背包问题算法设计

合集下载

背包问题实验报告

背包问题实验报告

背包问题实验报告1. 引言背包问题是一类经典的组合优化问题,在现实生活中有着广泛的应用。

背包问题可以描述为:有一个背包容量为W的背包和N个物品,每个物品有一定的重量和价值,要求将物品放入背包中使得背包的总价值最大。

本实验旨在通过比较不同的算法策略,找到解决背包问题的最佳方法,以提高背包问题的求解效率。

2. 实验环境•操作系统:Windows 10•编程语言:Python 3.8•开发环境:Visual Studio Code3. 实验过程3.1 暴力穷举法暴力穷举法是解决背包问题的一种基本策略。

该方法通过遍历所有可能的组合,计算每个组合的价值,并找到最大价值的组合作为最优解。

具体步骤如下:1.初始化最大价值max_value为0,最优解combo为空集。

2.遍历所有可能的物品组合:–将组合中的物品放入背包中,计算背包中物品的总价值。

–若背包总价值超过max_value,则更新max_value和combo。

3.输出最优解combo和最大价值max_value。

该方法的时间复杂度为O(2^N),其中N为物品的数量,在物品数量较大时效率较低。

3.2 动态规划法动态规划法是解决背包问题的一种高效策略。

该方法通过构建价值表,利用子问题的最优解来求解背包问题的最优解。

具体步骤如下:1.初始化一个二维数组value_table,其中value_table[i][j]表示前i个物品放入容量为j的背包中的最大价值。

2.根据以下递推关系来填充value_table的值:–若第i个物品的重量大于背包容量j,则value_table[i][j]等于value_table[i-1][j],表示第i个物品不能放入背包中。

–若第i个物品的重量小于等于背包容量j,则value_table[i][j]等于max(value_table[i-1][j], value_table[i-1][j-w[i]]+v[i]),表示第i个物品可以选取并放入背包中,或不选取第i个物品。

背包问题(修改)

背包问题(修改)
(5)可行函数feasible:检查解集合中加入一个候 选对象是否可行,即解集合扩展后是否满足约束条 件。例如,在付款问题中,可行函数是每一步选择 的货币和已付出的货币相加不超过应付款。
贪心法的一般过程
Greedy(C) //C是问题的输入集合即候选集合 {
S={ }; //初始解集合为空集 while (not solution(S)) //集合S没有构成问题的一个解 {
例:付款问题: 超市的自动柜员机(POS机)要找给顾客数量最少的现金。
假 定 POS 机 中 有 n 张 面 值 为 pi(1≤i≤n) 的 货 币 , 用 集 合 P={p1, p2, …, pn}表示,如果POS机需支付的现金为A,那么, 它必须从P中选取一个最小子集S,使得
m
pi S , pi = A (m =| S |) i =1
an=a×a×…×a n次
蛮力法所赖的基本技术——扫描技 术
关键——依次处理所有元素 基本的扫描技术——遍历
(1)集合的遍历 (2)线性表的遍历 (3)树的遍历 (4)图的遍历
虽然巧妙和高效的算法很少来自于蛮力法,基于 以下原因,蛮力法也是一种重要的算法设计技术:
(1)理论上,蛮力法可以解决可计算领域的各种问题。 (2)蛮力法经常用来解决一些较小规模的问题。 (3)对于一些重要的问题蛮力法可以产生一些合理的算 法,他们具备一些实用价值,而且不受问题规模的限制。 (4)蛮力法可以作为某类问题时间性能的底限,来衡量 同样问题的更高效算法。
减治法
普卢塔克说,萨特斯为了告诉他的士兵坚韧和 智慧比蛮力更重要的道理,把两匹马带到他们面前, 然后让两个人扒光马的尾毛.一个人是魁梧的大力 士,他抓住尾巴扒了又扒,但一点效果也没有;另 一个人是一个精明的、长相狡黠的裁缝,他微笑着, 每次扒掉一根毛,很快就把尾巴拔得光秃秃的。

