直线的参数方程

合集下载

选修4-4 第五节几种常见的参数方程

选修4-4 第五节几种常见的参数方程

x=1+2cos t, (0≤t≤π),把它化为普通 y=-2+2sin t
方程,并判断该曲线表示什么图形.
所求的曲线的参数方程为 (x-1)2+(y+2)2=4(-2≤y≤0). 这是一个半圆,其圆心为(1,-2),半径为 2.
例2
已知圆的普通方程为
x2+y2+2x-6y+9=0, 将它化为参
轴上,所以椭圆的标准方程为 + =1, 25 16 x=4cos θ , 故参数方程为 (θ 为参数). y=5sin θ
y2
x2
(x-1)2 (y+2)2 1. 写出圆锥曲线 + =1 的 3 5
例1
x=5+3t, 设直线的参数方程为 y=10-4t.
(1)求直线的普通方程; (2)化参数方程为标准形式.
解析:(1) 4x+3y-50=0.
3 4 4 k tan (2) 3 cos α =- ,sin α = . 5 5 3 x=5- u, 5 则参数方程的标准形式为: 4 y=10+ u. 5
例 3 已知直线 l 的方程为 3x-4y+1=0,点 P(1,1)在 直线 l 上,写出直线 l 的参数方程,并求点 P 到点 M(5,4)和 点 N(-2,6)的距离.
3 解析:由直线方程 3x-4y+1=0 可知,直线的斜率为 ,设直线的 4 3 3 4 则 tan α = ,sin α = ,cos α = . 4 5 5
制作人:葛海泉
课前预习
1.பைடு நூலகம்线的参数方程
x=x0+tcosα , 1. 经过点 M0(x0, y0), 倾斜角为 α 的直线 l 的参数方程为 y=y0+tsinα
(t 为参数).
t0

直线的参数方程及应用

直线的参数方程及应用

直线的参数方程及应用直线的参数方程及应用直线参数方程的标准式过点P(x,y),倾斜角为α的直线l的参数方程是x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(x,y)为直线上的任意一点。

直线l上的点与对应的参数t是一一对应关系。

若P1、P2是直线上两点,所对应的参数分别为t1、t2,则P1P2 = t2 - t1,|P1P2| = |t2 - t1|。

若P1、P2、P3是直线上的点,所对应的参数分别为t1、t2、t3,则P1P2中点P3的参数为t3 = (t1 + t2)/2,|PP3| = |(t1 + t2)/2|。

若P为P1P2的中点,则t1 + t2 = 0,t1·t2 < 0.直线参数方程的一般式过点P(xb,y),斜率为k = a的直线的参数方程是x = x + aty = y + bt其中t为参数,表示有向线段PP的数量,P(xb,y)为直线上的任意一点。

直线的参数方程给定点P(xl,y),倾斜角为α,求经过该点的直线l的参数方程。

直线l的参数方程为x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。

特别地,若直线l的倾斜角α = 90°,直线l的参数方程为x = x + ty = y其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。

2、直线的参数方程与标准形式如果直线的方向已知,那么可以使用参数方程来表示直线。

对于倾斜角为 $\alpha$,过点 $M(x,y)$ 的直线 $l$,其参数方程一般式为:begin{cases}x=x_M+t\cos\alpha \\y=y_M+t\sin\alphaend{cases}其中 $t$ 是参数,表示从点 $M$ 沿着直线 $l$ 方向前进的距离。

如果要将参数方程转化为标准形式,可以通过以下步骤:1.消去参数 $t$,得到 $y-y_M=\dfrac{\sin\alpha}{\cos\alpha}(x-x_M)$。

参数方程

参数方程

点(0,0)到直线 x-y+1=0 的距离为
1|20+-(0+-11|)2=
1= 2
22,
所以点
P
到直线
l
距离的最大值为
2+
2 2.
知识网络
要点归纳
题型研修
题型三 圆锥曲线的参数方程及其应用
对于椭圆的参数方程,要明确a,b的几何意义以及离心角φ 的意义,要分清椭圆上一点的离心角φ和这点与坐标原点连 线倾斜角θ的关系,双曲线和抛物线的参数方程中,要注意 参数的取值范围,且它们的参数方程都有多种形式.

23t2+12t2=7,
整理得 t2-4 3t+9=0.
(1)设 A 和 B 两点对应的参数分别为 t1 和 t2,由根与系数的关系得 t1+t2=4 3,t1·t2=9.
故|AB|=|t2-t1|= (t1+t2)2-4t1t2=2 3.
(2)设圆过 P0 的切线为 P0T,T 在圆上,则|P0T|2=|P0A|·|P0B|=|t1t2| =9,∴切线长|P0T|=3.
x=4cos y=4sin
θ θ
, (θ 为参数,且 0≤θ<2π
),点 M 是曲线 C1 上的
动点.
(1)求线段OM的中点P的轨迹的直角坐标方程;
(2)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标
系,若直线l的极坐标方程为ρcos θ-ρsin θ+1=0(ρ>0),
求点P到直线l距离的最大值.
另有一点xy= =- 0,4.∴所求的参数方程为xy= =- -44+ k482+k-k2k, 126, (k 为参数)和xy= =- 0,4.
知识网络
要点归纳
题型研修
跟 踪 演 练 1 已 知 椭 圆 C 的 极 坐 标 方 程 为 ρ2 =

直线的参数方程

直线的参数方程

直线的参数方程(1)直线的标准参数方程:经过定点,倾斜角为的直线的参数方程为:(为参数);性质:(2)直线的一般参数方程:过定点,且其斜率为的直线的参数方程为: 性质:(为参数,为为常数,)例1.把y=2x+3化为参数方程。

