勾股定理的实际应用题

合集下载

勾股定理的实际应用(人教版)(含答案)

勾股定理的实际应用(人教版)(含答案)

勾股定理的实际应用(人教版)一、单选题(共8道,每道10分)1.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为3的半圆,其边缘AB=CD=16,点E在CD上,CE=4,一滑板爱好者从A点滑到E点,则他滑行的最短距离为( )(π按3计算)A.15B.C. D.21答案:A解题思路:试题难度:三颗星知识点:平面展开最短路径问题2.如图,圆柱底面半径为,高为9cm,点A,B分别是圆柱两底面圆周上的点,且点A,B在同一母线上,用一根棉线从点A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为( )A.12cmB.C.15cmD.答案:C解题思路:试题难度:三颗星知识点:平面展开最短路径问题3.如图是一个三级台阶,它的每一级的长,宽和高分别为50寸,30寸和10寸,A和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长是( )A.13寸B.40寸C.130寸D.169寸答案:C解题思路:试题难度:三颗星知识点:平面展开最短路径问题4.如图,一只蚂蚁从长、宽都是6,高是16的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长为( )A.20B.22C.28D.18答案:A解题思路:试题难度:三颗星知识点:平面展开最短路径问题5.如图,一个直径为8cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm.当筷子倒向杯壁时(筷子底端不动),若筷子顶端刚好触到杯口,则筷子长度和杯子的高度分别为( )cm.A.8,7B.8.5,7.5C.9,8D.10,9答案:B解题思路:试题难度:三颗星知识点:勾股定理的应用6.如图,将一根木棒垂直或倾斜的放进长、宽、高分别为12cm,4cm,3cm的水箱中,能放入水箱内木棒的最大长度为( )cm.A.13B.12C.15D.16答案:A解题思路:试题难度:三颗星知识点:勾股定理的应用7.一辆卡车装满货物后宽3.2米,这辆卡车要通过如图所示的隧道(上方是一个半圆,下方是边长为4米的正方形),则装满货物后卡车的最大高度为( )米.A.5.2B.5.8C.7.6D.5.4答案:A解题思路:试题难度:三颗星知识点:勾股定理应用之拱桥问题8.某工厂大门形状如图所示,其上部分为半圆,工厂门口的道路为双行道(双行道中间隔离带忽略不计).要想使宽为1.5米,高为3.1米的卡车安全通过,那么此大门的宽度至少应增加( )米.A.1.7B.2C.0.3D.1答案:B解题思路:试题难度:三颗星知识点:勾股定理应用之拱桥问题二、填空题(共2道,每道10分)9.如图,一圆柱体的底面周长为24cm,高AB为16cm,BC是上底面的直径.一只昆虫从点A出发,沿着圆柱的侧面爬行到点C,则昆虫爬行的最短路程为____cm.答案:20解题思路:试题难度:知识点:平面展开最短路径问题10.如图,长方体的长、宽、高分别为4cm,2cm,5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为____cm.答案:13解题思路:试题难度:知识点:平面展开最短路径问题。

勾股定理的实际应用题

勾股定理的实际应用题

WORD文档下载可编辑18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?19.(2007•义乌市)李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.20.(2013•贵阳模拟)请阅读下列材料:问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π)(1)设路线1的长度为L1,则= _________ .设路线2的长度为L2,则= _________ .所以选择路线_________ (填1或2)较短.(2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:=_________ .路线2:= _________ .所以选择路线_________ (填1或2)较短.(3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到点C的路线最短.21.如图,正方体边长为30cm,B点距离C点10cm,有一只蚂蚁沿着正方体表面从A点爬到B点,其爬行速度为每秒2cm,则这只蚂蚁最快多长时间可爬到B点?22.(2013•盐城模拟)如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B(B为棱的中点),那么所用细线最短需要多长?如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要多长?23.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.若AB=4,BC=4,CC1=5,(1)请你在备用图中画出蚂蚁能够最快到达目的地的可能路径;(2)求蚂蚁爬过的最短路径的长.一.选择题(共5小题)二.解答题(共22小题)6.(2013•徐州模拟)如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?7.(2012•古冶区二模)有一艘渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A处和B处,B在A的正东方向,且相距100里,测得地点C在A 的南偏东60°,在B的南偏东30°方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(≈1.7)8.如图,要在高AC为2米,斜坡AB长8米的楼梯表面铺地毯,地毯的长度至少需要多少米?9.如图,一块三角形铁皮,其中∠B=30°,∠C=45°,AC=12cm.求△ABC的面积.10.如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?11.如图,AB为一棵大树,在树上距地面10米的D处有两只猴子,他们同时发现C处有一筐水果,一只猴子从D 处往上爬到树顶A处,又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.1.(2010•新疆)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()2.(2007•茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()3.(2012•乐山模拟)一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A海里/小时海里/小时4.(2010•罗湖区模拟)在直径为10m的圆柱形油槽内装入一些油后,截图如图所示,如果油面宽AB=8m,那么油的最大深度是()5.如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为()12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?13.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?14.如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?15.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.16.某工厂的大门如图所示,其中下方是高为2.3米、宽为2米的矩形,上方是半径为1米的半圆形.货车司机小王开着一辆高为3.0米,宽为1.6米的装满货物的卡车,能否进入如图所示的工厂大门?请说明你的理由.17.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).请解答:(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、S3之间的数量关系是_________ .(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积S1、S2、S3之间的数量关系是_________ ,请说明理由.(3)如图4,在梯形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的数量关系式为_________ ,请说明理由.24.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B,需要爬行的最短距离是多少?25.如图所示,圆柱形的玻璃容器,高18cm,底面周长为24cm,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路径.26.如图,一正方形的棱长为2,一只蚂蚁在顶点A处,在顶点G处有一米粒.(1)问蚂蚁吃到这粒米需要爬行的最短距离是多少?(2)在蚂蚁刚要出发时,突然一阵大风将米粒吹到了GF的中点M处,问蚂蚁要吃到这粒米的最短距离又是多少?27.如图所示,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一只老鼠正在偷吃粮食.此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是多少米?(结果不取近似值)2014年3月352449109的初中数学组卷参考答案与试题解析一.选择题(共5小题)1.(2010•新疆)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()OA=2.(2007•茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是(),最大长度根据勾股定理,得:=133.(2012•乐山模拟)一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A海里/小时海里/小时BC=海里,36÷2=18海里4.(2010•罗湖区模拟)在直径为10m的圆柱形油槽内装入一些油后,截图如图所示,如果油面宽AB=8m,那么油的最大深度是()AM=5.如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为()由勾股定理可得杯里面管长为=13cm二.解答题(共22小题)6.(2013•徐州模拟)如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?,AD=BD=BD=20+x=x=10AB=30的距离为)甲船看见灯塔所用时间:7.(2012•古冶区二模)有一艘渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A处和B处,B在A的正东方向,且相距100里,测得地点C在A 的南偏东60°,在B的南偏东30°方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(≈1.7)BD==50AC==100==8.如图,要在高AC为2米,斜坡AB长8米的楼梯表面铺地毯,地毯的长度至少需要多少米?==2AC+BC=2+22+29.如图,一块三角形铁皮,其中∠B=30°,∠C=45°,AC=12cm.求△ABC的面积.12=12∴CB=12+12CB AD=72+7210.如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?=2.4mC=x=下滑的距离是米.11.如图,AB为一棵大树,在树上距地面10米的D处有两只猴子,他们同时发现C处有一筐水果,一只猴子从D 处往上爬到树顶A处,又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?AC===1213.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?CD===12014.如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?BD==240km15.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.=所以速度为16.某工厂的大门如图所示,其中下方是高为2.3米、宽为2米的矩形,上方是半径为1米的半圆形.货车司机小王开着一辆高为3.0米,宽为1.6米的装满货物的卡车,能否进入如图所示的工厂大门?请说明你的理由.==0.617.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).请解答:(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、S3之间的数量关系是S1+S2=S3.(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积S1、S2、S3之间的数量关系是S1+S2=S3,请说明理由.(3)如图4,在梯形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的数量关系式为S1+S2=S3,请说明理由.====+=S18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?=13m19.(2007•义乌市)李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.;①当横向剪开时:②当竖向剪开时:,∴最短路程为,∠AOD=∠AOA∴AD=OAsin60°=4×=2=2AD=4,20.(2013•贵阳模拟)请阅读下列材料:问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π)(1)设路线1的长度为L1,则= 49 .设路线2的长度为L2,则= 25+π2.所以选择路线 2 (填1或2)较短.(2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:= 121 .路线2:= 1+25π2.所以选择路线 1 (填1或2)较短.(3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到点C的路线最短.=1+25π2+时,时,时,21.如图,正方体边长为30cm,B点距离C点10cm,有一只蚂蚁沿着正方体表面从A点爬到B点,其爬行速度为每秒2cm,则这只蚂蚁最快多长时间可爬到B点?=5022.(2013•盐城模拟)如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B(B为棱的中点),那么所用细线最短需要多长?如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要多长?AB===.,那么所用细线最短需要.23.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.若AB=4,BC=4,CC1=5,(1)请你在备用图中画出蚂蚁能够最快到达目的地的可能路径;(2)求蚂蚁爬过的最短路径的长.====<=24.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B,需要爬行的最短距离是多少?==25==5;==5;525.如图所示,圆柱形的玻璃容器,高18cm,底面周长为24cm,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路径.BC=SE==26.如图,一正方形的棱长为2,一只蚂蚁在顶点A处,在顶点G处有一米粒.(1)问蚂蚁吃到这粒米需要爬行的最短距离是多少?(2)在蚂蚁刚要出发时,突然一阵大风将米粒吹到了GF的中点M处,问蚂蚁要吃到这粒米的最短距离又是多少?==2,;==.27.如图所示,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一只老鼠正在偷吃粮食.此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是多少米?(结果不取近似值)∴B′P=(。

勾股定理及应用 练习题(带答案

勾股定理及应用 练习题(带答案

勾股定理及应用 题集一、勾股定理与逆定理A. B. C. D.1.如图所示的一块地,,,,,,这块地的面积为( ).【答案】B 【解析】连接,在中,,∴,∵,,,∴是直角三角形,.【标注】【知识点】勾股逆定理的应用2.如图,在四边形中,,,,.求的度数.【答案】.【解析】连接,在中,,,∴,∴,∴,∵,,∴.在中,,∴是直角三角形,即,∵,∴.【标注】【知识点】勾股定理的逆定理【知识点】勾股定理的证明A.尺B.尺C.尺D.尺3.如图,有一个水池,其底面是边长为尺的正方形,一根芦苇生长在它的正中央,高出水面部分的长为尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部恰好碰到岸边,则这根芦苇的长是( ).【答案】C 【解析】苇长尺,则水深尺,∵尺,∴尺,∵中,.∴.【标注】【知识点】勾股定理与实际问题(1)(2)4.如图,一架云梯长米,斜靠在一面墙上,梯子靠墙的一端距地面米.这个梯子底端离墙有多少米.如果梯子的顶端下滑米,那么梯子的底部在水平方向也滑动了米吗?【答案】(1)(2)米.不是.【解析】(1)(2)由题意得此时米,米,根据,∴可求米.设滑动后梯子的底端到墙的距离为米,得方程,,解得,所以梯子向后滑动了米.综合得:如果梯子的顶端下滑了米,那么梯子的底部在水平方向不是滑米.【标注】【知识点】勾股定理的综合应用A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形5.若的三边长,,满足,则是( ).【答案】D【解析】∵,∴或.∴或.∴为等腰三角形或直角三角形.【标注】【知识点】勾股逆定理的应用A. B. C. D.6.如图,已知在中,,分别以、为直径作半圆,面积分别记为、,则等于( ).【答案】A【解析】由勾股定理可知:.,,∴.【标注】【知识点】勾股定理与几何问题(1)(2)7.下表中给出的每行三个数、、满足,根据表中已有的数的规律填空:当时, , .用含字母的代数式分别表示、,,.【答案】(1)(2);; 【解析】(1)(2)∵,∴,.∵,,;,,;,,;∴,.【标注】【知识点】勾股树(1)(2)(3)8.若一个直角三角形的两条直角边长为、,斜边为,斜边上的高为.求证:..以、、为边构成的三角形是直角三角形.【答案】(1)(2)(3)证明见解析证明见解析证明见解析【解析】(1)(2)(3)∵,,∴,代入得,∴.由,,则,∴,即,∴略【标注】【知识点】解直角三角形的综合应用二、勾股定理的方程思想1.如图,已知等腰的底边,是腰上一点,且,,求的周长.【答案】.【解析】由勾股定理逆定理得,是直角三角形.在中,应用勾股定理,设,代入数值得,.所以的周长=.【标注】【知识点】方程思想在勾股定理的应用2.如图,在中,,平分,,,求的长.【答案】.【解析】过作,∵平分,∴,∵,∴由勾股定理得,设,则,在由勾股定理得:,解得,∴.【标注】【知识点】方程思想在勾股定理的应用(1)(2)3.如图,在中,,,,的平分线与相交于点,过点作,垂足为.求的长.求的长.【答案】(1)(2)..【解析】(1)∵平分,,,∴,在和中,(2),∴≌,∴.∵,,,∴在中,,∴,.设,则,,在中,,,解得,∴.【标注】【知识点】方程思想在勾股定理的应用4.如图,在中,,,,求边上的高.【答案】.【解析】设为,则,∵为的高,∴在中,,在中,,∴.即,解得:.∴.∴在中,.【标注】【知识点】方程思想在勾股定理的应用(1)(2)5.如图,在中,,,,点为边上的动点,点从点出发,沿边往运动,当运动到点时停止,设点运动的时间为秒,速度为每秒个单位长度.若是直角三角形,求的值.若是等腰三角形,求的值.【答案】(1)(2)或.,或.【解析】(1)(2)当时,是直角三角形,,,故.∵,∴,即,,.当时,是直角三角形,此时与重合,∴,,综上所述,或.当时,即,解得,当时,取中点,连接.∵,∴,∴,∴,∴,即.当时,过点作于点.∵,,,∴,在中,,即,综上所述,的值为,或.【标注】【知识点】方程思想在勾股定理的应用6.如图,是一张直角三角形纸片,,两直角边、,现将折叠,使点与点重合,折痕为,则的长为 .【答案】【解析】依题可知≌,∴.设,则,在中,,,∴,解得,,∴.【标注】【知识点】翻折问题与勾股定理7.如图,在中,,,,将折叠,使点恰好落在斜边上,与点重合,为折痕,则 .【答案】 或【解析】在中,,∵将折叠得到,∴,,∴.设,则.在中,,∴,解得.∴.【标注】【知识点】解直角三角形的综合应用A. B. C. D.8.如图,在矩形中,,,将沿对角线翻折,点落在点处,交于点,则线段的长为( ).【答案】A【解析】设,则,∵四边形为矩形,∴,,,∴,由题意得:,∴,∴,由勾股定理得,即,解得:,∴,∴.【标注】【知识点】其它翻折问题9.如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处.当为直角三角形时,的长为 .【答案】或【解析】当为直角三角形时,有两种情况:图图①当点落在矩形内部时,如答图所示.连接,在中,,,,沿折叠,使点落在点处,,当为直角三角形时,只能得到,点、、共线,即沿折叠,使点落在对角线上的点处,,,,设,则,,在中,,,解得,;②当点落在边上时,如答图所示.此时为正方形,.综上所述,的长为或.故答案为:或.【标注】【知识点】四边形与折叠问题三、勾股定理与最短路径问题A. B. C. D.1.如图,长方体的长为,宽为,高为,点离点的距离为,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是( ).【答案】B【解析】将长方体展开,连接、,根据两点之间线段最短,()如图,,,由勾股定理得:.()如图,,,由勾股定理得,.()只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为,高为,点离点的距离是,∴,,在直角三角形中,根据勾股定理得:∴.由于,故最短距离为.【标注】【知识点】勾股定理与展开图最短路径问题2.如图所示,无盖玻璃容器,高,底面周长为,在外侧距下底的点处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口的处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度.【答案】最短路线长为.【解析】如下图可知,最短路线的长度为线段的长度,作于,则,,∵底面周长为,∴,∴.∴最短路线长为.【标注】【知识点】勾股定理与展开图最短路径问题。