分支界限方法01背包问题解题步骤

分支界限方法01背包问题解题步骤

分支界限方法是一种用于解决优化问题的算法。

在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。

01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。

2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。

假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。

对于01背包问题,可以初始化dp数组的第一行和第一列为0。

4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。

分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。

5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。

分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。

分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。

在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。

掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。

分支界限方法在解决01背包问题的过程中,具有重要的作用。

c语言部分背包问题的算法设计

c语言部分背包问题的算法设计

很高兴能为您提供文章撰写服务。

在开始撰写的过程中,我将按照您的要求,以深度和广度兼具的方式来探讨c语言部分背包问题的算法设计。

第一部分:背包问题的概念和分类1. 背包问题是指在给定的一组物品中选择合适的物品装入背包,使得背包的容量最大化或价值最大化的问题。

在算法设计中,背包问题有0-1背包、完全背包、多重背包等不同的分类。

2. 0-1背包问题是指每种物品只能选择一次放入背包,而完全背包问题则是每种物品可以选择多次放入背包。

第二部分:c语言中的背包问题算法设计1. 对于0-1背包问题,可以采用动态规划的方法进行解决。

具体的算法设计包括定义状态转移方程、初始化数组、填表和回溯等步骤。

2. 完全背包问题的算法设计也可以采用动态规划的方法,但在状态转移方程的定义和填表的过程中需要做出相应的调整。

第三部分:c语言中的背包问题算法实现1. 0-1背包问题的算法实现可以通过c语言的数组和循环结构来实现状态转移方程的计算和填表过程。

2. 完全背包问题的算法实现与0-1背包问题类似,但针对每种物品可以选择多次放入背包的特点需要做出相应的改进。

第四部分:个人观点和总结在我看来,c语言部分背包问题的算法设计是一项具有挑战性和实用性的工作。

通过深入理解不同类型的背包问题,并结合动态规划的算法设计和实现,可以有效解决实际生活和工作中的背包优化问题。

掌握c 语言中背包问题的算法设计和实现,不仅可以提升自身的编程能力,也可以为解决实际问题提供有力的支持。

以上是我根据您提供的主题对c语言部分背包问题的算法设计进行的基本介绍和探讨。

希望这些内容能够满足您对文章的要求,如果有其他方面需要补充或修改,还请您及时提出。

期待您的反馈和意见,谢谢!在c语言中,背包问题是一种常见的算法设计问题,涉及到动态规划和数组的运用。

背包问题可以分为0-1背包、完全背包、多重背包等不同类型,每种类型的背包问题都有其特定的算法设计和实现方法。

在本文中,我们将进一步探讨c语言中背包问题的算法设计和实现,并对算法的效率和实际应用进行分析和总结。

动态规划求解01背包问题

动态规划求解01背包问题

动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。

如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。

动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。

思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。

ACM背包问题

ACM背包问题
第4 章
背包问题
如果给你一个背包,要你从许多东西里选择一些装进来,只要这个包装得下,你就可 以将包里的东西全部拿走了,那么你会如何选择物品呢?这里你需要考虑的是背包的体积 和承重限制,当然最重要的是你拿走的东西的总价值最大。这样的问题就是背包问题,许 多问题都可以转化为背包问题来考虑。背包问题是一个在运筹学领域里常见的典型 NP-C 难题,对该问题的求解方法的研究无论是在理论上,还是在实践中都具有一定的意义。
while (goods[0].flag<goods[i].flag) {
goods[i+1]=goods[i]; i--; } goods[i+1]=goods[0]; } ///////////////////////////////////////////
·78·
第 4 章 背包问题
cout<<"最优解为:"<<endl; for(i=1;i<=n;i++) {
4.3.1 〖案例 2〗0/1 背包
需对容量为 c 的背包进行装载。从 n 个物品中选取装入背包的物品,每件物品 i 的重 量为 wi,价值为 pi。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最 佳装载是指所装入的物品价值最高。限制:每个物品不能被分割,要不被装载,要不不被 装载。
第一行物品个数,接下来分别为物品价值,再接下来分别为物品的价值。再接下来分 别为物品的重量,最后为背包的容量。
数据结构与算法: 不需要特殊的数据结构 算法采用贪婪法 首先输入物品信息和背包容量,然后每次选比重最大的装载。
struct goodinfo
{ float p; float w; float X; int flag;