变式:直线l 的方程:1sin 252cos 25x t y t ì=-ïí=+ïî(t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°例2. 已知直线l:15x t y ì=+ïíï=-î (t 为参数)与直线m:0x y --=交于P 点, 求点M(1,-5)到点P 的距离.例3:已知直线L过点M(1,1),且倾斜角的余弦值为35,L与圆229x y+=交与A,B,且AB中点为C(1)求L的参数方程(2)求中点C所对应的参数t及C点坐标(3)求|CM|(4)求|AM|(5)求|AB|(6)求|MA|+|MB|(7)求|MA||MB|二、根据t的式子求解1.在平面直角坐标系中,圆的参数方程为(为参数),直线经过点,倾斜角.(Ⅰ)写出圆的标准方程和直线的参数方程;(Ⅱ)设与圆相交于、两点,求的值.2.在直角坐标系xOy中,直线的参数方程为(为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为ρ=2sinθ.(1)求圆C的直角坐标方程;(2)设圆C与直线交于点.若点的坐标为(3,),求.3.在直角坐标系中,以原点为极点,以轴正半轴为极轴,圆的极坐标方程为(Ⅰ)将圆的极坐标方程化为直角坐标方程;(Ⅱ)过点作斜率为1直线与圆交于两点,试求的值.4.在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为 (为参数),与分别交于. (Ⅰ)写出的平面直角坐标系方程和的普通方程; (Ⅱ)若成等比数列,求的值.5.已知圆锥曲线(为参数)和定点,、是此圆锥曲线的左、右焦点,以原点为极点,以轴的正半轴为极轴建立极坐标系.(1)求直线的直角坐标方程; (2)经过点且与直线垂直的直线交此圆锥曲线于、两点,求的值.6.在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交于A ,B 两点,AB =求l 的斜率.圆的参数方程已知圆心为,半径为的圆的参数方程为:(是参数,);1.在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos r q =,0,2p q 轾Î犏臌. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.椭圆的参数方程椭圆()的参数方程(为参数)。

高中数学直线参数方程

高中数学直线参数方程

直线参数方程1、直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3则P 1P 2中点P 3的参数为t 3=221tt +,∣P 0P 3∣=221t t +(4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<02、直线参数方程的一般式过点P 0(00,y x ),斜率为abk =的直线的参数方程是⎩⎨⎧+=+=bt y y atx x 00 (t 为参数)一、直线的参数方程问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α的直线l设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时,P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数,又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α即⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点P(y x ,)的有向线段的数量,且|P 0P |=|t|x①当t>0时,点P 在点P 0的上方; ②当t =0时,点P 与点P 0重合; ③当t<0时,点P 在点P 0的下方;特别地,若直线l 的倾斜角α=0时,直线⎧+=0tx x ④当t>0时,点P 在点P 0的右侧; ⑤当t =0时,点P 与点P 0重合;⑥当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一对应关系?我们把直线l 看作是实数轴,以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系.问题3:P 1、P 2为直线l 则P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2问题4:若P 0为直线l 上两点P 1、P 2的中点,P 1、P 2 参数分别为t 1、t 2 ,则t 1、t 2之间有何关系? 根据直线l 参数方程t 的几何意义, P 1P =t 1,P 2P =t 2,∵P 0为直线l 上两点P 1、P 2的中点,∴|P 1P |=|P 2P |P 1P =-P 2P ,即t 1=-t 2, t 1t 2<0一般地,若P 1、P 2、P 3是直线l 上的点, 所对应的参数分别为t 1、t 2、t 3,P 3为P 1、P 2 则t 3=221t t + (∵P 1P 3=-P 2P 3, 根据直线l 参数方程t 的几何意义,∴P 1P 3= t 3-t 1, P 2P 3= t 3-t 2, ∴t 3-t 1=-(t 3-t 2,) )性质一:A 、B 两点之间的距离为||||21t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|21t t性质二:A 、B 两点的中点所对应的参数为221t t +,若0M 是线段AB 的中点,则 021=+t t ,反之亦然。

直线的参数方程及应用

直线的参数方程及应用

直线的参数方程及应用1、 直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ⎩⎨⎧+=+=ααs i n c o s00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)为直线上任意一点.P 0P=t ∣P 0P ∣=t(2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1,∣P 1P 2∣=∣t 2(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t +2.直线参数方程的一般式过点P 0(00,y x ),斜率为ab k =的直线的参数方程是:⎩⎨⎧+=+=bty y at x x 00 (t 为参数) 例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,例2:化直线2l 的参数方程⎩⎨⎧+=+-= t313y t x (t 为参数)为普通方程,并求倾斜角, 说明∣t ∣的几何意义.例3:已知直线l 过点M 0(1,3),倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y tx 233211(t 为参数)和方程⎩⎨⎧+=+= t331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.例4:写出经过点M 0(-2,3),倾斜角为43π的直线l 的标准参数方程,并且求出直线l 上与点M 0相距为2的点的坐标.例5:已知直线l 过点P (2,0),斜率为34,直线l 和抛物线x y 22=相交于A 、B 两点, 设线段AB 的中点为M,求:(1)P 、M 两点间的距离|PM|;(2)M 点的坐标; (3)线段AB 的长|AB|例6:已知直线l 经过点P (1,-33),倾斜角为3π, (1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ |; (2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积.例7:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右,直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.xy ,)例8:已知椭圆134)1(22=+-y x ,AB 是通过左焦点F 1的弦,F 2为右焦点, 求| F 2A |·| F 2B |的最大值.方法总结:利用直线l 的参数方程⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数),给研究直线与圆锥曲线C :F(y x ,)=0的位置关系提供了简便的方法.一般地,把l 的参数方程代入圆锥曲线C :F(y x ,)=0后,可得一个关于t 的一元二次方程,)(t f =0, 1、(1)当Δ<0时,l 与C 相离;(2) 当Δ=0时,l 与C 相切;(3) 当Δ>0时,l 与C 相交有两个交点;2、 当Δ>0时,方程)(t f =0的两个根分别记为t 1、t 2,把t 1、t 2分别代入l 的参数方程即可求的l 与C 的两个交点A和B 的坐标.3、 l 被C 截得的弦AB 的长|AB|=|t 1-t 2|;P 0A ·P 0B= t 1·t 2;弦AB 中点M 点对应的参数为221t t +;| P 0M |=221t t +基础知识测试1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、 直线l 的方程:⎩⎨⎧+=-= 25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=ty t x 521511(t 为参数)的斜率和倾斜角分别是( )A) -2和arctg(-2) B) -21和arctg(-21) C) -2和π-arctg2 D) -21和π-arctg 214、 已知直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ(λ≠-1),则P 所对应的参数是 .5、直线l :⎩⎨⎧+=+=bty y at x x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣B 22b a +∣t 1-t 2∣C 2221b a t t +- D ∣t 1∣+∣t 2∣6、 已知直线l :⎩⎨⎧+-=+= t351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离.7、 直线⎩⎨⎧+-=+=t21y t x (t 为参数)与椭圆8222=+y x 交于A 、B 两点,则|AB|等于( ) 8、直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)与二次曲线A 、B 两点,则|AB|等于( )A |t 1+t 2|B |t 1|+|t 2|C |t 1-t 2| D221t t +9、 直线⎪⎩⎪⎨⎧+-=-=t211212y t x (t 为参数)与圆122=+y x 有两个交点A 、B ,若P 点的坐标为(2,-1),则|PA|·|PB|=10、过点P(6, 27)的直线⎪⎩⎪⎨⎧+=+=t 2726y t x 与抛物线y 2=2x 相交于A 、B 两点,则点P 到A,B 距离之积为 11.直线⎩⎨⎧-=+=20cos 420sin 3t y t x (t 为参数)的倾斜角 .。

