法和穷举法。

两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9. 数值分析算法。

如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10. 图象处理算法。

赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。

数学建模十大算法

数学建模十大算法

、此数学建模十大算法依据网上的一份榜单而写,本文对此十大算法作一一简单介绍。

这只是一份榜单而已,数学建模中还有很多的算法,未一一囊括。

欢迎读者提供更多的好的算法。

2、在具体阐述每一算法的应用时,除了列出常见的应用之外,同时,还会具体结合数学建模竞赛一一阐述。

毕竟,此十大算法,在数学建模竞赛中有着无比广泛而重要的应用。

且,凡是标着“某某年某国某题”,即是那一年某个国家的数学建模竞赛原题。

3、此十大算法,在一些经典的算法设计书籍上,无过多阐述。

若要具体细致的深入研究,还得请参考国内或国际上关于此十大算法的优秀论文。

谢谢。

一、蒙特卡罗算法1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam和Nick Metropolis共同发明了,蒙特卡罗方法。

此算法被评为20世纪最伟大的十大算法之一,详情,请参见我的博文:/v_JULY_v/archive/2011/01/10/6127953.aspx蒙特卡罗方法(Monte Carlo method),又称随机抽样或统计模拟方法,是一种以概率统计理论为指导的一类非常重要的数值计算方法。