背包问题的算法设计与分析研究

背包问题的算法设计与分析研究

1引 言
算 法 是 计 算 机 科 学 的 核 心 , 是 程 序 设 计 的 关 键 , 算 法 的研 究 是 通 过 程 序 来 实 践 的 . 法 + 据 结 构 = 序 . 经 典 公 式 表 明 也 对 算 数 程 此
有 了算 法 , 上 合 适 的 数据 结 构 , 高 级 语 言 进行 实现 就 可 以得 到 程 序 。那 么 要 解 决 背 包 问题 , 加 用 首要 的前 提 就 是 设 计 出好 的算 法 , 想 求得 背包 问题 的解 , 要 先设 计 出算 法 。 本 文采 用 三 种 方法 来 对 背 包 问题 进 行 算 法设 计 , 分析 其 时 间复 杂 度 , 而 得 出结论 。 就 并 进
A s a t T ek as kpo l i ac scl u so ea ao grh ds nadaa s,ntipp r reyme o ,h y bt c: h npa rb m ls a q e ni t r floi m eg n nl i i hs ae ged t d ted— r c e s ai  ̄ nh e a t i ys h
l SSN 1 0 — 0 4 9 3 4 0
E—ma l du @c e . t n i:e f c cne. e
C m u r n we g n e h o g o p t K o l eA d T c n l y电脑 知 识 与技术 e d o
Vo . , ., e t mb r2 0 , .5 4 5 5 13 No7 S p e e 0 8 PP 1 3 —1 3
2背 包 问题描述
背包 问题 是 整 数规 划 中 的一 类 特殊 问题 , 现 实 生 活 中具 有 广 泛 应 用 , 能 提 出 求 解 此 问 题 的 有 效算 法 , 具 有 很 好 的 经 济 价 在 如 则 值 和 决策 价 值 , 物 流 公 司 的货 物发 配 问 题 , 装 箱 的运 载 问题 , 如 集 如何 才 能 获 得 最 大 利 润 。 问题 的一 般 描 述是 : 行 者 背包 登 山 , 包 的 最 大 承重 为 M, 有 n 物 品可 供 选 择 装 入 背 包 , i 物 品重 量为 , 旅 背 现 个 第 个 价值 为 p, i

动态规划算法0-1背包问题课件PPT

动态规划算法0-1背包问题课件PPT

回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。

背包问题算法导论课程设计

背包问题算法导论课程设计

背包问题算法导论课程设计一、课程目标知识目标:1. 理解背包问题的基础概念,掌握其定义和数学模型。

2. 学习并掌握贪心算法、动态规划算法解决0-1背包问题的基本原理和步骤。

3. 能够运用所学算法解决实际的背包问题,并对不同算法进行比较和分析。

技能目标:1. 培养学生的逻辑思维能力,使其能够运用算法思想解决实际问题。

2. 提高学生的编程能力,使其能够独立编写解决背包问题的程序代码。

3. 培养学生的团队协作能力,通过分组讨论和分享,共同解决复杂问题。

情感态度价值观目标:1. 培养学生对算法学习的兴趣,激发其探索精神和创新意识。

2. 引导学生树立正确的价值观,认识到算法在解决实际问题中的重要性。

3. 培养学生面对困难时的坚持和毅力,鼓励他们勇于挑战自我,克服困难。

本课程针对高中年级学生,结合背包问题算法的学科特点,旨在提高学生的逻辑思维和编程能力。

课程要求学生在掌握基本概念和算法原理的基础上,能够将所学知识应用于实际问题的解决。

通过本课程的学习,学生将能够具备解决类似问题的能力,并为后续学习更复杂的算法打下坚实基础。

二、教学内容1. 背包问题基本概念:介绍背包问题的定义、分类以及数学模型。

- 0-1背包问题- 完全背包问题- 多重背包问题2. 贪心算法:讲解贪心算法的基本原理,分析贪心算法在解决背包问题中的应用。

- 贪心策略的选择- 贪心算法的步骤及实现3. 动态规划算法:介绍动态规划的基本思想,分析动态规划在解决背包问题中的应用。

- 动态规划原理- 0-1背包问题的动态规划解法- 完全背包问题的动态规划解法4. 算法分析与比较:对不同算法进行时间复杂度和空间复杂度分析,比较各自的优缺点。

5. 实践环节:通过编程实践,让学生独立解决背包问题,并分组讨论、分享经验。

6. 拓展与提高:介绍其他解决背包问题的算法,如分支限界法等,拓展学生的知识面。

教学内容依据课程目标,紧密结合教材,按照教学大纲进行安排。

课程进度分为基础理论、算法分析与实践、拓展与提高三个阶段,以确保学生能够系统、科学地掌握背包问题算法的相关知识。

0-1背包问题(回溯法)