直线的标准参数方程

直线的标准参数方程

直线的标准参数方程直线是平面几何中的基本图形之一,它具有许多重要的性质和应用。

在直角坐标系中,直线的方程有多种表示形式,其中标准参数方程是一种常用的形式。

本文将介绍直线的标准参数方程的定义、推导方法和应用示例。

一、定义。

直线的标准参数方程是指用参数形式表示直线的方程。

设直线L上有一点P(x, y),则点P到直线L上某一固定点A的距离与点P到直线L的方向垂直的距离成比例。

这里引入参数t,点P的坐标可以表示为x=x0+mt,y=y0+nt,其中m和n是常数,称为参数。

二、推导方法。

1. 已知直线上的两点A(x1, y1)和B(x2, y2),求直线的标准参数方程。

设直线上任一点P(x, y),则向量AP=(x-x1, y-y1),向量AB=(x2-x1, y2-y1)。

由于向量AP与向量AB垂直,根据向量的垂直条件可得(x-x1, y-y1)·(x2-x1, y2-y1)=0,展开得到(x-x1)(x2-x1)+(y-y1)(y2-y1)=0,整理可得直线的标准参数方程。

2. 已知直线的斜率k和截距b,求直线的标准参数方程。

直线的斜率k定义为k=(y2-y1)/(x2-x1),截距b定义为y=kx+b。

将y=kx+b代入直线方程中,整理可得x=(x1-kt)/(1-k),y=(y1-kt)/(1-k),即为直线的标准参数方程。

三、应用示例。

1. 求直线通过两点A(1, 2)和B(3, 4)的标准参数方程。

根据推导方法1,代入已知点的坐标得到(x-1)(3-1)+(y-2)(4-2)=0,整理得到直线的标准参数方程。

2. 求直线的斜率为2,截距为3的标准参数方程。

根据推导方法2,代入已知斜率和截距得到x=(1-2t)/(1-2),y=(2-2t)/(1-2),即为直线的标准参数方程。

综上所述,直线的标准参数方程是一种常用的表示形式,通过已知直线上的点或斜率和截距可以求得直线的标准参数方程。

在实际问题中,标准参数方程可以方便地描述直线的性质和运动规律,具有重要的应用价值。

直线标准参数方程

直线标准参数方程

直线标准参数方程
x
《直线标准参数方程》
直线的标准参数方程是一种几何形式,用于描述直线的性质,表示直线的位置,方向,长度,以及与其他直线之间的关系。

它可以用一个公式表示,为:
Ax + By + C = 0
其中,A,B和C是实数,A和B不能同时为零。

当A和B都不为0时,以A和B确定直线的斜率,C确定直线与原点的距离。

在这里,A,B,C的取值受到斜率和距离的限制,且有一定的规律:
(1)当A,B和C都不为0时,C的符号取决于斜率是否小于1,即:
①当斜率小于1时,C为正;
②当斜率大于1时,C为负。

(2)当A或B不为0时,当斜率大于或小于1时,A,B及C的符号可能不一定;
(3)当A不为0而B为0时,A为正,C,B及C不一定。

符号及规律只影响参数A,B,C的取值,不影响直线的位置,方向和长度。

因此,直线的标准参数方程可以表示为:Ax + By + C = 0,它
与斜率和距离之间有着紧密的联系,且可根据斜率及距离的不同来决定A,B和C的取值。

直线的参数方程

直线的参数方程

1.运动(一般)式:
x y
x0 y0
vx vy
t t
(t为参数) (t为时间)
vy
M(x,y)
vx
M0(x0,y0)
2.数量(标准)式:
(t为参数) M0(x0,y0)
(t为数量)
M(x,y)
x
注1.区分: 运动特例数量式 非负为1平方和
运动(一般)式
x y
x0 y0
at bt
数量(标准)式 a2 b2 1
x y
1 2t at 2 .
,(t为为参参数
,aa∈ R
)) ,且点M(5,4)在C
则常数a=__1_____
(4)若曲线M:
x
y
sin cos 2
A.(2,7)
B. (1 , 1) 32
(θ为参数) ,则在M上的点是
C. (1 , 1) 22
【C】 D.(1,0)
二、直线的参数方程
一、以焦点F为极点,以对称轴为极轴的极坐标系:
建立如图所示的极坐标系,
则圆锥曲线有统一的极坐标方程
M(ρ,θ)
ep
F
x
1 e cos
注1:椭圆(双曲线)的焦参数 p b2c注2:若AB为焦源自弦,则|AB|
2ep
1 e2 cos2
;
1 1 2 | AF | | BF | ep
二、以直角坐标系的x正半轴为极轴的极坐标系:
cos 20
数形结合巧转化 类比三角辅助角
除以振幅正余弦 同+异-纵为正
(7)将直线的普通方程 x 3y 1 0 改写成参数方程
析①
:直线的参数方程为
x
y
x0 y0
t t

直线的标准参数方程

直线的标准参数方程

直线的标准参数方程直线是平面几何中最基本的图形之一,它具有许多重要的性质和特点。

在直角坐标系中,直线可以通过不同的方程来描述,其中标准参数方程是一种常用的描述方法。

本文将详细介绍直线的标准参数方程,包括其定义、性质和应用。

一、标准参数方程的定义。

直线的标准参数方程是指通过直线上任意一点到直线上某一固定点的距离与该点到另一固定点的距离之比为常数的方程。

设直线上某一点为P(x,y),直线上固定点为A(x₁,y₁)和B(x₂,y₂),则直线的标准参数方程可以表示为:(x x₁)/(x₂ x₁) = (y y₁)/(y₂ y₁)。