初中数学专题练习:勾股定理实际应用(原卷版)

初中数学专题练习:勾股定理实际应用(原卷版)

A.2cm
B.4cm
C.6cm
D.8cm
7.如图,高速公路上有 A、B 两点相距 10km,C、D 为两村庄,已知 DA=4km,CB=6km.DA⊥AB 于 A, CB⊥AB 于 B,现要在 AB 上建一个服务站 E,使得 C、D 两村庄到 E 站的距离相等,则 EB 的长是( ) km
A.4
B.5
A.
B.
C.
D.
3.如图,有一个水池,水面是一边长为 10 尺的正方形,在水池正中央有一根芦苇,它高出水面 1 尺.如 果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为( )尺.
A.10
B.12
C.13
D.14
4.在我国古代数学著作《九章算术》“勾股”章中有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广 几何?”大意是说:如图,推开双门(AD 和 BC),门边缘 D,C 两点到门槛 AB 的距离为 1 尺(1 尺= 10 寸),双门间的缝隙 CD 为 2 寸,那么门的宽度(两扇门的和)AB 为( )
C.6
D.
8.某工厂的厂门形状如图(厂门上方为半圆形拱门),现有四辆装满货物的卡车,外形宽都是 2.0 米,高 分别为 2.8 米,3.1 米,3.4 米,3.7 米,则能通过该工厂厂门的车辆数是( )(参考数据: ≈1.41, ≈1.73, ≈2.24)
A.1
B.2
C.3
D.4
9.如图,公路 AC、BC 互相垂直,公路 AB 的中点 M 与点 C 被湖隔开,若测得 AC=10km,BC=24km,则 M、C 两点之间的距离为( )
22.如图,在一条东西走向河流的一侧有一村庄 C,河边原有两个取水点 A,B,其中 AB=AC,由于某种 原因,由 C 到 A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点 H(A、H、B 在同 一条直线上),并新修一条路 CH,测得 CB=1.5 千米,CH=1.2 千米,HB=0.9 千米. (1)问 CH 是否为从村庄 C 到河边的最近路?请通过计算加以说明; (2)求新路 CH 比原路 CA 少多少千米?

勾股定理的应用十种最常考类型(解析版) 八年级数学下册专题训练

勾股定理的应用十种最常考类型(解析版) 八年级数学下册专题训练

专题05勾股定理的应用十种最常考类型(解析版)类型一大树折断问题【典例1】(2023春•德庆县期末)如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地面上,此处离树底部8m处.【思路引领】首先设树顶端落在离树底部x米处,根据勾股定理可得62+x2=(16﹣6)2,再解即可.【解答】解:设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.【总结提升】此题主要考查了勾股定理的应用,关键是正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方.【变式训练】1.(2023•南宁模拟)在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.4B.3.6C.4.5D.4.55【思路引领】画出图形,设折断处离地面x尺,则AB=(10﹣x)尺,由勾股定理得出方程,解方程即可.【解答】解:如图,由题意得:∠ACB=90°,BC=3尺,AC+AB=10尺,设折断处离地面x尺,则AB=(10﹣x)尺,在Rt△ABC中,由勾股定理得:x2+32=(10﹣x)2,解得:x=4.55,即折断处离地面4.55尺.故选:D.【总结提升】此题主要考查了勾股定理的应用,正确应用勾股定理得出方程是解题的关键.类型二水杯中的筷子问题及类似问题【典例2】(2023春•陕州区期中)如图是一个饮料罐,下底面半径是5,上底面半径是8,高是12,上底面盖子的中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)的取值范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13【思路引领】如图,过A作AB⊥BC于B,根据勾股定理即可得到结论.【解答】解:如图,过A作AB⊥BC于B,∵下底面半径是5,高是12,∴AB=12,BC=5,∴AC=B2+B2=122+52=13,∴a的长度的取值范围是12≤a≤13,故选A.【总结提升】本题考查正确运用勾股定理.善于观察题目的信息,正确理解题意是解题的关键.【变式训练】1.(2023春•盐山县期末)如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.14【思路引领】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.【总结提升】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.2.(2022秋•安阳县期末)从前有一个人拿着竹竿进城,横拿竖拿都进不去,横着比城门宽43,竖着比城门高23,另一个人告诉他沿着城门的两对角斜着拿竿,这个人一试,不多不少刚好进去了,则竹竿的长度为103.【思路引领】设竹竿的长为x米,根据门框的边长的平方和等于竹竿的长的平方列方程,解一元二次方程即可.【解答】解:设竹竿的长为x米,由题意得:(−43)2+(−23)2=2,解得:1=103,2=23(舍去),故答案为:103.【总结提升】本题考查一元二次方程的应用;得到门框的边长和竹竿长的等量关系是解决本题的关键.类型三梯子滑动问题【典例3】(2020春•硚口区期中)如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为()A.10米B.6米C.7米D.8米【思路引领】首先设BO=x米,则DO=(x+2)米,利用勾股定理可列出方程,再解可得BO长,然后再利用勾股定理计算出AB长.【解答】解:由题意得:AC=BD=2米,∵AO=8米,∴CO=6米,设BO=x米,则DO=(x+2)米,由题意得:62+(x+2)2=82+x2,解得:x=6,AB=82+62=10(米),故选:A.【总结提升】此题主要考查了勾股定理的应用,关键是掌握直角三角形两直角边的平方和等于斜边的平方.【变式训练】1.(2023秋•新泰市期中)如图,一架梯子若靠墙直立时比窗户的下沿高1m.若斜靠在墙上,当梯子的下端离墙5m时,梯子的上端恰好与窗户的下沿对齐.则梯子的长度为()A.13m B.12m C.15m D.172【思路引领】设梯子的长度为x m,根据勾股定理列方程即可得到结论.【解答】解:设梯子的长度为x m,根据勾股定理得,52+(x﹣1)2=x2,解得x=13,答:梯子的长度为13m,故选:A.【总结提升】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.2.(2023秋•北京期末)如图,小巷左右两侧是竖直的墙,已知小巷的宽度CE是2.2米.一架梯子AB斜靠在左墙时,梯子顶端A与地面点C距离是2.4米.如果保持梯子底端B位置不动,将梯子斜靠在右墙时,梯子顶端D与地面点E距离是2米.求此时梯子底端B到右墙角点E的距离是多少米.【思路引领】设此时梯子底端B到右墙角点E的距离是x米,则BC为(2.2﹣x)米,在Rt△ABC和Rt △DBE中,根据勾股定理列出方程,解方程即可.【解答】解:设此时梯子底端B到右墙角点E的距离是x米,则BC为(2.2﹣x)米,由题意可知,AC=2.4米,DE=2米,AB=DB,在Rt△ABC和Rt△DBE中,由勾股定理得:AB2=BC2+AC2,DB2=BE2+DE2,∴BC2+AC2=BE2+DE2,即(2.2﹣x)2+2.42=x2+4,解得:x=1.5,答:此时梯子底端B到右墙角点E的距离是1.5米.【总结提升】本题考查了勾股定理的应用,根据勾股定理列出方程是解题的关键.3.(2023秋•宝丰县期末)如图是盼盼家新装修的房子,其中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA,如果梯子的底端P不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB.(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B处,若MA=1.6米,AP=1.2米,则甲房间的宽度AB= 3.2米.(2)当他在乙房间时,测得MA=2.4米,MP=2.5米,且∠MPN=90°,求乙房间的宽AB;(3)当他在丙房间时,测得MA=2.8米,且∠MPA=75°,∠NPB=45°.①求∠MPN的度数;②求丙房间的宽AB.【思路引领】(1)根据勾股定理即可得到结论;(2)证明△AMP≌△BPN,从而得到MA=PB=2.4米,PA=NB=0.7米,即可求出AB=PA+PB;(3)①根据平角的定义即可求出∠MPN=60°;②根据PM=PN以及∠MPN的度数可得到△PMN为等边三角形.利用相应的三角函数表示出MN,MP的长,可得到房间宽AB和AM长相等.【解答】解:(1)在Rt△AMP中,∵∠A=90°,MA=1.6米,AP=1.2米,∴PM=B2+B2=1.62+1.22=2,∵PB=PM=2,∴甲房间的宽度AB=AP+PB=3.2米,故答案为:3.2;(2)∵∠MPN=90°,∴∠APM +∠BPN =90°,∵∠APM +∠AMP =90°,∴∠AMP =∠BPN .在△AMP 与△BPN 中,∠B =∠B ∠B =∠B =90°B =B,∴△AMP ≌△BPN ,∴MA =PB =2.4,∵PA =B2−B 2=0.7,∴AB =PA +PB =0.7+2.4=3.1;(3)①∠MPN =180°﹣∠APM ﹣∠BPN =60°;②过N 点作MA 垂线,垂足点D ,连接NM .设AB =x ,且AB =ND =x .∵梯子的倾斜角∠BPN 为45°,∴△BNP 为等腰直角三角形,△PNM 为等边三角形(180°﹣45°﹣75°=60°,梯子长度相同),∠MND =15°.∵∠APM =75°,∴∠AMP =15°.∴∠DNM =∠AMP ,∵△PNM 为等边三角形,∴NM =PM .∴△AMP ≌△DNM (AAS ),∴AM =DN ,∴AB =DN =AM =2.8米,即丙房间的宽AB 是2.8米.【总结提升】此题考查了勾股定理的应用,全等三角形的应用,解直角三角形的应用,根据PM=PN以及∠MPN的度数得到△PMN为等边三角形是解题的关键.类型四立体图形中的最短距离问题【典例4】(2021春•饶平县期末)如图,长方体的底面边长均为3cm,高为5cm,如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要13cm.【思路引领】把立体图形转化为平面图形解决即可.【解答】解:将长方体展开,连接AB,根据两点之间线段最短,AB=52+122=13cm;故答案为:13【总结提升】本题考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.【变式训练】1.(2023秋•沙坪坝区期中)如图,圆柱形容器中,高为12cm,底面周长为32cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为20cm.(容器厚度忽略不计)【思路引领】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为12cm,底面周长为32cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,∴A′D=16cm,BD=12cm,∴在直角△A′DB中,A′B=162+122=20(cm).故答案为:20.【总结提升】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.(2022春•桦甸市期末)如图,是一块长,宽,高分别为6cm,4cm和3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的外表面,到长方体的另一个顶点B处吃食物,则它需要爬行的最短路径长是85cm.【思路引领】把这个长方体中蚂蚁所走的路线放到一个平面内,在平面内线段最短,根据勾股定理即可计算.【解答】解:第一种情况:把我们所看到的左面和上面组成一个平面,则这个长方形的长和宽分别是9和4,则所走的最短线段是AB=92+42=97(cm).第二种情况:把我们看到的前面与上面组成一个长方形,则这个长方形的长和宽分别是7和6,所以走的最短线段是AB=72+62=85(cm).第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是10和3,所以走的最短线段是AB=102+32=109(cm).∴它需要爬行的最短路径是85cm.故答案为:85cm.【总结提升】本题主要考查的是平面展开﹣最短路径问题,解决此题的关键是明确线段最短这一知识点,然后把长方体的一些面展开到一个平面内,求出最短的线段.3.(荆州中考)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm【思路引领】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=22dm,∴这圈金属丝的周长最小为2AC=42dm.故选:A.【总结提升】本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.类型五选址满足条件问题【典例5】(2023春•永善县期中)如图,河CD的同侧有A、B两个村,且AB=213km,A、B两村到河的距离分别为AC=2km,BD=6km.现要在河边CD上建一水厂分别向A、B两村输送自来水,铺设水管的工程费每千米需2000元.请你在河岸CD上选择水厂位置0,使铺设水管的费用最省,并求出铺设水管的总费用w(元).【思路引领】作A点关于CD的对称点为A',连接A'B交CD于点O,过点A作AF⊥BD于点F,过点A'作A'E⊥BD交BD的延长线于点E,分别利用勾股定理求出AF和A'B的长即可.【解答】解:如图所示,作A点关于CD的对称点为A',连接A'B交CD于点O,过点A作AF⊥BD于点F,过点A'作A'E⊥BD交BD的延长线于点E,此时AO+BO最小,∵AC=2km,BD=6km,∴BF=4km,DE=2km,∵AB=213km,∴AF=(213)2−42=6(km),在Rt△BA'E中,由勾股定理得:A'B=′2+B2=62+(6+2)2=10(km),∴AO+BO=10(km),∴铺设水管的总费用W=10×2000=20000(元).【总结提升】本题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解题的关键.【变式训练】1.(2023春•红塔区期中)如图,在笔直的铁路上A,B两点相距20km,C、D为两村庄,DA=8km,CB=14km,DA⊥AB于点A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求AE=13.3km.【思路引领】设AE=x km,即可得到EB=(20﹣x)km,结合DA⊥AB于点A,CB⊥AB于B根据勾股定理列式求解即可得到答案.【解答】解:设AE=x km,则EB=(20﹣x)km,∵DA⊥AB,CB⊥AB,DA=8km,CB=14km,∴DE2=x2+82=x2+64,DE2=(20﹣x)2+142=x2﹣40x+596,∵C、D两村到E站的距离相等,∴x2﹣40x+596=x2+64,解得:x=13.3,故答案为:13.3.【总结提升】本题考查勾股定理的应用,解题的关键是根据相等列等式求解.类型六航海问题【典例6】(2023春•黄陂区期中)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一小时后分别位于点Q,R处,且相距20海里.如果知道“远航”号沿北偏东50°方向航行,你能判断“海天”号沿哪个方向航行吗?请说明理由.【思路引领】利用勾股定理逆定理以及方向角得出答案.【解答】解:由题意可得:RP=12海里,PQ=16海里,QR=20海里,∵162+122=202,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“远航”号沿北偏东50°方向航行,∴∠RPN=40°,∴“海天”号沿北偏西40°方向航行.【总结提升】此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.【变式训练】1.(2023秋•泰山区期末)如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时30分,我国反走私A艇发现正东方有一走私艇C以8海里/时的速度偷偷向我领海驶来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是20海里,A、B两艇的距离是12海里;反走私艇B测得距离C艇16海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?【思路引领】由勾股定理的逆定理得△ABC为直角三角形,且∠ABC=90°,再由三角形面积求出BE=485海里,然后由勾股定理得CE=645海里,即可解决问题.【解答】解:由题意可知,∠BEC=90°,∵AB2+BC2=122+162=202=AC2,∴△ABC为直角三角形,且∠ABC=90°,∵MN⊥AC,∴走私艇C进入我国领海的最短距离是CE,=12AB•BC=12AC•BE,∵S△ABC∴BE=B⋅B B=12×1620485(海里),∴CE=B2−B2==645(海里),∴645÷8=85(小时)=96分,∴9时30分+96分=11时6分.答:走私艇C最早在11时6分进入我国领海.【总结提升】本题考查了勾股定理的应用、勾股定理的逆定理以及三角形面积等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.类型七受台风或噪声影响问题【典例7】(2022秋•清水县月考)如图,A城气象台测得台风中心在A城的正西方300千米处,以每小时107千米的速度向北偏东60°的BF方向移动,距台风中心200千米的范围内是受这次台风影响的区域.(1)问A城是否会受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?【思路引领】(1)作AC⊥BF,则距点A最近的点即为C点,计算AC的长,若AC>200千米,则不受影响,反之,则受影响.(2)求出A城所受影响的距离DE,又有台风移动的速度,即可求解出其影响的时间.【解答】解:(1)A城市受影响.如图,过点A作AC⊥BF,则距离点C最近的距离为AC,∵AB=300,∠ABC=30°,∴AC=12AB=150<200,所以A城会受到这次台风的影响;(2)如图,∵距台风中心200千米的范围内是受这次台风影响的区域,则AD=AE=200,即DE为A城遭受这次台风的距离,CD=A2−B2=507,∴DE=1007,则t===10小时.故A城遭受这次台风影响的时间10小时.【总结提升】本题主要考查了方向角问题以及解直角三角形的简单运用,能够熟练掌握.【变式训练】1.(2022春•紫云县期末)如图,有两条公路OM,ON相交成30°,沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON的方向行驶时,以P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大,若重型运输卡车P沿道路ON方向行驶的速度为5米/秒.(1)求卡车P对学校A的噪声影响最大时,卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间.【思路引领】(1)过点A作AH⊥ON于H,利用含30°角的直角三角形的性质可得答案;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,利用勾股定理求出CH的长,再根据等腰三角形的性质可得CD的长,从而求出时间.【解答】解:(1)过点A作AH⊥ON于H,∵∠O=30°,OA=80米,∴AH=12OA=40米,∴卡车P对学校A的噪声影响最大时,卡车P与学校A的距离为40米;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,由(1)知AH=40米,∴CH=B2−B2=502−402=30(米),∴CN=2CH=60(米),∴t=60÷5=12(秒),∴卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间为12秒.【总结提升】本题主要考查了勾股定理的实际应用,含30°角的直角三角形的性质,等腰三角形的性质,垂线段最短等知识,根据题意,构造出直角三角形是解题的关键.类型八求旗杆(大树)高度问题【典例8】(2023秋•开封期末)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)()A.14m B.15m C.16m D.17m【思路引领】根据题意画出示意图,设旗杆高度为x m,可得AC=AD=x m,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x m,过点C作CB⊥AD于B,则AC=AD=x m,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选:D.【总结提升】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.【变式训练】1.(2023春•岳阳楼区期末)小华和小侨合作,用一块含30°的直角三角板,旗杆顶端垂到地面的绳子,测量长度的工具,测量学校旗杆的高度,如图,测得AD=0.5米,绳子部分长CD=6米,则学校旗杆AB的高度为()A.6.5米B.(63+0.5)米C.12.5米D.(65+0.5)米【思路引领】根据含30°角的直角三角形的性质得出2DC=BC,进而利用勾股定理解答即可.【解答】解:由题意知∠ABC=30°,CD⊥AB,∴BC=2CD=12米,A=63米,∵AD=0.5米,∴B=(63+0.5)米,故选:B.【总结提升】本题考查了含30度直角三角形的性质及勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.2.(2023秋•岱岳区期中)学习完《勾股定理》后,张老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为2米,将绳子拉直,且绳子底端与地面接触,此时绳子端点距离旗杆底端5米,则旗杆的高度为214米.【思路引领】在Rt△ABC中,由勾股定理得出关于AB的方程求解即可.【解答】解:如图,由题意可知,BD=2米,BC=5米,AC=AB+BD=(AB+2)米,在Rt△ABC中,由勾股定理得,AB2+BC2=AC2,即AB2+52=(AB+2)2,解得AB=214,∴旗杆的高度为214米.故答案为:214.【总结提升】本题考查了勾股定理的应用,熟记勾股定理是解题的关键.3.(2023秋•秦安县期末)如图,在一棵树的10米高B处,有两只猴子,一只猴子爬下树走到离树20米处的池塘A处,另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树的高度为15米.【思路引领】根据两只猴子所经过的距离相等,将两只猴子所走的路程表示出来,根据勾股定理列出方程求解.【解答】解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m.【总结提升】把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.类型九小鸟飞行距离问题【典例9】(2022秋•嵩县期末)如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行()米.A.6B.8C.10D.12【思路引领】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为8﹣2=6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离=82+62=10m.故选:C.【总结提升】本题主要考查了勾股定理的应用,解题的关键是将现实问题建立数学模型,运用数学知识进行求解.【变式训练】1.(2023秋•青羊区期中)如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C 点(B,C两点处于同一水平面)的距离AC=25米.(1)求出BC的长度;(2)若小鸟竖直下降到达D点(D点在线段AB上),此时小鸟到地面C点的距离与下降的距离相同,求小鸟下降的距离.【思路引领】(1)在直角三角形中运用勾股定理即可求解;(2)在Rt△BDC中,根据勾股定理即可求解.【解答】解:(1)由题意知∠B=90°,∵AB=20米,AC=25米.∴BC=252−202=15米,(2)设AD=x,则CD=x,BD=20﹣x,在Rt△BDC中,DC2=BD2+BC2,∴x2=(20﹣x)2+152,解得x=1258,∴小鸟下降的距离为1258米.【总结提升】本题考查勾股定理,熟练掌握勾股定理是解题关键.类型十利用勾股定理表示无理数【典例10】(2022春•武昌区期末)平面直角坐标系中,点P(﹣4,2)到坐标原点的距离是()A.2B.4C.23D.25【思路引领】利用勾股定理计算可得结论.【解答】解:由题意得,点P到坐标原点的距离为:42+22=20=25.故选:D.【总结提升】本题考查了勾股定理,掌握勾股定理的内容是解决本题的关键.【变式训练】1.(2023•大连)如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是+1.【思路引领】由勾股定理求出AB的长,进而得到AC的长,再求出OC的长,得出点C的坐标,即可解决问题.【解答】解:∵点A,B的坐标分别为(1,0)和(0,2),∴OA=1,OB=2,∵∠AOB=90°,∴AB=B2+B2=12+22=5,∵以点A为圆心,以AB长为半径画弧,∴AC=AB=5,∴OC=AC+OA=5+1,∵交x轴正半轴于点C,∴点C的坐标为(5+1,0).故答案为:5+1.【总结提升】本题考查了勾股定理以及坐标与图形性质等知识,熟练掌握勾股定理是解题的关键.2.(2022秋•芗城区月考)用尺规作图在数轴上作出表示实数=10的点P(保留作图痕迹,不写作法).【思路引领】过表示1的点A作数轴的垂线AB,在垂线上截取AB=3,连接OB,以O为圆心,OB为半径作弧交数轴于P,则P即为所求的点.【解答】解:如图:点P表示的数即为10.【总结提升】此题主要考查了勾股定理以及作图,关键是掌握10是两直角边长分别为1和3的直角三角形的斜边长.3.(2023•长阳县一模)如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C,D均为格点,以A为圆心,AB长为半径作弧,交网格线CD于点E,则C,E两点间的距离为()A.3B.3−3C.3+12D.3−12【思路引领】如图:连接AE,则AE=2、AD=1,由勾股定理可求出DE,然后运用线段的和差即可解答.【解答】解:如图:连接AE,则AE=2,AD=1,∴DE=B2−A2=22−12=3,∴CE=CD﹣DE=3−3.故选B.【总结提升】本题主要考查了勾股定理的应用以及线段的和差,根据题意运用勾股定理求得DE是解答本题的关键.4.(2022秋•埇桥区期中)如图,网格中每个小正方形的边长均为1,点A、B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.3−1B.3−5C.5D.22【思路引领】连接AD,则AD=AB=3,在Rt△AED中,利用勾股定理求出DE即可得出答案.【解答】解:连接AD,由题意知:AD=AB=3,在Rt△AED中,由勾股定理得:ED=A2−B2=32−22=5,∴CD=CE﹣DE=3−5,故选:B.【总结提升】本题主要考查了勾股定理,求出DE的长是解题的关键.。