0-1背包问题(回溯法)

0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。

物品i 的重量是w i ,其价值为v i ,背包的容量为C 。

问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。

不能将物品装入背包多次,也不能只装入部分的物品。

三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。

2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。

3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。

关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。

背包算法知识点总结

背包算法知识点总结

背包算法知识点总结背包问题是一种典型的组合优化问题,在计算机科学和运筹学中具有广泛的应用。

它的核心思想是在给定一组物品和背包容量的条件下,如何选择物品以使得背包中物品的总价值最大化。

背包问题可以分为0-1背包问题、完全背包问题和多重背包问题等类型。

0-1背包问题是最基本的背包问题,其中每个物品只有一件,且只能选择放入或不放入背包。

解决0-1背包问题通常采用动态规划的方法。

动态规划算法通过构建一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。

通过状态转移方程dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),其中w[i]和v[i]分别表示第i个物品的重量和价值,可以逐步填充dp数组,最终得到最优解。

完全背包问题与0-1背包问题的主要区别在于,完全背包问题中的物品可以无限选取。

这意味着对于每个物品,可以选择放入0个、1个、2个,甚至更多个。

解决完全背包问题同样可以采用动态规划的方法,但状态转移方程有所不同。

对于完全背包问题,dp[i][j] =max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]),其中如果j >= w[i],则需要考虑所有可能的选取数量。

多重背包问题是0-1背包问题和完全背包问题的结合,其中每种物品有限定的数量。

解决多重背包问题需要对每种物品的数量进行遍历,然后采用0-1背包问题的动态规划方法来求解。

除了动态规划,背包问题还可以通过贪心算法、回溯算法等方法求解。

贪心算法通过每次选择当前价值最大的物品来构建解,但这种方法并不总是能够得到最优解。

回溯算法则通过搜索所有可能的解空间来寻找最优解,但时间复杂度较高。

在实际应用中,背包问题可以用于资源分配、投资组合优化、货物装载等问题。

通过合理的算法设计和优化,可以有效地解决这些实际问题,提高资源的利用效率。

总结来说,背包问题是一类重要的组合优化问题,通过动态规划等算法可以有效求解。

01背包问题及变种详解

01背包问题及变种详解

P01: 01背包问题题目有N件物品和一个容量为V的背包。

第i件物品的费用是c[i],价值是w[i]。

求解将哪些物品装入背包可使价值总和最大。

基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。

则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。

所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。

如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

优化空间复杂度以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。

那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。

完全背包问题和0-1背包问题

完全背包问题和0-1背包问题

1.实验目的(结出本次实验所涉及并要求掌握的知识点)利用动态规划策略解决0-1背包和完全背包问题2.实验内容(结出实验内容具体描述)(1)0-1 Knapsack Problem和Unbounded Knapsack Problem的算法进行实现(2)对0-1Knapsack Problem的算法进行空间优化,使其空间复杂度达到O(W)3.算法描述及实验步骤(用适当的形式表达算法设计思想与算法实现步骤)1. 二维数组的0-1背包空间O(nW)int record[100][100]; // 0-1 背包的二维表void ZO_knapsack_1(int num,int room){// 针对每一个物品进行筛选,看他是否是构成最终max的组成int i,j;for(i=0;i<=num;i++)for(j=0;j<=room;j++)record[i][j]=0; // 初始化record表for(i=1;i<=num;i++){for(j=0;j<=room;j++){if(a[i][0]>j)record[i][j]=record[i-1][j];else{if(record[i-1][j-a[i][0]]+a[i][1]>record[i-1][j])record[i][j]=record[i-1][j-a[i][0]]+a[i][1];elserecord[i][j]=record[i-1][j];}}}}int arry[100]; // 一维记录表int carry[100]; // 是否拿走该物品记录void ZO_knapsack_2(int num,int room){int i,j;for(i=0;i<=num;i++)arry[i]=0; // 初始化arry表for(i=1;i<=num;i++){for(j=room;j>=a[i][0];j--){ //逆序记录if(arry[j-a[i][0]]+a[i][1]>arry[j])arry[j]=arry[j-a[i][0]]+a[i][1];}}3. 一维数组实现完全背包空间:O(W)void UNbounded(int num,int room){int i,j;for(i=0;i<=num;i++)arry[i]=0; // 初始化arry表for(i=1;i<=num;i++){for(j=a[i][0];j<=room;j++){ //顺序记录if(arry[j-a[i][0]]+a[i][1]>arry[j])arry[j]=arry[j-a[i][0]]+a[i][1];}}}4.调试过程及运行结果(详细记录在调试过程中出现的问题及解决方法。

