整式乘法公式
整式的乘法知识点
整式的乘法知识点1、幂的运算性质:(a ≠0,m 、n 都是正整数)(1)a m ·a n =a m +n 同底数幂相乘,底数不变,指数相加.(2)()n m a = a mn 幂的乘方,底数不变,指数相乘.(3)()n n n b a ab = 积的乘方等于各因式乘方的积. (4)n m a a ÷= a m -n 同底数幂相除,底数不变,指数相减.例(1).在下列运算中,计算正确的是( )(A )326a a a ⋅=(B )235()a a = (C )824a a a ÷=(D )2224()ab a b = (2)()()4352a a -⋅-=____ ___=2.零指数幂的概念:a 0=1(a ≠0)任何一个不等于零的数的零指数幂都等于l . 例:()022017π-=3.负指数幂的概念: a - p =p a 1(a ≠0,p 是正整数) 任何一个不等于零的数的负指数幂,等于这个数的正指数幂的倒数. 例:223-⎛⎫ ⎪⎝⎭= 312-⎛⎫- ⎪⎝⎭=4.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)223123abc abc b a ⋅⋅ (2)4233)2()21(n m n m -⋅-5.单项式与多项式的乘法法则: a(b+c+d)= ab + ac + ad单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.例:(1))35(222b a ab ab + (2))32()5(-22n m n n m -+⋅6.多项式与多项式的乘法法则:( a+b)(c+d)= ac + ad + bc + bd多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加. 例:(1)1(4)x x --() (2)(2)(1)x y x y +-+7.乘法公式: ①完全平方公式:(a +b )2=a 2+2ab +b 2(a -b )2=a 2-2ab +b 2口诀:首平方、尾平方,乘积的二倍放中央.例:① (2x +5y )2=( )2 + 2×( )×( ) + ( )2=__________________;② 2)2131(-m =( )2 - 2×( )×( ) + ( )2=________________; ③ (-x +y )2 = ( )2 =__________;④ (-m -n )2 = [ ]2 = ( )2_______________;⑤x 2+__ _ +4y 2 = (x +2y )2 ⑥214m ⎛⎫- ⎪⎝⎭ +2n = ( )2 ②平方差公式:(a +b )(a -b )=a 2-b 2口诀:两个数和乘以这两个数的差,等于这两个数的平方差.注意:相同项的平方减相反项的平方例:① (x -4)(x +4) = ( )2 - ( )2 =________;② (3a+2b )(3a -2b ) = ( )2 - ( )2 =_________________;③ (-m +n )( m +n ) = ( )2-( )2 =___________________;④ 11(2)(2)44x y x y ---=( )2-( )2=___________; ⑤(2a +b +3)(2a +b -3) =( )2-( )2=________________ ___= ;⑥(2a —b +3)(2a +b -3)=[ ][ ]=( )2-( )2另一种方法:(2a —b +3)(2a +b -3)==⑦ ( m +n )( m -n )( m 2+n 2 ) =( )( m 2+n 2 ) = ( )2 -( )2 =_______;⑧(x +3y )( ) = 9y 2-x 2③十字相乘:2()()x a x b x ++=+ ( ) x +一次项的系数是a 与b 的 ,常数项是a 与b 的例:()()12x x ++= , ()()23x x --= ,()()57x x +-= , ()()34x x -+=1、若22916x mxy y ++是一个完全平方式,那么m 的值是__________。
整式的乘除—乘法公式