勾股定理在实际问题中的应用举例

勾股定理在实际问题中的应用举例

勾股定理在实际问题中的应用举例一、利用勾股定理解决立体图形问题勾股定理是揭示直角三角形的三条边之间的数量关系,可以解决许多与直角三角形有关的计算与证明问题,在现实生活中有着极其广泛的应用,下面就如何运用勾股定理解决立体图形问题举例说明,供参考。

一、长方体问题例1、如图1,图中有一长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )A 、41cmB 、34cmC 、50cmD 、75cm分析:图中BD 为长方体中能放入的最长的木条的长度,可先连接BC ,根据已知条件,可以判断BD 是Rt △BCD 的斜边,BD 是Rt △BCD 的斜边,根据已知条件可以求出BC 的长,从而可求出BD 的长。

解:在Rt △ABC 中,AB=5,AC=4,根据勾股定理,得BC=22AC AB +=41,在Rt △BCD 中,CD=3,BC=41,BD=22CD BC +=50。

所以选C 。

说明:本题的关键是构造出直角三角形,利用勾股定理解决问题。

二、圆柱问题例2、如图2,是一个圆柱形容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口处1cm 的点F 出有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是多少?分析:勾股定理是平面几何中的一个重要定理,在遇到立体图形时,需根据具体情况,把立体图形转化为平面图形,从而使空间问题转化为平面问题。

由题意可知,S 、F 两点是曲面上的两点,表示两点间的距离显然不能直接画出,但我们知道圆柱体的侧面展开图是一个长方形,,于是我们就可以画出如图3的图,这样就转化为平面中的两点间的距离问题,从而使问题得解。

解:画出圆柱体的侧面展开图,如图3,由题意,得SB=60÷2=30(cm ),FB=18―1―1=16(cm ),在Rt △SBF 中,∠SBF=90°,由勾股定理得,SF=22FB SB +=221630+=34(cm ),所以蜘蛛所走的最短路线的长度是34cm 。

第十七章 勾股定理题实际应用型归纳专题训练

第十七章 勾股定理题实际应用型归纳专题训练

第十七章勾股定理题实际应用型归纳专题训练题型一:梯子滑落问题1.如图,一根长25m的梯子,斜靠在一竖直的墙上,这时梯子的底端距墙底端7m.如果梯子的顶端下滑4m,那么梯子的底端将向右滑动()A.15m B.9m C.7m D.8m2.一架长5m的梯子斜靠在墙上,梯子底端到墙的距离为3m.若梯子顶端下滑1m,那么梯子底端在水平方向上滑动了()A.1m B.小于1m C.大于1m D.无法确定AO=,若梯子的顶端沿墙下滑1m,这时梯子的底端也向右3.如图,一个梯子斜靠在一竖直的墙AO上,测得4m滑1m,则梯子AB的长度为________.4.如图所示,一个梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得BD长为1.3米,则梯子顶端A下滑了_____米.5.如图,将长为2.5米长的梯子AB斜靠在墙上,BE的长度为0.7米.(1)求梯子上端到墙底端E的距离;AC=米)则梯脚B往外移多少米?(2)如果梯子顶端A沿墙下滑0.4米,(即0.46.如图,某火车站内部墙面MN 上有破损处(看作点A ),现维修师傅需借助梯子DE 完成维修工作.梯子的长度为5m ,将其斜靠在这面墙上,测得梯子底部E 离墙角N 处3m ,维修师傅爬到梯子顶部使用仪器测量,此时梯子顶部D 距离墙面破损处1m .(1)该火车站墙面破损处A 距离地面有多高?(2)如果维修师傅要使梯子顶部到地面的距离为4.8m .那么梯子底部需要向墙角方向移动多少米?题型二:树木折断问题7.如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=十尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度为()A .3尺B .3.2尺C .3.6尺D .4尺8.《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?题意是:一根竹子原高1丈(1丈10=尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?设折断处离地面的高度为x 尺,则可列方程为()A .()22310x x -=-B .()22310x x +=-C .()222310x x +=-D .()222310x x -=-9.《九章算术》中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意:有一根竹子原来高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面a 尺,根据题意,则可列方程:__________.10.强大的台风使得一根旗杆在离地面3m处折断倒下,旗杆顶部落在离旗杆底部4m处,则旗杆折断之前的高度是_______.11.如图,在距张大爷家房屋17米处有一棵大树.在一次强风中,这颗大树从距地面8米处折断倒下,量得倒下部分AC的长是17米.请你通过计算,判断这棵大树倒下时是否会砸到张大爷的房子.12.如图,一木杆长13m,在离地面的点B处折断,木杆顶端C落在离木杆底端A的12m处.求木杆折断处离地面有多高?题型三:旗杆高度问题13.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.14.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B 离地面0.6m,荡秋千到AB的位置时,下端B 距静止位置的水平距离EB等于2.4m,距地面1.4m,求秋千AB的长.15.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计).题型四:小鸟飞行距离16.如图,有两棵树,一棵树高AC是10米,另一棵树高BD是4米,两树相距8米(即CD=8米),一只小鸟从一棵树的树梢A点处飞到另一棵树的树梢B点处,则小鸟至少要飞行多少米?17.如图,某自动感应门的正上方A处装着一个感应器,离地的高度AB为2.7米,当人体进入感应器的感应范围内BC 米),感应门时,感应门就会自动打开.一个身高1.5米的学生CD正对门,缓慢走到离门1.6米的地方时( 1.6自动打开,AD为多少米?18.如图,有两根直杆隔河相对,杆CD高30m,杆AB高20m,两杆相距BC为50m,两杆顶各有一只鱼鹰,它们同时看到两杆之间的河面上E处浮起一条小鱼,以同样的速度同时飞下来夺鱼,两只鱼鹰同时到达,叼住小鱼.两杆底部距鱼的距离BE,CE各是多少?题型五:最短路径问题19.如图,有一个圆柱形仓库,它的高为10m,地面直径为8m,在该仓库下地面A处有一只蚂蚁,它想吃相对一侧外面中点B处的食物,蚂蚁爬行的速度是0.4m/min,那么蚂蚁吃到食物至少需要爬行( 取3)()A.32.5min B.minC.30min D.25.2min220.如图,圆柱形容器的高17cm,底面周长是24cm,在外侧底面S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm点F处有一苍蝇,急于捕获苍蝇充饥的蜘蛛所走的最短路线长度是()D.24cmA.20cm B.C21.如图,要为一段高为5米,长为13米的楼梯铺上红地毯,则红地毯的长至少要_______米22.如图,在高为6米,坡面长度AB为10米的楼梯表面铺上地毯,则至少需要地毯______米.23.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?题型六:是否受台风影响问题24.如图,A城气象台测得台风中心在A城正西方向240km的O处,以每小时30km的速度向南偏东60 的OB方向移动,距台风中心150km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?(2)求A城受台风影响的时间有多长?25.台风是一种自然灾害,它以台风中心为圆心在周围数十千米的范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,该台风中心现在正以15km/h 的速度沿北偏东30︒方向移动,若在距离台风中心130km 范围内都要受到影响.(结果精确到0.01) 2.236≈≈≈)(1)该城市是否会受到这次台风的影响?说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?题型七:航海问题24.如图,甲货船以16海里/时的速度从港口A 出发向东北方向航行,乙货船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后两船之间的距离是()A .40海里B .32海里C .24海里D .20海里25.一艘渔船从港口A 沿北偏东60°方向航行60海里到达C 处时突然发生故障,位于港口A 正东方向的B 处的救援艇接到信号后,立即沿北偏东45°方向以40海里/小时的速度前去救援,救援艇到达C 处所用的时间为()A .32小时B .23小时C D26.在一次海上救援中,两艘专业救助船A、B同时收到某事故渔船P的求救讯息,已知此时救助船B在A的正北方向,事故渔船P在救助船A的北偏西30°方向上,在救助船B的西南方向上,且事故渔船P与救助船A相距60海里.(1)求收到求救讯息时事故渔船P与救助船B之间的距离(结果保留根号);(2)求救助船A、B分别以20海里/小时,15海里/小时的速度同时出发,匀速直线前往事故渔船P处搜救,试通过计算判断哪艘船先到达.27.如图,甲乙两船从港口A同时出发,甲船以16海里/时的速度向南偏东40︒航行,乙船向北偏东50︒航行,2小时后,甲船到达B岛,乙船到达C岛,若CB两岛相距40海里,∠的度数;(2)求乙船的航速是多少?(1)直接写出CAB题型八:水杯中筷子问题28.如图所示,将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度cm h ,则h 的取值范围是()A .17cmh ≤B .8cm h ≥C .15cm 16cm h ≤≤D .7cm 16cm h ≤≤29.如图是一圆柱玻璃杯,从内部测得底面半径为6cm ,高为16cm ,现有一根长为25cm 的吸管任意放入杯中,则吸管露在杯口外的长度最少是()A .6cmB .5cmC .9cmD .(25cm -30.如图是一个圆柱形饮料罐,底面半径是3,高是4,上底面中心有一个小圆孔,则一条长10的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A .56a ≤≤B .36a ≤≤C .23a ≤≤D .12a ≤≤题型九:汽车超速问题31.如图,一辆小汽车在一条限速70km/h 的街路上沿直道行驶,某一时刻刚好行驶到路面车速检测仪A 的正前方60m 处的C 点,过了5s 后,测得小汽车所在的B 点与车速检测仪A 之间的距离为100m .(1)求B ,C 间的距离.(2)这辆小汽车超速了吗?请说明理由.32.超速行驶是引发交通事故的主要原因.上周末,小威等三位同学在幸福大道段,尝试用自己所学的知识检测车速,观测点设在到公路l 的距离为100m 的P 处.这时,一辆红旗轿车由西向东匀速驶来,测得此车从A 处行驶到B 处所用的时间为3s ,并测得60APO ∠=︒,45BPO ∠=︒,(1)求AP 的长?(2)试判断此车是否超过了80km /h 1.732≈)题型十:河宽问题33.如图,在一条绷紧的绳索一端系着一艘小船,河岸上一男孩拽着绳子另一端向右走,绳端从点C 移动到点E ,同时小船从点A 移动到点B ,且绳长始终保持不变,回答下列问题:(1)根据题意,可知AC ________BC CE +(填“>”“<”“=”);(2)若5CF =米,12AF =米,4AB =米,求男孩需向右移动的距离CE (结果保留根号).34.如图,某人从点A 划船横渡一条河,由于水流的影响,实际上岸地点C 离欲到达点B 有45m ,已知他在水中实际划了75m ,求该河流的宽度AB .。

