四边形 几何证明 专题练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考几何证明题四边形专题练习
一、知识考点归纳:
1.平行四边形判定定理:(1)一组对边平行且相等的四边形是平行四边形;(2)两组对边
分别相等的四边形是平行四边形;(3)有两组对边分别平行的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形.
2. 矩形、正方形:(正方形具有矩形和菱形的一切性质)
判定定理:(1)三个角是直角的四边形是矩形; (2)有一个角是直角的平行四边形是矩形。(3)对角线相等的平行四边形是矩形;
3. 菱形判定定理:(1)四边相等的四边形是菱形;(2)有一组邻边相等的平行四边形是菱形;(3)对角线互相垂直且平分的四边形是菱形;(4)对角线互相垂直的平行四边形是菱形.
二、中考真题专题训练
1.(2014乐山,第19题9分)如图,在△ABC中,AB=AC,四边形ADEF是菱形,求证:BE=CE.
2.(2014年广西钦州,第20题7分)如图,在正方形ABCD中,E、F分别是AB、BC上的点,且AE=BF.求证:CE=DF.
3. (2014乐山,第21题10分)如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2,求CE的长.
4.(2014青岛,第21题8分)已知:如图,ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;
(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形请说明理由.
5.(2014四川广安,第19题6分)如图,在正方形ABCD中,P是对角线AC上的一点,连接BP、DP,延长BC到E,使PB=PE.求证:∠PDC=∠PE C.
6.(2014海南,第23题13分)如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD,BC于点E,F,作BH⊥AF于点H,分别交AC,CD于点G,P,连接GE,GF.
(1)求证:△OAE≌△OBG;
(2)试问:四边形BFGE是否为菱形若是,请证明;若不是,请说明理由;
7.(2014宁夏,第22题6分)在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,A B′和CD相交于点O.求证:OA=O C.
8.(10分)(2013·莱芜)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连接DE. (1)证明:DE∥CB;
(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.
9.(10分)(2013·白银)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)BD与CD之间有什么数量关系,并说明理由;
(2)当△ABC满足什么条件时,四边形AFBD是矩形并说明理由.
10. (2014·临夏州)点D,E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB,AC的中点.O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.
(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系(请直接写出答案,不用证明)
11. (2014·梅州)如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE.
(1)求证:CE =CF ;
(2)若点G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗为什么
12. (10分)(2013·呼和浩特)如图,在边长为3的正方形ABCD 中,点E 是BC 边上的点,BE =1,∠AEP =90°,且EP 交正方形外角的平分线CP 于点P ,交边CD 于点F.
(1)FC EF 的值为________; (2)求证:AE =EP ;
(3)在AB 边上是否存在点M ,使得四边形DMEP 是平行四边形若存在,请给予证明;若不存在,请说明理由.
13.(2014年贵州安顺,第23题12分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN 是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E。(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形并给出证明.
14.(2014浙江绍兴,第23题6分)(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.
(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.