整式的乘除—乘法公式1整式的乘除—乘法公式【复习】(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3 (a-b)(a 2+ab+b 2)=a 3-b 3归纳⼩结公式的变式,准确灵活运⽤公式:①位置变化,(x +y )(-y +x )=x 2-y 2②符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④系数变化,(2a +b )(2a -b )=4a 2-b 2⑤换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2=x 2-2xy +y 2-z 2⑦连⽤公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧逆⽤公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )]=2x (-2y +2z )=-4xy +4xz【典例分析】例1.已知2=+b a ,1=ab ,求22b a +的值。
例2.已知8=+b a ,2=ab ,求2)(b a -的值。
例3:计算19992-2000×1998例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
2 例5:已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
整式的乘法公式
整式的乘法公式一、整式乘法的基本概念。
1. 单项式乘单项式。
- 法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
- 例如:3x^2y· 4xy^2=(3×4)(x^2· x)(y· y^2)=12x^2 + 1y^1+2=12x^3y^3。
2. 单项式乘多项式。
- 法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
- 例如:a(b + c)=ab+ac,具体计算如2x(x^2 - 3x+1)=2x· x^2-2x·3x + 2x·1 = 2x^3-6x^2 + 2x。
3. 多项式乘多项式。
- 法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
- 例如:(a + b)(c + d)=ac+ad+bc+bd。
计算(x + 2)(x - 3)=x· x+x·(-3)+2· x+2×(-3)=x^2-3x + 2x-6=x^2 - x - 6。
二、乘法公式。
1. 平方差公式。
- 公式:(a + b)(a - b)=a^2 - b^2。
- 推导:(a + b)(a - b)=a· a - a· b+b· a - b· b=a^2 - b^2。
- 应用示例:计算(3x+2y)(3x - 2y)=(3x)^2-(2y)^2 = 9x^2 - 4y^2。
2. 完全平方公式。
- 完全平方和公式:(a + b)^2=a^2+2ab + b^2。
- 推导:(a + b)^2=(a + b)(a + b)=a· a+a· b+b· a + b· b=a^2+2ab + b^2。
- 应用示例:(x + 3)^2=x^2+2× x×3+3^2=x^2 + 6x+9。
整式乘法公式
整式乘法公式
1 什么是整式乘法
整式乘法是由欧拉在19世纪早期提出来的一种常见的数学运算方式,是数学分支学科中基本算法之一。
它是用来解决复合乘积问题,即把一个大问题分解为若干个小问题,并利用乘法运算把它们连接起来而解决整个问题,在数学加法、减法、乘法、除法四则运算中被称为第三则运算。
2 整式乘法公式
整式乘法把复杂的乘积运算简化为四个熟调的模式,其中的形式公式为: `(a+b)*(a-b)=a*a - b*b`,其中a,b分别表示算式中的平方数。
它简化了乘积运算,因此,当参与运算的数值变成更大时,整式乘法是十分有效的。
3 应用范围
整式乘法在众多数学问题中得到了很好的应用,例如:如果要求算术组合的乘积,整式乘法可以让我们简化乘积运算,降低难度。
它还可以应用于三角形的计算,例如:根据勾股定理,任意一个直角三角形的斜边的平方等于它的两个直角边的平方总和,这其中就涉及到整式乘法的应用,而且可以方便我们求出它们的相关参数。
4 总结
整式乘法是一种基本的数学运算,它把一个大问题分解为若干个
小问题,并利用乘法运算把它们连接起来,以便快速解决整个问题。
它可以极大的简化乘积的运算,在众多的数学问题中有着重要的应用。
整式乘法与因式分解的公式
整式乘法与因式分解的公式在咱们的数学世界里,整式乘法与因式分解就像是一对亲密无间的好伙伴,它们的公式更是解决各种数学难题的神奇钥匙。