勾股定理应用题型大汇总(经典)

勾股定理应用题型大汇总(经典)

勾股定理题型汇总一、用勾股定理解决实际问题 【经典例题】 1.水中芦苇问题在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。

2.梯子滑动问题一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?(3)当梯子的顶端下滑的距离与梯子的底端水平滑动的距离相等时,这时梯子的顶端距地面有多高?【练一练】1、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?2、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?3、如图,南北向MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以每小时6.4海里的速度偷偷向我领海开来,便立即通知正在MN 在线巡逻的我国反走私艇B 密切注意,反走私A 艇通知反走私艇B 时,A 和C 两艇的距离是20海里,A 、B 两艇的距离是12海里,反走私艇B 测得距离C 是16海里,若走私艇C 的速度不变,最早会在什么时间进入我国领海?AA ′BA ′ O二、最短路径问题1、如图1,长方体的长为12cm ,宽为6cm ,高为5cm ,一只蚂蚁沿侧面从A 点向B 点爬行,问:爬到B 点时,蚂蚁爬过的最短路程是多少?2、如图壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处,它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.请问壁虎至少要爬行多少路程才能捕到害虫?3:如图为一棱长为3cm 的正方体,把所有面都分为9个小正方形,其边长都是1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下地面A 点沿表面爬行至右侧面的B 点,最少要花几秒钟?4.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?5、如图,一个高18m ,周长5m 的圆柱形水塔,现制造一个螺旋形登梯,为减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿张白纸动手操作,你一定会发现其中的奥妙)A B 5 316、有一圆柱形食品盒,它的高等于16cm ,底面直径为20cm , 蚂蚁爬行的速度为2cm/s. ⑴如果在盒内下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间? (盒的厚度和蚂蚁的大小忽略不计,结果可含π)⑵如果在盒外下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间? (盒的厚度和蚂蚁的大小忽略不计,结果可含π)7、如图,圆锥的侧面展开图是半径为22cm 的半圆,一只蚂蚁沿圆锥侧面从A 点向B 点爬行,问:(1)爬到B 点时,蚂蚁爬过的最短路程;(2)当爬行路程最短时,求爬行过程中离圆锥顶点C 的最近距离.8、如图,一圆锥的底面半径为2,母线PB 的长为6,D 为PB 的中点.一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D ,则蚂蚁爬行的最短路程为三、面积问题1. 已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 .AB CD E FGA ·B · A· B ·FE DABC2.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形的边长是____ _____.3.在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=______ ___. 4.如图,△ABC 中,∠C =90°,(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S 1+S 2与S 3的关系;(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S 1+S 2与S 3的关系; (3)以直角三角形的三边为直径向形外作半圆(如图③),探究S 1+S 2与S 3的关系.图① 图② 图③5.如图,设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…,记正方形ABCD 的边长a1=1,依上述方法所作的正方形的边长依次为a1,a2,a3,…,an ,根据上述规律,则第n 个正方形的边长an =___ _____记正方形AB -CD 的面积S 1为1,按上述方法所作的正方形的面积依次为S 2,S 3,……,S n (n 为正整数),那么S n =____ ____.6.如图,Rt △ABC 中,∠C=90°,AC=2,AB=4,分别以AC 、BC 为直径作半圆,则图中阴影部分的面积为 .四、翻折问题1、如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG.2、如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F. (1)求证:△FAC 是等腰三角形;(2)若AB=4,BC=6,求△FAC 的周长和面积.3、如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知cm CE 6=,cm AB 16=求BF 的长.G AD A B C DAA B C D EG FF 4、如图,一张矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝。

勾股定理应用练习题

勾股定理应用练习题

勾股定理应用练习题勾股定理是数学中非常重要的一条定理,它描述了直角三角形中三个边之间的关系。

在实际应用中,勾股定理有着广泛的应用。

本文将给出一些勾股定理的应用练习题,供读者进行实际操作和练习。

练习题一:建筑设计某建筑设计师需要设计一座高耸的塔楼。

根据设计要求,塔楼的顶部高度为100米,塔楼的底部距离观测点的水平距离为150米。

设计师希望知道观测点到塔楼底部形成的角度是多少。

解题步骤:1. 通过勾股定理,计算观测点到塔楼底部的直线距离。

设直线距离为d,根据勾股定理可得:d² = 100² + 150²。

计算得:d ≈ 180.3米。

2. 计算观测点到塔楼底部的角度。

角度θ = arccos(150 / 180.3) ≈ 49.6°。

练习题二:导弹轨迹一枚导弹从发射点出发,垂直向上发射。

在飞行过程中,导弹的速度逐渐减小,直到最终停止运动并开始下坠。

已知导弹发射时的速度为500米/秒,导弹运动的总时间为100秒。

设计师想要知道导弹的最大高度。

解题步骤:1. 计算导弹上升和下降的时间。

因为导弹的运动总时间为100秒,所以上升和下降的时间各占一半,即50秒。

2. 计算导弹上升的最大高度。

设导弹上升的最大高度为h,根据物理定律可得:500² = h * 9.8 * 50。

计算得:h ≈ 12755.1米。

练习题三:电影特效在电影特效拍摄中,需要模拟一个从高楼上跳下的场景。

为了保证演员的安全,摄影师需要提前计算演员的跳跃距离和接地点的位置。

已知演员从高楼上跳下,跳跃的初始速度为4米/秒,跳跃的角度为45°。

计算演员跳跃的水平距离和垂直距离。

解题步骤:1. 计算演员的水平跳跃距离。

设跳跃距离为d,根据物理定律可得:d = 4 * cos(45°) * t。

因为跳跃的初始速度为4米/秒,并且跳跃的角度为45°,所以水平速度为4 * cos(45°),时间t需要根据具体情况进行确定。

勾股定理在实际问题中的应用

勾股定理在实际问题中的应用

勾股定理在实际问题中的应用勾股定理是数学中的重要定理.它揭示了直角三角形三边之间的数量关系,把数与形统一起来.勾股定理不仅在数学的发展中起着重要的作用,而且在现实世界中有着广泛的应用.下面举例说明勾股定理在实际生活中的应用.一、少走几步路例1.如图1,学校有一块长方形花铺,有极少数人从A 走到B ,为了避开拐角C 走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草. 分析:由图可见,走出来的“路”是直角边分别为3m和4m的直角三角形的斜边,由勾股定理,得该“路”的长为5m,因此,行人仅仅少走了2米(即10步)路.点评:爱护花草人人有责,仅仅因为少走10步而不惜踩伤花草,破坏环境的确是大不应该的。

由此可见,只有懂得“三角形两边之和大于第三边”的人才知道走“捷径”的比经过拐角处的路程近些,但掌握的数学知识如果不能用正当的行为上,那将是数学的悲哀。

二、票价为多少元呢?例2.如图2,A 、B 、C 、D 是四个小镇,它们之间(除B 、C 外)都有笔直的公路相连接,公共汽车行驶于城镇之间,其票价与路程成正比.已知各城镇间的公共汽车票价如下:A ↔B :10元;A ↔C :12.5元;A ↔D :8元;B ↔D :6元;C ↔D :4.5元.为了B 、C 之间的交通方便,要在B 、C 之间建成笔直公路,请按上述标准计算出B 、C 之间的公路的票价为多少元.分析:因为票价与路程成正比,故可将票价视为路程来处理,即AB=10,AD=8,BD=6,AC=12.5,CD=4.5,利用勾股定理求解.解:因为票价与路程成正比,故可把票价视为路程来处理.已知:AB=10,AD=8,BD=6,AC=12.5,CD=4.5.因为AD 2+BD 2=82+62=64+36=100=102=AB 2,所以△ABD 为直角三角形,且∠ADB=90°. 连接BC ,在Rt △BDC 中,CD=4.5,BD=6,所以224.567.5BC =+=.故B 、C 之间公共汽车票价为7.5元.点评:本题是利用勾股定理来解决生活中的实际问题.本题的技巧是将票价视为路程来处理,这一点与代数中的换元法极为相似.三、最短路程是多少例3如图3,一圆柱的底面周长为24cm ,高AB 为4cm ,BC 是直径,一只蚂蚁从点A 出发沿着圆柱体的表面爬行到点C 的最短路程大约是( )A .6cmB .12cmC .13cmD .16cm分析:把圆柱沿直径BC 剪开成两半,展开成平面后可得如图4,则蚂蚁从点A 爬行到“路”4m 3m 图1 AB C 图2 A B图3AC 图4 B点C 的最短路程是矩形的对角线AC 的长,由已知,AB=4,BC=12,故AC=22412+≈12.6≈13(cm ),故选C .点评:解立体图形问题的基本思想是把立体图形平面化,因此,圆柱问题通常要把它沿一条母线剪开,然后铺展为矩形,这里要注意到蚂蚁从点A 出发到点C ,当圆柱沿母线AB 展开成矩形时,点C 对应的是矩形一边的中点。

勾股定理应用典型题型

勾股定理应用典型题型

勾股定理应用典型题型
勾股定理应用典型题型有3个,这3个题型如下:
1.已知直角三角形的两边长,利用勾股定理求第三边。

例如,在直角三角形ABC中,已知∠C=90°,a=6,c=10,求b的长度。

根据勾股定理,b²=c²-a²,可求得b=8。

2.已知三角形的三边长,利用勾股定理判断其是否为直角三角形。

例如,在三角形ABC中,已知a=3,b=4,c=5,判断三角形ABC是否为直角三角形。

由32+42=52,根据勾股定理可知:三角形ABC是直角三角形。

3.利用勾股定理解决实际问题。

例如,在一座建筑物上放置一架2.5米长的梯子,梯子的底部离建筑物0.7米,如果梯子的顶部滑下0.4米,梯子的底部向外滑出多远?根据勾股定理求得梯子的底部向外滑出的距离为0.8米。

1/ 1。

勾股定理的应用题典型

勾股定理的应用题典型

勾股定理的应用题典型
应用题1:建筑斜坡
一座高楼的斜坡长5米,高3米。

如果斜坡的底边与地面呈直角,问斜坡的斜边长度是多少?
答案:
设斜边长度为(c)米,根据勾股定理,可以得到:
应用题2:田径场内外跑道
一个标准田径场内外各有一个跑道,内跑道的周长为400米,外跑道的周长为600米。

问内外跑道的宽度分别是多少?
答案:
设内跑道的宽度为(x)米,那么外跑道的宽度为(x+2)米。

根据题意,可以列出方程:解这个方程组,得到内外跑道的宽度分别为:
应用题3:三角形边长关系
已知一个直角三角形,两条直角边长分别为(a = 3),(b = 4),求斜边的长度(c)。

答案:
根据勾股定理,可以得到:
c^2 = 3^2 + 4^2
c^2 = 9 + 16
c^2 = 25
c = 5。

勾股定理在实际生活中的应用专题训练

勾股定理在实际生活中的应用专题训练

勾股定理在实际生活中的应用专题训练1、已知:如图1,点A、D、B、E在同一条直线上,AD=BE,AC∥DF,BC∥EF.求证:AC=DF.思路分析:要证明AC=DF,则需要证明⊿ABC≌⊿DEF.在⊿ABC和⊿DEF中,由AC∥DF可得∠CAB=∠FDE, 由BC∥EF可得∠CBA=∠FED,现已证两三角形的两组对应角相等,所以考虑夹边,用ASA,证明⊿ABC≌⊿DEF.由已知AD=BE可得:AD+DB=BE+DB,即AB=DE,命题得证.2、已知:如图2,BE⊥AC,DF⊥AC,垂足分别是E、F,O是BD的中点.求证:BE=DF.思路分析:要证明BE=DF,则需要证明⊿BOE≌⊿DOF.在⊿BOE和⊿DOF中,由BE⊥AC,DF⊥AC可得∠BEO=∠DFO=90°,∠BOE=∠DOF,现已证两三角形的两组对应角相等,所以考虑其中一组对应角的对边,用AAS,证明⊿BOE≌⊿DOF.由已知O是BD的中点可得:OB=OD,条件已具备,命题得证.3、已知:如图3, AB=DE,BC=EF,AF=CD.求证:AB∥DE, BC∥EF.思路分析:要证明AB∥DE, BC∥EF,则需要证明∠A=∠D, ∠BCA=∠EFD,由此只需要证明⊿ABC≌⊿DEF.在⊿ABC和⊿DEF中,已知AB=DE,BC=EF,即两三角形的两组对应边相等,因此,只需证明边AC=DF,用SSS证明⊿ABC≌⊿DEF.由已知AF=CD,根据等式性质得:AF+CF=CD+CF,即AC=DF,命题得证.4、已知:如图4, AB=AD,AC=AE, ∠BAD=∠CAE.求证:. ∠B=∠D.思路分析:要证明∠B=∠D,只需要证明⊿ABC≌⊿ADE.在⊿ABC 和⊿ADE中,已知AB=AD, AC=AE,即两三角形的两组对应边相等,因此,只需证明两条已知边的夹角相等,用SAS证明⊿ABC≌⊿ADE.由已知∠BAD=∠CAE,根据等式性质得:∠BAD+∠DAC =∠CAE+∠DAC,即∠BAC=∠DAE,命题得证.5、已知:如图5, AD=AE,点D、E在BC上,BD=CE,∠ADE=∠AED.求证: ⊿ABE≌⊿ACD思路分析:要证明⊿ABE≌⊿ACD,在⊿ABE和⊿ACD中,已知AD =AE, ∠ADE=∠AED即相邻的一角一边对应相等,因此,只需证明∠ADE 与∠AED的另一邻边相等即可,用SAS证明⊿ABE≌⊿ACD.由已知BD=CE可得:BD+DE=CE+DE,即BE=CD,命题得证.。

