初一上学期期末试卷
2023-2024学年深圳市七年级语文上学期期末试卷附答案解析

2023-2024学年深圳市七年级语文上学期期末试卷一、字词书写1.请你根据拼音,写出相应的词语。
步入初中,我们攀上了语文学习的又一级台阶。
随着语文课本徐徐打开,广阔的生活画卷也在我们的人生中缓缓展开。
聆听毛泽东的温情叙述,我们感受到白求恩对医技jīng yìqiújīng①();《走一步,再走一步》中“悬崖上的一课”告诉我们要学会克服心理障碍,不要wèi jù②()成长路上的困难。
伴随着郑振铎的忏悔,我们体味到一个弱小生命含冤而死的悲楚,心生怜悯……语文是一座色彩缤纷的花园,让人流连忘返;语文是一幅意境深远的油画,让人惊叹不已;语文是一首优美动听的歌谣,让人沉醉其中。
有了语文,我们的成长定会一路花团锦簇,美不胜收。
①②二、选择题2.小紫决定学以致用,用学过的成语造句,下列成语运用不恰当的一项是()A.班干部不能拈轻怕重,因为每个人都有自己的职责,需要负起自己的责任。
B.因为我们的阅读水平参差不齐,所以我们要制定符合自己的阅读计划。
C.艺术节上,花枝招展的男女同学载歌载舞,大家都沉浸在欢快、热烈的气氛中。
D.每天都自问新问题,养成刨根问底的习惯,我们的思维就会充满创造力和活力。
3.下列各句中没有语病的一项是()A.《史记》被称为“百科全书式的通史”,主要是因为它是研究古代典章制度、人文历史、自然科学、经济文化的重要史料。
B.“非遗文化进校园”系列活动,在全市中小学生中掀起了保护非物质文化遗产的热情。
C.央视“诗词大会”栏目将国学娱乐化,有利于更多人研究和了解国学。
D.我们在学习中想要取得好成绩,就一定要认真学习,虚心求教,切忌不要骄傲。
4.下列说法不正确的一项是()A.古人对官职的升迁有特定的称谓,“左迁”指降低官职。
B.“一个人能力有大小,但只要有这点精神,就是一个高尚的人,一个纯粹的人……”中加点词语的词性分别是量词、名词、形容词。
C.《论语》是儒家经典著作,是记录孔子言行的一部书,宋代把它与《大学》《中庸》《孟子》合称为“四书”。
青岛市初一上学期数学期末试卷带答案

青岛市初一上学期数学期末试卷带答案一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5ht =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒 B .4秒C .5秒D .6秒3.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .4.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠ 5.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯6.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .347.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =138.﹣3的相反数是( ) A .13-B .13C .3-D .39.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1 B .m=2,n=0 C .m=4,n=1 D .m=4,n=0 10.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( )A .﹣4B .﹣2C .4D .211.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离12.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN的长度为( )cm .A .2B .3C .4D .6二、填空题13.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 14.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.15.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.16.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.17.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.18.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD上的定点,现分别以,BE BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF与正方形DGIH的重合部分恰好是一个正方形,且,BE DG=,Q I均在长方形ABCD内部.记图中的阴影部分面积分别为123,,s s s.若2137SS=,则3S=___19.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y-,因式分解的结果是()()()22x y x y x y-++,若取9x=,9y=时,则各个因式的值是:()18x y+=,()x y-=,()22162x y+=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy-,取36x=,16y=时,用上述方法产生的密码是________ (写出一个即可).20.如图所示,ABC90∠=,CBD30∠=,BP平分ABD.∠则ABP∠=______度.21.若∠1=35°21′,则∠1的余角是__.22.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,则∠BOE的度数为___________.(用含α的式子表示)23.如果,,a b c是整数,且c a b=,那么我们规定一种记号(,)a b c=,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.24.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的.三、解答题25.化简代数式,22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭,并求当24,=3a b =-时该代数式的值. 26.计算:(1)23(1)27|2|--+- (2)2311(6)()232-⨯--27.光明中学组织学生到距离学校 9 千米的博物馆参观,学生小华因有事未能赶上包车,于是准备在学校门口直接乘出租车去博物 馆,出租车的收费标准如下: 里 程收费(元) 3 千米以内(含 3 千米) 10.00 3 千米以外,每增加 1 千米2.40(1)写出小华乘出租车的里程数为 x 千米(x ≥3)时,所付车费为多少元(用含 x 的代 数式表示);(2)如果小华同学身上仅有 25 元钱,由学校乘出租车到博物馆钱够不够?请说明理由. 28.已知,若2(1)20a b ++-=,关于x 的方程2x+c=1的解为-1.求代数式22282(4)abc a b ab a b ---的值.29.解方程: (1)2235x x -=+ (2)2432142x x +-=- 30.全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动. 以下是根据调查结果绘制的统计图表的一部分, 运动形式 ABCDE人数1230m54 9请你根据以上信息,回答下列问题:()1接受问卷调查的共有 人,图表中的m = ,n = . ()2统计图中,A 类所对应的扇形的圆心角的度数是 度.()3揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有1500人,请你估计一下该社区参加环岛路“暴走团”的人数.四、压轴题31.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.32.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)33.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 利用max{}2,,x x x 的定义分情况讨论即可求解.【详解】 解:当max {}21,,2x x x =时,x ≥0 x 12,解得:x =14x >x >x 2,符合题意; ②x 2=12,解得:x =22x x >x 2,不合题意; ③x =12x x >x 2,不合题意; 故只有x =14时,max {}21,,2x x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.2.C解析:C 【解析】 【分析】根据题意直接把高度为102代入即可求出答案. 【详解】由题意得,当h=102时,24.5=20.25 25=25 且20.25<20.4<25∴∴4.5<t<5∴与t 最接近的整数是5.故选C.【点睛】本题考查的是估算问题,解题关键是针对其范围的估算.3.C解析:C 【解析】 【分析】根据余角与补角的性质进行一一判断可得答案. . 【详解】解:A,根据角的和差关系可得∠α=∠β=45o ; B,根据同角的余角相等可得∠α=∠β; C,由图可得∠α不一定与∠β相等; D,根据等角的补角相等可得∠α=∠β. 故选C. 【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.4.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.5.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000104=1.04×10−4. 故选:C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.B解析:B 【解析】 【分析】根据同底数幂的乘除法法则,进行计算即可. 【详解】解:(1.8−0.8)×220=220(KB ), 32×211=25×211=216(KB ), (220−216)÷215=25−2=30(首), 故选:B . 【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.7.D解析:D 【解析】 【分析】方程移项,把x 系数化为1,即可求出解. 【详解】解:方程3x ﹣1=0, 移项得:3x =1,解得:x=13,故选:D.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.9.A解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A.10.C解析:C【解析】【分析】由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)=4;故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.11.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题13.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+mx(31)4=23,解得:m=﹣83.故答案为:﹣83.【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.14.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.15.【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90解析:141︒【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.16.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.17.3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把代入方程组得:,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【解析:3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把12xy=⎧⎨=⎩代入方程组得:2722a bb a+=⎧⎨+=⎩,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,解析:121 4【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据213 7SS=,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵213 7S S =,即23(3)7aa a=+,∴4a2−9a=0,解得:a1=0(舍),a2=94,则S3=(10−2a)2=(10−92)2=1214,故答案为121 4.【点睛】本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.19.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】324x xy-=x(x+2y)(x-2y).当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入20.60 【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】 解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 21.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.22.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.23.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂. 24.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的 .考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的 .考点:几何体的三视图. 三、解答题25.221122a ab b -+-,值为:799- 【解析】【分析】 根据题意先进行化简,然后把24,=3a b =-分别代入化简后的式子,得出最终结果即可. 【详解】解:22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭ =222273222a ab b a ab b ---++=22122a ab b -+-, 然后把24,=3a b =-代入上式得: 221122a ab b -+- 1124=16+42239⎛⎫-⨯⨯⨯-- ⎪⎝⎭ =44839--- =799-. 故答案为:221122a ab b -+-,值为:799-. 【点睛】 本题考查化简求值,解题关键在于对整式加减的理解.26.(1)0;(2)-14【解析】【分析】(1)根据平方、立方根及绝对值的运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】(1)2(1)|2|--132=-+0=(2)2311(6)()232-⨯-- 113636832=⨯-⨯- 12188=--14=-【点睛】本题考查实数的运算,熟练掌握运算法则是解题关键.27.(1)(2.4x+2.8);(2)小华由学校乘出租车到博物馆钱够了.【解析】【分析】(1)根据3千米以内收费10元,超过3千米,每增加1千米收费2.4元,列代数式即可;(2)求出到达博物馆所需的钱数,然后判断25元钱是否能够到达博物馆.(1)由题意得,所付车费为:2.4(x-3)+10(x≥3);(2)将x=9代入得:2.4×6+10=24.4元<25元,所以小华由学校乘出租车到博物馆钱够了.【点睛】本题考查了列代数式和代数式求值,关键是读懂题意,根据题意列出代数式.28.-34.【解析】【分析】根据非负数之和为0,则每个非负数都为0,解出a ,b 的值,然后将x=-1代入方程求出c 的值,最后将代数式化简,代入数据求值.【详解】解:因为2(1)|2|0++-=a b ,(a+1)2 ≥0,|2|0-≥b所以a+1=0,b-2=0解得:a=-1,b=2因为关于x 的方程2x+c=1的解为-1所以2×(-1)+c=1 ,解得c=3因为8abc -2a 2b -(4ab 2-a 2b)=8abc-2a 2b-4ab 2+a 2b=8abc-a 2b-4ab 2把a=-1,b=2,c=3代入代数式8abc-a 2b-4ab 2中,得8×(-1)×2×3-(-1)2×2-4×(-1)×22=-48-2-(-16)=-34.【点睛】本题考查非负数的性质,一元一次方程的解,以及代数式化简求值,熟记非负数的性质求出a 、b 的值是解题的关键.29.(1)x=-7;(2)x=1【解析】【分析】(1)直接移项合并同类项进而解方程得出答案;(2)直接去分母,再移项合并同类项进而解方程得出答案.【详解】(1) 解:2352x x -=+ 7x -=7x =-(2) 解:242(32)4x x +--=24644x x +-+=1x=【点睛】本题主要考查解一元一次方程,正确掌握解一元一次方程的方法是解题关键.30.(1)150、45、36;(2)28.8°;(3)450人【解析】【分析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)利用总人数乘以样本中C人数所占比例可得.【详解】解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,54%100%36%150n=⨯=∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为12 36028.8150︒︒⨯=故答案为:28.8°;(3)451500450150⨯=(人)答:估计该社区参加碧沙岗“暴走团”的大约有450人【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.四、压轴题31.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟) ∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.32.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10.分三种情况讨论:①当AQ=13AP时,20-t=13×2t,解得:t=12>10,舍去;②当AQ=12AP时,20-t=12×2t,解得:t=10;③当AQ=23AP时,20-t=23×2t,解得:t607;答:t为10或607时,点Q是线段AP的“2倍点”.【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.33.(1)x=1;(2) x=-3或x=5;(3) 30.【解析】【分析】(1)根据题意可得4-x=x-(-2),解出x的值;(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.【详解】(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置.。
2023-2024学年北京市西城区七年级上学期期末考试英语试卷含答案

北京市西城区2023—2024学年度第一学期期末试卷七年级英语2024.1听力理解(共20分)一、听对话或独白,根据对话或独白的内容,从下面各题所给的A、B、C三个选项中选出最佳选项。
每段对话或独白你将听两遍。
(共12分,每小题1.5分)请听一段对话,完成第1至第2小题。
1. How old is Peter’s brother?A. 10.B. 13.C. 23.2. What is Peter’s father’s job?A. A policeman.B. A taxi driver.C. A doctor.请听一段对话,完成第3至第4小题。
3. What is Betty’s favorite animal?A. The cat.B. The lion.C. The tiger.4. What do they plan to do after school today?A. Visit the zoo.B. Sing a song.C. Watch a movie.请听一段对话,完成第5至第6小题。
5. When do they have science class?A. On Tuesday.B. On Wednesday.C. On Friday.6. Why does the girl love history?A. Because she is good at it.B. Because the homework is easy.C. Because she thinks it is interesting.请听一段独白,完成第7至第8小题。
7. What can you know from the speaker?A. The visitors will go to a museum.B. There is no free time for the visitors.C. The visitors will eat three meals together.8. Why does the speaker give this talk?A. To show people some fun places.B. To invite people to join a travel group.C. To tell people about a one-day trip plan.二、听独白,记录关键信息。
2023-2024学年人教新版七年级上册数学期末复习试卷(含答案)