其中(x,y)为直线上任意一点的坐标。

二、标准参数方程的性质。

1. 直线的标准参数方程是直线的一般方程的一种特殊形式,通过标准参数方程可以方便地求出直线的斜率和截距。

2. 标准参数方程中的参数是直线上任意一点的坐标,通过参数的取值范围可以确定直线的位置和方向。

3. 直线的标准参数方程可以方便地表示直线的交点、垂直平分线、角平分线等相关性质。

三、标准参数方程的应用。

1. 在平面几何中,直线的标准参数方程可以用于求解直线的方程和性质,进而解决与直线相关的几何问题。

2. 在工程和物理学中,标准参数方程可以用于描述直线运动的轨迹和方向,为实际问题的分析和求解提供便利。

3. 在计算机图形学和计算机辅助设计领域,标准参数方程可以用于描述和绘制直线,实现图形的生成和变换。

四、总结。

直线的标准参数方程是描述直线的一种重要方法,它具有简洁、直观的特点,适用于多个领域的问题求解。

通过标准参数方程,我们可以方便地求解直线的性质、应用于实际问题的分析和计算,是平面几何和相关学科中不可或缺的重要工具。

以上就是关于直线的标准参数方程的介绍,希望对您有所帮助。

如果您对此有任何疑问或者补充,欢迎留言讨论。

直线的参数方程

直线的参数方程
'2
t t ( t t ) 4t t
' 1 ' 2 ' 1 ' 2 2 ' ' 1 2
4 17
.
练习
2.动点M作匀速直线运动,它在x轴和y轴方向的 分速度分别是3m/s和4m/s,直角坐标系的长 度单位是1cm,点M的起始位置在点M0(2,1)处, 求点M的轨迹的参数方程.
y
B
A M(x,y)
0
(t是参数)
M0(x0,y0)
0
O
x •t表示有向线段M0P的数量。|t|=| M0M|
若M 0为中点, t 0 t1+t 2 0
•t只有在标准式中才有上述几何意义 设A,B为直线上任意两点,它们所对应的参 数值分别为t1,t2. (1)|AB|= t1 t 2
直线的参数方程
直线的参数方程(标准式)
x x 0 t cos 直线的参数方程 ( t为参数) y y 0 t sin
其中(x 0 , y0 )时直线上的定点, 是倾斜角; 其对应的 普通方程为y y0 k ( x x0 )或x x0。 t表示几何意义: M( (x, y )(不同于点M 0)的 0 x0 , y0 )到直线上的点M 有向线段M 0 P的数量.
(2)M是AB的中点,求M对应的参数
t1 t 2 2
1 x 1 t 2 5.一条直线的参数方程是 (t为参数), y 5 3 t 2 另一条直线的方程是x-y-2 3 0, 则两直线的交点 与点(1,-5)间的距离是
4 3
6.动点M作等速直线运动,它在x轴和y轴方向分 速度分别为9,12,运动开始时,点M位于A(1,1), 求点M的轨迹的参数方程. x 1 9t (t为参数) y 1 12t

关于直线的参数方程

关于直线的参数方程

关于直线的参数方程直线是平面几何中最基础的几何图形之一,其具有简洁的参数方程表示方法,可以方便地描述直线的性质和特征。

本文将详细介绍直线的参数方程及其应用。

一、直线的定义直线是由无数个点组成的一条无宽度的线段,它没有起点和终点,只有一个方向。

直线有着重要的几何性质,例如平行、垂直等。

二、直线的一般方程一般来说,直线的方程可以用直线上的两个点表示。

假设直线上有两个点A(x1,y1)和B(x2,y2),直线AB的斜率为k,那么直线AB的一般方程为:y = mx + b其中m为斜率,b为截距,可以通过两点的坐标计算得到。

三、直线的点斜式方程点斜式方程是直线的另一种表示方式,它由直线上的一个点的坐标和直线的斜率决定。

假设直线上有一个点A(x1,y1)和斜率k,那么直线的点斜式方程为:y-y1=k(x-x1)四、直线的截距式方程截距式方程是直线的第三种表示方式,它由直线在x轴和y轴上的截距决定。

假设直线在x轴上的截距为a,在y轴上的截距为b,那么直线的截距式方程为:x/a+y/b=1参数方程是直线的一种特殊表示方式,它由直线上的一个点的坐标和直线的方向向量决定。

假设直线上有一个点A(x1,y1)和方向向量v=(a,b),那么直线的参数方程为:x = x1 + aty = y1 + bt其中t为参数,可以取任意实数。

六、参数方程的特点与应用1.参数方程表示直线的形式简洁,可以直观地描述直线的位置和方向。

2.通过调节参数t的值,可以在直线上获取任意一点的坐标。

3.参数方程可以方便地描述直线的运动轨迹,例如在平面内做匀速直线运动的物体。

七、例题分析1.用参数方程表示过点A(2,3)且以向量v=(1,2)为方向的直线。

解:直线的参数方程为:x=2+t(1)y=3+t(2)或者简化为:x=2+ty=3+2t2.已知直线的点斜式方程为y-4=-2(x-1),求直线的参数方程。

解:将点斜式方程转化为参数方程,得到:x-1=ty-4=-2t即:x=1+ty=4-2t八、总结直线的参数方程是一种便于描述直线性质和应用的表示方法。

直线的参数方程

直线的参数方程

8 由根与系数的关系,t′1+t′2=- , 5 t′1· t′2=-4. 根据参数 t′的几何意义. 12 5 |t′1-t2′|= t′1+t′2 -4t′1t′2= 5 . 12 5 故直线被圆截得的弦长为 5 .
x x0 at (t为参数) y y0 bt
a 2 2 x x ( a b t) 0 2 2 a b b y y0 ( a 2 b 2 t) 2 2 a b
x 1 t y 3 3 t
1 2 2 x 1 ( 1 ( 3 ) t) 2 2 1 ( 3) 3 y 3 ( 12 ( 3 ) 2 t ) 2 2 1 ( 3 )
【自主解答】
x=1+2t, 将参数方程 y=2+t
(t 为参数)转化
为直线参数方程的标准形式为 x=1+ y=2+ 2 t′, 5 1 t′ 5
(t′为参数)
代入圆方程 x2+y2=9, 2 1 2 得(1+ t′) +(2+ t′)2=9, 5 5 整理,有 5t′2+8t′-4 5=0.
(θ 为参数)交于 A,
B 两点,求|PA|· |PB|. 【解】 (1)直线 l 的参数方程为
5 3 x=-3+tcos6π=-3- 2 t, y=3+t sin5π=3+ t . 6 2
(t 为参数)
(2)把曲线 C 的参数方程中参数 θ 消去,得 4x2+y2-16 =0. 把直线 l 的参数方程代入曲线 C 的普通方程中,得 3 2 1 2 4(-3- t) +(3+ t) -16=0. 2 2 即 13t2+4(3+12 3)t+116=0. 由 t 的几何意义,知 |PA |· |PB |=|t1· t2|, 116 故|PA |· |PB |= |t1· t2|= 13 .