八年级数学勾股定理的实际应用专题练习(含解析答案)

八年级数学勾股定理的实际应用专题练习(含解析答案)

八年级数学勾股定理的实际应用专题练习一.选择题(共5小题)1.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A.3m B.5m C.7m D.9m2.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15 C.5≤a≤12D.5≤a≤133.一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为()A.18海里/小时B.海里/小时C.36海里/小时D.海里/小时4.在直径为10m的圆柱形油槽内装入一些油后,截图如图所示,如果油面宽AB=8m,那么油的最大深度是()A.1m B.2m C.3m D.4m5.如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为()A.3<h<4 B.3≤h≤4C.2≤h≤4D.h=4二.解答题(共22小题)6.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?7.有一艘渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A处和B处,B在A的正东方向,且相距100里,测得地点C在A的南偏东60°,在B的南偏东30°方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(≈1.7)8.如图,要在高AC为2米,斜坡AB长8米的楼梯表面铺地毯,地毯的长度至少需要多少米?9.如图,一块三角形铁皮,其中∠B=30°,∠C=45°,AC=12cm.求△ABC的面积.10.如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?11.如图,AB为一棵大树,在树上距地面10米的D处有两只猴子,他们同时发现C处有一筐水果,一只猴子从D处往上爬到树顶A处,又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?13.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?14.如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?15.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.16.某工厂的大门如图所示,其中下方是高为2.3米、宽为2米的矩形,上方是半径为1米的半圆形.货车司机小王开着一辆高为3.0米,宽为1.6米的装满货物的卡车,能否进入如图所示的工厂大门?请说明你的理由.17.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).请解答:(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、S3之间的数量关系是_________.(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积S1、S2、S3之间的数量关系是_________,请说明理由.(3)如图4,在梯形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的数量关系式为_________,请说明理由.18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?19.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.20.请阅读下列材料:问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π)(1)设路线1的长度为L1,则=_________.设路线2的长度为L2,则=_________.所以选择路线_________(填1或2)较短.(2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:=_________.路线2:=_________.所以选择路线_________(填1或2)较短.(3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.21.如图,正方体边长为30cm,B点距离C点10cm,有一只蚂蚁沿着正方体表面从A点爬到B点,其爬行速度为每秒2cm,则这只蚂蚁最快多长时间可爬到B点?22.如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B(B为棱的中点),那么所用细线最短需要多长?如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要多长?23.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.若AB=4,BC=4,CC1=5,(1)请你在备用图中画出蚂蚁能够最快到达目的地的可能路径;(2)求蚂蚁爬过的最短路径的长.24.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?25.如图所示,圆柱形的玻璃容器,高18cm,底面周长为24cm,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路径.26.如图,一正方形的棱长为2,一只蚂蚁在顶点A处,在顶点G处有一米粒.(1)问蚂蚁吃到这粒米需要爬行的最短距离是多少?(2)在蚂蚁刚要出发时,突然一阵大风将米粒吹到了GF的中点M处,问蚂蚁要吃到这粒米的最短距离又是多少?27.如图所示,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一只老鼠正在偷吃粮食.此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是多少米?(结果不取近似值)参考答案与试题解析一.选择题(共5小题)1.图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A.3m B.5m C.7m D.9m考点:勾股定理的应用.专题:应用题;压轴题.分析:为了不让羊吃到菜,必须<等于点A到圆的最小距离.要确定最小距离,连接OA交半圆于点E,即AE 是最短距离.在直角三角形AOB中,因为OB=6,AB=8,所以根据勾股定理得OA=10.那么AE的长即可解答.解答:解:连接OA,交半圆O于E点,在Rt△OAB中,OB=6,AB=8,所以OA==10;又OE=OB=6,所以AE=OA﹣OE=4.因此选用的绳子应该不大于4m,故选A.点评:此题确定点到半圆的最短距离是难点.熟练运用勾股定理.2.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13考点:勾股定理的应用.专题:压轴题.分析:最短距离就是饮料罐的高度,最大距离可根据勾股定理解答.解答:解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选A.点评:主要是运用勾股定理求得a的最大值,此题比较常见,有一定的难度.3.一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为()A.18海里/小时B.海里/小时C.36海里/小时D.海里/小时考点:勾股定理的应用;方向角.专题:应用题.分析:首先画图,构造直角三角形,利用勾股定理求出船8时到10时航行的距离,再求速度即可解答.解答:解:如图在Rt△ABC中,∠ABC=90°﹣60°=30°,AB=72海里,故AC=36海里,BC==36海里,艘船航行的速度为36÷2=18海里/时.故选B.点评:本题考查方位角、直角三角形、锐角三角函数的有关知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.4.在直径为10m的圆柱形油槽内装入一些油后,截图如图所示,如果油面宽AB=8m,那么油的最大深度是()A.1m B.2m C.3m D.4m考点:勾股定理的应用;垂径定理的应用.分析:本题是已知圆的直径,弦长求油的最大深度其实就是弧AB的中点到弦AB的距离,可以转化为求弦心距的问题,利用垂径定理来解决.解答:解:过点O作OM⊥AB交AB与M,交弧AB于点E.连接OA.在Rt△OAM中:OA=5m,AM=AB=4m.根据勾股定理可得OM=3m,则油的最大深度ME为5﹣3=2m.故选B.点评:考查了勾股定理的应用和垂径定理的应用,圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题.5.如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为()A.3<h<4 B.3≤h≤4C.2≤h≤4D.h=4考点:勾股定理的应用.分析:根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的长度最长为16﹣12=4cm;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答进而求出露在杯口外的长度最短.解答:解:①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16﹣12=4(cm);②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线直径为5cm,高为12cm,由勾股定理可得杯里面管长为=13cm,则露在杯口外的长度最长为16﹣13=3cm;则可得露在杯口外的长度在3cm和4cm范围变化.故选B.点评:本题考查了矩形中勾股定理的运用,解答此题的关键是要找出管最长和最短时在杯中所处的位置,然后计算求解.二.解答题(共22小题)6.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?考点:勾股定理的应用.专题:应用题.分析:(1)作BD⊥AE于D,构造两个直角三角形并用解直角三角形用BD表示出CD和AD,利用DA和DC 之间的关系列出方程求解.(2)分别求得两船看见灯塔的时间,然后比较即可.解答:解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD=,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.点评:此题考查的知识点是勾股定理的应用,解答此类题目的关键是构造出直角三角形,利用解直角三角形的相关知识解答.7.有一艘渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A处和B处,B在A的正东方向,且相距100里,测得地点C在A的南偏东60°,在B的南偏东30°方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(≈1.7)考点:勾股定理的应用.分析:作CD⊥AB交AB延长线于D,根据勾股定理分别计算出AB和BC的长度,利用速度、时间、路程之间的关系求出各自的时间比较大小即可.解答:解:作CD⊥AB交AB延长线于D,由已知得:∠EAC=60°,∠FBC=30°,∴∠1=30°,∠2=90°﹣60°=30°,∵∠1+∠3=∠2,∴∠3=30°,∴∠1=∠3,∴AB=BC=100,在Rt△BDC中,BD=BC=50,∴DC==50,∵AD=AB+BD=150,∴在Rt△ACD中,AC==100,∴t1号==≈4.25,t2号==,∵<4.25,∴搜救中心应派2号艘救助轮才能尽早赶到C处救援.点评:本题考查了勾股定理的运用、等腰三角形的判定和性质以及速度、时间、路程之间的关系.8.如图,要在高AC为2米,斜坡AB长8米的楼梯表面铺地毯,地毯的长度至少需要多少米?考点:勾股定理的应用.分析:根据题意,知还需要求出BC的长,根据勾股定理即可.解答:解:由勾股定理AB2=BC2+AC2,得BC===2,AC+BC=2+2(米).答:所需地毯的长度为(2+2)米.点评:能够运用数学知识解决生活中的实际问题.熟练运用勾股定理.9.如图,一块三角形铁皮,其中∠B=30°,∠C=45°,AC=12cm.求△ABC的面积.考点:勾股定理的应用;三角形的面积;含30度角的直角三角形;等腰直角三角形.分析:首先过A作AD⊥CB,根据∠C=45°,可以求出AD=DC,再利用勾股定理求出AD的长,再根据直角三角形的性质求出AB的长,利用勾股定理求出BD的长,最后根据三角形的面积公式可求出△ABC的面积.解答:解:过A作AD⊥CB,∵∠C=45°,∴∠DAC=45°,∴AD=DC,设AD=DC=x,则x2+x2=(12)2,解得:x=12,∵∠B=30°,∴AB=2AD=24,∴BD==12,∴CB=12+12,∴△ABC的面积=CB•AD=72+72.点评:此题主要考查了勾股定理的应用,以及直角三角形的性质,关键是熟练利用直角三角形的性质求出BD、AD的长.10.如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?考点:勾股定理的应用.分析:(1)根据题意可知∠C=90°,AB=2.5m,BC=0.7m,根据勾股定理可求出AC的长度,根据梯子顶端B沿墙下滑0.9m,可求出A1C的长度,梯子的长度不变,根据勾股定理可求出B1C的长度,进而求出BB1的长度.(2)可设点B向外移动的距离的一半为2x,则梯子从顶端A处沿墙AC下滑的距离是x,根据勾股定理建立方程,解方程即可.解答:解:(1)∵AB=2.5m,BC=O.7m,∴AC==2.4m∴A1C=AC﹣AA1=2.4﹣0.9=1.5m,∴B1C==2m,∴BB1=B1C﹣BC=0.5m;(2)梯子从顶端A处沿墙AC下滑的距离是x,则点B向外移动的距离的一半为2x,由勾股定理得:(2.4﹣x)2+(0.7+2x)2=2.52,解得:x=,答:梯子沿墙AC下滑的距离是米.点评:本题考查勾股定理的应用,在直角三角形里根据勾股定理,知道其中两边就可求出第三边,从而可求解.11.如图,AB为一棵大树,在树上距地面10米的D处有两只猴子,他们同时发现C处有一筐水果,一只猴子从D处往上爬到树顶A处,又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.考点:勾股定理的应用.分析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2,BC=a(米),AC=b(米),AD=x(米),根据两只猴子经过的路程一样可得10+a=x+b=15解方程组可以求x的值,即可计算树高=10+x.解答:解:Rt△ABC中,∠B=90°,设BC=a(米),AC=b(米),AD=x(米)则10+a=x+b=15(米).∴a=5(米),b=15﹣x(米)又在Rt△ABC中,由勾股定理得:(10+x)2+a2=b2,∴(10+x)2+52=(15﹣x)2,解得,x=2,即AD=2(米)∴AB=AD+DB=2+10=12(米)答:树高AB为12米.点评:本题考查了勾股定理在实际生活中的应用,本题中找到两只猴子行走路程相等的等量关系,并且正确地运用勾股定理求AD的值是解题的关键.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?考点:勾股定理的应用.分析:地毯的长是楼梯的竖直部分与水平部分的和,即AC与BC的和,在直角△ABC中,根据勾股定理即可求得BC的长,地毯的长与宽的积就是面积.解答:解:由勾股定理,AC===12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.点评:正确理解地毯的长度的计算是解题的关键.13.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.解答:解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是BF的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).点评:此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.14.如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?考点:勾股定理的应用.分析:(1)首先根据勾股定理计算BD的长,再根据时间=路程÷速度进行计算;(2)根据在30千米范围内都要受到影响,先求出从点B到受影响的距离与结束影响的距离,再根据时间=路程÷速度计算,然后求出时间段即可.解答:解:(1)在Rt△ABD中,根据勾股定理,得BD===240km,所以,台风中心经过240÷15=16小时从B移动到D点,答:台风中心经过16小时时间从B移动到D点;(2)如图,∵距台风中心30km的圆形区域内都会受到不同程度的影响,∴BE=BD﹣DE=240﹣30=210km,BC=BD+CD=240+30=270km,∵台风速度为15km/h,∴210÷15=14时,270÷15=18,∵早上6:00接到台风警报,∴6+14=20时,6+18=24时,∴他们要在20时到24时时间段内做预防工作.点评:本题考查了勾股定理的运用,此题的难点在于第二问,需要正确理解题意,根据各自的速度计算时间,然后进行正确分析.15.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.考点:勾股定理的应用.专题:计算题.分析:由题意知,△ABC为直角三角形,且AB是斜边,已知AB,AC根据勾股定理可以求BC,根据BC的长度和时间可以求小汽车在BC路程中的速度,若速度大于70千米/时,则小汽车超速;若速度小于70千米/时,则小汽车没有超速.解答:解:由题意知,AB=130米,AC=50米,且在Rt△ABC中,AB是斜边,根据勾股定理AB2=BC2+AC2,可以求得:BC=120米=0.12千米,且6秒=时,所以速度为=72千米/时,故该小汽车超速.答:该小汽车超速了,平均速度大于70千米/时.点评:本题考查了勾股定理在实际生活中的应用,本题中准确的求出BC的长度,并计算小汽车的行驶速度是解题的关键.16.某工厂的大门如图所示,其中下方是高为2.3米、宽为2米的矩形,上方是半径为1米的半圆形.货车司机小王开着一辆高为3.0米,宽为1.6米的装满货物的卡车,能否进入如图所示的工厂大门?请说明你的理由.考点:勾股定理的应用.专题:应用题.分析:根据题中的已知条件可将BB′的长求出,和卡车的高进行比较,若门高低于卡车的高则不能通过否则能通过.解答:解:设BB′与矩形的宽的交点为C,∵AB=1米,AC=0.8米,∠ACB=90°,∴BC===0.6米,∵BB′=BC+CB′=2.3+0.6=2.9<3.0,∴不能通过.点评:考查了勾股定理的应用,本题的关键是建立数学模型,善于观察题目的信息是解题以及学好数学的关键.17.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).请解答:(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、S3之间的数量关系是S1+S2=S3.(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积S1、S2、S3之间的数量关系是S1+S2=S3,请说明理由.(3)如图4,在梯形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的数量关系式为S1+S2=S3,请说明理由.考点:勾股定理的应用.专题:探究型.分析:(1)利用直角△ABC的边长就可以表示出等边三角形S1、S2、S3的大小,满足勾股定理.(2)利用直角△ABC的边长就可以表示出半圆S1、S2、S3的大小,满足勾股定理.解答:解:设直角三角形ABC的三边AB、CA、BC的长分别为a、b、c,则c2=a2+b2(1)S1+S2=S3,证明如下:∵S3=,S1=,S2=∴S1+S2==S3;(2)S1+S2=S3.证明如下:∵S3=,S1=,S2=∴S1+S2=+==S3;(3)过D点作DE∥AB,交BC于E,设梯形的边AB、DC、AD的长分别为a、b、c,可证EC=AD=c,DE=AB=a,∠EDC=180°﹣(∠DEC+∠BCD)=180°﹣(∠ABC+∠BCD)=90°,则c2=a2+b2∵S1=a2、S2=b2、S3=c2,表示,则S1+S2=S3.故答案为:S1+S2=S3;S1+S2=S3;S1+S2=S3.点评:考查了三角形、正方形、圆的面积的计算以及勾股定理的应用.18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?考点:勾股定理的应用.专题:计算题.分析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.解答:解:如图所示:根据题意,得AC=AD﹣BE=13﹣8=5m,BC=12m.根据勾股定理,得AB==13m.则小鸟所用的时间是13÷2=6.5(s).答:这只小鸟至少6.5秒才可能到达小树和伙伴在一起.。