2023-2024学年人教新版七年级上册数学期末复习试卷一.选择题(共12小题,满分36分)1.的绝对值是a,相反数是b,则a+b=( )A.0B.C.D.2.如图是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体( )A.从正面看改变,从左面看改变B.从上面看不变,从左面看不变C.从上面看改变,从左面看改变D.从上面看改变,从左面看不变3.有理数a、b在数轴上的对应的位置如图所示,则正确的是( )A.a+b<0B.ab>0C.a﹣b>0D.|a|<|b|4.下列算式中,计算结果是负数的是( )A.(﹣2)+5B.|﹣3﹣2|C.3×(﹣3)D.(﹣5)25.若x2﹣3x的值为4,则3x2﹣9x﹣3的值为( )A.1B.9C.12D.156.下列说法正确的是( )A.单项式﹣a的系数和次数都是1B.x5﹣5x2y+2x三次项的系数为5C.单项式的系数和次数分别为,4D.π+4是单项式7.若3m4n|a|与﹣m|b﹣1|n2是同类项,且a<b,则a、b的值为( )A.a=2,b=5B.a=﹣2,b=﹣3C.a=±2,b=5D.a=±2,b=﹣38.若(k﹣2)x|k|﹣1﹣3=0是关于x的一元一次方程,那么k2﹣2k+1的值为( )A.1B.9C.1或9D.09.已知线段AB=10cm,点C是线段AB上一点,BC=4cm,点M和点N分别是线段AB 和线段BC的中点,则线段MN的长度是( )A.8cm B.7cm C.5cm D.3cm10.大车平均速度每小时80公里,小车平均速度每小时100公里,则大车和小车行驶完同一条路的时间之比是( )A.80:100B.100:80C.4:5D.5:411.如图,在某世博园内从花城丝路A处看见福建厦门园C在其北偏东62°的方向上,从丝路起点B处看见福建厦门园C在其北偏东13°的方向上(花城丝路与丝路起点约在同一直线上),则从福建厦门园C处看A,B两处的视角∠ACB的度数为( )A.13°B.26°C.49°D.62°12.如图,表中给出的是某月的月历,任意用“H”型框选中7个数(如阴影部分所示),则这7个数的和不可能是( )A.63B.70C.98D.105二.填空题(共6小题,满分18分)13.随着通讯市场竞争的日益激烈,某通讯公司的手机市话收费按原标准每分钟降低了a元后,再次下调了30%,现在的收费标准是每分钟b元,则原收费标准每分钟为 元.14.写出一个只含字母a、b的三次三项式,并按字母a的降幂排列是 .15.已知a、b、c、d是有理数,|a﹣b|≤8,|c﹣d|≤17,且|a﹣b﹣c+d|=25,则|b﹣a|﹣|d﹣c|= .16.的值是 .17.x=2是方程x﹣m=1的解,则m= .18.七棱柱有 个面, 个顶点.三.解答题(共7小题,满分66分)19.计算:(1);(2).20.解方程:8x=.21.“整体思想”是中学数学学习中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:4(a+b)+3(a+b)=(4+3)(a+b)=7(a+b),请应用整体思想解答下列问题:(1)化简:5(m+n)2﹣7(m+n)2+3(m+n)2;(2)已知a﹣2b=2,2b﹣c=﹣5,c﹣d=9,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.22.某中学对10名七年级男学生进行了引体向上的测试,以做4个为基准进行记录,超过的次数用正数表示,不足的次数用负数表示.他们的成绩记录如表:+1+3﹣10+1﹣1+1+2+2﹣1(1)学校规定:做4个(含4个)以上者为达标.这10名男学生中,达标的占百分之几?(2)在这次测试中,这10名男学生做引体向上次数最多与次数最小相差几次?23.如图是广告公司设计的商标图案,若每个小长方形的长为x,宽为y.(1)求阴影部分面积;(2)当x=2,y=1时,阴影部分面积是多少?24.如图,数轴上A、B两点表示的数分别为a,b,且点A在点B的左边,|a|=5,a+b=20,ab<0.(1)求a,b的值;(2)现有一动点P从点A出发,以每秒3个单位长度的速度向右运动,当PA=3PB时,求P运动的时间.(3)若点P从点A出发,以每秒3个单位长度的速度向右运动,同时数轴上另一动点Q 从点B出发,以每秒2个单位长度的速度向左运动.经过多长时间,两动点在数轴上相距10个单位长度?25.如图,已知OM平分∠AOC,ON平分∠BOC.(1)如果∠AOB=100°,∠BOC=40°,求∠MON的度数;(2)如果∠AOB=α,试求∠MON的度数.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:根据题意可得,a=|﹣|=,b=﹣(﹣)=,故a+b==.故选:D.2.解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;主视图发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;左视图没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;俯视图发生改变.故选:D.3.解:由题意可得:a<0<b,且|a|>|b|,故选项D不符合题意;∴a+b<0,故选项A符合题意;ab<0,故选项B不符合题意;a﹣b<0,故选项C不符合题意;故选:A.4.解:∵(﹣2)+5=3>0,∴选项A不符合题意;∵|﹣3﹣2|=5>0,∴选项B不符合题意;∵3×(﹣3)=﹣9<0,∴选项C符合题意;∵(﹣5)2=25>0,∴选项D不符合题意.故选:C.5.解:由题意可知,x2﹣3x=4,∴3x2﹣9x﹣3=3(x2﹣3x)﹣3=3×4﹣3=9.故选:B.6.解:A、单项式﹣a的系数是﹣1,次数是1,原说法错误,故此选项不符合题意;B、x5﹣5x2y+2x三次项的系数为﹣5,原说法错误,故此选项不符合题意;C、单项式的系数和次数分别为,3,原说法错误,故此选项不符合题意;D、π+4是单项式,原说法正确,故此选项符合题意;故选:D.7.解:∵3m4n|a|与﹣m|b﹣1|n2是同类项,∴|a|=2,|b﹣1|=4,解得:a=±2,b=5或﹣3,又∵a<b,∴a=±2,b=5.故选:C.8.解:∵(k﹣2)x|k|﹣1﹣3=0是关于x的一元一次方程,∴k﹣2≠0且|k|﹣1=1,解得:k=﹣2,∴k2﹣2k+1=(﹣2)2﹣2×(﹣2)+1=9,故选:B.9.解:∵AB=10cm点M是AB的中点,∴BM=AB=5(cm),∵BC=4cm,点N是BC的中点,∴BN=BC=2cm,∴MN=BM﹣BN=3cm,∴线段MN的长度为3cm.故选:D.10.解:设该条路的长度为S,则:=,即大车和小车行驶完同一条路的时间之比是5:4.故选:D.11.解:由题意得:∠CAB=90°﹣62°=28°,∠ABC=90°+13°=103°,∴∠ACB=180°﹣∠CAB﹣∠ABC=49°.故选:C.12.解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣6、x﹣1、x、x+1、x+6、x+8,∴这7个数的和为:x﹣8+x﹣6+x﹣1+x+x+1+x+6+x+8=7x,当7x=63时,此时x=9,当7x=70时,此时x=10,当7x=98时,此时x=14,当7x=105时,此时x=15,由图可知:14的左没有数字,则这7个数的和不可能是98.故选:C.二.填空题(共6小题,满分18分)13.解:根据题意知原收费标准每分钟为+a=(+a)元,故答案为:(+a).14.解:由题意得:a3+a2b+a(答案不唯一),故答案为:a3+a2b+a.15.解:∵|a﹣b|≤8,|c﹣d|≤17,∴|a﹣b|+|c﹣d|≤8+17=25.∵|a﹣b﹣c+d|=|(a﹣b)﹣(c﹣d)|=25,∴a﹣b与c﹣d符号相反,并且|a﹣b|=8,|c﹣d|=17,∴|b﹣a|﹣|d﹣c|=|a﹣b|﹣|c﹣d|=8﹣17=﹣9.故答案为:﹣9.16.解:原式=(﹣3)×(﹣)×××(﹣)=﹣(3×)×(×)=﹣1×1=﹣1,故答案为:﹣1.17.解:把x=2代入方程得:2﹣m=1,解得:m=1,故答案为:1.18.解:七棱柱有2个底面,7个侧面,因此有9个面,七棱柱有14个顶点,故答案为:9,14.三.解答题(共7小题,满分66分)19.解:(1)原式=×(﹣24)﹣×(﹣24)﹣×(﹣24)=﹣9+4+18=13;(2)原式=﹣1÷25×+=﹣+=.20.解:8x=,系数化为1得:x=.21.解:(1)原式=5(m+n)2﹣7(m+n)2+3(m+n)2=(5﹣7+3)(m+n)2=(m+n)2.(2)原式=a﹣c+2b﹣d﹣2b+c=(a﹣2b)+(2b﹣c)+(c﹣d).当a﹣2b=2,2b﹣c=﹣5,c﹣d=9时,原式=2﹣5+9=6.22.解:(1)7÷10=,答:这10名男学生中,达标的占;(2)3﹣(﹣1)=3+1=4(次),答:这10名男学生做引体向上次数最多与次数最小相差4次.23.解:(1)如图,S阴影=S矩形ABCD﹣S△ABE﹣S△AHF﹣S△ECG=4x×4y﹣x×4y﹣×3x×3y﹣×3x×3y=16xy﹣2xy﹣xy﹣xy=5xy.(2)当x=2,y=1时,5xy=5×2×1=10.∴阴影部分面积为:10.24.解:(1)∵|a|=5,∴a=5或a=﹣5,∵A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,∴a<b,∵ab<0,∴a<0,b>0,∴a=﹣5,∵a+b=20,∴﹣5+b=20,∴b=25,答:a、b的值分别是﹣5、25.(2)设运动的时间为t秒,由(1)得,点A、B表示的数分别是﹣5、25,∴AB=25﹣(﹣5)=30,根据题意得3t=3(30﹣3t)或解3t=3(3t﹣30),解得t=7.5或t=15,答:当PA=3PB时,点P运动时间为7.5秒或15秒.(3)设经过x秒,两动点在数轴上相距10个单位长度,根据题意得3t+2t+10=30或3t+2t﹣10=30,解得t=4或t=8,答:经过4秒或8秒两动点在数轴上相距10个单位长度.25.解:(1)∵OM平分∠AOC,ON平分∠BOC,∴,,∵∠AOB=100°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=140°,∴,,∴∠MON=∠MOC﹣∠NOC=70°﹣20°=50°;(2)∵OM平分∠AOC,ON平分∠BOC,∴,,∵∠AOB=α,∴∠MON=∠MOC﹣∠NOC=∠AOC﹣∠BOC=∠AOB=∠α.。
2023-2024学年七年级上学期期末地理试卷

期末综合七年级地理期末综合测试卷时间:45分钟满分:40分一、选择题(本大题共16小题,共16分)1.关于地球自转和公转的叙述,正确的是()A.转动中心相同B.转动方向相同,都是自西向东C.自转产生昼夜长短的变化,公转产生昼夜交替的变化D.自转和公转分开单独进行2.有关等高线的叙述,正确的是()A.山脊,等高线向高处凸出B.山谷,等高线向高处凸出C.陡坡,等高线稀疏D.缓坡,等高线密集3.下列有关世界降水量分布的叙述正确的是()A.赤道地区降水多B.北回归线附近西岸降水量多于东岸C.两极地面潮湿,降水较多D.中纬度地带,内陆降水多于沿海地区4.地球上最炎热的大陆是()A.亚欧大陆B.南美大陆C.非洲大陆D.澳大利亚大陆5.青藏高原成为我国夏季气温最低地区的主要原因是()A.位于低纬度B.位于高纬度C.海拔高D.降水丰富6.“人间四月芳菲尽,山寺桃花始盛开”的主要原因是()A.纬度因素B.地形C.海陆因素D.洋流因素7.热带沙漠气候分布最广的地区是()A.欧洲B.非洲C.北美洲D.南美洲8.一个地区人口分布的疏密程度,可用下列哪一项表示()A.人口数量B.人口增长数量C.人口密度D.人口自然增长率9.下列不能作为地球大小证据的一项是:()A.地球平均半径约6371千米B.地球赤道周长约4万千米C.地球上居住着70多亿人口D.地球表面积约5.1亿平方千米10.下列不属于人口密集地区的是()A.亚洲东部B.欧洲西部C.北美洲北部D.北美洲东南部11.划分东西半球的界线是()A.0°和180°经线B.赤道C.20°W和160°E经线D.20°E和160°W经线12.关于地球形状的叙述正确的是()A.人类自产生以来就知道地球是一个球体B.哥伦布船队环球航行首次证明了地球是一个球体C.天圆地方D.地球是一个两极稍扁、赤道略鼓的不规则球体13.绘一张学校操场平面图,采用下列哪种比例尺较合适()A.1∶1000B.1/4000000C.030千米D.图上1厘米代表实地距离2千米14.下列句子中,描述天气的是()A.昆明四季如春B.热带终年炎热C.忽如一夜春风来,千树万树梨花开D.欧洲西部终年温和多雨15.读“地球上昼夜分布示意图”(阴影部分表示黑夜),回答:A地的季节和此时的昼夜长短状况是()A.夏季、昼长夜短B.夏季、昼短夜长C.冬季、昼长夜短D.冬季、昼短夜长16.下列国家中,属于发达国家的是()A.日本B.蒙古C.中国D.埃及二、综合题(本大题共3小题,共24分)17.读“地球某种运动示意图”,完成下列问题。
福建省泉州实验中学2022-2023学年七年级上学期期末考试数学试卷(解析版)