此方法使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

由于传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。

蒙特卡罗方法的基本原理及思想如下:当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。

有一个例子可以使你比较直观地了解蒙特卡洛方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。

蒙特卡洛方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。

学习图的最大匹配

学习图的最大匹配

学习图的最大匹配图论作为一门重要的数学理论,广泛应用于计算机科学、网络优化等领域。

其中,图的最大匹配问题是图论中的一个经典问题,它在实际中有着广泛的应用。

本文将重点介绍学习图的最大匹配问题的相关理论和算法,并探讨一些实际应用场景。

一、图的最大匹配问题的定义图的最大匹配问题是指在一个无向图中,找到一个最大的边集合,使得图中每个顶点最多与这个集合中的一条边相连。

这个集合就是图的最大匹配。

最大匹配问题可以描述为在一个集合中选取最多的元素,使得这些元素之间没有相同的关联,且集合的大小最大。

二、最大匹配问题的解决算法解决最大匹配问题的经典算法有匈牙利算法和增广路径算法。

1. 匈牙利算法匈牙利算法是最早提出来解决最大匹配问题的算法之一。

它通过不断寻找增广路径,来寻找增加匹配边的方法。

算法的基本思想是从未匹配的顶点开始,通过寻找增广路径不断扩展当前的匹配。

2. 增广路径算法增广路径算法是另一种解决最大匹配问题的有效方法。

它的基本思想是通过搜索图中的增广路径,并根据路径的特性来调整匹配的边集合。

增广路径算法的关键是寻找增广路径的方法。

三、实际应用场景最大匹配问题在实际中有着广泛的应用,例如:1. 人员配对在招聘场景下,企业需要根据职位需求和员工技能进行配对。

最大匹配问题可以帮助企业找到最佳的候选人。

2. 车辆调度在物流领域,需要根据货物的特性和运输车辆的特点进行合理的调度。

最大匹配问题可以帮助找到最佳的车辆安排方案。

3. 项目匹配在科研项目中,需要根据项目需求和研究人员的专长进行匹配。

最大匹配问题可以帮助找到最佳的项目与研究团队的匹配。

四、总结通过本文的介绍,我们了解了图的最大匹配问题的定义和解决算法。

最大匹配问题在实际应用中具有重要的价值和意义。

希望读者通过学习图的最大匹配问题,能够应用到实际问题的解决中,并进一步扩展图论的应用领域。

以上是对学习图的最大匹配问题的一些基本介绍,希望对您有所帮助。

谢谢阅读!。

利用图论解决优化问题

利用图论解决优化问题

利用图论解决优化问题
图论是一种数学领域,研究的对象是图。

图是由节点和边构成的一种数学结构,可以用来描述不同事物之间的关系。

在实际应用中,图论被广泛应用于解决各种优化问题。

一、最短路径问题
最短路径问题是图论中的经典问题之一。

通过图论的方法,可以很容易地找到两个节点之间最短路径的长度。

这在现实生活中经常用于规划交通路线、通讯网络等方面。

二、最小生成树问题
最小生成树问题是指在一个连通加权图中找到一个权值最小的生成树。