直线的参数方程

直线的参数方程

1直线的参数方程直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数) t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)为直线上任意一点P 0P=t ,∣P 0P ∣=|t| 当t>0时,点P 在点P 0的上方;当t =0时,点P 与点P 0重合;当t<0时,点P 在点P 0的下方.若直线l 的倾斜角α=0时,直线l 的参数方程为⎩⎨⎧=+=00y y t x x (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1,|P 1P 2∣=∣t 2-t 1∣ (3)若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 直线参数方程的一般式过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ⎩⎨⎧+=+=bt y y at x x 00 (t 为参数)斜率tan b k a α== 当22b a +=1时,则t 的几何意义是有向线段M M 0的数量.当22b a +≠1时,则t 不具有上述的几何意义. ⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+ 则可得到标准式⎪⎪⎩⎪⎪⎨⎧'++='++=t b a b y y t b a a x x 220220 t '的几何意义是有向线段M M 0的数量. 1、化直线2l 的参数方程⎩⎨⎧+=+-= t313y t x (t 为参数)为普通方程,并求倾斜角, 说明∣t ∣的几何意义.2、直线⎩⎨⎧-=+=20cos 420sin 3t y t x (t 为参数)的倾斜角 . 3、直线l 的方程: ⎩⎨⎧+=+=bty y at x x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,2 那么|AB|等于( ) A ∣t 1-t 2∣ B 22b a +∣t 1-t 2∣ C2221b a t t +- D ∣t 1∣+∣t 2∣ 4、已知直线l 经过点P (1,-33),倾斜角为3π, (1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ |;(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积.5、在直角坐标系x y O 中,直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,C的极坐标方程为ρθ=.(I )写出C 的直角坐标方程; (II )P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.6、已知直线52:12x t l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M的直角坐标为,直线l 与曲线C 的交点为A ,B ,求||||MA MB ⋅的值.一般地,把l 的参数方程代入圆锥曲线C :F(y x ,)=0后,可得一个关于t 的一元二次方程,)(t f =0,(1)当Δ<0时,l 与C 相离;(2) 当Δ=0时,l 与C 相切;(3) 当Δ>0时,l 与C 相交有两个交点;当Δ>0时,方程)(t f =0的两个根分别记为t 1、t 2,把t 1、t 2分别代入l 的参数方程即可求的l 与C 的两个交点A 和B 的坐标.,定点P 0(00,y x )是弦AB 中点⇔ t 1+t 2=0,l 被C 截得的弦AB 的长|AB|=|t 1-t 2|;P 0A ·P 0B= t 1·t 2;弦AB 中点M 点对应的参数为221t t +;| P 0M |=221t t +。