先来说说整式乘法中的平方差公式吧,(a+b)(a - b)= a² - b²。
这就好比我前段时间装修房子的时候,计算房间地面的面积。
房间的长是(x + 5)米,宽是(x - 5)米,那地面的面积就可以用平方差公式来算啦,就是 x² - 25 平方米。
是不是一下子就把复杂的问题简单化了?还有完全平方公式,(a ± b)² = a² ± 2ab + b²。
我记得有一次去市场买水果,摊主给我推荐苹果,说一箱苹果的数量可以用完全平方公式来计算。
假设每排有(x + 3)个,一共排了(x + 3)排,那这一箱苹果就有 x² + 6x + 9 个。
你看,生活中的这些小细节都能和整式乘法的公式联系起来。
说完整式乘法,咱们再聊聊因式分解。
因式分解的公式也特别有用。
比如用平方差公式进行因式分解,a² - b² = (a + b)(a - b)。
就像我组装家具的时候,一个大的木板需要切割成小块,我就得根据木板的尺寸,利用这个公式来计算怎么切才能最合理。
而运用完全平方公式进行因式分解,a² ± 2ab + b² = (a ± b)²。
这让我想起了做手工的时候,要把一块大布料裁剪成合适的形状,就得通过这个公式来规划裁剪的尺寸和方式。
整式乘法和因式分解的公式,不仅在数学的课堂里闪闪发光,在我们的日常生活中也是无处不在。
无论是计算物品的数量,还是规划空间的大小,它们都能派上大用场。
总之,整式乘法与因式分解的公式就像是数学世界里的魔法咒语,只要我们熟练掌握并灵活运用,就能轻松解决各种难题,让数学变得不再那么可怕,反而充满了乐趣和惊喜!希望大家都能和这些公式成为好朋友,在数学的海洋里畅游无阻。
整式的乘除知识点整理
一、知识点归纳: (一)幂的四种运算:1、同底数幂的乘法:⑴语言叙述:同底数幂相乘,底数不变,指数相加; ⑵字母表示:a m ·a n = a m+n ;(m ,n 都是整数) ;⑶逆运用:a m+n = a m ·a n2、幂的乘方:⑴语言叙述:幂的乘方,底数不变,指数相乘; ⑵字母表示:(a m ) n = a mn ;(m ,n 都是整数); ⑶逆运用:a mn =(a m )n =(a n )m ;3、积的乘方:⑴语言叙述:积的乘方,等于每个因式乘方的积; ⑵字母表示:(ab)n = a n b n ;(n 是整数); ⑶逆运用:a n b n = (a b)n ;4、同底数幂的除法:⑴语言叙述:同底数幂相除,底数不变,指数相减;⑵字母表示:a m ÷a n = a m-n ;(a≠0,m 、n 都是整数); ⑶逆运用:a m-n = a m ÷a n .(二)整式的乘法:1、单项式乘以单项式:⑴语言叙述:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
⑵实质:分三类乘:⑴系数乘系数;⑵同底数幂相乘;⑶单独一类字母,则连同它的指数照抄; 2、单项式乘以多项式:⑴语言叙述:单项式与多项式相乘,就是根据分配律用单项式去乘多项式中的每一项,再把所得的积相加。
⑵字母表示:c)=ma +mb +mc ;(注意各项之间的符号!) 3、多项式乘以多项式:(1)语言叙述:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加;(2)字母表示:=mn +mb +an +ab ;(注意各项之间的符号!) 注意点:⑴在未合并同类项之前,积的项数等于两个多项式项数的积。
⑵多项式的每一项都包含它前面的符号,确定乘积中每一项的符号时应用“同号得正,异号得负”。
⑶运算结果中如果有同类项,则要 合并同类项(三)乘法公式: 1、平方差公式:(1)语言叙述:两数和与这两数差的积,等于这两个数的平方差。
整式的乘法公式
整式的乘法公式整式的乘法公式是数学中的重要概念,它可以帮助我们快速、准确地进行整式的乘法运算。
在本文中,我将详细介绍整式的乘法公式及其应用。
一、整式的乘法公式整式是由常数和变量的乘积以及它们之间的加减运算所构成的代数式。
在乘法运算中,可以利用整式的乘法公式来简化计算。
整式的乘法公式包括以下几条:1. 乘法分配律:对于任意的整式a、b和c,有如下公式:a(b+c) = ab + ac(b+c)a = ba + ca这条乘法分配律的应用非常广泛,它可以用于加法和乘法的结合。