泉州实验中学2022-23学年上学期期末质量检测初一年数学(满分:150分 考试时间:120分钟)一、选择题 (每题4分,共40 分)1.-3的倒数为( ) A.13B. -13C. 3D. 3−【答案】B【分析】直接利用倒数的定义:乘积是1的两数互为倒数.得出答案.【详解】解:3−的倒数为13−,故选:B .【点睛】此题主要考查了倒数的定义,正确掌握相关定义是解题关键. 2. 在数轴上表示数1−和 2021 的两个点之间的距离为( )个单位长度 A. 2022 B. 2021C. 2020D. 2019【答案】A【分析】直接利用数轴上两点之间的距离公式进行计算即可.【详解】解:数轴上表示数1−和 2021 的两个点之间的距离为:()20211202112022−−=+=,故选A . 【点睛】本题考查的是数轴上两点之间的距离,理解两点之间的距离的含义是解本题的关键. 3. 如果a >0,b <0,且|a |<|b |,则下列正确的是( ) A. a +b <0 B. a +b C. a +b =0D. ab =0【答案】A【分析】根据a >0,b <0,且|a |<|b |,可得a <-b ,即a +b <0. 【详解】∵a >0,b <0,且|a |<|b |, ∴a <-b ,即a +b <0.故选A .【点睛】本题考查了有理数的大小比较,解答本题的关键是根据题意得出a <-b . 4. 下列说法中,错误的是( ) A. 数字1也是单项式B. 单项式35x y −的系数是5−C. 多项式321x x −+−的常数项是1D. 223332x y xy y −+是四次三项式【答案】C【分析】根据单项式的概念与系数的含义可判断A ,B ,根据多项式的项可判断C ,根据多项式的含义可判断D ,从而可得答案.【详解】解:A 、1是单独的一个数,也是单项式,原说法正确,故此选项不符合题意;B 、单项式35x y −的系数是5−,原说法正确,故此选项不符合题意;C 、多项式321x x −+−的常数项是1−,原说法错误,故此选项符合题意;D 、223332x y xy y −+是四次三项式,原说法正确,故此选项不符合题意.故选:C .【点睛】本题考查的是单项式的含义与系数的含义,多项式的概念与项的含义,次数的含义,熟记单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,多项式的概念是解答此题的关键.5. 如图为一个几何体的表面展开图,则该几何体是( ) A. 三棱锥 B. 四棱锥C. 四棱柱D. 圆锥【答案】B【分析】底面为四边形,侧面为三角形可以折叠成四棱锥. 【详解】解:由图可知,底面为四边形,侧面为三角形, ∴该几何体是四棱锥,故选:B .【点睛】本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键. 6. 如图,直线a 与b 相交,12240∠+∠=°,3∠=( ) A. 40° B. 50°C. 60°D. 70°【答案】C【分析】直接根据对顶角相等以及邻补角性质解题即可. 【详解】解:12240∠+∠=° ,又1=2∠∠ ,1=2=120∴∠∠°,23180∠+∠=° ,3=18012060∴∠°−°=°,故选:C .【点睛】本题主要考查对顶角及邻补角的性质,关键是掌握对顶角相等,邻补角相加等于180°. 7. 在解方程13132x x x −++=时,方程两边乘 6,去分母后,正确的是( ) A. 2163(31)x x x −+=+ B. ()()11 3 1x x −+=+ C. )21 3 )1((3x x x +−=+ D. 2(1)63(31)x xx −+=+ 【答案】D【分析】方程两边乘6,进行化简得到结果,即可作出判断.【详解】解:方程两边乘6得:()()216331x x x −+=+,故选:D .【点睛】本题考查了一元一次方程的解,掌握解一元一次方程是关键. 8. 如图,下列说法正确的是( )A. 1∠和B ∠是同位角B. 2∠和3∠是内错角C. 3∠和4∠是对顶角D. B ∠和4∠是同旁内角【答案】B【分析】根据同位角、内错角、同旁内角的定义结合图形进行判断即可. 【详解】解:A .1∠和B ∠不是同位角,原说法错误,故此选项不符合题意; B .2∠和3∠是内错角,原说法正确,故此选项符合题意; C .3∠和4∠是邻补角,原说法错误,故此选项不符合题意;D .B ∠和4∠不是同旁内角,原说法错误,故此选项不符合题意; 故选:B .【点睛】本题考查同位角、内错角、同旁内角,理解同位角、内错角、同旁内角的定义是正确判断的前提. 9. 如图,阿杜同学用两块大小一样的等腰直角三角板先后在EOF ∠内部作了射线OG 和射线OH .则下列说法正确的是( ) A. 75EOF ∠=° B. 3GOH EOF ∠=∠ C. GOH ∠与EOF ∠互余 D. 射线 OH 平分GOF ∠【答案】C【分析】由45FOG HOE ∠=∠=°,证明FOH GOE ∠=∠,再逐一分析各选项即可. 【详解】解:由题意可得:45FOG HOE ∠=∠=°, ∴45FOH HOG HOG GOE ∠+∠=∠+∠=°, ∴FOH GOE ∠=∠,而HOG ∠与FOH ∠不一定相等,∴3EOF GOH ∠=∠不一定正确,故B 不符合题意;4575EOF FOH ∠=∠+°=°,不一定正确,故A 不符合题意;射线 OH 平分GOF ∠不一定正确,故D 不符合题意;∴90GOH EOF GOH FOH HOE FOG HOE ∠+∠=∠++∠=∠+∠=°, 故C 符合题意;故选C .【点睛】本题考查的是角的和差运算,角平分线的含义,理解题意,利用角的和差关系进行判断是解本题的关键.10. 将数组111,,234中的3个数分别求出各数的相反数与1和的倒数,第一次操作后得到的结果组成的数组记为{1a ,2a ,3a },第二次操作是将数组{1a ,2a ,3a }.再次重复上次操作方式得到新的数组{4a ,5a ,6a },……,如此重复操作,最后得到数组{211a ,212a ,213a }.则123456*********a a a a a a a a a ++++++++…+的值为( )A. 2−B. 9−C. -1112D. 1312− 【答案】D【分析】根据所给的操作方式,求出前面的数,再分析存在的规律,从而可求解.【详解】解:由题意得:112112a ==−+,2131213a ==−+,3141314a ==−+, 41121a ==−−+,512312a ==−−+,613413a ==−−+,711(1)12a ==−−+,811(2)13a ==−−+,911(3)14a ==−−+, …,则每3次操作,相应的数会重复出现, 12345678934111121232323412a a a a a a a a a ++++++++=++−−−+++=− , 213923......6÷= ,312345*********a a a a a a a a a ∴++++++…+++11112412234=−×−−−37131212=−=−.故选:D . 【点睛】本题主要考查数字的变化规律,解答的关键是求出前面的几个数,发现其存在的规律.二、填空题(每题4分,共24分)11. 习近平总书记提出了五年“精准扶贫”的战略构想,意味着每年要减贫约11600000人,将数据11600000用科学记数法表示为__________.【答案】1.16×107【分析】科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:11600000=1.16×107,故答案为:1.16×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.12. 如图,经过刨平的木板上的 A ,B 两个点,可以弹出一条笔直的墨线,能解释这一实际应 用的数学知识是__.【答案】两点确定一条直线【分析】根据题意分析可得两点确定一条直线.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是“两点确定一条直线”.故答案为:两点确定一条直线.【点睛】本题考查了两点确定一条直线,掌握两点确定一条直线这个基本事实是解题的关键.13. 已知33x y −=,则代数式397x y −+的值为___________. 【答案】16【分析】观察所求代数式可知,可以将已知整体代入求代数式的值. 【详解】解:∵x −3y =3,∴3x −9y +7=3(x -3y )+7=9+7=16故答案为:16.【点睛】本题考查了代数式的求值运算,根据式子的特点,采用整体代入的方法.14. 若430a b −++=,则ab =____________. 【答案】12−【分析】根据绝对值的非负性,得40a −=,30b +=,由此即可求解.【详解】解:∵40a −≥,0b +,且430a b −++=, ∴40a −=,30b +=,∴4a =,3b =−,则4(3)12ab =×−=−,故答案为:12−.【点睛】本题主要考查绝对值的非负性,理解绝对值的非负性,绝对值与绝对值的和为零,则每个绝对值的值为零是解题的关键.15. 从海岛A 点观察海上两艘轮船 B 、C .轮船B 在点A 的北偏东 6025′°方向;轮船C 在点A 的南偏东1537′°方向,则BAC ∠=__________. 【答案】10358′°【分析】首先根据题意画出草图,然后由方向角的定义,确定AB 、AC 与正北方向、正南方向的夹角;然后根据角的关系计算,即可求出BAC ∠的度数. 【详解】解:如图,∵轮船B 在点A 的北偏东6025′°方向;轮船C 在点A 的南偏西1537′°方向,∴1806025153710358ABC ′′′∠=°−°−°=°.故答案为:10358′°.【点睛】本题主要考查了与方向角有关的计算,解决本题的关键是掌握方向角的定义. 16. 下列结论:①若1x =是关于x 的方程0a bx c ++=的一个解,则0a b c ++=; ②若(1)(1)a x b x −=−有唯一的解,则a b ¹;③若2b a =,则关于x 的方程0ax b +=的解为2x =−;④若1b c a +=+,且0a ≠,则=1x −一定是方程1ax b c ++=的解: 其中正确的有__________(填正确的序号) 【答案】①②③④【分析】根据一元一次方程的解的概念解答进行判断即可.【详解】解:①把1x =代入0a bx c ++=得:0a b c ++=,故结论正确;; ②若(1)(1)a x b x −=−有唯一的解是1x =时,a b ¹,故结论正确; ③若2b a =,则2b a=,方程移项,得:ax b =−,则2bx a =−=−,则结论正确; ④把=1x −代入1ax b c a b c ++=−++=,方程一定成立,则=1x −一定是方程1ax b c ++=的解,故结论正确.故答案为:①②③④.【点睛】此题考查的是一元一次方程的解,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.三、解答题(共86分)17 计算:(1)1554()(1)( 3.2)566+−+++−. (2)4211(10.5)2(3)3−−−××−− . 【答案】(1)2 (2)16【分析】(1)利用加法的运算律进行运算较简便;(2)先算乘方,再算括号里的运算,接着算乘法,最后算加减即可.【小问1详解】 解:1554()(1)( 3.2)566+−+++−1554 3.21566=−+−11=+2=; 【小问2详解】4211(10.5)2(3)3 −−−××−− ()1121293=−−××−()111723=−−××−761=−+16= 【点睛】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握..18. 解下列方程:(1)4385−+x x ;(2)7531132y y −−=−. 【答案】(1)2x =−; (2)5y =.分析】(1)通过移项、合并同类项、系数化成1,三个步骤进行解答便可; (2)根据解一元一次方程的一般步骤进行解答便可.【小问1详解】 解:4385−+x x4835−=+x x48x −= 2x =−.小问2详解】 解:7531132y y −−=−()()2756331y y −=−−1410693y y −=−+ 1096314y y −+=+−5y −=−5y =.【点睛】本题考查了解一元一次方程,解题关键是熟记解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化成1.19. 先化简再求值:()()222232322x x y x y x y y −−−++ ,其中12x =−,=3y −.【答案】28x y −;6;【分析】先去括号,再合并同类项,得到化简的结果,再把12x =−,=3y −代入计算即可. 【详解】解:原式()2222363222x x y x y x y y =−−−++ 2222363222x x y x y x y y =−−+−−28x y =− 当12x =−,=3y −时, 原式()21832 =−×−×−()1834=−××− 6=. 【点睛】本题考查是整式的加减运算中的化简求值,掌握“去括号,合并同类项”是解本题的关键.【【的20. 若用点A 、B 、C 分别表示有理数a 、b 、c 如图:(1)判断下列各式的符号:a+b 0;c ﹣b 0;c-a 0 (2)化简|a+b|﹣|c ﹣b|﹣|c ﹣a| 【答案】(1)<,<,>;(2)﹣2b .【分析】(1)数轴上的数,右边的数总比左边的数大,利用这个特点可比较三个数的大小.(2)由数轴可知:b >0,a <c <0,所以可知:a+b <0,c-b <0, c-a >0.根据负数的绝对值是它的相反数可求值.【详解】解:(1)a+b <0,c ﹣b <0,c ﹣a >0.故答案为<,<,>;(2)|a+b|﹣|c ﹣b|﹣|c ﹣a|=﹣(a+b )+(c ﹣b )﹣(c ﹣a )=﹣a ﹣b+c ﹣b ﹣c+a =﹣2b . 【点睛】此题考查绝对值,有理数大小比较,数轴,解题关键在于结合数轴判断各数的大小. 21. (1)如图,已知A 、B 、C 三点,画射线BA 、线段AC 、直线BC ;(2)己知ABC �的面积为 5,3AB =,求C 点到射线AB 的距离. 【答案】(1)见解析;(2)103【分析】(1)根据直线,射线,线段的定义画图即可; (2)根据三角形的面积和点到直线的距离直接计算即可.【详解】解:(1)如图,即为所求; (2)∵ABC �的面积为 5,3AB =, ∴C 点到射线AB 的距离为:105233×÷=.【点睛】本题主要考查了直线、射线、线段的定义,点到直线的距离,利用面积法求解是解题的关键. 22. 已知点B 在线段AC 上,点D 在线段AB 上.(1)如图1,若AB =6cm ,BC =4cm ,D 为线段AC 的中点,求线段DB 的长度; (2)如图2,若BD =14AB =13CD ,E 为线段AB 的中点,EC =12cm ,求线段AC 的长度.【答案】(1)1cm ;(2)18cm【分析】(1)由线段的中点,线段的和差求出线段DB 的长度为1cm ; (2)由线段的中点,线段的和差倍分求出AC 的长度为18cm . 【详解】(1)如图1所示:∵AC=AB+BC ,AB=6cm ,BC=4cm∴AC=6+4=10cm 又∵D 为线段AC 的中点 ∴DC=12AC=12×10=5cm ∴DB=DC-BC=6-5=1cm(2)如图2所示: 设BD=xcm ∵BD=14AB=13CD∴AB=4BD=4xcm ,CD=3BD=3xcm , 又∵DC=DB+BC , ∴BC=3x-x=2x , 又∵AC=AB+BC , ∴AC=4x+2x=6xcm ,∵E 为线段AB 的中点 ∴BE=12AB=12×4x=2xcm 又∵EC=BE+BC , ∴EC=2x+2x=4xcm 又∵EC=12cm ∴4x=12 解得:x=3,∴AC=6x=6×3=18cm .【点睛】本题综合考查了线段的中点,线段的和差倍分等相关知识点,重点掌握直线上两点之间的距离公式计算方法.23. 小语家新买了一套商品房,其建筑平面图如图所示,其中b a <(单位:米). (1)这套住房的建筑总面积是 平方米;(用含a 、b 的式子表示) (2)当5a =,4b =时,求出小语家这套住房的具体面积.(3)地面装修要铺设地砖或地板,小语家对各个房间的装修都提出了具体要求,明确了选用材料的品牌以及规格、品质要求.现有两家公司按照要求拿出了装修方案,两个方案中选用的材料品牌、规格、品质完全一致,但报价不同;甲公司:客厅地面每平方米240元,书房和卧室地面每平方米220元,厨房地面每平方180元,卫生间地面每平方米150元;乙公司:全屋地面每平方米210元;请你帮助小语家测算一下选择哪家公司比较合算,请说明理由.【答案】(1)(11515)a b ++ (2)90平方米 (3)选择乙公司比较合算.理由见解答 【分析】(1)根据图形,可以用代数式表示这套住房的建筑总面积;(2)将5a =,4b =代入(1)中的代数式即可求得小语家这套住房的具体面积; (3)根据住房的面积×每平方米的单价计算出甲公司和乙公司的钱数,即可得到结论. 【小问1详解】解:由题意可得:这套住房的建筑总面积是:(245)(511)(32)(41)(11515)a b a b ++×+−+×++×−=++平方米,即这套住房的建筑总面积是(11515)a b ++平方米.故答案为:(11515)a b ++; 【小问2详解】当5a =,4b =时,11515115541555201590a b ++=×+×+=++=(平方米). 答:小语家这套住房的具体面积为90平方米; 【小问3详解】选择乙公司比较合算.理由如下:甲公司的总费用:4240(55)220218092206150a a b a ×++×+×+×+×960110011003601980900a a b a =+++++(242011002880)a b ++(元), 乙公司的总费用:(11515)210(231010503150)a b a b ++×=++(元), 242011002880(231010503150)(11050270)a b a b a b ∴++−++=+−(元),2a b >> ,50100b ∴>,110220a >, 110502700a b ∴+−>, 所以选择乙公司比较合算.【点睛】本题考查了列代数式、代数式求值,解题的关键是明确题意,列出相应的代数式,求出相应的代数式的值. 24. 【概念与发现】当点C 在线段AB 上,AC nAB =时,我们称n 为点C 在线段AB 上的“点值”,记作AC d n AB=. 例如,点C 是AB 的中点时,即12AC AB =,则12AC d AB = ;反之,当12AC d AB = 时,则有12AC AB =. 因此,我们可以这样理解:“AC d n AB =”与“AC nAB =”具有相同的含义. (1)【理解与应用】 如图,点C 在线段AB 上.若3AC =,4AB =,则AC d AB =________;若2AC d AB m = ,则BC AB =________.(2)【拓展与延伸】 已知线段10cm AB =,点P 以1cm/s 的速度从点A 出发,向点B 运动.同时,点Q 以3cm/s 的速度从点B 出发,先向点A 方向运动,到达点A 后立即按原速向点B 方向返回.当P ,Q 其中一点先到达终点时,两点均停止运动.设运动时间为t (单位:s ).①小王同学发现,当点Q 从点B 向点A 方向运动时,AP AQ d m d AB AB +⋅的值是个定值,求m 的值; ②t 为何值时,35AQ AP d d AB AB −= . 【答案】(1)34,2m m − (2)①13;②1或8 【分析】(1)根据“点值”的定义得出答案;(2)①设运动时间为t ,再根据AP AQ d m d AB AB +⋅的值是个定值即可求出m 的值;②分点Q 从点B 向点A 方向运动时和点Q 从点A 向点B 方向运动两种情况分析即可.【小问1详解】解:3AC = ,4AB =,34AC AB ∴=, 3()4AC d AB ∴=, 2()mAC d AB = , 2AC AB m∴=, ∴22m BC AB AC AB AB AB m m−∴=−=−=, ∴2BC m AB m −= 故答案为:34,2m m −;【小问2详解】①设运动时间为t ,则AP t =,103AQt =−, 根据“点值”的定义得:()10AP t d AB =,103()10AQ t d AB −=, AP AQ d m d AB AB +⋅的值是个定值, ()1013103101010m m t t t m +−−∴+⋅=的值是个定值, 13m =∴; ②当点Q 从点B 向点A 方向运动时,53AQ AP d d AB AB −= , ∴103101053t t −−=, 1t ∴=;当点Q 从点A 向点B 方向运动时,53AQ AP d d AB AB −=, ∴310310105t t −−=, 8t ∴=,t ∴的值为1或8.【点睛】本题考查了一元一次方程的应用,理解新定义并能运用是本题的关键.25. 已知2AOC BOC ∠=∠,(1)如图甲,已知O 为直线AB 上一点,80DOE ∠=°,且DOE ∠位于直线AB 上方①当OD 平分AOC ∠时,EOB ∠度数为 ;②点F 在射线OB 上,若射线OF 绕点O 逆时针旋转()060n n °<<,3FOA AOD ∠=∠.请判断FOE ∠和EOC ∠的数量关系并说明理由;(2)如图乙,AOB ∠是一个小于108°的钝角,12∠=∠DOE AOB ,DOE ∠从OE 边与OB 边重合开始绕点O 逆时针旋转(OD 旋转到OB 的反向延长线上时停止旋转),当32AOD EOC BOE ∠+∠=∠时,求:COD BOD ∠∠的值【答案】(1)①40°;②2EOF COE ∠=∠; (2):COD BOD ∠∠的值为:1731或1113. 【分析】(1)①先求解120AOC ∠=°,60BOC ∠=°,再求解1602DOC AOC ∠=∠=°,20COE ∠=°,再利用角的和差关系可得答案;②当OE 在OC 的右侧,射线OF 绕点O 逆时针旋转()060n n °<<,求解120COD AOD ∠=°−∠,40COE DOE COD AOD ∠=∠−∠=∠−°,结合EOF AOF AOE ∠=∠−∠ 当OE 在OC 的左侧,射线OF 绕点O 逆时针旋转()060n n °<<,如图,此时40AOD ∠<°,而3FOA AOD ∠=∠,则120FOA ∠<°,则>60n °,不符合题意,舍去.(2)由2AOC BOC ∠=∠,设()108AOB y y ∠=°<,可得23AOC y ∠=°,13BOC y ∠=°,12DOE y ∠=°,分情况讨论:当OE 在BOC ∠内部时,如图,设BOE x ∠=°,当OE ,OD 在AOC ∠内部时,如图,设BOE x ∠=°,当OE 在AOC ∠内部,OD 在AOC ∠外部时,如图,设BOE x ∠=°,当OD ,OE 都在AOB ∠外部,如图,再分别建立方程求解x ,y 之间的关系,再求解比值即可,【小问1详解】解:①∵2AOC BOC ∠=∠,180AOC BOC ∠+∠=°, ∴18020231AOC ∠=×°=°,1180603BOC ∠=×°=°, ∵当OD 平分AOC ∠时, ∴1602DOC AOC ∠=∠=°, ∵80DOE ∠=°,∴806020COE ∠=°−°=°,602040BOE BOC COE ∠=∠−∠=°−°=°.②当OE 在OC 的右侧,射线OF 绕点O 逆时针旋转()060n n °<<,∵120AOC ∠=°,∴120COD AOD ∠=°−∠,∵80DOE ∠=°,∴8012040COE DOE COD AOD AOD ∠=∠−∠=°−°+∠=∠−°,∵3FOA AOD ∠=∠,∴EOF AOF AOE ∠=∠−∠()3AOD AOC COE ∠−∠+∠312040AOD AOD =∠−°−∠+°()240AOD =∠−°2COE =∠;当OE 在OC 的左侧,射线OF 绕点O 逆时针旋转()060n n °<<,如图,此时40AOD ∠<°,而3FOA AOD ∠=∠,则120FOA ∠<°,则>60n °,不符合题意,舍去.【小问2详解】∵2AOC BOC ∠=∠,()108AOB y y ∠=°<, ∴23AOC y ∠=°,13BOC y ∠=°, ∵12∠=∠DOE AOB , ∴12DOE y ∠=°, 当OE 在BOC ∠内部时,如图,设BOE x ∠=°, 则13COE BOC BOE y x ∠=∠−∠=°−°,111236COD DOE COE y y x y x ∠=∠−∠=°−°+°=°+°, 211362AOD AOC COD y y x y x ∠=∠−∠=°−°−°=°−°,12BOD BOE DOE y x ∠=∠+∠=°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232y x y x x −+−=, 解得:215y x =, ∴1216617651633631625y x x x COD y x BOD y x y x x x ++∠+====∠+++, 当OE ,OD 在AOC ∠内部时,如图,设BOE x ∠=°, 则13COE x y ∠°−°,111236COD y y x y x ∠=°−°+°=°+°,211362AOD y y x y x ∠=°−°−°=°−°,12BOD y x ∠=°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232y x x y x −+−=,解得:9y x =, 此时>BOE BOC ∠∠,即1>3x y ,则3y x <,故不符合题意,舍去, 当OE 在AOC ∠内部,OD 在AOC ∠外部时,如图,设BOE x ∠=°, 则13COE x y ∠°−°,111236COD y y x y x ∠=°−°+°=°+°, 121632AOD y x y x y ∠°+°−°°−°,12BOD y x ∠=°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232x y x y x −+−=, 解得:35y x =,而BOE AOB ∠<∠,即y x >,故不符合题意,舍去, 当OD ,OE 都在AOB ∠外部,如图,设BOE x ∠=°, 则13COE x y ∠°−°,1136COD y y x y x ∠=°−°+°=°+°, 121632AOD y x y x y ∠°+°−°°−°,12BOD x y ∠°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232x y x y x −+−=, 解得:35y x =, ∴13661165193613625y x x x COD y x BOD y xy x x x ++∠+====∠+++, 综上::COD BOD ∠∠的值为:1731或1113. 【点睛】本题考查的是角的和差运算,角的旋转定义的理解,角平分线的定义,一元一次方程的应用,求解代数式的值,对于七年级学生来说,本题难度大,清晰的分类讨论是解本题的关键.。
初一上学期生物期末考试试卷及答案