直线的参数方程及弦长公式

直线的参数方程及弦长公式

直线的参数方程及弦长公式直线是几何学中非常基础的概念,常用于描述两点之间的最短路径。

在数学中,直线可以通过参数方程来表示。

本文将介绍直线的参数方程以及计算直线上两点之间的弦长公式。

直线的参数方程直线的参数方程可以通过一个参数来表示。

一条直线可以平行于 x 轴、y 轴或者斜率不为零,这里我们以斜率不为零的情况进行讨论。

对于一条斜率不为零的直线,我们可以通过两个参数 x 和 y 来表示,其中 x 是直线上的任一点横坐标,y 是对应的纵坐标。

假设直线上已知一点坐标为(x₁, y₁),斜率为 k。

我们通过以下步骤可以求得直线的参数方程:1.利用斜率公式k = (y₂ - y₁) / (x₂ - x₁),选择另外一个已知点坐标(x₂,y₂)。

2.将斜率公式变形得到 y = k * (x - x₁) + y₁,即为直线的参数方程。

在参数方程中,x 是一个自变量,y 是一个关于 x 的函数。

弦长公式弦长是指直线上两点之间的距离,可以通过两点的坐标来计算。

对于直线的参数方程,我们可以通过给定的参数值来计算两点的坐标,从而得到弦长。

假设我们有直线的参数方程为:x = f(t),y = g(t)。

我们可以进行如下步骤计算弦长:1.选择两个参数值t₁ 和t₂。

2.根据参数方程计算得到两点坐标为(x₁, y₁) 和(x₂, y₂)。

3.计算两点之间的距离d = √((x₂ - x₁)² + (y₂ - y₁)²)。

根据上述步骤,我们可以得到直线上任意两点之间的弦长。

通过本文,我们了解了直线的参数方程以及求解直线上两点之间弦长的公式。

直线的参数方程可以通过选择斜率不为零的点以及斜率,通过参数方程,我们可以方便地描述直线上的任意一点。

而弦长公式则可以用于计算直线上任意两点之间的距离,提供了一个有效的方法进行数学计算和几何分析。

需要注意的是,本文的讨论主要针对斜率不为零的直线情况,对于平行于 x 轴和 y 轴的直线,可以使用不同的参数方程来表示。

直线的参数方程

直线的参数方程

直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M 得到的参数方程⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)的直线,参数方程为⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.1.已知直线l 的方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),则直线l 的倾斜角为( )A .65°B .25°C .155°D .115°解析:选D.方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),化为标准形式⎩⎪⎨⎪⎧x =1+t cos 115°,y =2+t sin 115°(t为参数),倾斜角为115°.故选D.2.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1 C.22D .-22解析:选B.直线l 的普通方程为x +y -1=0,斜率为-1.故选B.3.以t 为参数的方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t表示( )A .过点(1,-2)且倾斜角为π3的直线B .过点(-1,2)且倾斜角为π3的直线C .过点(1,-2)且倾斜角为2π3的直线D .过点(-1,2)且倾斜角为2π3的直线解析:选C.化参数方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t (t 为参数)为普通方程得y +2=-3(x -1).直线过定点(1,-2),斜率为-3,倾斜角为2π3,故选C.4.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则弦AB 的长是________.解析:由已知焦点F (1,0),又倾斜角为π3,cos π3=12,sin π3=32.所以弦AB 所在直线的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),代入抛物线的方程y 2=4x ,得⎝ ⎛⎭⎪⎫32t 2=4⎝ ⎛⎭⎪⎫1+12t .整理得3t 2-8t -16=0.设方程两根分别为t 1,t 2,则有⎩⎪⎨⎪⎧t 1+t 2=83,t 1·t 2=-163.由参数t 的几何意义得|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫832+643=163.答案:163根据直线的参数方程求直线的倾斜角、斜率已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin αy =-2+t cos α,(t 为参数),其中实数α的取值范围是⎝ ⎛⎭⎪⎫π2,π.求直线l 的倾斜角. [解] 设直线l 的倾斜角为θ,则由题意知tan θ=cos αsin α=1tan α=tan ⎝ ⎛⎭⎪⎫3π2-α,所以θ=3π2-α.所以直线l 的倾斜角为3π2-α.由直线的参数方程求倾斜角与斜率的方法已知直线l 的参数方程(1)若是标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),则可直接得出倾斜角即方程中的α,否则需化成标准式再求α.(2)若是一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt ,则当a ≠0时,斜率k =b a ,再由tan α=ba 及0≤α<π求出α,当a =0时,显然直线与x 轴垂直,倾斜角为α=π2. (3)若是其他形式,则通过消参化成普通方程,再求斜率及倾斜角.1.若直线的参数方程为⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数),则此直线的斜率为( )A. 3 B .- 3 C .33D .-33解析:选B.直线的参数方程⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数)可化为标准形式⎩⎪⎨⎪⎧x =3+⎝ ⎛⎭⎪⎫-12(-t )y =3+32(-t ),(-t 为参数). 所以直线的斜率为- 3.2.若直线的参数方程为⎩⎪⎨⎪⎧x =2-3ty =1+t ,(t 为参数),求直线的斜率.解:法一:把直线的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t ,消去参数t 得x +3y -5=0, 所以其斜率k =-13.法二:由⎩⎪⎨⎪⎧x =2-3t y =1+t ,得⎩⎪⎨⎪⎧x -2=-3ty -1=t ,所以k =y -1x -2=t -3t =-13. 直线参数方程中参数几何意义的应用已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A ,B 两点,求|AB |及|AM |·|BM |.[解] l 的参数方程为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′为参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.因为Δ>0,可设t 1′,t 2′是方程的两根,由根与系数的关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,所以|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′=14.(1)在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t 的几何意义.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;③设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 1M 2|及中点坐标).在极坐标系中,已知圆心C ⎝⎛⎭⎪⎫3,π6,半径r =1.(1)求圆的直角坐标方程;(2)若直线⎩⎪⎨⎪⎧x =-1+32t ,y =12t(t 为参数)与圆交于A ,B 两点,求弦AB 的长.解:(1)由已知得圆心C ⎝ ⎛⎭⎪⎫332,32,半径为1,圆的方程为⎝⎛⎭⎪⎫x -3322+⎝ ⎛⎭⎪⎫y -322=1,即x 2+y 2-33x -3y +8=0.(2)由⎩⎪⎨⎪⎧x =-1+32t ,y =12t (t 为参数)得直线的直角坐标方程x -3y +1=0,圆心到直线的距离d =⎪⎪⎪⎪⎪⎪332-332+12=12,所以⎝ ⎛⎭⎪⎫|AB |22+d 2=1,解得|AB |= 3. 直线参数方程的综合应用已知直线l 过定点P (3,2)且与x 轴和y 轴的正半轴分别交于A ,B 两点,求|PA |·|PB |的值为最小时的直线l 的方程.[解] 设直线的倾斜角为α,则它的方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).由A ,B 是坐标轴上的点知y A =0,x B =0,所以0=2+t sin α, 即|PA |=|t |=2sin α,0=3+t cos α,即|PB |=|t |=-3cos α,故|PA |·|PB |=2sin α·⎝ ⎛⎭⎪⎫-3cos α=-12sin 2α. 因为90°<α<180°,所以当2α=270°,即α=135°时, |PA |·|PB |有最小值.所以直线方程为⎩⎪⎨⎪⎧x =3-22t ,y =2+22t (t 为参数),化为普通方程为x +y -5=0.利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. 所以x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)法一:直线l 的普通方程为y =-x +3+5,与圆C :x 2+(y -5)2=5联立,消去y ,得x 2-3x +2=0,解之得⎩⎨⎧x =1y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5). 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2.法二:将l 的参数方程代入x 2+(y -5)2=5,得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0,① 由于Δ=(32)2-4×4=2>0. 故可设t 1,t 2是①式的两个实根. 所以t 1+t 2=32,且t 1t 2=4. 所以t 1>0,t 2>0.又直线l 过点P (3,5),所以由t 的几何意义,得|PA |+|PB |=|t 1|+|t 2|=3 2.1.对直线参数方程标准形式中参数t 的理解从参数方程推导的过程中可知参数t 应理解为直线l 上有向线段M 0M →的数量,它的几何意义可以与数轴上点A 的坐标的几何意义作类比,|t |=|M 0M →|代表有向线段M 0M →的长度.另外,将直线的点斜式方程y -y 0=k (x -x 0)改写成y -y 0sin α=x -x 0cos α,其中k =tan α,α为直线倾斜角,则t =y -y 0sin α=x -x 0cos α,则有⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α,从中不难看出直线的普通方程(点斜式)与参数方程(标准式)的联系.2.化直线的参数方程一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t 为参数)为标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),由⎩⎪⎨⎪⎧x =x 0+aty =y 0+bt 变形为⎩⎪⎨⎪⎧x =x 0+a a 2+b 2·a 2+b 2ty =y 0+b a 2+b2·a 2+b 2t,令cos α=aa 2+b2,sin α=b a 2+b2,t ′=a 2+b 2 t ,则可得标准式⎩⎪⎨⎪⎧x =x 0+t ′cos αy =y 0+t ′sin α(t ′为参数),其中α为直线的倾斜角,k =tan α=ba 为直线的斜率.1.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α,(α为参数,0≤α<π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)解析:选A.由参数方程可知该直线是过定点(1,-2),倾斜角为α的直线.2.已知直线l 1:⎩⎪⎨⎪⎧x =1+3ty =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t,代入2x -4y =5,得t =12,则B ⎝ ⎛⎭⎪⎫52,0.而A (1,2),得|AB |=52.答案:523.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l的参数方程是⎩⎪⎨⎪⎧x =-1+4ty =3t ,(t 为参数),则直线l与曲线C 相交所截得的弦长为________.解析:曲线C 的直角坐标方程为x2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4ty =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85. 答案:85[A 基础达标]1.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B .10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0), 所以d =(2-5)2+(-1-0)2=10.2.若⎩⎪⎨⎪⎧x =x 0-3λ,y =y 0+4λ(λ为参数)与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)表示同一条直线,则λ与t 的关系是( )A .λ=5tB .λ=-5tC .t =5λD .t =-5λ解析:选C.由x -x 0,得-3λ=t cos α,由y -y 0,得4λ=t sin α,消去α的三角函数,得25λ2=t 2,得t =±5λ,借助于直线的斜率,可排除t =-5λ,所以t =5λ.3.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧x =1+12t ,y =5-32t(t 为参数)B .⎩⎪⎨⎪⎧x =1-12t ,y =5+32t (t 为参数)C.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t(t 为参数)D .⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数)解析:选D.该直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π3,y =5+t sin π3(t 为参数),即⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数),选D.4.若直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)与直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)互相垂直,那么a 的值等于( )A .1B .-13C .-23D .-2解析:选D.直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)的斜率为y +12x =-a2,直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)的斜率为y -1x -1=-1,由两直线垂直得-a2×(-1)=-1得a =-2.故选D. 5.对于参数方程⎩⎪⎨⎪⎧x =1-t cos 30°y =2+t sin 30°和⎩⎪⎨⎪⎧x =1+t cos 30°y =2-t sin 30°,下列结论正确的是( )A .是倾斜角为30°的两平行直线B .是倾斜角为150°的两重合直线C .是两条垂直相交于点(1,2)的直线D .是两条不垂直相交于点(1,2)的直线 解析:选B.因为参数方程⎩⎪⎨⎪⎧x =1-t cos 30°,y =2+t sin 30°可化为标准形式⎩⎪⎨⎪⎧x =1+t cos 150°,y =2+t sin 150°,所以其倾斜角为150°.同理,参数方程⎩⎪⎨⎪⎧x =1+t cos 30°,y =2-t sin 30°,可化为标准形式⎩⎪⎨⎪⎧x =1+(-t )cos 150°,y =2+(-t )sin 150°,所以其倾斜角也为150°.又因为两直线都过点(1,2),故两直线重合.6.若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t ,(t 为参数)与直线4x +ky =1垂直,则常数k =________.解析:由直线的参数方程可得直线的斜率为-32,由题意得直线4x +ky =1的斜率为-4k ,故-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案:-67.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,以M 0M →的数量t 为参数,则直线l 的参数方程为____________.解析:因为直线的斜率为-1, 所以直线的倾斜角α=135°. 所以cos α=-22,sin α=22. 所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数)8.已知直线l的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析:直线l 的普通方程为y =x +2,曲线C 的直角坐标方程为x 2-y 2=4(x ≤-2),故直线l 与曲线C 的交点为(-2,0),对应极坐标为(2,π).答案:(2,π)9.已知曲线C :ρ=2cos θ,直线l :⎩⎪⎨⎪⎧x =2-t ,y =32+34t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为45°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α,(α是参数).直线l 的普通方程为3x +4y -12=0.(2)曲线C 上任意一点P (1+cos α,sin α)到l 的距离为d =15|3cos α+4sin α-9|,则|PA |=d sin 45°=2⎪⎪⎪⎪⎪⎪sin(α+φ)-95,且tan φ=34. 当sin(α+φ)=-1时,|PA |取得最大值1425; 当sin(α+φ)=1时,|PA |取得最小值425. 10.(2016·高考全国卷甲)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153. [B 能力提升]11.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为( )A .1B .2C .3D .4 解析:选C.直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1. 又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.12.给出两条直线l 1和l 2,斜率存在且不为0,如果满足斜率互为相反数,且在y 轴上的截距相等,那么直线l 1和l 2叫做“孪生直线”.现在给出4条直线的参数方程如下:l 1:⎩⎪⎨⎪⎧x =2+2t ,y =-4-2t (t 为参数); l 2:⎩⎪⎨⎪⎧x =3-22t ,y =4-22t (t 为参数); l 3:⎩⎪⎨⎪⎧x =1+t ,y =1-t (t 为参数); l 4:⎩⎪⎨⎪⎧x =6+22t ,y =8+22t (t 为参数). 其中能构成“孪生直线”的是________.解析:根据条件,两条直线构成“孪生直线”意味着它们的斜率存在且不为0,且互为相反数,且在y 轴上的截距相等,也就是在y 轴上交于同一点.对于本题,首先可以判断出其斜率分别为-1,1,-1,1,斜率互为相反数条件很明显.再判断在y 轴上的截距,令x =0得出相应的t 值,代入y 可得只有直线l 3和直线l 4在y 轴上的截距相等,而其斜率又恰好互为相反数,可以构成“孪生直线”.答案:直线l 3和直线l 413.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ;直线⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数)化为普通方程为y =x -2. (2)将⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,代入y 2=2ax 得 t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ),因为|MN |2=|PM |·|PN |,所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0,解得a =1或a =-4(舍去).故所求a 的值为1.14.(选做题)以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x .(2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α, 所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2.。