例如,对于整式3(x+2),根据乘法分配律,我们可以得到:3(x+2) = 3x + 62. 平方差公式:对于任意的整式a和b,有如下公式:(a+b)(a-b) = a^2 - b^2这条平方差公式在整式乘法中十分常用,可以用来求平方差的计算。
例如,对于整式(x+3)(x-4),根据平方差公式,我们可以得到:(x+3)(x-4) = x^2 - 4x + 3x - 12 = x^2 - x - 123. 三角形式乘法公式:对于任意的整式a、b和c,有如下公式:(a+b)(b+c)(c+a) = (ab+bc+ca)(a+b+c) - abc这条三角形式乘法公式常用于多项式的乘法运算。
例如,对于整式(x+1)(x+2)(x+3),根据三角形式乘法公式,我们可以得到:(x+1)(x+2)(x+3) = (x^2+3x+x+2)(x+3) - (x+1)(x+2)(x+3) =(x^2+4x+2)(x+3) - (x^2+3x)(x+3) = x^3 + 6x^2 +11x + 6二、整式的乘法公式的应用整式的乘法公式在代数学中有着广泛的应用。
下面我将通过实际例子来说明整式的乘法公式的应用。
例题1:计算(2x+3)(x+1)。
根据乘法分配律,我们可以按照以下步骤进行计算:(2x+3)(x+1) = 2x(x+1) + 3(x+1) = 2x^2 + 2x + 3x + 3 = 2x^2 + 5x + 3例题2:计算(3x+2)(3x-2)。
整式的乘法(复习)——多多、乘法公式
整式的乘法(复习)——多×多 乘法公式【知识点复习】【乘法公式的使用技巧】(一)、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础。
例1. 计算:(二)、连用:连续使用同一公式或连用两个以上公式解题。
例2. 计算:例3. 计算:(三)、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题。
(因式分解)例4. 计算:(四)、变用: 题目变形后运用公式解题。
例5. 计算:(五)、活用: 把公式本身适当变形后再用于解题。
这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:()()()()()()2222221.22.23.4.a b ab a b ab a b a b a b a b +-=-+=++-=+--==++×))((n m b a 多:多(1)平方差公式:=+)-)((b a b a (2)完全平方公式:①=+2)(b a②=2)-(b a(3)“pq 型”(补充公式):=++))((q x p x【跟踪练习】 计算:(1)(-2x -y)(2x -y)(2)19982-1998·3994+199722222211111(3)(1)(1)(1)(1)(1)234910---⋅⋅⋅--(4)化简:(2+1)(22+1)(24+1)(28+1)+1.(5)计算:(2x -3y -1)(-2x -3y +5)(6)已知a +b=9,ab=14,求2a 2+2b 2【乘法公式与几何图形的面积】1、请你观察图中的图形,依据图形面积的关系,不需要添加辅助线,便可得到一个你非常熟悉的公式,这个公式是______________。
2、(1)有若干块长方形和正方形硬纸片如图1所示.用若干块这样的硬纸片拼成一个新的长方形,如图2.①用两种不同的方法,计算图2中长方形的面积;②我们知道:同一个长方形的面积是确定的数值.由此,你可以得出的一个等式为:(2)有若干块长方形和正方形硬纸片如图3所示.请你用拼图等方法推出一个完全平方公式,画出你的拼图并说明推出的过程.3、图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为:(2)观察图②,三个代数式(m+n)2,(m-n)2,mn之间的等量关系是:(3)若x+y=-6,xy=5,则x-y=(4)观察图③,你能得到怎样的代数恒等式呢?【能力提高】 1、计算;(1)、22()()33m n m n -+-- (2)、2211(3)(3)22y x x y +-(3)、2222(2)(2)x y y x ---(4)、223()32x y -- (3)、(4)(3)x x +-(4)、(23)(23)x y x y +--+(5)、2()()()2a b a b a b a b ++-+-(6)、(a+2)(a 2+4)(a 4+16)(a -2)(7)、(8)、[(x +2y )(x -2y )+4(x -y )2-6x ]6x .