勾股定理典型应用例题

勾股定理典型应用例题

1.基础应用题目:在一个直角三角形中,已知直角边a为3,直角边b为4,求斜边c的长度。

答案:根据勾股定理,c² = a² + b²,所以c² = 3² + 4² = 9 + 16 = 25,从而c = 5。

2.逆应用题目:已知直角三角形的斜边c为5,一条直角边a为3,求另一条直角边b的长度。

答案:根据勾股定理,b² = c² - a²,所以b² = 5² - 3² = 25 - 9 = 16,从而b = 4。

3.实际应用题目:一个直角三角形的两条直角边分别是6米和8米,一个正方形的一边与这个直角三角形的斜边重合,求这个正方形的面积。

答案:首先,根据勾股定理求出斜边长度c,c² = 6² + 8² = 36 + 64 = 100,所以c = 10。

正方形的面积为边长的平方,即10² = 100平方米。

4.比较大小题目:比较两个数的大小:√17和4。

答案:考虑直角边为1和4的直角三角形,斜边c满足c² = 1² + 4² = 17,所以c = √17。

显然,斜边c(即√17)大于直角边4。

5.多解问题题目:一个直角三角形的周长为12,其中一条直角边长为3,求另外两边的长。

答案:设另一条直角边为a,斜边为b。

根据勾股定理,a² + 3² = b²。

同时,根据周长信息,a + 3 + b = 12,即a + b = 9。

解这两个方程,得到两组解:a = 4, b = 5 和a = 5, b = 4。

6.非整数边长问题题目:在直角三角形中,已知直角边a为√3,直角边b为√4,求斜边c的长度。

答案:根据勾股定理,c² = a² + b²,所以c² = (√3)² + (√4)² = 3 + 4 = 7,从而c = √7。

专题02 勾股定理的四种实际应用(解析版)2021-2022学年八年级数学上(北师大版,成都专用)

专题02 勾股定理的四种实际应用(解析版)2021-2022学年八年级数学上(北师大版,成都专用)

专题02 勾股定理的四种实际应用【基础知识点】勾股定理的实际应用有很多,有梯子滑落问题、最短距离问题,树枝旗子折断问题,航海是否有影响问题等等,构造直角三角形是解决问题的关键。

类型一、梯子滑落高度问题例1.如图,一架梯子AB 斜靠在一竖直的墙OA 上,这时 2.5m AO =,30OAB ∠=︒.梯子顶端A 沿墙下滑至点C ,使60OCD ∠=︒,同时,梯子底端B 也外移至点D .求BD 的长度.(结果保留根号)【解析】在Rt OAB 中, 2.5AO =,30OAB ∠=︒,2AB ∴=根据勾股定理知BO ,60OCD ∠=︒,30ODC ∴∠=︒,在AOB ∆和DOC ∆中,OAB ODC AOB DOC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOB DOC AAS ∴∆≅∆,OA OD ∴=,OC OB =,52BD OD OB ∴=-==. 【变式训练1】如图所示,一架梯子AB 斜靠在墙面上,且AB 的长为2.5米.(1)若梯子底端离墙角的距离OB 为1.5米,求这个梯子的顶端A 距地面有多高?(2)在(1)的条件下,如果梯子的顶端A 下滑0.5米到点A',那么梯子的底端B 在水平方向滑动的距离BB'为多少米?【答案】(1)梯子距离地面的高度为2米;(2)梯子的底端水平后移了0.5米.【解析】(1)根据勾股定理:所以梯子距离地面的高度为:AO2==米;(2)梯子下滑了0.5米即梯子距离地面的高度为OA′=(2.5﹣0.5)=2米,根据勾股定理:OB′=2米,所以当梯子的顶端下滑0.5米时,梯子的底端水平后移了2﹣1.5=0.5米,答:当梯子的顶端下滑0.5米时,梯子的底端水平后移了0.5米.【变式训练2】如图,一架25米长的梯子AB,斜靠在竖直的墙MO上,梯子底端B到墙底端O的距离为7米.(1)若梯子的顶端A沿墙面下滑4米,那么底端B将向外移动多少米?请写出解题过程.(2)在梯子AB滑动过程中,AB上是否存在点P,它到墙底端O的距离保持不变?若存在,请求出OP 的长;如果不存在,请说明理由.【答案】(1)8米;(2)存在,252 OP m=【解析】如图,在直角△ABO中,已知AB=25米,BO=7米,则由勾股定理得:(米);△AO=AA1+OA1△OA1=24米-4米=20米,△在直角△A1B1O中,AB=A1B1,且A1B1为斜边,△由勾股定理得:OB1米,△BB1=OB1-OB=15米-7米=8米;答:梯足将向外移8米.(2)AB的中点P到O的距离始终不变,12522 OP AB m ==类型二、水杯中的筷子问题例1.如图所示,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在外面的长为hcm,则h的取值范围是()A.0<h≤11B.11≤h≤12C.h≥12D.0<h≤12【答案】B【解析】当筷子与杯底垂直时h最大,h最大=24﹣12=12cm.当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB13cm,△h=24﹣13=11cm.△h的取值范围是11cm≤h≤12cm.故选:B.【变式训练】如图,是一种饮料的包装盒,长、宽、高分别为4cm,3cm,12cm,现有一长为16cm的吸管插入到盒的底部,则吸管插在盒内部分的长度h的最大值为____________ cm.【答案】13【解析】如图所示:BC =3cm ,CD =4cm ,AB =12cm ,连接BD 、AD ,在Rt △BCD 中,BD (cm ),在Rt △ABD 中,AD (cm ). 故吸管插在盒内部分的长度h 的最大值为13cm .故答案为:13.类型三、最短距离问题例1.如图,一个长方体盒子紧贴地面,一只蚂蚁由A 出发,在盒子表面上爬到点G ,已知6AB =,5BC =,3CG =,这只蚂蚁爬行的最短路程是________.【答案】10【解析】由题意,如图1所示,得AG == 如图2所示,得10AG ==,如图3所示,AG ==△蚂蚁爬行的最短路程是10.故答案为:10.【变式训练1】如图所示,ABCD 是长方形地面,长8m AB =,宽5m AD =,中间竖有一堵砖墙高2m MN =.一只蚂蚱从A 点爬到C 点,它必须翻过中间那堵墙,则它至少要走________m 的路程.【答案】13【解析】如图所示,将图展开,图形长度增加2MN ,原图长度增加4米,则8412m AB =+=,连接AC .△四边形ABCD 是长方形, 12m AB =,宽5m AD =,△13m AC ===.△蚂蚱从A 点爬到C 点,它至少要走13m 的路程.故答案为:13【变式训练2】如图,台阶阶梯每一层高20cm ,宽40cm ,长50cm .一只蚂蚁从A 点爬到B 点,最短路程是____________.【答案】130cm【解析】如图所示,△楼梯的每一级的高宽长分别为20cm ,宽40cm ,长50cm ,△130AB ==(cm) 即蚂蚁从点A 沿着台阶面爬行到点B 的最短路程是130cm .故答案为:130cm .类型三、是否有影响问题例1.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB 由A 行驶向B ,已知点C 为一海港,且点C 与直线AB 上的两点A ,B 的距离分别为300AC km =,400BC km =,又500AB km =,以台风中心为圆心周围250km 以内为受影响区域.(1)求ACB ∠的度数.(2)海港C 受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E 处时,海港C 刚好受到影响,当台风运动到点F 时,海港C 刚好不受影响,即250CE CF km ==,则台风影响该海港持续的时间有多长?【答案】(1)90︒;(2)海港C 受台风影响,证明见解析;(3)台风影响该海港持续的时间为7小时.【解析】(1)300AC km =,400BC km =,500AB km =,222AC BC AB ∴+=,ABC ∆∴是直角三角形,△△ACB=90°;(2)海港C 受台风影响,过点C 作CD AB ⊥,ABC ∆是直角三角形,AC BC CD AB ∴⨯=⨯,300400500CD ∴⨯=⨯,240()CD km ∴=, 以台风中心为圆心周围250km 以内为受影响区域,∴海港C 受台风影响.(3)当250EC km =,250FC km =时,正好影响C 港口,70()ED km ==,140EF km ∴=,台风的速度为20千米/小时,140207∴÷=(小时)答:台风影响该海港持续的时间为7小时.【变式训练1】如图,有两条公路OM 、ON 相交成30°角,沿公路OM 方向离O 点160米处有一所学校A ,当重型运输卡车P 沿道路ON 方向行驶时,在以P 为圆心,100米为半径的圆形区域内都会受到卡车噪声的影响,且卡车P 与学校A 的距离越近噪声影响越大.若已知重型运输卡车P 沿道路ON 方向行驶的速度为36千米/时,则对学校A 的噪声影响最大时卡车P 与学校A 的距离是___米;重型运输卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间是____秒.【答案】80 12【解析】作AD ON ⊥于D ,30MON ∠=︒,160AO =m ,1802AD OA ∴==m ,即对学校A 的噪声影响最大时卡车P 与学校A 的距离80m .如图以A 为圆心100m 为半径画圆,交ON 于B 、C 两点, AD BC ⊥,12BD CD BC ∴==,在Rt △ABD 中,60BD ==m ,120BC ∴=m ,重型运输卡车的速度为36千米/时10=米/秒,∴重型运输卡车经过BC 的时间1201012=÷=(秒),故卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.故答案为:80,12.【变式训练2】如图,有两条公路OM 、ON 相交成30°角,沿公路OM 方向离O 点160m 处有一所医院A ,当卡车P 沿道路ON 方向行驶时,在以P 为圆心,100米为半径的圆形区域内都会受到噪声的影响.若已知卡车的速度为250米/分钟,则卡车P 沿道路ON 方向行驶一次时,给医院A 带来噪声影响的持续时间是__分钟.【答案】0.48.【解析】作AD△ON 于D ,△△MON =30°,AO =160m ,△AD =12OA =80m , 以A 为圆心100m 为半径画圆,交ON 于B 、C 两点,△AD△BC ,△BD =CD =12BC ,在Rt△ABD 中,BD 60m ==,△BC =120m ,△卡车的速度为250米/分钟,△卡车经过BC 的时间=120÷250=0.48分钟,故答案为:0.48.类型四、是否超速问题例1.“某市道路交通管理条例”规定:小汽车在城市街路上行驶速度不得超过40千米/时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方18米的C 处,过了2秒后到达B 处(BC △AC ),测得小汽车与车速检测仪间的距离AB 为30米,请问这辆小汽车是否超速?若超速,则超速了多少?【答案】这辆小汽车超速,每小时超速3.2千米.【解析】根据题意,得18,30,90AC m AB m C ==∠=︒,在Rt△ACB 中,根据勾股定理可得:24.BC ==小汽车2秒行驶24米,则1小时行驶243600432002m ⨯=, 即小汽车行驶速度为43.2千米/时,因为43.2>40,所以小汽车超速行驶,超速43.240 3.2-=(千米/时).【变式训练】《城市交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪A 正前方30米的C 处,过了2秒后,小汽车行驶至B 处,若小汽车与观测点间的距离AB 为50米,请通过计算说明:这辆小汽车是否超速?【答案】这辆小汽车超速【解析】根据题意,得AC=30m ,AB=50m ,△C=90°,在Rt△ACB 中, 40===BC m , △小汽车的速度4020/72/70/2==>m m s km h km h s; △这辆小汽车超速.课后练习1.高铁修建过程中需要经过一座小山.如图,施工方计划沿AC 方向开挖隧道,为了加快施工速度,要在小山的另一侧D (,,A C D 共线)处同时施工.测得30,8km,105CAB AB ABD ∠=︒=∠=︒,求BD 长.(结1.414≈≈)【答案】BD 长约为5.7km .【解析】如图,过点B 作BE AD ⊥于点E ,30,8km CAB AB ∠=︒=,14km 2BE AB =∴=,60ABE ∠=︒,105ABD ∠=︒,45DBE ABD ABE ∴∠=∠-∠=︒,Rt BDE ∴是等腰直角三角形, 5.656 5.7(km)BD ∴==≈≈, 答:BD 长约为5.7km .2.如图,在一条东西走向河流的一侧有一村庄C ,河边原有两个取水点,A B ,其中AB AC =,由于某种原因,电C 到A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H (A H B 、、在同一条直线上),并新修一条路CH ,已知CB =千米,2CH =千米,1HB =千米.(1)CH 是否为从村庄C 到河边的最近路?请通过计算加以说明.(2)求新路CH 比原路CA 少多少干米?【答案】(1)是,证明见解析;(2)12千米.【解析】(1)△在CHB 中,2,1,CH BH BC ===22221+=,CHB ∴是以BHC ∠为直角的直角三角形,CH AB ∴⊥,△点到直线垂线段的长度最短,CH ∴是村庄C 到河边的最近路.(2)设AC AB x ==,1BH =千米,(1)AH AB BH x ∴=-=-千米,在Rt ACH 中,由勾股定理得:222CH AH AC +=,2222(1)x x ∴+-=,解得52x =, 52AC AB ∴==千米,CH ∴比CA 少51222-=千米. 3.在甲村至乙村的公路旁有一块山地需要开发,现有一C 处需要爆破,已知点C 与公路上的停靠点A 的距离为800米,与公路上另一停靠点B 的距离为600米,且CA CB ⊥,如图,为了安全起见,爆破点C 周围半径450米范围内不得进入,问在进行爆破时,公路AB 段是否有危险需要暂时封锁?请通过计算进行说明.【答案】公路AB 段没有危险不需要暂时锁锁,见解析【解析】公路AB 段没有危险不需要暂时封锁,如图,过点C 作CD AB ⊥于点D .△CA CB ⊥,800AC =米,600BC =米,△1000AB =(米).△8006004801000BC AC CD AB ⋅⨯===(米). △450480<,△公路AB 段没有危险不需要暂时封锁.4.如图,小明家在一条东西走向的公路MN 北侧200米的点A 处,小红家位于小明家北500米(500AC =米)、东1200米(1200BC =米)点B 处.(1)求小明家离小红家的距离AB ;(2)现要在公路MN 上的点P 处建一个快递驿站,使PA PB +最小,请确定点P 的位置,并求PA PB +的最小值.【答案】(1)1300AB =米;(2)见解析,1500米【解析】(1)如图,连接AB ,由题意知AC =500,BC =1200,△ACB =90°,在Rt △ABC 中,△△ACB =90°,△AB 2=AC 2+BC 2=5002+12002=1690000,△AB >0,△AB =1300米;(2)如图,作点A 关于直线MN 的对称点A ',连接A 'B 交MN 于点P .驿站到小明家和到小红家距离和的最小值即为A 'B ,由题意知AD =200米,A 'C △MN ,△A 'C =AC +AD +A 'D =500+200+200=900米,在Rt △A 'BC 中,△△ACB =90°,△A 'B 2=A 'C 2+BC 2=9002+12002=2250000,△A 'B >0,△A 'B =1500米,即从驿站到小明家和到小红家距离和的最小值为1500米.5.某高速公路的同一侧有A ,B 两个城镇,如图所示,它们到高速公路所在直线MN 的距离分别为2km AE =,3km BF =,12km EF =,要在高速公路上E 、F 之间建一个出口Q ,使A 、B 两城镇到Q 的距离之和最短,在图中画出点Q 所在位置,并求出这个最短距离.【答案】见解析,13km【解析】作点B 关于MN 的对称点C ,连接AC 交MN 于点Q ,则点Q 为所建的出口;此时A 、B 两城镇到出口Q 的距离之和最短,最短距离为AC 的长.作AD BC ⊥于D ,则90ADC ∠=︒,AE△MN ,BF△MN ,△四边形AEFD 为矩形△12AD EF ==,2DF AE ==在t R ADC 中,12AD =,5DC DF CF =+=,△由勾股定理得:13AC ===△这个最短距离为13km .6.如图,某工厂A 到直线公路l 的距离AB 为3千米,与该公路上车站D 的距离为5千米,现要在公路边上建一个物品中转站C ,使CA =CD ,求物品中转站与车站之间的距离.【答案】258千米 【解析】由题意可得:AB=3,AD=5△在Rt△ABD 中,4BD ===设AC=CD=x ,则BC=4-x ,在Rt△ABC 中,2223(4)x x +-=,解得:x=258 △物品中转站与车站之间的距离CD 的长为258千米 故答案为:258千米。