直线和圆的参数方程重要知识

直线和圆的参数方程重要知识
【基础知识梳理】
1.直线的参数方程
(1)过点 M0(x0,y0),倾斜角为 α 的直线 l 的参数方程为
x=x0+tcos α y=y0+t sin α
(t 为参数)
.
重点辅导
1
2 参数的几何意义 直线的参数方程中参数 t 的几何意义是:
直线上动点M到定点M0(x0,y0)的距离就是参数t的绝对值
M• 450 P x
O
的坐标为x, y,根据条件知
台风中心M移动形成的直线
图2 15
l 的方程为
x 300 40t cos1350 ,
y 40t sin1350 ,
t 为参数,t 0
x 300 20 2t ,
即 y 20 2t ,
t 为参数,t 0
重点辅导
18
当点M 300 20 2t,20 2t 在圆O内或在圆O上时,有
t为参数

思考 由M 0M te,你能得到直线l的参数 方 程②中 参 数t 的 几 何 意 义 吗?
重点辅导
4
因为e cos,sin ,所以| e | 1.由 M0M
te,得到| M0M || t | .所以,直线上的动点M 到定点M0的距离,等于② 中参数t 的绝对值.
当 0 时,sin 0,所以,直线l的单位
(2)设l与圆 x 2 y2 =4相交于两点A,B,求点P
到A,B两点的距离之积.
解:(1)直线的参数方程是
x=1+
3 2t
y=1+12t
(t 是参数).
重点辅导
7
(2)因为点 A,B 都在直线 l 上,所以可设它们对应的参数为 t1 和 t2,则点 A,B 的坐标分别为 A1+ 23t1,1+12t1,B1+ 23t2,1+21t2. 以直线 l 的参数方程代入圆的方程 x2+y2=4, 整理得到 t2+( 3+1)t-2=0.① 因为 t1 和 t2 是方程①的解,从而 t1t2=-2. 所以|PA|·|PB|=|t1t2|=|-2|=2.