利用图论的方法,可以高效解决这个问题,从而在一些应用中节省资源和成本。

三、网络流问题
网络流问题是指在网络中找到从源点到汇点的最大流量。

通过图论中流网络的模型,可以有效地解决网络流问题,这在交通调度、物流运输等领域有着重要的应用。

四、最大匹配问题
最大匹配问题是指在一个二分图中找到最大的匹配数。

图论提供了有效的算法来解决最大匹配问题,这在稳定婚姻问题、任务分配等方面有着广泛应用。

五、旅行商问题
旅行商问题是一个著名的优化问题,即求解访问所有节点一次并回到起点的最短路径。

通过图论的技术,可以找到最优解,帮助旅行商节省时间和成本。

总的来说,图论在解决优化问题方面有着重要的作用。

通过构建合适的图模型,并应用相关算法,可以高效地解决各种优化问题,为现实生活中的决策提供科学依据。

希望未来能有更多的研究和应用将图论与优化问题相结合,为人类社会的发展贡献力量。

数学建模常用算法

数学建模常用算法

数学建模常用算法数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解的过程。

在数学建模中,常用的算法有很多种,下面将介绍一些常见的数学建模算法。

1.最优化算法:-线性规划算法:如单纯形法、内点法等,用于求解线性规划问题。

-非线性规划算法:如最速下降法、牛顿法等,用于求解非线性规划问题。

-整数规划算法:如分支定界法、割平面法等,用于求解整数规划问题。

2.概率统计算法:-蒙特卡洛模拟:通过模拟随机事件的方式,得出问题的概率分布。

-贝叶斯统计:利用先验概率和条件概率,通过数据更新后验概率。

-马尔可夫链蒙特卡洛:用马尔可夫链的方法求解复杂的概率问题。

3.图论算法:-最短路径算法:如迪杰斯特拉算法、弗洛伊德算法等,用于求解两点之间的最短路径。

-最小生成树算法:如普里姆算法、克鲁斯卡尔算法等,用于求解图中的最小生成树。

- 最大流最小割算法: 如Edmonds-Karp算法、Dinic算法等,用于求解网络流问题。

4.插值和拟合算法:-多项式插值:如拉格朗日插值、牛顿插值等,用于通过已知数据点拟合出多项式模型。

-最小二乘法拟合:通过最小化实际数据与拟合模型之间的差异来确定模型参数。

-样条插值:通过使用多段低次多项式逼近实际数据,构造连续的插值函数。

5.遗传算法和模拟退火算法:-遗传算法:通过模拟自然选择、遗传变异和交叉等过程,优化问题的解。

-模拟退火算法:模拟固体退火过程,通过随机策略进行,逐步靠近全局最优解。

6.数据挖掘算法:- 聚类算法: 如K-means算法、DBSCAN算法等,用于将数据分为不同的类别。

-分类算法:如朴素贝叶斯算法、决策树算法等,用于通过已知数据的类别预测新数据的类别。

- 关联分析算法: 如Apriori算法、FP-growth算法等,用于发现数据集中的关联规则。

以上只是数学建模中常用的一些算法,实际上还有很多其他算法也可以应用于数学建模中,具体使用哪种算法取决于问题的性质和要求。

网络流(最大流-Dinic算法)

网络流(最大流-Dinic算法)

⽹络流(最⼤流-Dinic算法)⽹络流定义  在图论中,⽹络流(Network flow)是指在⼀个每条边都有容量(Capacity)的有向图分配流,使⼀条边的流量不会超过它的容量。