(9)、22222(2)(2)(2)(2)x x y x y x y x y -+-+-+(10)、222(3)4(3)(3)3(3)a a a a +-+-+- 2、化简求值:(1)先化简,再求值:2(32)(32)5(1)(21)x x x x x +-----,其中13x =-.(2)先化简,再求值:2(1)(2)x x x ++-,其中243x =.(3)已知1582=+x x ,求2)12()1(4)2)(2(++---+x x x x x 的值.3、求值:(1)已知a -b =1 ,a 2+b 2=25 ,求ab 的值; (2)已知,21=-x x 求221xx +的值; (3)已知,16)(2=+y x 4)(2=y x - ,求xy 的值; (4)如果a 2+b 2-2a +4b +5=0 ,求a 、b 的值。
整式的乘法乘法公式
先算乘方,再算乘除,最后算 加减;
运用分配律
将括号内的代数式展开,并运用 分配律进行计算;
合并同类项
将同类项进行合并,得到最简结果 。
整式乘法公式的计算技巧
熟记公式
熟练掌握整式乘法公式,如平 方差公式、完全平方公式等;
化简代数式
在计算过程中,尽量化简代数 式,减少计算量;
灵活运用运算法则
整式乘法公式是一种简化的运算方法,适用于任何两个整式 的乘法运算。
整式乘法公式的特点
1
整式乘法公式具有普遍适用性,适用于任何两 个整式的乘法运算。
2
整式乘法公式可以简化复杂的计算过程,提高 运算效率。
3
整式乘法公式有助于培养学生的数学思维能力 和符号意识。
整式乘法公式的历史与发展
01
整式乘法公式是数学运算中的基本工具,有着悠久的历史和广 泛的应用。
2023
《整式的乘法乘法公式》
contents
目录
• 整式乘法公式概述 • 整式乘法公式的形式与证明 • 整式乘法公式的计算方法与技巧 • 整式乘法公式的应用实例
01
整式乘法公式概述
整式乘法公式的定义
整式乘法公式定义:整式乘法公式是单项式与单项式相乘, 把他们的系数,相同字母的幂分别相乘,其余字母连同他的 指数不变,作为积的因式的运算。
交换律公式
$(a+b)(c+d)=(a+b)(c+d)$
整式乘法公式的证明方法
分配律公式的证明
根据乘法分配律,可以得出$(a+b)(c+d)=ac+ad+bc+bd$。
结合律公式的证明
根据乘法结合律,可以得出$(a+b)(a+b)=a^2+2ab+b^2$。
整式的乘法和乘法公式
幂的乘方
结 积的乘方
a a ( m )n = mn ( ab )n= an b n
平方差公式 (a+b)(a-b) = a2-b2
完全平方公式 (a+b)2 = a2+2ab +b2
立方和(差)公式
(a +b)(a2+ab+b2) = a3+ b3
二次三项型乘法公式
(x+a)(x+b)= x2+(a+b)x+ab
()
(A)
(-
7 4
x2y
z
2)
(-
4 7
x
y2
)
=
x3 y 3
(B) (-2 105) ·(-103) ·(3 102) = -6 1010
(C)
(-
1 2
a2b3)3=
-
1 6
a8 b27
(D) (a3n)2·(b2)3n = (ab)6n
口答练习
(1) x3·x2= x5 (3) x ·(x2 )3= x7
(2) (a6 )2+(a4)3= 2a12
x x x (4) 2002 =
1999 3
·
(5)
(
1 7
)1997
·7
1998
=
7
(6) (-abc )2·(-ab) =-a3b3c2
(7) (+abc)2 ·(-ab) = - a3b3c2
比一比
(1) 计 算 (3x2 )3-7x3[x3-x(4x2+1)]
所以 a=1,b=1
(5)计算
选 (a-2b+3)(a+2b-3)的结果是( D)
整式的乘除—乘法公式
整式的乘除—乘法公式【复习】(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3 (a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2=x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )]=2x (-2y +2z )=-4xy +4xz【典例分析】例1.已知2=+b a ,1=ab ,求22b a +的值。
例2.已知8=+b a ,2=ab ,求2)(b a -的值。