勾股定理的应用(必考题)

勾股定理的应用(必考题)

1、如图:〔1〕你能得到关于a,b,c的一个等式吗?写出你的过程.〔2〕请用一句话描绘你的发现:在直角三角形中,______〔3〕请应用你学到的新知识解决下面这个问题:将一根长为30cm的筷子置于底面直径为5cm,高12cm的圆柱形的空水杯中,那么露出杯子外面的长度最短是______cm,最长是______ cm.假如把圆柱体换成一个长,宽,高分别为6,8,24的无盖长方体盒子.那么这根筷子露出盒子外面的长度最短是______cm.2、某楼梯的侧面视图如下图,其中AB=6.5米,BC=2.5米,∠C=90°,楼梯的宽度为6米,因某种活动要求铺设红色地毯,那么在AB段楼梯所铺地毯的面积应为.3、如下图,一只小蚂蚁从棱长为1的正方体的顶点A出发,经过每个面的中心点后,又回到A点,蚂蚁爬行最短程S满足〔〕A.5<S≤6B.6<S≤7C.7<S≤8D.8<S≤94、如图,:Rt△ABC中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC、AC交于D,E两点〔D、E不与B、A重合〕.〔1〕试说明:MD=ME;〔2〕求四边形MDCE的面积.5、小明在测量学校旗杆的高度时发现,旗杆的绳子垂到地上还多一米,当他把绳子拉直并把绳子的下端触地时,绳子分开旗杆5米,求旗杆的高度.6、印度数学家什迦逻〔1141年-1225年〕曾提出过“荷花问题〞:平平湖水清可鉴,面上半尺生红莲.出泥不染亭亭立,忽被强风吹一边,分开原处二尺远,花贴湖面像睡莲.能算诸君请解题,湖水如何知深浅?7、如图,在每个小方格的面积为1的4×4的方格纸上画一个正方形ABCD,使正方形ABCD的面积为5,并计算正方形的边长和周长.8、在以下4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:______9、自动门开启的连动装置如下图,∠AOB为直角,滑杆AB为定长100cm,端点A,B可分别在OA,OB上滑动,当滑杆AB的位置如下图时,OA=80cm、假设端点A向上滑动10cm,那么端点B滑动的间隔〔〕A.大于10cm B.等于10cm C.小于10cm D.不能确定10、如图,在长15米,宽8米的长方形ABCD花园内修一条长13米的笔直小路EF,小路出口一端E选在AD边上距D点3米处,另一端出口F应选在AB边上距B点几米处?11、如图,把一块三角形〔△ABC〕土地挖去一个直角三角形〔∠ADC=90°〕后,测得CD=6米,AD=8米,BC=24米,AB=26米.求剩余土地〔图中阴影局部〕的面积.12、距沿海某城市A的正南方向km的B处有一台风中心.根据海事预报,以台风中心为圆心,250km为半径的圆形区域内会受到台风影响.该台风中心如今正以15km/h的速度沿北偏东45°方向往C挪动,问:该城市是否会受到这次台风的影响?请说明理由.13、如图,设A城气象站测得台风中心在A城正西方向300千米的B处,正向北偏东60°的BF方向挪动,距台风中心200千米的范围内是受台风影响的区域,那么A城是否受到这次台风的影响?为什么?14、如图,南北方向PQ以东为我国领海,以西为公海,晚上10时28分,我边防反偷渡巡逻101号艇在A处发现其正西方向的C处有一艘可疑船只正向我沿海靠近,便立即通知下在PQ上B处巡逻的103号艇注意其动向,经检测,AC=10海里,AB=6海里,BC=8海里,假设该船只的速度为12.8海里/小时,那么可疑船只最早何时进入我领海?15、如图,铁路AB的一边有C、D两村庄,DA⊥AB于A,CB⊥AB于B,AB=25km,DA=15km,CB=10km,现要在铁路上建一个农产品收买站E,并使DE=CE.那么农产品收买站E应建在距点A多少千米处?16、如图,三个村庄A、B、C之间的间隔分别为AB=15km,BC=9km,AC=12km.A、B两村之间已修建了一条笔直的村级公路AB,为了实现村村通公路,如今要从C村修一条笔直公路CD直达AB.公路的造价为10000元/km,求修这条公路的最低造价是多少?17、如下图,一根长2.5米的木棍〔AB〕,斜靠在与地面〔OM〕垂直的墙〔ON〕上,此时OB的间隔为0.7米,设木棍的中点为P.假设木棍A端沿墙下滑,且B端沿地面向右滑行.〔1〕假如木棍的顶端A沿墙下滑0.4米,那么木棍的底端B向外挪动多少间隔?〔2〕请判断木棍滑动的过程中,点P到点O的间隔是否变化,并简述理由.〔3〕在木棍滑动的过程中,当滑动到什么位置时,△AOB的面积最大?简述理由,并求出面积的最大值.18、在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,点C与公路上的停靠站A的间隔为300米,与公路上另一停靠站B的间隔为400米,且CA⊥CB,如图,为了平安起见,爆破点C周围半径250米范围内不得进入,问在进展爆破时,公路AB 段是否有危险,是否而需要暂时封锁?请通过计算进展说明.19、如图1,四根长度一定的木条,其中AB=6cm,CD=15cm,将这四根木条用小钉绞合在一起,构成一个四边形ABCD〔在A、B、C、D四点处是可以活动的〕.现固定AB边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D在BA的延长线上时,点C在线段AD上〔如图2〕;位置二:当点C在AB的延长线上时,∠C=90°.〔1〕在图2中,假设设BC的长为x,请用x的代数式表示AD的长;〔2〕在图3中画出位置二的准确图形;〔各木条长度需符合题目要求〕〔3〕利用图2、图3求图1的四边形ABCD中,BC、AD边的长.20、如图,小明准备建一个鲜花大棚,棚宽BE=4米,高AE=3米,长AD=10米,棚的斜面用矩形玻璃ABCD遮盖,不计墙的厚度,请计算阳光透过的最大面积.21、公园里有一块形如四边形ABCD的草地,测得BC=CD=20米,∠A=45°,∠B=∠C=120°,恳求出这块草地面积.22、如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.∠BAC=60°,∠DAE=45°,点D到地面的垂直间隔DE=3m.那么点B到地面的垂直间隔BC是.23、如图在一块直角三角形地被分成BD分成两块,其中斜边AB长为13m,一条直角边BC长为5m,∠BDC=45°,要在△ABD内种草皮,这种草皮每平方米售价a元,那么购置这种草皮至少需要元.24、一个游泳爱好者,要横跨一条宽AC=8m的河流,由于水流速度的原因,这位游泳爱好者向下游偏离了BC=6m,这位游泳爱好者在横跨河流的实际游泳间隔为多少米?25、,△ABC是边长3cm的等边三角形.动点P以1cm/s的速度从点A出发,沿线段AB向点B运动.〔1〕如图1,设点P的运动时间为t〔s〕,那么t=______〔s〕时,△PBC是直角三角形;〔2〕如图2,假设另一动点Q从点B出发,沿线段BC向点C运动,假如动点P、Q都以1cm/s的速度同时出发.设运动时间为t〔s〕,那么t为何值时,△PBQ是直角三角形?〔3〕如图3,假设另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D.假如动点P、Q都以1cm/s的速度同时出发.设运动时间为t〔s〕,那么t为何值时,△DCQ是等腰三角形?〔4〕如图4,假设另一动点Q从点C出发,沿射线BC方向运动.连接PQ交AC于D,连接PC.假如动点P、Q都以1cm/s的速度同时出发.请你猜测:在点P、Q的运动过程中,△PCD和△QCD的面积有什么关系?并说明理由.26、罗师傅想将一个正方形ABCD〔四个角都是直角,四条边都相等〕的余料,修剪成四边形ABEF的零件〔如图〕,要求∠AFE为直角.他是这样做的:取CD的中点F,取BC的四等分点E〔即〕,然后沿AF、FE剪裁就得到四边形AFEB.你认为这样剪裁得到的四边形AFEB符合要求吗?请说明理由.27、如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?28、一块试验田的形状如下图,:∠CAB=90°,AC=3m,AB=4m,BD=13m,DC=12m.求这块试验田的面积.29、如图,小李准备建一个蔬菜大棚,棚宽4m,高3m,长8m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,假设塑料薄膜每平方米1.2元,问小李至少要花多少钱?〔30题〕30、八年级三班小明和小亮同学学习了“勾股定理〞之后,为了测得以下图风筝CE的高度,他们进展了如下操作:〔1〕测得BD的长度为25米.〔2〕根据手中剩余线的长度计算出风筝线BC的长为65米.〔3〕牵线放风筝的小明身高1.6米.求风筝的高度CE.31、如图,一个电子跳蚤在4×5的网格〔网格中小格子均为边长为1的正方形〕中,沿A→B→C→A跳了一圈,它跳的总路程是.32、课间,小聪拿着教师的等腰直角三角板玩,不小心掉到两墙之间〔如下图〕,∠ACB=90°,AC=BC,从三角板的刻度可知AB=20cm,小聪很快就知道了砌墙砖块的厚度〔每块砖的厚度相等〕为 cm.33、由于水资源缺乏,B,C两地不得不从黄河上的扬水站A处引水,这就需要在A,B,C之间铺设地下输水管道.有人设计了3种铺设方案〔图中实线表示管道铺设线路〕.在图〔2〕中,AD⊥BC于点D,且BC=DC;在图〔3〕中,OA=OB=OC,且AO的延长线交BC于点E,AE⊥BC,BE=EC,OE=.为减少渗漏,节约水资源,并降低工程造价,铺设线路应尽量缩短.假设△ABC恰好是一个边长为a的等边三角形,请你通过计算,判断哪一个铺设方案最好.34、某消防队进展消防演练,在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的程度间隔最近为12米,即AD=BC=12米,此时建筑物中距地面12.8米高的P处有一被困人员需要救援,消防云梯的车身高AB是3.8米.为此消防车的云梯至少应伸长多少米?35、明朝数学家程大位在他的著作?算法统宗?中写了一首计算秋千绳索长度的词?西江月?:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…〞翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺〔AC=1尺〕,将它往前推进两步〔EB=10尺〕,此时踏板升高离地五尺〔BD=5尺〕,求秋千绳索〔OA或OB〕的长度.36、两根电线杆AB、CD,AB=5m,CD=3m,它们的底部相距8m,如今要在两根电线杆底端之间〔线段BD上〕选一点E,由E分别向两根电线杆顶端拉钢索AE、CE.假设使钢索AE与CE相等,那么点E应该选在距点B多少米处?37、如图,是一块四边形草坪,∠B=∠D=90°,AB=24m,BC=7m,CD=15m,求草坪面积.38、中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权利度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以一样的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.〔1〕请用直尺和圆规作出C处的位置;〔2〕求我国海监船行驶的航程BC的长39、探究:请你利用图1验证勾股定理.〔2〕应用:如图2,在Rt△ABC中,∠ACB=90°,AB=6,分别以AC、BC为直径作半圆,面积分别记为S1、S2,那么S1+S2的值等于______.〔请直接写出结果〕〔3〕拓展:如图3所示,MN表示一条铁路,A、B是两个城市,它们到铁路所在直线MN的垂直间隔分别为AC=40千米,BD=60千米,且CD=80千米,现要在CD之间设一个中转站O,求出O应建在离C点多少千米处,才能使它到A、B两个城市的间隔相等.40、如图,A,B是笔直公路l同侧的两个村庄,且两个村庄到公路的间隔分别是300m和500m,两村庄之间的间隔为d 〔d2=400000m2〕,现要在公路上建一汽车停靠站,使两村到停靠站的间隔之和最小,问最小值是多少?41、如图,点A是4×5网格图形中的一个格点〔小正方形的顶点〕,图中每个小正方形的边长为1,以A为其中的一个顶点,腰长等于的格点等腰直角三角形〔三角形的三个顶点都是格点〕的个数是〔〕A.10 B.12 C.14 D.1642、如图,以数轴的单位长线段为边作一个矩形,以数轴的原点为旋转中心,将过原点的对角线逆时针旋转,使对角线的另一端点落在数轴负半轴的点A处,那么点A表示的数是.43、阅读下面的情景对话,然后解答问题:教师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形!小明:那直角三角形是否存在奇异三角形呢?〔1〕根据“奇异三角形〞的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形〞这句话是对还是错?______〔2〕在Rt△ABC中,两边长分别是a=5、c=10,这个三角形是否是奇异三角形?请说明理由.〔3〕在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,假设Rt△ABC是奇异三角形,求〔b+c〕:a的值.44、如图,1号、4号两个正方形的面积和为7,2号、3号两个正方形的面积和为4,那么a,b,c三个正方形的面积和为〔〕A.11 B.15 C.10 D.2245、如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.假设图中大小正方形的面积分别为和4,那么直角三角形的两条直角边边长分别为.46、如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米,小明到达的终止点与原出发点的间隔为〔〕米.A.80 B.100 C.110 D.18047、如图,A,B两地之间有一座山,汽车原来从A地到B地须经C地沿折线A-C-B行驶,现开通隧道后,汽车直接沿直线AB行驶.AC=10km,∠A=30°,∠B=45°,那么隧道开通后,汽车从A地到B地比原来少走多少千米?〔结果准确到0.1km〕〔参考数据:≈1.41〕48、如图,让两个长为12,宽为8的矩形重叠,图中线段AB长为7,那么两个矩形重叠的阴影局部面积为.49、学校操场上有一块如下图三角形空地,量得AB=AC=10米,∠°×105平方厘米草皮,请你通过计算说明草皮是否够用.50、在合肥市地铁一号线的修建过程中,原设计的地铁车站出入口高度较低,为适应地形,把地铁车站出入口上下楼梯的高度普遍增加了,如下图,原设计楼梯BD长20米,在楼梯程度长度〔BC〕不发生改变的前提下,楼梯的倾斜角由30°增大到45°,那么新设计的楼梯高度将会增加多少米?〔结果保存整数,参考数据:≈1.414,≈1.732〕。