贪心算法实现背包问题算法设计与分析实验报告

贪心算法实现背包问题算法设计与分析实验报告

算法设计与分析实验报告实验名称贪心算法实现背包问题评分实验日期年月日指导教师姓名专业班级学号一.实验要求1. 优化问题有n个输入,而它的解就由这n个输入满足某些事先给定的约束条件的某个子集组成,而把满足约束条件的子集称为该问题的可行解。

可行解一般来说是不唯一的。

那些使目标函数取极值(极大或极小)的可行解,称为最优解。

2.贪心法求优化问题算法思想:在贪心算法中采用逐步构造最优解的方法。

在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。

决策一旦作出,就不可再更改。

作出贪心决策的依据称为贪心准则(greedy criterion)。

3.一般方法1)根据题意,选取一种量度标准。

2)按这种量度标准对这n个输入排序3)依次选择输入量加入部分解中。

如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。

procedure GREEDY(A,n) /*贪心法一般控制流程*///A(1:n)包含n个输入//solutions←φ //将解向量solution初始化为空/for i←1 to n dox←SELECT(A)if FEASIBLE(solution,x)then solutions←UNION(solution,x)endifrepeatreturn(solution)end GREEDY4. 实现典型的贪心算法的编程与上机实验,验证算法的时间复杂性函数。

二.实验内容1. 编程实现背包问题贪心算法。

通过具体算法理解如何通过局部最优实现全局最优,并验证算法的时间复杂性。

2.输入5个的图的邻接矩阵,程序加入统计prim算法访问图的节点数和边数的语句。

3.将统计数与复杂性函数所计算比较次数比较,用表格列出比较结果,给出文字分析。

三.程序算法1.背包问题的贪心算法procedure KNAPSACK(P,W,M,X,n)//P(1:n)和W(1;n)分别含有按P(i)/W(i)≥P(i+1)/W(i+1)排序的n件物品的效益值和重量。

背包问题问题实验报告(3篇)

背包问题问题实验报告(3篇)

第1篇一、实验目的1. 理解背包问题的基本概念和分类。

2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。

3. 分析背包问题的复杂度,比较不同算法的效率。

4. 通过实验验证算法的正确性和实用性。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

求将哪些物品装入背包,使得背包内物品的总价值最大。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。

c. 返回dp[n][C],即为最大价值。

2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。

c. 返回dp[C],即为最大价值。

3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。

c. 返回dp[C],即为最大价值。

四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。

0_1背包问题之穷举_搜索_动态规划算法探讨

0_1背包问题之穷举_搜索_动态规划算法探讨

Computer Knowledge and Technology 电脑知识与技术第5卷第12期(2009年4月)0-1背包问题之穷举、搜索、动态规划算法探讨曹周进(汤溪中学,浙江金华321075)摘要:该文论述了算法学习中非常经典的0-1背包问题,探讨用穷举、搜索、动态规划三种算法来解决0-1背包问题,并讨论算法在时间和空间复杂度上的优化,给出具体的参考程序。