初一上学期生物期末考试试卷及答案一、选择题(每题2分,共20分)1. 生物的特征有:A. 生活需要营养B. 能进行呼吸C. 能排出身体内产生的废物D. 能对外界刺激作出反应E. 以上都是答案:E2. 以下哪个器官是呼吸系统的主要器官?A. 肺B. 心脏C. 肝脏D. 胃答案:A3. 植物进行光合作用的主要器官是?A. 根B. 茎C. 叶D. 花答案:C4. 人类遗传信息的载体是?A. DNAB. RNAC. 蛋白质D. 多糖答案:A5. 以下哪个是无脊椎动物?A. 鱼B. 鸟C. 昆虫D. 哺乳动物答案:C二、填空题(每题2分,共20分)1. 细胞是生物体结构和功能的基本单位____(个体、群体、组织、器官)____。
答案:个体2. 植物进行光合作用主要在叶绿体中进行,光合作用的公式是:____(填空)____。
答案:二氧化碳 + 水→ 有机物 + 氧气3. 人体共有____(填数字)____个器官。
答案:8个4. 人体主要的营养素包括:糖类、脂肪、蛋白质、维生素、矿物质和水,其中能提供主要能量的是____(填空)____。
答案:糖类5. 生物分类单位由大到小是:界、门、纲、目、科、属、____(填空)____。
答案:种三、简答题(每题10分,共30分)1. 请简要描述人体的呼吸系统组成及功能。
答案:人体的呼吸系统由鼻腔、喉、气管、支气管和肺组成。
其主要功能是进行气体交换,将氧气吸入体内,将二氧化碳排出体外。
2. 请简要解释光合作用的过程及其意义。
答案:光合作用是植物利用光能将二氧化碳和水转化为有机物和氧气的过程。
光合作用为植物提供了能量,同时释放氧气,为地球生物提供了生存的基础。
3. 请简要介绍人体八大系统的功能。
答案:人体八大系统包括:运动系统、消化系统、呼吸系统、循环系统、泌尿系统、神经系统、内分泌系统和生殖系统。
它们共同协作,完成人体的各项生理功能,如运动、呼吸、消化、循环、排泄、思考、调节和繁殖等。
初一上学期英语期末考试试卷及答案