例3:计算19992-2000×1998例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
例5:已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
整式加减乘除公式总结
整式加减乘除公式总结一、整式的基本概念整式是由常数和变量的乘积相加(或相减)而成的代数表达式。
整式的运算包括加法、减法、乘法和除法。
二、整式的加法1. 同类项相加:同类项指的是具有相同的字母和指数的项。
对于同类项的整式,只需将各同类项的系数相加即可,字母和指数保持不变。
2. 不同类项相加:不同类项指的是具有不同字母或不同指数的项。
对于不同类项的整式,直接合并即可,不需要进行合并运算。
三、整式的减法整式的减法运算相当于加上一个相反数。
即,将减数的各项改变符号,然后与被减数进行加法运算。
四、整式的乘法1. 单项式相乘:将两个单项式的系数相乘,字母和指数相乘。
2. 多项式相乘:将一个多项式的每一项与另一个多项式的每一项进行单项式相乘后再相加。
五、整式的除法整式的除法是指将一个整式除以另一个整式,得到一个商式和余式的过程。
1. 除数不为零:当除数不为零时,可以进行整式的除法运算。
2. 除数为零:当除数为零时,整式的除法运算无法进行。
六、整式加减乘除的综合运算整式加减乘除的运算顺序遵循数学运算的基本规则,先乘除后加减。
1. 先进行乘法和除法运算:按照乘法和除法的规则,将整式进行相应的运算。
2. 再进行加法和减法运算:按照加法和减法的规则,将已经经过乘法和除法运算的整式进行相应的运算。
七、整式加减乘除的应用整式的加减乘除在数学中有广泛的应用。
1. 代数方程的解:通过整式的加减乘除运算,可以解决代数方程的求解问题。
2. 几何问题的求解:通过整式的加减乘除运算,可以解决几何问题的求解,如面积、体积等问题。
3. 经济问题的分析:通过整式的加减乘除运算,可以解决经济问题的分析,如成本、收益等问题。
整式加减乘除是数学中常用的运算,它们的应用范围非常广泛。
掌握整式加减乘除的规则和运算方法,能够帮助我们解决各种数学问题,提高数学问题的解决能力。
在学习整式加减乘除的过程中,需要注意运算顺序和规则,避免出现错误。
通过不断练习和应用,我们能够熟练掌握整式加减乘除的技巧,并能灵活运用于实际问题的解决中。
整式的乘法知识点
整式得乘法知识点1、幂得运算性质:(a≠0,m、n都就是正整数)(1)a m·a n=a m+n同底数幂相乘,底数不变,指数相加.(2)=a mn 幂得乘方,底数不变,指数相乘.(3) 积得乘方等于各因式乘方得积.(4)=a m-n 同底数幂相除,底数不变,指数相减.例(1).在下列运算中,计算正确得就是()(A) (B)(C) (D)(2)=____ ___=2.零指数幂得概念:a0=1(a≠0)任何一个不等于零得数得零指数幂都等于l. 例:=3.负指数幂得概念: a- p=(a≠0,p就是正整数)任何一个不等于零得数得负指数幂,等于这个数得正指数幂得倒数.例:= =4.单项式得乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积得因式;对于只在一个单项式里含有得字母,则连同它得指数作为积得一个因式.例:(1) (2)5.单项式与多项式得乘法法则: a(b+c+d)= ab + ac + ad单项式与多项式相乘,用单项式与多项式得每一项分别相乘,再把所得得积相加.例:(1) (2)6.多项式与多项式得乘法法则:( a+b)(c+d)= ac + ad + bc + bd多项式与多项式相乘,先用一个多项式得每一项与另一个多项式得每一项相乘,再把所得得积相加. 例:(1) (2)7.乘法公式: ①完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2口诀:首平方、尾平方,乘积得二倍放中央.例:①(2x+5y)2=( )2 + 2×( )×( ) + ( )2=__________________;②=( )2 - 2×( )×( ) + ( )2=________________;③(-x+y)2 = ( )2 =__________;④(-m-n)2 = [ ]2 = ( )2_______________;⑤x2+__ _ +4y2 = (x+2y)2⑥+ ( )2②平方差公式:(a+b)(a-b)=a2-b2口诀:两个数与乘以这两个数得差,等于这两个数得平方差.