通常在运筹学中,有向图称为⽹络。

顶点称为节点(Node)⽽边称为弧(Arc)。

⼀道流必须匹配⼀个结点的进出的流量相同的限制,除⾮这是⼀个源点(Source)──有较多向外的流,或是⼀个汇点(Sink)──有较多向内的流。

⼀个⽹络可以⽤来模拟道路系统的交通量、管中的液体、电路中的电流或类似⼀些东西在⼀个结点的⽹络中游动的任何事物。

————维基百科 最⼤流 正如可以通过将道路交通图模型化为有向图来找到从⼀个城市到另⼀个城市之间的最短路径,我们也可以将⼀个有向图看做是⼀个“流⽹络”并使⽤它来回答关于物料流动⽅⾯的问题。

设想⼀种物料从产⽣它的源结点经过⼀个系统,流向消耗该物料的汇点这样⼀个过程。

源结点以某种稳定的速率⽣成物料,汇点则以同样的速率消耗物料。

从直观上看,物料在系统中任何⼀个点上的“流量”就是物料移动的速率。

这种流⽹络可以⽤来建模很多实际问题,包括液体在管道中的流动、装配线上部件的流动、电⽹中电流的流动和通信⽹络中信息的流动。

我们可以把流⽹络中每条有向边看做是物料的⼀个流通通道。

每条通道有限定的容量,是物料流经该通道时的最⼤速率,如⼀条管道每⼩时可以流过200加仑的液体。

流⽹络中的结点则是通道的连接点。

除了源结点和终结点外,物料在其他结点上只是流过,并不积累或聚集。

换句话说,物料进⼊⼀个结点速率必须与其离开该结点的速率相等。

这个性质称为“流量守恒”,这⾥的流量守恒与Kirchhoff电流定律等价。

在最⼤流问题中,我们希望在不违反任何容量限制的情况下,计算出从源结点运送物料到汇点的最⼤速率。

这是与流⽹络有关的所有问题中最简单的问题之⼀().,这个问题可以由⾼效的算法解决。

⽽且,最⼤流算法中的⼀些基本技巧可以⽤来解决其他⽹络流问题。

计算机10大经典算法

计算机10大经典算法

计算机10大经典算法1. 排序算法排序算法是计算机领域中最基础和常用的算法之一。

其目的是将一组数据按照特定的顺序进行排列。

最常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。

冒泡排序(Bubble Sort)是一种简单但效率较低的排序算法。

其基本思想是通过相邻元素的比较和交换,逐步将待排序的元素移动到正确的位置。

插入排序(Insertion Sort)的核心思想是将待排序的元素插入到已排序序列中的适当位置,从而得到一个新的有序序列。

选择排序(Selection Sort)是一种简单直观的排序算法。

其原理是每次从待排序序列中选择最小(或最大)的元素,放到已排序序列的末尾。

快速排序(Quick Sort)是一种高效的排序算法。

它采用分治法的思想,将待排序序列分割成两个子序列,并递归地进行排序。

归并排序(Merge Sort)是一种稳定的排序算法。

它的核心思想是将待排序序列划分成若干个子序列,分别进行排序,最后再合并这些有序子序列。

2. 搜索算法搜索算法用于在给定的数据集合中查找特定的元素或满足特定条件的元素。

其中最著名的搜索算法为二分查找算法。

二分查找(Binary Search)是一种高效的搜索算法,适用于有序的数据集合。

它通过将待查找区间逐步缩小,直到找到目标元素。

3. 图形算法图形算法主要用于处理具有图形结构的问题,如网络分析、路径搜索等。

其中最常用的图形算法包括广度优先搜索算法和迪杰斯特拉算法。

广度优先搜索(Breadth-First Search,BFS)是一种基于图的搜索算法。

它以广度为优先级,逐层遍历图中的节点,用于查找最短路径、连通性分析等问题。

迪杰斯特拉算法(Dijkstra's Algorithm)用于解决带权有向图中单源最短路径问题。

它采用贪心策略,逐步确定从起点到其他节点的最短路径。

4. 动态规划算法动态规划算法常用于解决具有重叠子问题和最优子结构性质的问题。

十大经典数学模型

十大经典数学模型

十大经典数学模型1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)1、蒙特卡罗方法(MC)(Monte Carlo):蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。