初一上学期英语期末考试试卷及答案一、选择题(每题2分,共20分)1. 【A】下列哪个单词与"book"发音相同?A. lookB. tookC. hookD. cook答案:C2. 【B】下列哪个单词与"cat"发音相同?A. batB. matC. fatD. rat答案:B3. 【A】下列哪个单词与"dog"发音相同?A. logB. cogC. fogD. hog答案:A4. 【D】下列哪个单词与"man"发音相同?A. canB. fanC. tanD. man答案:D5. 【C】下列哪个单词与"sun"发音相同?A. funB. runC. sunD. gun答案:C6. 【A】下列哪个单词与"one"发音相同?A. boneB. zoneC. doneD. tone答案:A7. 【B】下列哪个单词与"two"发音相同?A. newB. tooC. throughD. blue答案:B8. 【D】下列哪个单词与"sea"发音相同?A. seeB. beC. treeD. sea答案:D9. 【C】下列哪个单词与"sky"发音相同?A. tryB. cryC. skyD. fly答案:C10. 【B】下列哪个单词与"wind"发音相同?A. mindB. windC. kindD. find答案:B二、填空题(每题2分,共20分)1. My name is ___. I am a ___ (1).答案:Li Ming; student2. I am ___ years old. I was ___ last year. (2)答案:14; nine3. There are ___ people in my family. My parents are ___ and ___.(3)答案:four; doctors4. I go to school by ___. My school is ___ from my home. (4)答案:bike; far5. I have two ___. They are ___ and ___. (5)答案:brothers; twins6. I like ___ and ___. I don't like ___. (6)答案:math; English; sports7. My birthday is in ___. My favorite color is ___. (7)答案:June; blue8. I can ___ and ___. I want to be a ___. (8)答案:swim; play basketball; teacher9. There are ___ days in a week. There are ___ months in a year. (9) 答案:seven; twelve10. The sun ___ in the morning. The moon ___ at night. (10)答案:rises; sets三、翻译题(每题5分,共25分)1. 我喜欢英语。
初一上学期数学期末考试试卷与标准答案

初一上学期数学期末考试试卷与标准答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.333...D. -5标准答案:A. √22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 26标准答案:C. 293. 下列等式中正确的是:A. √9 = 3B. √8 = 2√2C. √(√8) = 2D. √(√9) = 3标准答案:B. √8 = 2√24. 下列哪个数是负数:A. -3B. 2C. 0D. -2标准答案:A. -35. 若|x|=5,则x的值为:A. 5B. -5C. 5或-5D. 0标准答案:C. 5或-56. 下列哪个数是正数:A. -3B. -2C. 0D. 2标准答案:D. 27. 已知a=4,b=3,则a²-b²的值是:A. 7B. 13C. 25D. 16标准答案:C. 258. 下列哪个数是无理数:A. √3B. √4C. √9D. √16标准答案:A. √39. 下列哪个数是整数:A. -3/2B. 2.5C. -5/3D. 4标准答案:D. 410. 下列哪个数是负数:A. -2B. 3C. 0D. 2标准答案:A. -2二、填空题(每题4分,共40分)1. 若a=5,b=3,则a²+b²=______。
标准答案:342. 下列哪个数是正数:______。
标准答案:23. 下列哪个数是无理数:______。
标准答案:√34. 下列哪个数是整数:______。
标准答案:45. 若|x|=5,则x的值为______。
标准答案:5或-5三、解答题(每题10分,共20分)1. 解方程:2x-5=3标准答案:x=42. 已知a=4,b=3,求a²-b²的值。
标准答案:25四、应用题(每题10分,共20分)1. 小明的身高是1.6米,小华的身高是1.5米,求小明比小华高多少。
2023—2024学年人教新版七年级上学期数学期末考试试卷(附答卷)

最新人教新版七年级上学期数学期末考试试卷(含答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、据教育部统计,2023年高校毕业生约1086万人,用科学记数法表示1086万为()A.1086×104 B.1.086×107 C.1.086×108 D.0.1086×1082、某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃3、下列哪个图形是正方体的展开图()A.B.C.D.4、如图,下列说法错误的是()A.OA的方向是北偏西60°B.OB的方向是西南方向C.OC的方向是南偏东60°D.OD的方向是北偏东30°5、下列变形中,正确的是()A.若a=b,则a+1=b﹣1B.若a﹣b+1=0,则a=b+1C.若a=b,则D.若,则a=b6、若(m﹣1)x|2m﹣3|=6是一元一次方程,则m等于()A.1B.2C.1或2D.任何数7、钟表在1点30分时,它的时针和分针所成的角度是()A.135°B.125°C.145°D.115°8、《孙子算经》是我国古代重要的数学著作,书中记载这样一个问题;今有三人共车,二车空;二人共车,九人步,问人几何?这个问题的意思是:今有若干人乘车,每三人乘一车,恰好剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,则乘车人数为()A.15B.35C.39D.419、有一长条型链子,其外型由边长为1公分的正六边形排列而成.如图表示此链之任一段花纹,其中每个黑色六边形与6个白色六边形相邻.若链子上有35个黑色六边形,则此链子共有几个白色六边形()A.140B.142C.210D.21210、若不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,则a+b=()A.B.C.D.二、填空题(每小题3分,满分18分)11、比较大小:.12、数轴上,到原点距离为5的点表示的数是.13、已知单项式2a2b n+1与3a2m b m是同类项,则m+n=.14、一个正方体展开图如图所示,若相对面上标记的两个数均互为相反数,则xy的值为.15、如果关于x的方程2x+1=3和方程的解相同,那么k的值为.16、当x=1时,ax2+bx﹣1的值为6,当x=﹣1时,这个多项式ax3+bx﹣1的值是.最新人教新版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1);(2).18、解下列方程:(1)4x﹣3=2﹣5x;(2).19、如图,某小纸盒的展开图如下,根据图中的数据解答如下问题.(1)请用含a和x的式子表示这个小纸盒的展开图的面积;(2)当a=6厘米时,面积为72平方厘米,求x的值;20、有理数a、b、c在数轴上的位置如图.(1)用“>”或“<”填空:c﹣b0,a+b0,c﹣a0;(2)化简:|c﹣b|+3|a+b|﹣|c﹣a|.21、如图,点C,E是线段AB上两点,点D为线段AB的中点,AB=6,CD=1.(1)求BC的长;(2)若AE:EC=1:3,求EC的长.22、如图,已知∠AOB=90°,∠BOC=60°.(1)求∠AOC的补角的度数;(2)若OE平分∠AOB,OF平分∠BOC,求∠EOF的度数.23、已知A=2x2+xy+3y,B=x2﹣xy.(1)若(x+2)2+|y﹣3|=0,求A﹣2B的值.(2)若A﹣2B的值与y的值无关,求x的值.24、在学习一元一次方程后,我们给一个定义:若x0是关于x的一元一次方程ax+b=0(a≠0)的解,y0是关于y的方程的所有解的其中一个解,且x0,y0满足x0+y0=99,则称关于y的方程为关于x的一元一次方程的“久久方程”.例如:一元一次方程3x﹣2x﹣98=0的解是x0=98,方程|y|+1=2的所有解是y =1或y=﹣1,当y0=1,x0+y0=99,所以|y|+1=2为一元一次方程3x﹣2x﹣98=0的“久久方程”.(1)已知关于y的方程:①2y﹣2=4,②|y|=2,其中哪个方程是一元一次方程3(x﹣1)=2x+98的“久久方程”?请直接写出正确的序号.(2)若关于y的方程|2y﹣2|+2=4是关于x的一元一次方程x﹣的“久久方程”,请求出a的值.(3)若关于y的方程a|y﹣49|+a+b=是关于x的一元一次方程ax+50b =55a的“久久方程”,求出的值.25、如图,两条直线AB,CD相交于点O,且∠AOC=∠BOD=90°,射线OM从OB开始绕O点逆时针方向旋转,速度为每秒15°,射线ON同时从OD 开始绕O点顺时针方向旋转,速度为每秒12°,运动时间为t秒(0<t<12,本题出现的角均不大于平角).(1)当t=2时,∠AOM的度数为度,∠NOM的度数为度.(2)t为何值时,∠AOM=∠AON.(3)当射线OM在∠BOC的内部时,探究是不是一个定值?若是,请求出这个定值.。
广东省深圳市2023-2024学年七年级上学期语文期末试卷(含答案)

广东省深圳市2023-2024学年七年级上学期语文期末考试试卷姓名:__________班级:__________考号:__________题号一二三总分评分一、基础(25分)1.阅读下面的语段,完成各题。
我国是一个诗的国度,诗的历史源远流长,名家辈出,佳作纷呈。
今天让我们共同接受一次美的洗礼。
漫步古诗苑,犹如在jìng mì()的花海里徜徉,只见(甲),色彩斑斓,让人目不暇接,流连忘返。
走进《诗经》,随手一翻,采葛、采薇、采苓的场景画面般呈现在我们面前,字字句句,都向我们传达着春生夏长、秋收冬藏的自然天道。
走进《唐诗》,他们得意时写诗,生活乐无边;失意时更写诗,忘却忧愁与烦恼;分别时有诗,天下无不散之筵席;相聚时也有诗,gǎn kǎi()天长地久永不分离,真是处处有诗,诗诗传情。
总之,诗词里,有山水风月之美,有伤春怀人之情,也有启迪哲思与振奋人心。
走进诗词,让我们漫步诗苑,走进诗人心灵,培养道德情操,汲取古诗营养,弘扬民族文化。
(1)看拼音写词语jìng mì()gǎn kǎi()(2)文中画横线的句子有语病,请你修改后将正确句子写在答题卡相应位置上。
(3)在选段(甲)上填入成语,恰当的一项是()A.浩如烟海B.花团锦簇C.高谈阔论D.富丽堂皇2.给下列句子排序,最恰当的一项是()①他父亲是一个受人尊敬的智者。
②父子俩在那里度过了整整四个月的旅游生活。
③诺贝尔文学奖获得者泰戈尔是一个多才多艺的诗人,文、史、哲、艺等几乎无所不精。
④白天他们或步行或骑马,徜徉于自然美景和人文胜景之间。
晚上他则坐在星空下,听父亲讲天文知识,欣赏美丽迷人的夜色。
⑤泰戈尔12岁那年,父亲就带他去喜马拉雅山旅游。
⑥泰戈尔的成长经历启发我们:一个人的茁壮成长不但要“读万卷书”,还要“行万里路”。
⑦父亲对他的教育概括起来说就是:潜移默化、身体力行。
A.①⑦⑤②④③⑥B.①⑦②⑤④③⑥C.③①⑦⑤④②⑥D.③①⑦④⑤⑥②3.请选出下列说法错误的一项是()A.“高就”“奉劝”“大作”“垂念”“赏光”都是敬辞。
2023-2024学年北京石景山七年级上学期期末数学试卷含答案