注意:相同项得平方减相反项得平方例:①(x-4)(x+4) = ( )2 - ( )2 =________;②(3a+2b)(3a-2b) = ( )2 - ( )2 =_________________;③(-m+n )( m+n ) = ( )2-( )2 =___________________;④=( )2-( )2=___________;⑤(2a+b+3)(2a+b-3) =( )2-( )2=________________ ___= ;⑥(2a—b+3)(2a+b-3)=[ ][ ]=( )2-( )2另一种方法:(2a—b+3)(2a+b-3)==⑦( m+n )( m-n )( m2+n2 ) =( )( m2+n2 ) = ( )2 -( )2 =_______;⑧(x+3y)( ) = 9y2-x2③十字相乘:+ ( )一次项得系数就是与得,常数项就是与得例:=, = ,= , =1、若就是一个完全平方式,那么m得值就是__________。
初二数学公式大全
初二数学公式大全一、整式的乘法与因式分解。
1. 同底数幂的乘法。
- 公式:a^m· a^n=a^m + n(m、n都是正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方。
- 公式:(a^m)^n=a^mn(m、n都是正整数)。
- 例如:(3^2)^3=3^2×3=3^6。
3. 积的乘方。
- 公式:(ab)^n=a^nb^n(n是正整数)。
- 例如:(2×3)^2=2^2×3^2=4×9 = 36。
4. 整式的乘法。
- 单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
- 例如:2x^2·3x^3=(2×3)(x^2· x^3) = 6x^5。
- 单项式与多项式相乘:m(a + b+c)=ma+mb + mc。
- 例如:2x(x + 3)=2x^2+6x。
- 多项式与多项式相乘:(a + b)(m + n)=am+an+bm+bn。
- 例如:(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x+6。
5. 平方差公式。
- 公式:(a + b)(a - b)=a^2-b^2。
- 例如:(3 + 2)(3 - 2)=3^2-2^2=9 - 4 = 5。
6. 完全平方公式。
- (a± b)^2=a^2±2ab + b^2。
- 例如:(x+1)^2=x^2+2x + 1,(x - 1)^2=x^2-2x + 1。
7. 因式分解。
- 提公因式法:ma+mb+mc=m(a + b + c)。
- 例如:3x^2+6x=3x(x + 2)。
- 公式法:- 平方差公式:a^2-b^2=(a + b)(a - b)。
- 例如:x^2-4=(x + 2)(x - 2)。
- 完全平方公式:a^2±2ab + b^2=(a± b)^2。
整式乘法公式
整式乘法公式
整式乘法公式是指将一个整式乘以另一个整式,并得出最终结果的一种公式。
整式乘法公式可以用来解决各种数学问题,例如求解多项式的乘积、积分运算等。
整式乘法公式的基本结构是:(a+b)(c+d)=ac+ad+bc+bd,其中a,b,c,d分别是整式中的四个单项,ac表示a乘以c的积,ad表示a 乘以d的积,bc表示b乘以c的积,bd表示b乘以d的积,最后结果是ac+ad+bc+bd。
整式乘法公式可以用来解决多项式的乘积问题。
首先,需要将多项式分解成单项,并用整式乘法公式进行运算。
例如,求解(x-2)(x+3) 的积,首先将其分解为(x-2)(x) + (x-2)(3),然后根据整式乘法公式,最终结果为x^2-2x+3x-6,即 x^2+x-6。
另外,整式乘法公式也可以用来解决积分运算问题。
积分运算是求解一个函数在一定区间上的积分,例如求解 f(x) = x^2+3x+2 在区间[0,1] 上的积分。
首先,将函数f(x) 进行分解,即f(x) = (x+2)(x+1),然后根据整式乘法公式,最终结果为x^2+3x+2,即积分的结果为x^3/3+3x^2/2+2x。
总之,整式乘法公式是一种非常有用的公式,它可以用来解决多项式的乘积以及积分运算等多项数学问题。
在解决这些数学问题时,
要特别注意把握整式乘法公式,才能得到正确的答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式乘法公式-CAL-FENGHAI.-(YICAI)-Company One1