图论与网络知识点

图论与网络知识点

图论与网络知识点一、引言近年来,随着互联网的普及和快速发展,图论与网络知识成为计算机科学中重要的研究领域之一。

图论是一门研究图和网络结构的学科,而网络知识则是应用图论来研究和解决网络中的各种问题。

本文将介绍一些图论与网络的基本概念、算法和应用。

二、图论基础知识1. 图的定义图是由节点和连接节点的边构成的一种数据结构,通常用G = (V, E)表示,其中V表示节点的集合,E表示连接节点的边的集合。

2. 图的分类根据图中边的特性,图可以分为有向图和无向图。

在有向图中,边是有方向性的,而在无向图中,边是没有方向性的。

3. 图的表示方法图可以通过邻接矩阵或邻接链表进行表示。

邻接矩阵是一个二维数组,用于表示图中节点之间的连接关系;邻接链表是一种链表的形式,用于存储每个节点的相邻节点信息。

三、图论算法1. 最短路径算法最短路径算法用于找到两个节点之间最短路径的方法,其中最著名的算法是Dijkstra算法和Floyd-Warshall算法。

2. 拓扑排序拓扑排序用于对有向无环图中的节点进行排序。

拓扑排序算法常用于任务调度、依赖关系分析等场景。

3. 最小生成树算法最小生成树算法用于找到一棵树,使得树中所有边的权重和最小。

常用的算法包括Prim算法和Kruskal算法。

4. 最大流算法最大流算法用于找到网络中从源节点到目标节点的最大流量。

Ford-Fulkerson算法和Edmonds-Karp算法是常用的最大流算法。

四、网络知识点1. 网络拓扑结构网络拓扑结构指的是网络中节点之间连接的方式,常见的网络拓扑结构有星型结构、环型结构、总线结构、网状结构等。

2. 网络协议网络协议是计算机网络中用来进行数据交换的约定和规则。

常见的网络协议有TCP/IP协议、HTTP协议、FTP协议等。

3. 网络安全网络安全是指保护计算机网络和网络资源不受未经授权的访问、使用、披露、破坏、干扰等威胁的技术、方法和措施。

网络安全涉及到防火墙、入侵检测系统、数据加密等方面。

图论中的网络流最大流算法

图论中的网络流最大流算法

图论中的网络流最大流算法网络流最大流算法是图论中的重要算法之一,用于求解网络中最大的流量。

在许多实际应用中,如交通流量优化、电力系统规划和通信网络传输等领域,网络流最大流算法都具有重要的应用价值。

一、问题描述在介绍网络流最大流算法之前,首先要明确问题的具体描述。

假设有一个有向图G=(V, E),其中V表示顶点的集合,E表示边的集合。

每条边(u, v)∈E都有一个非负容量c(u, v)表示从u到v的最大流量上限。

而源点s和汇点t分别表示网络中的起始点和终点。

网络流最大流算法的目标就是在该有向图中找到从源点s到汇点t的最大流量。

二、Ford-Fulkerson算法Ford-Fulkerson算法是最早提出的网络流最大流算法之一,它基于不断地寻找增广路径来不断增加流量。

具体步骤如下:1. 初始化流量:将所有边的流量设置为0。

2. 寻找增广路径:在残余图中,利用广度优先搜索或深度优先搜索找到一条从源点s到汇点t的路径。

如果找不到增广路径,则跳至步骤4。

3. 更新流量:通过增加路径上的最小容量,更新每条边的流量。

4. 输出最大流量:计算网络中所有从源点s出发的边的流量之和,即为最大流量。

Ford-Fulkerson算法的核心思想是不断地沿着增广路径增加流量,直到无法找到增广路径为止。

虽然该算法可以求解网络流最大流问题,但是其时间复杂度较高,不适用于大规模的问题。

三、Edmonds-Karp算法为了改进Ford-Fulkerson算法的效率,Edmonds-Karp算法采用了广度优先搜索作为寻找增广路径的策略。

相比于深度优先搜索,广度优先搜索可以保证找到的增广路径具有最小的边数。

具体步骤如下:1. 初始化流量:将所有边的流量设置为0。

2. 寻找增广路径:利用广度优先搜索找到一条从源点s到汇点t的路径。

如果找不到增广路径,则跳至步骤4。

3. 更新流量:通过增加路径上的最小容量,更新每条边的流量。

4. 输出最大流量:计算网络中所有从源点s出发的边的流量之和,即为最大流量。

均匀分组问题总结

均匀分组问题总结

均匀分组问题总结1. 引言在日常生活和工作中,我们经常会遇到一些需要将一组对象或者人员均匀地分配到若干个组中的问题。

这个问题被称为均匀分组问题。

均匀分组问题在不同的场景中有不同的应用,比如:•在体育比赛中,需要将参赛选手平均地分配到不同的小组中进行比赛;•在项目团队中,需要将团队成员均匀地分配到不同的任务组中进行工作;•在学校班级中,需要将学生均匀地分配到不同的座位组中进行学习。