2024北京石景山初一(上)期末数学学校姓名准考证号一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个.1.12-的相反数是(A )12(B )12-(C )2(D )2-2.以河岸边步行道的平面为基准,河面高 1.8m -,河岸上地面高5m ,则地面比河面高(A )3.2m(B ) 3.2m-(C )6.8m(D ) 6.8m-3.依据第三方平台统计数据,2022年12月至2023年5月,石景山区共有350人享受养老助餐服务(其中基本养老服务对象90人,其他老年人260人),累计服务10534人次.其中,数字10534用科学记数法可表示为(A )310.53410⨯(B )41.053410⨯(C )31.053410⨯(D )50.1053410⨯4.如图,从左面看图中四个几何体,得到的图形是四边形的几何体的个数是(A )1(B )2(C )3(D )45.将三角尺与直尺按如图所示摆放,若α∠的度数比β∠的度数的三倍多10︒,则α∠的度数是(A )20︒(B )40︒(C )50︒(D )70︒6.下列运算正确的是(A )325+=a b ab (B )2222-=c c (C )2()2--=-+a b a b(D )22243-=-x y yx x y7.已知:如图O 是直线AB 上一点,OD 和OE 分别平分AOC ∠和BOC ∠,50BOC ∠=︒,则AOD ∠的度数是(A )50︒(B )60︒(C )65︒(D )70︒8.有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A )0ab >(B )<-a b (C )20+>a (D )20->a b 二、填空题(本题共16分,每小题2分)9.对单项式“0.5a ”可以解释为:一块橡皮0.5元,买了a 块,共消费0.5a 元.请你再对“0.5a ”赋予一个实际意义________________________________________________.10.如图是一数值转换机的示意图,若输入1=-x ,则输出的结果是.11.若233m x y -与253mx y --是同类项,则m 的值为.12.若2=x 是关于x 的一元一次方程25-=x m 的解,则m 的值为.13.如图,要在河边修建一个水泵站,分别向A 村和B 村送水,修在(请在,,D E F 中选择)处可使所用管道最短,理由是.第13题图第14题图14.如图,正方形广场边长为米,广场的四个角都设计了一块半径为r 米的四分之一圆形花坛,请用代数式表示图中广场空地面积平方米.(用含a 和r 的字母表示)15.规定一种新运算:1⊕=+-+a b a b ab ,例如:23232310⊕=+-⨯+=,(1)请计算:2(1)⊕-___________.(2)若32x -⊕=,则x 的值为.16.a 是不为1的有理数,我们把11a -称为a 的差倒数,如2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知113α=-,2α是1α的差倒数,3α是2α的差倒数,4α是3a 的差倒数,……,以此类推,则2023a =___________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:312-+-.18.计算:11124()834-⨯-+19.计算:3122(7)2-+⨯-÷.20.本学期学习了一元一次方程的解法,下面是小亮同学的解题过程:解方程:20.30.410.50.3x x -+-=.解:原方程可化为:203104153x x -+-=.……第①步方程两边同时乘以15,去分母,得:3(203)5(104)15x x --+=.……第②步去括号,得:609502015x x --+=.……第③步移项,得:605015920x x -=+-.……第④步合并同类项,得:104x =.……第⑤步系数化1,得:0.4x =.……第⑥步所以0.4x =为原方程的解.上述小亮的解题过程中(1)第②步的依据是_________________________________;(2)第_____(填序号)步开始出现错误,请写出这一步正确的式子__________.21.解方程:52318x x +=-.22.解方程:211123x x +--=.23.先化简,再求值:22(28)(14)x x x ----,其中2x =-.24.如图,已知直线l 和直线外两点,A B ,按下列要求作图并回答问题:(1)画射线AB ,交直线l 于点C ;(2)画直线AD l ⊥,垂足为D ;(3)在直线AD 上画出点E ,使DE AD =;(4)连接CE ;(5)通过画图、测量:点A 到直线l 的距离d ≈cm (精确到0.1);图中有相等的线段(除DE AD =以外)或相等的角,写出你的发现:.25.列方程解应用题:某公司计划为员工购买一批运动服,已知A 款运动服每套180元,B 款运动服每套210元,公司购买了这两种运动服共计50套,合计花费9600元,求公司购买两种款式运动服各多少套?26.已知:线段=10AB ,C 为线段AB 上的点,点D 是BC 的中点.(1)如图,若=4AC ,求CD 的长.根据题意,补全解题过程:∵10,4AB AC CB ===,AB -,∴CB =.∵点D 是BC 的中点,∴CD ==CB .(理由:)(2)若=3AC CD ,求AC 的长.27.已知:OA OB ⊥,射线OC 是平面上绕点O 旋转的一条动射线,OD 平分BOC ∠.(1)如图,若40BOC =︒∠,求AOD ∠.(2)若=(0180)BOC αα︒<<︒∠,直接写出AOD ∠的度数.(用含α的式子表示)28.对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得MP =kNP (k >0),则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上,Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示﹣4,﹣2,2.(1)点B 是点A 到点C 的倍分点,点C 是点B 到点A 的倍分点;(2)点B 到点C 的3倍分点表示的数是;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的4倍分点,写出x 的取值范围.参考答案阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、选择题(本题共16分,每小题2分)题号12345678答案ACBCDDCB二、填空题(本题共16分,每小题2分)9.答案不唯一,正确即可10.311.212.1-13.E ;两点之间线段最短14.22()a r π-15.(1)4;(2)116.13-三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式312=-+…………………………2分9=.…………………………5分18.解:原式386=-+-…………………………3分1=-.…………………………5分19.解:原式82(7)2=-+⨯-⨯…………………………2分828=--…………………………4分36=-.…………………………5分20.(1)等式基本性质2;…………………………2分(2)③;…………………………3分609502015x x ---=.…………………………5分21.解:移项,得53182x x -=--.…………………………2分合并同类项,得220x =-.…………………………4分系数化为1,得10x =-.…………………………5分∴10x =-是原方程的解.22.解:去分母,得3(21)2(1)6x x +--=.…………………………2分去括号,得63226x x +-+=.…………………………3分移项,合并同类项,得41x =.…………………………4分系数化为1,得14x =.…………………………5分∴14x =是原方程的解.23.解:原式2241614x x x=---+2217x =-.…………………………4分当2x =-时,原式22(2)17=⨯--.9=-.…………………………6分24.解:(1)(2)(3)(4)画图并标出字母如右图所示;………………3分(5)d ≈cm (精确到0.1);(以答题卡上实际距离为准)………4分CA CE =,ACD ECD ∠=∠,CAD CED ∠=∠.………………6分25.解:设公司购买A 款式运动服x 套,则购买B 款式运动服(50x -)套.……1分根据题意可得,180210(50)9600x x +-=.…………………………3分解得:30x =.则5020x -=.…………………………5分答:公司购买A 款式运动服30套,购买B 款式运动服20套.………………6分26.解:(1)补全解题过程如下:∵10,4AB AC CB ===,AB -AC ,………………………1分∴CB =6.………………………2分∵点D 是BC 的中点,∴CD =12=CB 3.(理由:线段中点的定义).…………4分(2)∵点D 是BC 的中点,∴CD BD =(线段中点的定义).∵=3AC CD ,∴设CD BD x ==,=3AC x .………………………5分∴10AB AC CD BD =++=.即:310x x x ++=.解得,2x =.∴=6AC .…………………………6分27.解:(1)∵OA OB ⊥,∴90AOB ∠=︒(垂直定义).…………………………2分∵OD 平分BOC ∠,∴12BOD BOC ∠=∠(角平分线定义).…………………………4分∵40BOC ∠=︒,∴20BOD ∠=︒.∵AOD AOB BOD ∠=∠-∠,∴70AOD ∠=︒.…………………………5分(2)9090+22αα︒-︒或.…………………………7分28.解:(1)12,23;…………………………2分(2)1或4;…………………………4分(3)5722x -≤≤.…………………………7分。
第一学期期末初一数学试卷附答案