直线的参数方程

直线的参数方程

例二:设直线 l1 过点 A(2, 4) ,倾斜角为 ,求直线 l1的参数方程,设直线
5 6
l1 与 l2 交点为B,求点B与点A的距离 . l2 : x y 1 0 ,
3 x 2 t 2 解: l1 的参数方程为 .把 l1 的参数方程代入 l2 的方程,得 y 4 1 t 2
(2 3 1 t ) (4 t ) 1 0 2 2
例二:设直线 l1 过点 A(2, 4) ,倾斜角为 ,求直线 l1的参数方程,设直线
5 6
l1 与 l2 交点为B,求点B与点A的距离 . l2 : x y 1 0 ,
3 x 2 t 2 解: l1 的参数方程为 .把 l1 的参数方程代入 l2 的方程,得 y 4 1 t 2
直线的参数方程
考点二:标准的直线参数方程 t 的几何意义。 理论基础:已知直线过点 M 0 ( x0 , y0 ),倾斜角
x x0 t cos M y y0 t sin x x0 t cos ' M y y0 t sin
x x0 t cos 所以,直线的参数方程为 y y0 t sin
直线的参数方程
考点二:标准的直线参数方程 t 的几何意义。
x x0 t cos y y0 t sin
t 的几何意义为:直线上某点到定点 M 0 的距离.
例二:设直线 l1 过点 A(2, 4) ,倾斜角为 ,求直线 l1的参数方程,设直线
5 6
l1 与 l2 交点为B,求点B与点A的距离 . l2 : x y 1 0 ,

x 1 ( 1)t 6 y 3 t 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线的参数方程
广东信宜中学
杨凡军
一、知识的引入:
我们前面已经学习了直线的普通方程,还有直线的极坐标方程,现在大家来考虑直线是否还有其他形式的方程吗?
二、练习
三、探究: (1)曲线的弦M 1M 2的长是多少?
(2)线段M 1M 2的中点M 对应的参数t 的值是多少?
四、例题讲解: 例1、已知直线l :x + y -1=0与抛物线y = x 2 交于A, B 两点,求线段AB 的长和点M(-1,2)到A,B 两点的距离之积
思考:①例2的解法对一般圆锥曲线适用吗?②把“中点”改为“三等分点”
直线 l 的方程怎样求?③n 等分点呢
五、课堂训练:
① 已知直线l 过点P(3,2),且与x 轴和y 轴的正半 轴分别交于A,B 两点,求│PA │·│PB │的值 为最小时的直线l 的方程
?
,0的几何意义吗参数你能得到由e t M M =t =的距离
到定点点对应的
表示参数即0M M t t 义
.
,,M )
()(sin cos 2
1210
0t t ,M x f y t t y y t x x 对应的参数分别为两点交于与曲线为参数直线=⎩⎨⎧α+=α+=2
121t t M M -=22
1t t t +=
.,,,1416(2,1).22
2的方程求直线的中点为线段恰好
如果点两点于交椭圆作直线经过点例l AB M B A y x l M =+),MB 2AM :(=例如
解:设过点M 的参数方程为: 所以直线的普通方程为:x+y-5=0
② 直线l 过P (2,1),倾斜角为θ,它和曲线C :4x 2+9y 2=36,交于A,B
两点,θ为何值时,|PA||PB|有最大值和最小 值?并求出相应的最值
六、直线参数方程(标准形式): (常解决问题类型) (1)利用参数求弦长
(2)利用参数求直线方程(即求斜率)
直线参数方程(一般形式):
一般形式与标准形式的互化:
七、例题与练习:
例3、当前台风中心P 在某海滨城市O 向东300km 处生成,并以40km/h 的速度向西偏北45°方向移动. 已知距台风中心250km 以内的地方都属于台风侵袭的范围, 那么经过多长时间后该城市开始受到台风侵袭?受到侵袭的时间有多久?
八、小结
九、作业布置
十、优点,不足及建议
这是卢耀才老师成功的一节课,虽然学生对直线的参数方程的知识感到有点难度,但是经过卢老师的详细分析,讲解细仔,让难点和重点突出,层层加深,突破难点,讲得通俗易懂,作到化难为易,非常成功。

从教案的布置,知识点之间的联系和课堂气氛来看,都非常好,再加上学生的知识底子较好,达到因材施教,黑板书写条理清晰,把重点一一列出,难点反复练习,加深理解,对于容易出错的地方,肯定地提出并要学生记写和让学生做相应的一些练习。

参数方程是一个重点,直线的参数方程又是一大难点,它为我们学习过程中提供了另外的一种方法,在许多的情况下,使用参数方程去解决实际问题显得更加容易,所以让学生认真学习好参数方程。

{
)
(sin 2cos 3为参数t t y t x α+=α+=)t (2
2
2223为参数⎪⎩⎪

⎧+=-=t y t x 9
11
24110时有最小值
=,时有最大值=当πθθ)(sin cos 0
0是参数t t y y t x x ⎩⎨
⎧α
+=α
+=)(t 0
为参数⎩
⎨⎧+=+=bt y y at
x x |||,|.,,,(y x (2
10212
10
00
00P P P P t t t P P P t bt
y y at x x P 求,数值为分别为参是直线上的点,对应的是参数))的直线参数方程为,过⎩⎨⎧+=+=||||2
20
t b a P P +=||||2
12
221t t b a P P -+={
.41035.式化为参数方程的标准形把直线的参数方程
练习:t
y t
x -=+=)(5
410)53(5为参数t t y t x '⎪⎩⎪⎨⎧'+='
-+=。

相关文档
最新文档