乘法公式专项过关训练
一计算
(1) (-m+5n)(-m-5n) (2) (3x-1)(3x+1) (1) (x+6)2 (3) (y-5)2
(4) (-2x+5)2 (5) (
34x-23
y)2 (6) (y+3x)(3x-y) (7) (-2+ab)(2+ab)
(8) (2x-3)2 (9) (-2x+3y)(-2x-3y) (10) (12m-3)(12
m+3)
(11) (13
x+6y)2 (12)(y+2)(y-2)-(y-1)(y+5)
(13) (x+1)(x-3)-(x+2)2+(x+2)(x-2) (14) (a+2b-1)2
(15) (2x+y+z)(2x-y-z) (16)22)2()2()2)(12(+---+-x x x x
(17)1241221232⨯- (18)(2x +3)(2x -3)-(2x-1)2
(19)、(2x +y +1)(2x +y -1) (20))3)(12(--x x
二、判断正误:对的画“√”,错的画“×”.
(1)(a-b)(a+b)=a 2-b 2; ( ) (2)(b+a)(a-b)=a 2-b 2; ( )
(3)(b+a)(-b+a)=a 2-b 2; ( ) (4)(b-a)(a+b)=a 2-b 2; ( )
(5)(a-b)(a-b)=a 2-b 2. ( ) (6)(a+b)2=a 2+b 2; ( ) (7)(a-b)2=a 2-b 2; ( ) (8)(a+b)2=(-a-b)2; ( )
(9)(a-b)2=(b-a)2. ( )
三、填空题
6、______________)3)(32(=-+y x y x ;
7、_______________)52(2=+y x ;
8、______________)23)(32(=--y x y x ;
9、______________)32)(64(=-+y x y x ;
10、________________)22
1(2=-y x 11、____________)9)(3)(3(2=++-x x x ;
12、___________1)12)(12(=+-+x x ;
13、4))(________2(2-=+x x ;
14、_____________)3)(3()2)(1(=+---+x x x x ;
15、____________)2()12(22=+--x x ;
16、224)__________)(__2(y x y x -=-+;
17、______________))(1)(1)(1(42=++-+x a x x x
18、 如果多项式92+-mx x 是一个完全平方式,则m 的值是 。
19、如果多项式k x x ++82是一个完全平方式,则k 的值是 。
20、()()_________22=--+b a b a ()__________2
22-+=+b a b a 四、1、已知12,3-==+ab b a ,求下列各式的值.(1)22b ab a +- (2) 2)(b a -.
2、.已知________,60,172=+==+y x xy y x 2则
五、计算 1、______________12()12)(12)(12(242=++++)n
______________12979899100222222=-+⋯⋯+-+- 2、若13a a +
=,则221a a
+的值是 。
六、图a 是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形。
图a
图b
(1)你认为图b 中的阴影部分的正方形的边长等于 。
(2)请用两种不同的方法求图b 中阴影部分的面积。
方法1:
方法2:
(3)观察图b 你能写出下列三个代数式之间的等量关系吗
代数式: ()(). , ,2
2mn n m n m -+
(4)根据(3)题中的等量关系,解决如下问题:
若5,7==+ab b a ,求2)(b a -的值。
七、阅读填空。
(1). ①(x-1)(x+1)=x 2-1 ②(x-1)(12++x x )=x 3-1
③(x-1)(x 3+12++x x )=x 4-1
④(x-1)(x 4+x 3+12++x x )=x 5-1
(2).根据上述规律,并用你发现的规律直接写出下列各题的结果。
①(x-1)(x 6+x 5+x 4+x 3+12++x x )=
②若(x-1)•Φ=12008-x ,求Φ , Φ=。