ab0 第一学期七年级期末考试一、选择题(本题共30分,每小题3分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1. -6的相反数是 A .6B .-6C .61 D .-612.2012年我国著名作家莫言获得诺贝尔文学奖后,其作品受到广大读者的高度关注,据权威的畅销书排行榜发布监测数据显示,2012年10月、11月两个月,莫言全部图书的月平均销量,是获奖之前每个月平均销量的199倍,以代表作品《蛙》为例,仅获奖后两个月的作品销售量就比获奖之前增长了180倍. 达到2100000册. 把2100000用科学记数法表示为 A .0.21810⨯ B .2.1610⨯C .2.1710⨯D .21610⨯3. 下列计算正确的是A .112-=--B .33313=⨯÷C .8)2(3=--D .8)2(4=- 4.若1x =-是方程260x m +-=的解,则m 的值是A .-4B .4C .8D .-8 5.两个锐角的和不可能是A .锐角B .直角C .钝角D .平角 6.下列各组中的两个单项式不是同类项的是 A .332a b ba 与-3 B .30-与 C .m a m a 2296-与 D .2332122m n m n -与7.下列变形正确的个数有(1)由5x 23=+-,得2x =5-3 (2)由3y =-4,得43y -= (3) 由33x y -=-,得0x y -= (4)由3=x +2,,得x =3-2 A. 1个 B. 2个 C.3个 D.4个 8.有理数 a 、b 在数轴上的位置如图所示:则a +b 是A.正数 B.负数 C.非正数 D.零 9.已知,如图所示的几何体,则从左面看到的平面图形是10.新上市的苹果手机原价a 元,元旦促销活动时降价x %,则元旦促销活动时,苹果手机的价格是A .%ax 元B .%a x -元C .(1)100a x -元 D .(1%)a x -元 二、填空题(本题共27分,每小题3分)11.比较大小:-5 -2(填“<”、“=”或“>” ).12.单项式27x -的系数是 .13.合并同类项:25ab ab ba --= . 14.如图,把一块直角三角板的直角顶点放在直尺的一边上, 如果135∠=︒,那么2∠=___ ____.15.钟表的指针恰好是10点整,此时,钟表上时针与分针所夹的锐角的度数为 . 16.如图,点C 、D 在线段AB 上,点C 为AB 中点, 若AC =5cm ,BD =2cm ,则CD =_______cm.17. 要把一根木条固定在墙上,至少需要钉 颗钉子,依据的数学原理是 .18.某校七年级5班学生为西部贫困地区学生捐款x 元,其中女生的捐款占45%, 则代数式(1-45%)x 表示的实际意义是 . 19. 观察下列单项式:a ,23a ,35a ,47a ,59a ,…,根据你发现的规律写出第n (1n ≥,n 为整数)个式子 (用含n 的代数式表示). 三、计算题(本题共20分,每小题5分)20.3(1)4(2)⨯--÷-. 21.21242--⨯-. 解: 解: 22.12112()436-⨯-+. 23.()()420132163217⎛⎫---÷--- ⎪⎝⎭. 解: 解:四、解方程(本题共10分,每小题5分) 24.6)5(34=--x x . 25.1231135x x -+-=. 解: 解:五、解答题(本题共21分,26、27、28每小题各5分,29小题6分) 26.化简:321325x y y x -++--.27.先化简,再求值:224263(25)a a a a -----,其中1-=a .28.推理填空:如图所示,点O 是直线AB 上一点,∠BOC=130°,OD 平分∠AOC . 求:∠COD 的度数. 解:∵O 是直线AB 上一点, ∴∠AOB= .理由是(∵∠BOC=130°,∴∠AOC=∠AOB-∠BOC= . ∵OD 平分∠AOC,∴ ∠COD=∠AOD.理由是( ). ∴∠COD= . 29.列方程解应用题:小明每天早上要在7:40之前赶到距家1100米的学校上学. 小明以80米/分钟的速度出发,5分钟后,小明的爸爸发现他忘了带数学书,于是,爸爸立即以180米/分钟的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远? 解:(1)六、拓展提高(本题共12分,每小题2分)30.一天晚上,母亲给女儿小敏出了一道题:“如果日历上爸爸生日的那天上、下、左、右四个日期的和为96,那么爸爸的生日是 号.31. 如图所示,在下面的四个图形中,是左侧正方体展开图(选择答案填空)的是 .A. B.C.D .32. 首届中国国际魔术邀请赛、魔术论坛2012年11月30日至12月2日在北京昌平区体育馆举办.刘谦的魔术表演风靡全世界. 很多同学非常感兴趣,也学起了魔术.请看刘凯同学把任意有理数对(x ,y )放进装有计算装置的魔术盒,会得到一个新的有理数21xy +-. 例如把(3,-2)放入其中,就会得到23(2)16+--=.现将有理数对(-4,-5)放入其中,得到的有理数是 . 若将正整数对放入其中,得到的值都为5,则满足条件的所有的正整数对(x ,y )为 .33. 我国宋朝数学家杨辉在他的著作《详解九章算法》中提出 “杨辉三角”(如右图),此图揭示了 ()na b +(n 为非负整数) 展开式的项数及各项系数的有关规律. 例如:0()1a b +=,它只有一项,系数为1;1()a b a b +=+,它有两项,系数分别为1,1,系数和为2;222()2a b a ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223()33a b a a b ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;……根据以上规律,解答下列问题:(1)4()a b +展开式共有 项,系数分别为 ; (2)()n a b +展开式(用含字母n 的代数式表示)共有 项,系数和...为 .34. 国强同学喜欢用黑色棋子摆放在正多边形的边上来研究数的规律. 请你观察下面表格中棋子的摆放规律,并回答下面问题:(1)通过观察、归纳发现可以分别用含字母n (的整数)的代数式表示P 、Q 、M.则P= ,Q= ,M= . (2)下列数中既是三角形中的棋子数又是正方形中的棋子数的是 . A. 2013 B. 2014 C. 2015 D .2016 35.关于x 的方程()2130n m x---=是一元一次方程.(1)则m ,n 应满足的条件为:m ,n ; (2)若此方程的根为整数,求整数m 的值.友情提示:请你做完试卷后,再认真仔细地检查一遍,预祝你考出好成绩!初一数学试卷评分标准及参考答案20.3(1)4(2)⨯--÷-. 21.21242--⨯-. 解:3(1)4(2)⨯--÷- 解:21242--⨯-= 3(2)--- …………3分 =1442--⨯ …………3分=32-+ ……………4分 =42-- ………………4分 =1- ………………… 5分 =6-…………………… 5分22.12112()436-⨯-+. 23.()()420132163217⎛⎫---÷--- ⎪⎝⎭. 解:12112()436-⨯-+ 解:原式=7916116⎛⎫--⨯-+ ⎪⎝⎭--------------4分=382-+- ………………… 3分 =-9+7+1=3. --------…………………… 5分 =- 1 . ----------------------------------5分 四、解方程(本题共10分,每小题5分)24.6)5(34=--x x . 25.1231135x x -+-= 解:41536x x -+= …………… 2分 解:5(12)3(31)15x x --+= …………… 1分43615x x +=+ …………3分 5109315x x ---= ……………… 2分721x = (4)分1091553x x --=-+ ………… 3分3x =……………5分 1913x -=……………………… 4分1319x =-……………… 5分五、解答题(本题共21分,26、27、28每小题各5分,29小题6分) 26.化简:321325x y y x -++--.解:原式322315x x y y =--++- ……………………………………3分 4x y =+-. …………………………………………… 5分 27.先化简,再求值:224263(25)a a a a -----,其中1-=a . 解:原式=224266315a a a a ---++…………………………… 1分=229a a -++ ………………………………………… 3分 当1-=a 时,原式= 22(1)(1)9-⨯-+-+…………………………… 4分 =6. …………………………………………… 5分 28.推理填空:如图所示,点O 是直线AB 上一点,∠BOC=130°,OD 平分∠AOC求:∠COD 的度数. 180°, 平角定义; 50°;角平分线定义, 25°…………………………每空1分29.列方程解应用题:小明每天早上要在7:40之前赶到距家1100米的学校上学. 小明 以80米/5分钟后,小明的爸爸发现他忘了带数学书,于是,爸爸立即以180米/分钟的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?解:(1)设爸爸追上小明用x 分钟,则小明走了(x +5)分钟.……………1分 依题意,列方程,得 180x =80(x +5).………………………………4分 解得x =4.所以,爸爸用了4分钟追上小明. ……………………………………5分 (2)1100-180×4=380.答:爸爸追上小明时距学校还有380米. ………………………………6分六、拓展提高(本题满分12分,每小题2分)35.(2)解: 由(1)可知,方程为03)1(=--x m ,则13-=m x . ∵此方程的根为整数,∴13-m 为整数. 又m 为整数,则m -1=-3,-1,1,3 .∴m =-2,0,2,4. ………………2分。
北京市房山区2023-2024学年七年级上学期期末检测语文试卷(含答案)

2024北京房山初一(上)期末语文本试卷共12页,共100分。
时长150分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将答题卡交回,试卷自行保存。
一、基础·运用(共14分)语文学习,得法于课内,得益于课外,检验于运用。
年级要开展“少年正是读书时”综合性学习活动,请你完成下列任务。
第一部分 课内阅读下面是课内阅读的选段,请你阅读后完成1-2题。
白求恩同志毫不利己专门利人的精神,表现在他对工作的极端的负责任,对同志对人民的极端的热忱。
每个共产党员都要学习他。
不少的人对工作不负责任,拈轻怕重,把重担子推给人家,自己挑轻的。
一事当前,先替自己打算,然后再替别人打算。
出了一点力就觉得了不起,喜欢自吹,生怕人家不知道。
对同志对人民不是满腔热忱,而是冷冷清清,漠不关心,麻木不仁。
这种人其实不是共产党员,至少不能算一个纯粹的共产党员。
从前线回来的人说到白求恩,没有一个不佩服,没有一个不为他的精神所感动。
晋察冀边区的军民,凡亲身受过白求恩医生的治疗和亲眼看过白求恩医生的工作的,无不为之感动。
每一个共产党员,一定要学习白求恩同志的这种真正共产主义者的精神。
白求恩同志是个医生,他以医疗为职业,对技术精益求精;在整个八路军医务系统中,他的医术是很高明的。
这对于一班见异思迁的人,对于一班鄙薄技术工作以为不足道、以为无出路的人,也是一个极好的教训。
1.选文中加点字的读音全都正确的一项是(2分)A.热忱(chén) 担子(dàn)B.热忱(chéng) 担子(dān)C.热忱(chén)担子(dān)D.热忱(chéng) 担子(dàn)2.下列各组词语的感情色彩相同的一项是(2分)A.毫不利己拈轻怕重B.满腔热忱冷冷清清C.漠不关心麻木不仁D.精益求精见异思迁第二部分 课外阅读下面是课外阅读的选段,请你阅读后完成3-5题。
我是沙燕风筝,已经一百七十多岁啦!我属于曹氏风筝一脉。
广东省深圳市2023-2024学年七年级上学期语文期末试卷(含答案)4

广东省深圳市2023-2024学年七年级上学期语文期末试卷姓名:__________班级:__________考号:__________题号一二三总分评分一、积累与运用(共24分)校学生会组织了一场“漫游罗湖”的体验活动,请你完成以下任务。
参观完毕,小罗同学感慨万千,提笔写下游览日记。
今天的“漫游罗湖”活动让我收获颇丰。
早八点,我们从学校出发,缓缓流淌的布吉河,盛放的簕杜鹃,使我告别了早起的困倦,变得精神抖擞....。
跟随“大部队”,....。
行走间,我才发觉深圳的冬日竟是如此美不胜收穿过充满烟火气的小巷,我们看到了直冲①yún xiāo的地王大厦。
地王大厦是深圳的标志性建筑,有昔日“深圳第一高楼”的美誉。
69层楼构成的宏伟建筑,总高度大约384余米。
我不禁想到《世说新语》中陈元方谈及父亲品德时所说的“上有万仞之高”,这句话形容地王大厦也恰如其分。
登楼望远,俯瞰深圳,小雨迷蒙中,落地窗变身为多棱.②镜,折射出绚丽的光芒,给参差不齐....的楼房披上彩色的光晕。
窗外是奇幻的美景,窗内则展示着深圳的发展历史。
大厦顶层的“深港之窗”展览详细介绍了深圳的过去与现在。
今昔对比,沧海桑田,见异思迁....,一种自豪感油然而生。
1.根据拼音写出相应的汉字,并给加点字注音。
①yún xiāo②多棱镜2.判断对错。
①“这句话形容地王大厦也恰如其分”,“这”是代词,“形容”是动词。
()②《世说新语》是南宋临川王刘义庆组织编写的一部志人小说集。
()3.下列词语使用不正确的一项是()A.行走间,我才发觉深圳的冬日竟是如此美.不胜..收.。
B.缓缓流淌的布吉河,盛放的簕杜鹃,使我告别了早起的困倦,变得精神抖擞....。
C.落地窗变身为多棱镜,折射出绚丽的光芒,给参差不齐....的楼房披上彩色的光晕。
D.今昔对比,沧海桑田,见异思迁....,一种自豪感油然而生。
4.画线句有语病,请将修改后的句子写在横线上。
江苏省苏州市苏州工业园区2023-2024学年七年级上学期期末数学试题(含解析)