勾股定理的应用(必考题)

勾股定理的应用(必考题)

1、如图:(1)你能得到关于a,b,c的一个等式吗?写出你的过程.(2)请用一句话描述你的发现:在直角三角形中,______(3)请应用你学到的新知识解决下面这个问题:将一根长为30cm的筷子置于底面直径为5cm,高12cm的圆柱形的空水杯中,则露出杯子外面的长度最短是______cm,最长是______ cm.如果把圆柱体换成一个长,宽,高分别为6,8,24的无盖长方体盒子.那么这根筷子露出盒子外面的长度最短是______cm.2、某楼梯的侧面视图如图所示,其中AB=6。

5米,BC=2。

5米,∠C=90°,楼梯的宽度为6米,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的面积应为.3、如图所示,一只小蚂蚁从棱长为1的正方体的顶点A出发,经过每个面的中心点后,又回到A点,蚂蚁爬行最短程S满足()A.5<S≤6B.6<S≤7C.7<S≤8D.8<S≤94、如图,已知:Rt△ABC中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC、AC交于D,E两点(D、E不与B、A重合).(1)试说明:MD=ME;(2)求四边形MDCE的面积.5、小明在测量学校旗杆的高度时发现,旗杆的绳子垂到地上还多一米,当他把绳子拉直并把绳子的下端触地时,绳子离开旗杆5米,求旗杆的高度.6、印度数学家什迦逻(1141年—1225年)曾提出过“荷花问题”:平平湖水清可鉴,面上半尺生红莲.出泥不染亭亭立,忽被强风吹一边,离开原处二尺远,花贴湖面像睡莲.能算诸君请解题,湖水如何知深浅?7、如图,在每个小方格的面积为1的4×4的方格纸上画一个正方形ABCD,使正方形ABCD的面积为5,并计算正方形的边长和周长.8、在下列4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:______9、自动门开启的连动装置如图所示,∠AOB为直角,滑杆AB为定长100cm,端点A,B可分别在OA,OB上滑动,当滑杆AB的位置如图所示时,OA=80cm、若端点A向上滑动10cm,则端点B滑动的距离()A.大于10cm B.等于10cm C.小于10cm D.不能确定10、如图,在长15米,宽8米的长方形ABCD花园内修一条长13米的笔直小路EF,小路出口一端E选在AD边上距D点3米处,另一端出口F应选在AB边上距B点几米处?11、如图,把一块三角形(△ABC)土地挖去一个直角三角形(∠ADC=90°)后,测得CD=6米,AD=8米,BC=24米,AB=26米.求剩余土地(图中阴影部分)的面积.12、距沿海某城市A的正南方向km的B处有一台风中心.根据海事预报,以台风中心为圆心,250km为半径的圆形区域内会受到台风影响.该台风中心现在正以15km/h的速度沿北偏东45°方向往C移动,问:该城市是否会受到这次台风的影响?请说明理由.13、如图,设A城气象站测得台风中心在A城正西方向300千米的B处,正向北偏东60°的BF方向移动,距台风中心200千米的范围内是受台风影响的区域,那么A城是否受到这次台风的影响?为什么?14、如图,南北方向PQ以东为我国领海,以西为公海,晚上10时28分,我边防反偷渡巡逻101号艇在A处发现其正西方向的C处有一艘可疑船只正向我沿海靠近,便立即通知下在PQ上B处巡逻的103号艇注意其动向,经检测,AC=10海里,AB=6海里,BC=8海里,若该船只的速度为12.8海里/小时,则可疑船只最早何时进入我领海?15、如图,铁路AB的一边有C、D两村庄,DA⊥AB于A,CB⊥AB于B,已知AB=25km,DA=15km,CB=10km,现要在铁路上建一个农产品收购站E,并使DE=CE.则农产品收购站E应建在距点A多少千米处?16、如图,三个村庄A、B、C之间的距离分别为AB=15km,BC=9km,AC=12km.已知A、B两村之间已修建了一条笔直的村级公路AB,为了实现村村通公路,现在要从C村修一条笔直公路CD直达AB.已知公路的造价为10000元/km,求修这条公路的最低造价是多少?17、如图所示,一根长2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1&如图,有一只小鸟在一棵高13m得大树树梢上捉虫子,它得伙伴在离该树12m,髙8m得一棵小树树梢上发出友好得叫声,它立刻以2m/s得速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树与伙伴在一起?19.(2007*义乌市)李老师在与同学进行“蚂蚁怎样爬最近"得课题研究时设计了以下三个问题储您根据下列所给得重要条件分别求出蚂蚁需要爬行得最短路程得长.(1)如图1,正方体得棱长为5cm 一只蚂蚁欲从正方体底面上得点A沿着正方体表而爬到点Ci处;(2)如图2,正四棱柱得底而边长为5cm.侧棱长为6cm.—只蚂蚁从正四棱柱底面上得点A沿着棱柱表面爬到0处;(3)如图3,圆锥得母线长为4cm,圆锥得侧而展开图如图4所示,且Z AOAi=120\-只蚂蚁欲从圆锥得底而上得点A岀发,沿圆锥侧面爬行一周回到点A.20.(2013*贵阳模拟)请阅读下列材料:问题:如图1,圆柱得底而半径为ldm.BC就是底而直径,圆柱高AB为5dm.求一只蚂蚁从点A出发沿圆柱表而爬行到点C得最短路线,小明设计了两条路线:路线1:髙线AB+底面直径BC,如图1所示.路线2:侧面展开图中得线段AC,如图2所示.(结果保留n)⑴设路线1得长度为3则=_ _ .设路线2得长度为0.则=_ _ .所以选择路线 _ _ (填1或2)较短.⑵小明把条件改成:"圆柱得底而半径为5dm,髙AB为1dm"继续按前而得路线进行计算.此时,路线1:= _______________________ .路线2= _ _ •所以选择路线_ _ (填1或2)较短.(3)请您帮小明继续研究:当圆柱得底而半径为2dm,髙为hdm时,应如何选择上而得两条路线才能使蚂蚁从点A出发沿圆柱表而爬行到点C得路线最短.21.如图,正方体边长为30cm.B点距离C点10cm,有一只蚂蚁沿着正方体表而从A点爬到B点,其爬行速度为每秒2cm. 则这只蚂蚁最快多长时间可爬到B点?22.(2013*盐城模拟)如图,长方体得底而边长分别为lcm与3cm,髙为6cm.如果用一根细线从点A开始经过4个侧而缠绕一圈到达B(B为棱得中点),那么所用细线最短需要多长?如果从点A开始经过4个侧面缠绕»圈到达点B,那么所用细线最短需要多长?23.如图,一个长方体形得木柜放在墙角处(与墙面与地而均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表而爬到柜角Ci 处•若AB=4.BC=4,CCi=5.(1)请您在备用图中画岀蚂蚁能够最快到达目得地得可能路径;(2)求蚂蚁爬过得最短路径得长.一•选择题(共5小题)二•解答题(共22小题)6.(2013*徐州模拟)如图所示,甲、乙两船同时由港口A岀发开往海岛B,甲船沿东北方向向海岛B航行.其速度为15 海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30。

方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B得距离;(2) B岛建有一座灯塔,在离灯塔方圆5海里内都可以瞧见灯塔,问甲、乙两船哪一般先瞧到灯塔?7.(2012*古冶区二模)有一腔渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心得两艘救助轮救助一号与救助二号分别位于海上A处与B处.B在A得正东方向,且相距100里,测得地点C在A得南偏东60。

, 在B得南偏东30。

方向上,如图所示,若救助一号与救助二号得速度分别为40里/小时与30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(“、7)&如图,要在高AC为2米,斜坡AB长8米得楼梯表而铺地毯,地毯得长度至少需要多少米?9.如图,一块三角形铁皮,苴中Z B=30°,Z C=45°.AC=12cmjRA ABC得而积.10.如图,一架长2、5米得梯子AB斜靠在竖直得墙AC上,这时B到墙AC得距离为0、7米.(1)若梯子得顶端A沿墙AC下滑0、9米至Ai处,求点B向外移动得距离BBi得长;(2)若梯子从顶端A处沿墙AC下滑得距离就是点B向外移动得距离得一半,试求梯子沿墙AC下滑得距离就是多少米?11•如图,AB为一棵大树.任树上距地而10米得D处有两只猴子,她们同时发现C处有一筐水果,一只猴子从D处往上爬到树顶A 处,又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.1.(2010*新疆)如图,王大伯家屋后有一块长12m,宽8m得矩形空地,她在以长边BC为直径得半圆内种菜,她家养得一只羊平时拴A处得一棵树上,为了不让羊吃到菜,拴羊得绳长可以选用()A.3mB.5mC.7mD.9m2.(2007*茂名)如图就是一个圆柱形饮料耀,底面半径就是5,髙就是12,上底面中心有一个小圆孔,则一条到达底部得直吸管在罐内部分a得长度(罐壁得厚度与小圆孔得大小忽略不计)范围就是()A.l2<a<13B.12<a<15C.5<a<12D.5<a<133.(2012*乐山模拟)一船向东航行,上午8时到达B处,瞧到有一灯塔在它得南偏东60。

,距离为72海里得A处,上午10 时到达C 处,瞧到灯塔在它得正南方向,则这艘船航行得速度为()A」8海里/小时 B.海里/小时 C.36海里/小时 D.海里/小时4.(2010*罗湖区模拟)在直径为10m得圆柱形油槽内装入一些油后,截图如图所示,如果油面宽AB=8m,那么汕得最大深度就是()A」m B.2m C.3m D.4m5.如图,就是一种饮料得包装盒,长、宽、高分别为4cm、3cm、12cm.现有一长为16cm得吸管插入到盒得底部,则吸管露在盒外得部分h得取值范围为()A.3<h<4B.3<h<4C.2<h<4D.h=412.如图,某会展中心在会展期间准备将髙5m.长13m,宽2m得楼梯上铺地毯,已知地毯每平方米18元,请您帮助计算一下,铺完这个楼道至少需要多少元钱?13.如图,A城气象台测得台风中心在A城正西方向320km得B处,以每小时40km得速度向北偏东60。

得BF方向移动,距离台风中心200km得范围内就是受台风影响得区域.(1) A城就是否受到这次台风得影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?14.如图,某城市接到台风警报,在该市正南方向260km得B处有一台风中心,沿BC方向以15km/h得速度移动,已知城市A到BC 得距离AD=100km.(1)台风中心经过多长时间从B移动到D点?⑵已知在距台风中心30km得圆形区域内都会受到不同程度得影响,若在点D得工作人员早上6:00接到台风警报冶风开始影响到台风结束影响要做预防工作,则她们要在什么时间段内做预防工作?15."中华人民共与国道路交通管理条例"规立:小汽车在城巾街道上得行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面"车速检测仪A”正前方50米C处,过了6秒后,测得"小汽车" 位置B与〃车速检测仪A"之间得距离为130米,这辆“小汽车〃超速了吗?请说明理由.16•某工厂得大门如图所示,其中下方就是髙为2、3米、宽为2米得矩形上方就是半径为1米得半圆形•货车司机小6米得装满货物得卡车,能否进入如图所示得工厂大门?请说明您得理由.17•勾股左理有着悠久得历史,它曾引起很多人得兴趣.1955年希腊发行了二枚以勾股图为背景得邮票•所谓勾股图就是指以直角三角形得三边为边向外作正方形构成(图1:A ABC中,Z BAC=90°).请解答:(1)如图2,若以直角三角形得三边为边向外作等边三角形,则它们得而积S】、S2、S*之间得数量关系就是_(2)如图3,若以直角三角形得三边为直径向外作半圆,则它们得而积Si、S2、S3之间得数量关系就是______________________________ .请说明理由.⑶如图4,在梯形ABCD中,ADII BC,Z ABC+Z BCD=90\BC=2AD^»Jl^ AB. CD、AD为边向梯形外作正方形,其而积分别为Si、S2. S3,则S I. S2. S?之间得数量关系式为_ _ j靑说明理由.24•如图,长方体得长为15,宽为10咼为20,点B离点C得距离就是5,—只蚂蚁如果要沿着长方体得表面从点A爬到点B,需要爬行得最短距离就是多少?25.如图所示,圆柱形得玻璃容器,高18cm,底而周长为24cm,任外侧距下底lcm得点S处有一蜘蛛,与蜘蛛相对得圆柱形容器得上口外侧距开口处lcm得点F处有一只苍蝇,试求急于捕获苍蝇充饥得蜘蛛所走得最短路径.26.如图,一正方形得棱长为2,—只蚂蚁在顶点A处,在顶点G处有一米粒.(1)问蚂蚁吃到这粒米需要爬行得最短距离就是多少?⑵在蚂蚁刚要出发时,突然一阵大风将米粒吹到了GF得中点M处,问蚂蚁要吃到这粒米得最短距离又就是多少?27.如图所示,有一圆锥形粮堆,其正视图就是边长为6m得正三角形ABC,粮堆母线AC得中点P处有一只老鼠正在偷吃粮食•此时,小猫正在B处,它要沿圆锥侧而到达P处捕捉老鼠,则小猫所经过得最短路程就是多少米?(结果不取近似值)2014年3月352449109得初中数学组卷参考答案与试题解析一.选择题(共5小题)1.(2010*新疆)如图,王大伯家屋后有一块长12m,宽8m得矩形空地,她在以长边BC为直径得半圆内种菜,她家养得一只羊平时拴A处得一棵树上,为了不让羊吃到菜,拴羊得绳长可以选用()A. 3mB.5mC.7mD.9m考点:勾股宦理得应用.专题:应用题;压轴题.分析:为了不让羊吃到菜,必须v等于点A到圆得最小距离.要确左最小距离,连接OA交半圆于点E,即AE就是最短距离•在直角三角形AOB中,因为OB=6AB=8,所以根据勾股泄理得OA=10.那么AE得长即可解答.解答:解:连接OA,交半圆O于E点,在RIA OAB 中,0B=6.AB=8,所以OA=10;又OE=OB=6,所以AE=OA - OE=4.因此选用得绳子应该不大于4m.故选A.点评:此题确定点到半圆得最短距离就是难点.熟练运用勾股泄理.2.(2007*茂名)如图就是一个圆柱形饮料罐,底面半径就是5,高就是12,上底面中心有一个小圆孔,则一条到达底部得宜吸管在罐内部分a得长度(罐壁得厚度与小圆孔得大小忽略不计)范围就是()A. 12<a<13B.12<a<15C.5<a<12D.5<a<13考点:勾股定理得应用.专题:压轴题.分析:最短距离就就是饮料罐得髙度,最大距离可根据勾股定理解答.解答:解:a得最小长度显然就是圆柱得高12,最大长度根据勾股左理,得=13.即a得取值范围就是12<a<13.故选A.点评:主要就是运用勾股定理求得a得最大值,此题比较常见,有一定得难度.3.(2012・乐山模拟)一船向东航行上午8时到达B处,瞧到有一灯塔在它得南偏东60。

相关文档
最新文档