为了解决均匀分组问题,我们可以借助一些算法和方法。

本文将对几种常见的均匀分组问题进行总结,并介绍一些解决问题的思路和算法。

2. 均匀分组问题的分类根据分组的要求和限制条件的不同,均匀分组问题可以分为以下几类:2.1 人员均匀分组这类问题主要涉及将一组人员均匀地分配到若干个小组中。

常见的解决思路包括以下几种:•随机分组法:随机将人员分配到不同的小组中,虽然随机分组方法简单,但是分组结果可能不满足一定的均匀性要求。

•贪心算法:利用贪心策略,每次选择适合当前组的人员进行分配,直到所有人员都被分配到小组中。

•图论方法:将人员和小组之间的分配问题转化为一个图论问题,利用图的连接性和权重来确定分组方案。

2.2 对象均匀分组这类问题主要涉及将一组对象均匀地分配到若干个组中。

常见的解决思路包括以下几种:•基于属性的分组法:根据对象的属性进行分组,比如将具有相似特征的对象分配到同一个组中。

•基于距离的分组法:根据对象之间的距离进行分组,将距离较近的对象分配到同一个组中。

•遗传算法:利用进化算法的思想,通过模拟自然界进化的过程,逐步优化分组结果。

3. 问题的解决思路和算法3.1 贪心算法贪心算法是一种常用的解决均匀分组问题的方法。

贪心算法的基本思想是:每次选择当前最优的解决方案,直到解决问题为止。

在进行人员均匀分组时,可以按照以下步骤进行:•将人员按照某种规则排序,比如按照姓名的字母顺序排序。

•根据人员的顺序,依次将人员分配到小组中,每次选择小组中人数最少的组进行分配。

最大流常见算法

最大流常见算法

最大流常见算法介绍最大流算法是图论中的经典问题之一,涉及在一个有向图中,确定从一个源节点到一个汇节点的最大流量。

最大流常见算法用来解决这个问题的是Ford-Fulkerson 算法和Edmonds-Karp算法。

本文将重点介绍这两种算法及其应用。

Ford-Fulkerson算法算法原理1.初始化网络流为0。

2.寻找一条从源节点到汇节点的增广路径(即路径上的边上还有可用容量)。

3.如果存在增广路径,则通过这条路径增加流量,并更新网络流。

4.重复2-3,直到不存在增广路径。

算法步骤1.使用深度优先搜索或广度优先搜索找到一条增广路径。

2.计算增广路径上可用容量的最小值,即该路径上所有边上的剩余容量的最小值。

3.更新增广路径上的每条边的流量,并更新网络流。

4.重复1-3,直到不存在增广路径。

时间复杂度Ford-Fulkerson算法的时间复杂度取决于寻找增广路径的方法。

使用深度优先搜索的时间复杂度为O(E|f|),其中E为边的数量,|f|为最大流量。

使用广度优先搜索的时间复杂度为O(VE^2)。

Edmonds-Karp算法算法原理Edmonds-Karp算法是Ford-Fulkerson算法的一种优化算法,使用广度优先搜索寻找增广路径。

与Ford-Fulkerson算法不同的是,Edmonds-Karp算法每次寻找增广路径时,选择最短路径(即路径上的边数最少)。

算法步骤1.使用广度优先搜索找到一条最短增广路径。

2.计算增广路径上可用容量的最小值,即该路径上所有边上的剩余容量的最小值。

3.更新增广路径上的每条边的流量,并更新网络流。

4.重复1-3,直到不存在增广路径。

时间复杂度Edmonds-Karp算法的时间复杂度为O(VE^2),其中V为节点数,E为边的数量。

应用最大流算法具有广泛的应用领域,包括但不限于以下几个方面: 1. 交通流量优化:在道路交通网络中,最大流算法可以用于优化交通流量分配,确保交通效率最大化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最大流算法clc,clear,M=1000;c(1,2)=3;c(1,4)=3;c(2,3)=1;c(2,4)=20;c(3,6)=3;c(4,5)=10;c(5,1)=4;c(5,3)=2;c(5,6)=13;n=length(u);list=[];maxf=zeros(1:n);maxf(n)=1;while maxf(n)>0maxf=zeros(1,n);pred=zeros(1,n);list=1;record=list;maxf(1)=M;while (~isempty(list))&(maxf(n)==0)flag=list(1);list(1)=[];index1=(find(u(flag,:)~=0));label1=index1(find(u(flag,index1)...