2023~2024学年工业园区第一学期期末试卷初一数学2024.01本试卷由选择题、填空题和解答题三大题组成.共27小题,满分100分.考试时间100分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔写在答题区域内的答案一律无效,不得用其他笔答题;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.的倒数是( )A .2B .C.D .2.如图,中国南北朝时期著名的数学家、天文学家祖冲之采用刘徽的“割圆术”将圆周率精确到小数点后第七位,还得到了的两个近似值:(约率)和(密率),这个记录在世界上保持了1100多年.其中,约率是( )(第2题)A .整数B .有限小数C .有理数D .无理数3.把图中的纸片沿虚线折叠,可以围成( )(第3题)2-2-1212-ππ227355113227A .圆锥B .三棱柱C .三棱锥D .四棱锥4.荷兰版画家埃舍尔在他的平面镶嵌画中,运用将基本图案进行轴对称、平移、旋转等数学方法进行创作.如图是埃舍尔创作的“飞鸟”作品,该作品运用的数学方法是( )(第4题)A .轴对称B .平移C .旋转D .轴对称,平移,旋转5.已知,则在下列结论中,正确的是( )A .B .C .D.6.单项式表示球的表面积,其中表示圆周率,表示球的半径.下列说法中,正确的是( )A .系数是4,次数是2B .系数是4,次数是3C .系数是,次数是3D .系数是,次数是27.华氏温度(℉)与摄氏温度(℃)之间的转换关系是:(表示华氏度,表示摄氏度).下列与华氏温度212℉接近的是( )A .水沸腾的温度B .人体的温度C .舒适的室温D .水结冰的温度8.三边都相等的三角形叫做等边三角形.如图,将数轴从点开始向右折出一个等边三角形,点,,表示的数分别为,,.现将等边三角形向右滚动,则与表示数2024的点重合的点( )(第8题)A .是点B .是点C .是点D .不存在二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卡相应位置上.9.如果盈利500元记作元,那么亏损400元记作__________元.10.比较大小:__________.11.如图,阳澄湖位于苏州东北部,面积约180000亩,素有“千年水乡古镇,百里湖中绿洲”美誉.180000用科学记数法可以表示为__________.a b <11a b +>+22a b ->-22a b <a b <24r ππr 4π4π32 1.8F C t t =+F t t C t t A ABC A B C 27x -3x -4x -ABC ABC500+π-( 3.14)--(第11题)12.国际足联规定:足球场的边线及底线的外侧垂直向上的空间属于球场范围.当足球从地面及空中完全脱离该空间时,视为出界.这里的“完全”指的是:一定要是球的全部,一丝在界内都不算出界.在主视图、左视图和俯视图中,一定可以用来判断足球是否出界的是__________.(第12题)13.若,则的补角等于__________°.14.如图,点是线段的中点,点,是线段的三等分点.若线段,则线段__________cm .(第14题)15.如图是一个数值转换机的示意图.若输出的值为35,则输入的数为__________.(第15题)16.我国古代《易经》记载,远古时期人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满五进一,用来记录采集到野果的个数.若她采集到的一筐野果不少于46个则在第2根绳子上的打结数是__________.(第16题)三、解答题:本大题共11小题,共68分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.13524α'∠=︒α∠P AB C D AB 9cm AB =CP =17.(本题满分5分)计算:.18.(本题满分5分)解方程:.19.(本题满分5分)解不等式组:20.(本题满分5分)已知,,求代数式的值.21.(本题满分4分)图中的几何体是用10个相同的小正方体搭成的,其左视图如图所示.主视图 左视图 俯视图(1)请在方格纸中用实线画出该几何体的主视图、俯视图;(2)如果保持这个几何体的俯视图和左视图不变,那么最多可以添加几个小正方体?最多可以拿掉几个小正方体?22.(本题满分4分)一根弹簧长12cm ,在弹性限度(总长不超过20cm )内,每挂质量为1kg 的物体,弹簧伸长0.5cm .(1)代数式表示的实际意义是__________;(2)这根弹簧最多可挂质量为多少的物体?23.(本题满分6分)如图,方格纸中每个小正方形的边长都是1.(第23题)(1)过点画直线,垂足为点;画直线,与相交于点;(2)求三角形的面积.231121132⎛⎫⎛⎫÷-+⨯- ⎪ ⎪⎝⎭⎝⎭25(32)9x x x --=1123(2)4x x x ⎧-<⎪⎨⎪--≤⎩①②2a =-3b =()221233a ab a ab ⎛⎫--- ⎪⎝⎭0.512x +P PE AB ⊥E //PF BC PF AB F PEF24.(本题满分8分)某商店的促销方式如下:一次性所购物品的原价优惠办法不超过200元没有优惠超过200元,但不超过600元200元部分没有优惠,超过200元部分打九折优惠超过600元所购物品可以协商打折优惠,但不低于七五折(1)小张一次性所购物品的原价为500元,他实际付款__________元;(2)老王和小赵一起前往该商店购物,两人所购的物品各自付款需180元和425元,两人合在一起后共付款504元,问商店给他们打了几折?25.(本题满分8分)定义:满足的一对有理数,称为“和谐数对”,记作.例如:因为,,所以,都是“和谐数对”.(1),中,是“和谐数对”的是__________;(2)若是“和谐数对”,求的值;(3)若是“和谐数对”,求的值.26.(本题满分8分)如图,将一个直角三角尺的直角顶点落在直线上,平分.图① 图②(1)如图①,当点,在的同侧时,若,求的度数;(2)如图②,当点,在的异侧时,若,求的度数.27.(本题满分10分)如图,水平桌面上有甲、乙、丙三个圆柱形容器,并在距离容器底部处用两根相同的管子连接,其中甲、丙两容器的底面积均为,乙容器的底面积为,甲容器中有水.现同时向乙、丙两个容器内匀速注水,直至每个容器都注满水时停止注水,已知每个容器每分钟注水.容器甲 容器乙 容器丙(第27题)BOE ∠a b ab +=a b (,)a b 2222+=⨯333322+=⨯(2,2)33,2⎛⎫⎪⎝⎭(2,2)--11,2⎛⎫- ⎪⎝⎭(1,5)x +x (,)m n 42(1)4mn m n mn n --+--OAB O CD OE AOD ∠A B CD 58AOC ∠=︒A B CD 2AOE BOD ∠=∠AOC ∠30cm 280cm 2320cm 3480cm 31600cm(1)当甲、乙两个容器中水位的高度第一次相等时,求注水的时间;3cm(2)当甲、乙两个容器中水位的高度相差时,求注水的时间.2023~2024学年工业园区第一学期期末试卷初一数学参考答案一、选择题:本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.【答案】D【解析】解:两个数的乘积等于1时,这两个数互为“倒数”,,故选D .2.【答案】C【解析】解:有理数为整数和分数的统称,有理数是指可以表示为两个整数之比的数,其中分母不能为零.是分数,所以是有理数,故选C .3.【答案】C .【解析】解:三棱锥,是锥体的一种,几何体,由四个三角形组成.故选C .4.【答案】B .【解析】解:平移,是指在平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移.平移不改变图形的形状和大小.故选B .5.【答案】B .【解析】解:,故选项A 错.,故选项B 正确.,是由,的绝对值大小决定,故选项C 错误.是由,的符号决定,故选项D 错误.故:选B .6.【答案】D .【解析】解:单项式系数是,次数是2,故:选D .7.【答案】A .【解析】解:,故选A .8.【答案】A .【解析】解:由题意得,A :,B :0,C :1,则2024与2重合,是点,故:选A .二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卡相应位置上.9.【答案】【解析】正负数表示相反意义的量.若盈利500元记作元,亏损400元记作元.故答案为:.10.【答案】>11(2)2÷-=-22711a b +<+22a b ->-22a b <a b ||||a b <a b 24r π4π21232 1.8100C C t t =+⇒=℃2(3)2743x x x x -=-+-⇒=1-202436742÷=⋅⋅⋅A 400-500+400-400-【解析】,,故答案为:>.11.【答案】【解析】科学记数法是一种记数的方法.把一个数表示成与10的次幂相乘的形式(,不为分数形式,为整数),这种记数法叫做科学记数法.,故答案为:.12.【答案】俯视图【解析】解:当足球从地面及空中完全脱离该空间时,视为出界,用俯视图更为准确.故答案为:俯视图.13.【答案】【解析】解:补角:两角之和为则两角互为补角.,的补角故答案为:.14.【答案】【解析】解:,,故答案为:.15.【答案】【解析】解:,故答案为:.16.【答案】4【解析】解:设在第2根绳子上的打结数是,且“结绳记数”为满五进一,则,根据题意得:,解得:,答:在第2根绳子上的打结数是4,故答案为:4三、解答题:本大题共11小题,共68分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17.【解析】解:原式18.【解析】解:19.【解析】解:由①得,,由②得,,故不等式的解集为:.20.【解析】解:,ππ-=( 3.14) 3.14 3.14π--=⇒>51.810⨯a n 110a ≤<a n 5180000 1.810=⨯51.810⨯44.6︒180︒13524135.4α'∠=︒=︒α∠180135.444.6=︒-︒=︒44.6︒32AC CD BD ==113cm 262AP AB CP AB =⇒==325±2352355x x ⎡⎤⨯-÷=⇒=±⎣⎦5±x 5x <3515546x ++⨯⨯≥185x ≥21834=÷⨯31824=⨯⨯3=215109x x x-+=210915x x x +-=315x =5x =2x >-5x ≤25x -<≤()221233a ab a ab ⎛⎫--- ⎪⎝⎭22223a ab a ab =--+2a ab =+将,代入,得.21.【解析】解:(1)如图所示;(2)最多可以添加4个小正方体.最多可以拿掉1个小正方体.22.【解析】解:(1)表示的实际意义是挂质量为的物体,弹簧的长度.(2)设这根弹簧最多可挂质量为的物体.根据题意得:,.故:这根弹簧最多可挂质量为的物体.23.【解析】解:(1)如图所示(2)24.【解析】解:(1),元;(2)老王和小赵所购物品的原价分别为:180元,(元)原价总和为(元),答:商店给他们打了八折.25.【解析】解:,故不是“和谐数对”.,故是“和谐数对”.故答案为.(2)根据题意得:(3)是“和谐数对”26.【解析】解:(1),平分,,(2),设,2a =-3b =2a ab +2(2)(2)32-+-⨯=-0.512x +kg x kg x 120.520x +≤16x ≤16kg PEF DEF PEG FDGP S S S S =--梯形△△△111(13)41133222=⨯+⨯-⨯⨯-⨯⨯3=200500600<<200(500200)0.9470+-⨯=(425200)0.9200450-÷+=180450630+=5046300.8÷=(1)2(2)(2)(2)-+-≠-⨯-(2,2)--111122-+=-⨯11,2⎛⎫- ⎪⎝⎭11,2⎛⎫- ⎪⎝⎭1155(1)4x x x ++=+⇒=(,)m n mn m n⇒=+42(1)4mn m n mn n--+--422224mn m n mn n =-+-+-2222mn m n =--+2=58AOC ∠=︒ 18058122AOD ∴∠=︒-︒=︒OE AOD ∠1612AOE DOE AOD ∴∠=∠=∠=︒90AOB ∠=︒ 906129BOE ∴∠=︒-︒=︒2AOE BOD ∠=∠ BOD x ∠=2AOE x∠=平分,,,27.【解析】解:(1),,(2),丙装满时间为,后,时,,时,乙装满时间为后,,时,当时间为,,,甲、乙两个容器中水位的高度相差.OE AOD ∠2AOE DOE x ∴∠=∠=902218AOB x x x x ∠=︒=++⇒=︒180418108AOC ∠=︒-⨯︒=︒4806cm 80h ==甲16005cm /min 320V ==乙61.2min 5t ==160020cm /min 80V ==丙30 1.5min 20t == 1.5min Z 320010cm /min 320V ==3cm h =乙130.6min 5t ==9cm h =乙2(9 1.55)10 1.5 1.65min t =-⨯÷+=(30 1.55)10 1.5 3.75mint =-⨯÷+=3.75min 320040cm /min 80V ==甲27cm h =甲3(276)40 3.75 4.275min t =-÷+=0.6min 1.65min 4.275min 3cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一上学期期末试卷
一、选择题:(每小题3分,共24分)
下列每小题的四个选项中,只有一个是正确的.请将1-8各小题正确选项前的字母填写在下表相应题号下面的空格内. 题号 1 2 3 4 5 6 7 8 答案
1.下列式子是一次式的是 A. 2 B.t s 34+ C.ah 2
1
D.π 2.已知下列方程:x
x 432)1(=
+;97)2(=x ;1324)3(+=-x x ;096)4(2
=++x x ;3)5(=x ;8)6(=+y x .其中是一元一次方程的个数是
A .2 B.3 C.4 D.5
3.如图所示,A 、B 、C 、D 在同一条直线上,则图中共有线段的条数为
D
C B
A
A.3
B.4
C.5
D.6 4.如果x m y x n
)2(23
-+是关于x 、y 的五次二项式,则m 、n 的值为
A .m=3,n=2
B .m ≠2,n=2
C .m 为任意数,n=2 D.m ≠2,n=3 5.在下面的图形中,不是正方体表面展开图的是
6.下列说法中错误的是
A.A 、B 两点间的距离为线段AB B.线段AB 的中点M 到AB 两点的距离相等 C.A 、B 两点间的距离为2cm D.A 、B 两点间的距离是线段AB 的长度 7.如图AC ⊥BC ,CD ⊥AB ,能表示点到直线(或线段)的距离的线段有
A. 1条
B. 2条
C. 3条
D. 5条
8.一件商品按成本价提高40﹪后标价,再打8折(标价的80﹪)销售,售价为240元.设这件商品的成
本价是x 元,下面所列方程正确的是
A.2401008010040=⨯⋅
x B.24010080)100401(=⨯+x C.x =⨯⨯1008010040240 D.100
80
24010040⨯
=⋅x 二、填空题:(每小题4分,共32分) 9.已知多项式221
2
y x y x
x m +++的次数与单项式3
42
1b a -
的次数相同,则m 的值为 . 10.如果n
x
-48与
1
26
1+n x 可以合并,则n= .
11.时钟上四点整时,时针与分针的夹角为 . 12.按如右图所示的程序计算,若开始输入 的x 值为4,则最后输出的结果是 .
13.x =0是关于x 的方程3x -2m =4的解,则m 的值为 .
14.一次买十斤鸡蛋打八折比打九折少花3元钱,则这十斤鸡蛋原价是 元. 15.计算=÷'+⨯'O
O 53410733523 . 16. α、β都是钝角,甲、乙、丙、丁四人计算)(6
1
βα+的结果依次为50°、26°、72°、90°,其中有正确的结果,那么算得正确者为 . 三、计算:(每小题4分,共8分)
17.合并同类项:2
2
2
2
232y xy x y xy x -+-++,并求当x=2,y=1时,代数式的值.
18. 33°15′16″×5 .
四、(本题4分)
19.用一副三角板,可以画出那些度数的角?
五、解方程:(每小题4分,共10分) 20、
16
1
10312=+-+x x .
21.
03
.002.001.0355.09.05.0x
x x +=
-++.
六、列方程解应用题(每小题6分,共18分)
22。
如果2(x +3)的值与3(1-x )的值互为相反数,求x 的值.
23.某校初一(1)班40名同学为地震灾区捐款,共捐款100元,捐款情况如下表,请你根据表格中提
供的相关信息,求出捐款2元和捐款3元的人数.
24.某同学打算骑自行车到野生动物园去参观,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才能到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?
七、(本题4分)
25.观察下面一组图形,寻找其变化规律.①请你用含n的代数式表示这一规律;②计算出第10个图
形中三角形的个数.(直接写出结果)。