关键词:0-1背包,算法设计,算法优化,参考程序中图分类号:TP312文献标识码:A 文章编号:1009-3044(2009)12-3193-02The Study on Exhaust Slgorithm,Search Algorithm,Dynamic Design for 0-1Knapsack ProblemCAO Zhou-jin(Tangxi Middle School,Jinhua 321075,China)Abstract:This article elaborated the extremely classical 0-1knapsack question in the algorithm study.In this paper,the exhaust algorithm,the search algorithm,the dynamic design are proposed to solve the 0-1knapsack problem.It also carries on the optimization to the time and space complexity of algorithm,giving us the concrete reference program.Key words:0-1knapsack problem;algorithm design;algorithm optimization;reference program1引言背包问题是算法学习中非常经典的一个问题,背包问题有多种形式,如0-1背包、完全背包、部分背包、混合背包问题等。

数据结构 背包问题

数据结构 背包问题

数据结构背包问题背包问题是在计算机科学中的一个经典问题,它涉及到在给定的背包容量下,如何选择一组物品,使得这些物品的总价值最大化。

在解决背包问题时,我们需要考虑物品的分量和价值,并且背包的容量是有限的。

为了解决背包问题,我们可以使用动态规划算法。

动态规划是一种通过将问题分解为子问题并解决子问题来解决复杂问题的方法。

对于背包问题,我们可以定义一个二维数组dp来保存每一个子问题的最优解。

其中,dp[i][j]表示在前i个物品中,背包容量为j时可以获得的最大价值。

接下来,我们来详细描述解决背包问题的标准格式。

1. 定义问题:背包问题是在给定的背包容量下,选择一组物品使得其总价值最大化。

2. 分析问题:- 输入:- 物品的分量数组weights,长度为n,weights[i]表示第i个物品的分量。

- 物品的价值数组values,长度为n,values[i]表示第i个物品的价值。

- 背包的容量capacity,表示背包的最大容量。

- 输出:- 最大价值max_value,表示在给定的背包容量下可以获得的最大价值。

3. 设计算法:- 初始化一个二维数组dp,大小为(n+1)×(capacity+1),并将所有元素初始化为0。

- 对于每一个物品i,从1到n,进行以下操作:- 对于背包容量j,从1到capacity,进行以下操作:- 如果weights[i-1]大于j,则dp[i][j]等于dp[i-1][j],即不选择第i个物品。

- 否则,dp[i][j]等于max(dp[i-1][j], dp[i-1][j-weights[i-1]] + values[i-1]),即选择第i个物品或者不选择第i个物品中的最大值。

- 最终,dp[n][capacity]就是所求的最大价值。

4. 实现算法:使用编程语言(如Python、Java等)根据上述算法设计代码实现。

5. 测试样例:- 输入:weights = [2, 3, 4, 5], values = [3, 4, 5, 6], capacity = 8- 输出:max_value = 96. 分析复杂度:- 时间复杂度:该算法使用了两层循环,时间复杂度为O(n×capacity)。

01背包问题及变种详解

01背包问题及变种详解

P01: 01背包问题题目有N件物品和一个容量为V的背包。

第i件物品的费用是c[i],价值是w[i]。

求解将哪些物品装入背包可使价值总和最大。

基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。

则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。

所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。

如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

优化空间复杂度以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。

那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。

背包问题思路

背包问题思路

背包问题思路[问题描述]在M 件物品取出若干件放在空间为W 的背包里,每件物品的重量为W1,W- 2,,Wn,与之相对应的价值为P1,P2,,Pn。

求出获得最大价值的方案。

注意:在本题中,所有的重量值均为整数。

可以看出如果通过第N 次选择得到的是一个最优解的话,那么第N-1 次选择的结果一定也是一个最优解。

这符合动态规划中最优子问题的性质。

考虑用动态规划的方法来解决,这里的:阶段是:在前N 件物品中,选取若干件物品放入背包中;状态是:在前N件物品中,选取若干件物品放入所剩空间为W的背包中的所能获得的最大价值;决策是:第N件物品放或者不放;由此可以写出动态转移方程:我们用f[i,j]表示在前i件物品中选择若干件放在所剩空间为j的背包里所能获得的最大价值f[i,j]=max{f[i-1,j-Wi]+Pi (j>=Wi), f[i-1,j]}这样,我们可以自底向上地得出在前M 件物品中取出若干件放进背包能获得的最大价值,也就是f[m,w]算法设计如下:for(i=1;i<=m;i++) /*m 是物品的个数*/for(j=0;j<=n;j++) /*n 是背包容量*/f[i][j]=f[i-1][j];if(j>=v[i])x=f[i-1][j-v[i]]+p[i];if(x>f[i][j])f[i][j]=x;采药(medic.pas/c/cpp)问题描述】辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。