-f(flag,index1)~=0));label1=setdiff(label1,record);list=union(list,label1);pred(label1(find(pred(label1)==0)))=flag;maxf(label1)=min(maxf(flag),u(flag,label1)... -f(flag,label1));record=union(record,label1);label2=find(f(:,flag)~=0);label2=label2';label2=setdiff(label2,record);list=union(list,label2);pred(label2(find(pred(label2)==0)))=-flag;maxf(label2)=min(maxf(flag),f(label2,flag)); record=union(record,label2);endif maxf(n)>0v2=n;v1=pred(v2);while v2~=1if v1>0f(v1,v2)=f(v1,v2)+maxf(n);elsev1=abs(v1);f(v2,v1)=f(v2,v1)-maxf(n);endv2=v1;v1=pred(v2);endendendffunction [f,wf,No]=MaxFlowMinCut_Me(n,C)% 利用Ford--Fulkerson 标号法求最大流算法的MATLAB 程序代码% f %显示最大流% wf %显示最大流量% No %显示标号, 由此可得最小割% n 节点个数% C %弧容量最大流算法for(i=1:n)for(j=1:n)f(i,j)=0;end;end%取初始可行流f 为零流for(i=1:n)No(i)=0;d(i)=0;end%No,d 记录标号while(1)No(1)=n+1;d(1)=Inf; %给发点vs 标号while(1)pd=1; %标号过程for(i=1:n)if(No(i)) %选择一个已标号的点vifor(j=1:n)if(No(j)==0&f(i,j)<C(i,j)) %对于未给标号的点vj, 当vivj 为饱和弧时No(j)=i;d(j)=C(i,j)-f(i,j);pd=0;if(d(j)>d(i))d(j)=d(i);endelseif(No(j)==0&f(j,i)>0) %对于未给标号的点vj, 当vjvi 为非零流弧时No(j)=-i;d(j)=f(j,i);pd=0;if(d(j)>d(i))d(j)=d(i);end;end;end;end;endif(No(n)|pd)break;end;end%若收点vt 得到标号或者无法标号,终止标号过程if(pd)break;end%vt 未得到标号, f 已是最大流, 算法终止dvt=d(n);t=n; %进入调整过程, dvt 表示调整量while(1)if(No(t)>0)f(No(t),t)=f(No(t),t)+dvt; %前向弧调整elseif(No(t)<0)f(No(t),t)=f(No(t),t)-dvt;end%后向弧调整if(No(t)==1)for(i=1:n)No(i)=0;d(i)=0; end;break;end%当t 的标号为vs 时, 终止调整过程t=No(t);end;end; %继续调整前一段弧上的流fwf=0;for(j=1:n)wf=wf+f(1,j);endendn=6;C=[0 3 0 3 0 00 0 1 20 0 00 0 0 0 0 30 0 0 0 10 00 4 2 0 0 130 0 0 0 0 0];[f,wf,No]=MaxFlowMinCut_Me(n,C)最大匹配算法A=[1 1 0 1 00 1 1 1 01 0 1 0 10 1 1 0 00 0 0 1 1];A=[1 0 0 1 00 1 1 1 00 0 0 1 11 1 0 0 10 0 1 0 1];A=[1 1 0 1 00 1 1 1 01 0 1 0 10 1 1 0 00 0 0 1 1];A=[1 0 0 1 00 1 1 1 00 0 0 1 11 1 0 0 10 0 1 0 1];A=[1 0 0 1 00 1 0 1 00 1 0 0 11 1 1 0 00 0 1 1 1];m=5;n=5;M(m,n)=0;for(i=1:m)for(j=1:n)if(A(i,j))M(i,j)=1;break;end;end %求初始匹配Mif(M(i,j))break;end;end %获得仅含一条边的初始匹配Mwhile(1)for(i=1:m)x(i)=0;end %将记录X中点的标号和标记*for(i=1:n)y(i)=0;end %将记录Y中点的标号和标记*for(i=1:m)pd=1; %寻找X中M的所有非饱和点for(j=1:n)if(M(i,j))pd=0;end;endif(pd)x(i)=-n-1;end;end %将X中M的所有非饱和点都给以标号0 和标记*,程序中用n+1 表示0 标号, 标号为负数时表示标记*pd=0;while(1)xi=0;for(i=1:m)if(x(i)<0)xi=i;break;end;end %假如X 中存在一个既有标号又有标记*的点, 则任取X中一个既有标号又有标记*的点xiif(xi==0)pd=1;break;end %假如X中所有有标号的点都已去掉了标记*,算法终止x(xi)=x(xi)*(-1); %去掉xi 的标记*k=1;for(j=1:n)if(A(xi,j)&y(j)==0)y(j)=xi;yy(k)=j;k=k+1;end;end %对与xi 邻接且尚未给标号的yj 都给以标号iif(k>1)k=k-1;for(j=1:k)pdd=1;for(i=1:m)if(M(i,yy(j)))x(i)=-yy(j);pdd=0;break;end;end %将yj 在M中与之邻接的点xk (即xkyj∈M), 给以标号j 和标记*if(pdd)break;end;endif(pdd)k=1;j=yy(j); %yj 不是M的饱和点while(1)P(k,2)=j;P(k,1)=y(j);j=abs(x(y(j))); %任取M的一个非饱和点yj,逆向返回if(j==n+1)break;end %找到X中标号为0 的点时结束, 获得M-增广路Pk=k+1;endfor(i=1:k)if(M(P(i,1),P(i,2)))M(P(i,1),P(i,2))=0; %将匹配M 在增广路P 中出现的边去掉else M(P(i,1),P(i,2))=1;end;end %将增广路P 中没有在匹配M中出现的边加入到匹配M中break;end;end;endif(pd)break;end;end %假如X中所有有标号的点都已去掉了标记*, 算法终止M %显示最大匹配M, 程序结束利用可行点标记求最佳匹配算法的 MATLAB 程序代码如下:n=5;A=[3 5 5 4 12 2 0 2 22 4 4 1 00 1 1 0 01 2 1 3 3];for(i=1:n)L(i,1)=0;L(i,2)=0;endfor(i=1:n)for(j=1:n)if(L(i,1)<A(i,j))L(i,1)=A(i,j);end; %初始可行点标记L M(i,j)=0;end;endfor(i=1:n)for(j=1:n) %生成子图Glif(L(i,1)+L(j,2)==A(i,j))Gl(i,j)=1;else Gl(i,j)=0;end;end;endii=0;jj=0;for(i=1:n)for(j=1:n)if(Gl(i,j))ii=i;jj=j;break;end;endif(ii)break;end;end %获得仅含Gl 的一条边的初始匹配MM(ii,jj)=1;for(i=1:n)S(i)=0;T(i)=0;NlS(i)=0;endwhile(1)for(i=1:n)k=1;否则.for(j=1:n)if(M(i,j))k=0;break;end;endif(k)break;end;endif(k==0)break;end %获得最佳匹配M, 算法终止S(1)=i;jss=1;jst=0; %S={xi}, T=φwhile(1)jsn=0;for(i=1:jss)for(j=1:n)if(Gl(S(i),j))jsn=jsn+1;NlS(jsn)=j; %NL(S)={v|u∈S,uv∈EL}for(k=1:jsn-1)if(NlS(k)==j)jsn=jsn-1;end;end;end;end;endif(jsn==jst)pd=1; %判断NL(S)=T?for(j=1:jsn)if(NlS(j)~=T(j))pd=0;break;end;end;endif(jsn==jst&pd)al=Inf;%如果NL(S)=T, 计算al, Inf 为∞for(i=1:jss)for(j=1:n)pd=1;for(k=1:jst)if(T(k)==j)pd=0;break;end;endif(pd&al>L(S(i),1)+L(j,2)-A(S(i),j))al=L(S(i),1)+L(j,2)-A(S(i),j);end;end;endfor(i=1:jss)L(S(i),1)=L(S(i),1)-al;end %调整可行点标记for(j=1:jst)L(T(j),2)=L(T(j),2)+al;end %调整可行点标记for(i=1:n)for(j=1:n) %生成子图GLif(L(i,1)+L(j,2)==A(i,j))Gl(i,j)=1;else Gl(i,j)=0;endM(i,j)=0;k=0;end;endii=0;jj=0;for(i=1:n)for(j=1:n)if(Gl(i,j))ii=i;jj=j;break;end;endif(ii)break;end;end %获得仅含Gl 的一条边的初始匹配MM(ii,jj)=1;breakelse %NL(S)≠Tfor(j=1:jsn)pd=1; %取y∈NL(S)\Tfor(k=1:jst)if(T(k)==NlS(j))pd=0;break;end;endif(pd)jj=j;break;end;endpd=0; %判断y 是否为M的饱和点for(i=1:n)if(M(i,NlS(jj)))pd=1;ii=i;break;end;endif(pd)jss=jss+1;S(jss)=ii;jst=jst+1;T(jst)=NlS(jj); %S=S∪{x}, T=T∪{y}else %获得Gl 的一条M-增广路, 调整匹配Mfor(k=1:jst)M(S(k),T(k))=1;M(S(k+1),T(k))=0;endif(jst==0)k=0;endM(S(k+1),NlS(jj))=1;break;end;end;end;endMaxZjpp=0;for(i=1:n)for(j=1:n)if(M(i,j))MaxZjpp=MaxZjpp+A(i,j);end;end;end M %显示最佳匹配MMaxZjpp %显示最佳匹配M的权, 程序结束。

相关文档
最新文档