为此,他想拜附近最有威望的医师为师。

医师为了判断他的资质,给他出了一个难题。

医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。

我会给你一段时间,在这段时间里,你可以采到一些草药。

如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。

”如果你是辰辰,你能完成这个任务吗?输入文件】输入文件medic.in 的第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

背包问题算法设计
题目描述:
有n个物品,每个物品的重量为w[i],取物品则效益增加p[i],对于给定的一个能容纳重量为M的背包,怎样装包才能使获得的效益最大?每个物品的取值为x[i],x[i]=0/1,0表示该物品不装包,1表示将该物品装入包中。

以上描述就是一个经典的0/1背包问题。

输入输出:
输入一个n,然后输入w[1,2,...,n],p[1,2,...,n]
输出最大效益值和x[1,2,...,n]用0/1表示
sampleinput
3//n
234//w[i]
125//p[i]
sampleoutput
6//最大效益值
101//x[i]
解题思路:
假定决策次序为x[n],x[n-1],...,x[1]。

在对x[n]做出决策之后,问题处于下列两种状态之一:
背包的剩余容量为M,没有产生任何效益;
剩余容量是M-w,效益增长了p。

显然,余下来的x[n-1],x[n-2],..,x[1]的决策相对于x所产生的问题状态应该是最优的,否则x[n],x[n-1],...,x[1]就不能是最优决策序列。

设f[j][x]是从物品1-j,背包容量为x的最优解
则最优序列的解f[n][m]
对于任意的f[i][x]=max{f[i-1][x],f[i-1][x-wi]+pi}---------------------------(1)
为了能向后递推而最后求出f[n][m],需要从f[0][x]开始。

对于所有x>=0,有f[0][x]=0,
当x<0时,有f[0][x]=负无穷。

根据(1)马上可解出0<=x<w1,x>=w1的情况下f[1][x]的值。

接着又可以不断递推出f[2],f[3],...,f[n]在x相应的取值范围内的值。

于是有求f[n][m]的算法:
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(j-w[i]>=0)
f[i][j]=MAX(f[i-1][j],f[i-1][j-w[i]]+p[i]);
else
f[i][j]=f[i-1][j];
}
一般而言,背包问题是要求一个最优值,如果要求输出这个最优值的方案,可以参照一般动态规划问题输出方案的方法:记录下每个状态的最优值是由状态转移方程的哪一项推出来的,换句话说,记录下它是由哪一个策略推出来的。

便可根据这条策略找到上一个状态,从上一个状态接着向前推即可。

设g[i][v]=0表示推出f[i][v]的值时是采用了方程的前一项(也即f[i][v]=f[i-1][v]),g[i][v]表示采用了方程的后一项。

注意这两项分别表示了两种策略:未选第i个物品及选了第i个物品。

于是改写求f[n][m]的过程为:
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(j-w[i]>=0)
{
f[i][j]=MAX(f[i-1][j],f[i-1][j-w[i]]+p[i]);
if(f[i][j]==f[i-1][j-w[i]]+p[i])
g[i][j]=1;
}
else
f[i][j]=f[i-1][j];
}
}
那么求方案的向量的伪代码可以这样写i=n;
j=m;
while(i>0)
{
if(g[i][j]==0)
x[i]=0;
else
{
x[i]=1;
j=j-w[i];
}
i--;
}
最后输出向量x和f[n][m]既可。

算法空间分析:
时间复杂度O(n*m)
时间复杂度O(n*m)
代码设计:
#include<iostream> usingnamespacestd;
#defineN200
#defineMAX(a,b)(a>b?a:b) intmain()
{
intn,m,i,j;
intw[N],p[N],x[N];
intf[N][N],g[N][N]; freopen("in.txt","r",stdin); while(cin>>n>>m)
{
for(i=1;i<=n;i++)
cin>>w[i];
for(i=1;i<=n;i++)
cin>>p[i];
memset(f,0,sizeof(f)); memset(g,0,sizeof(g));
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(j-w[i]>=0)
{
f[i][j]=MAX(f[i-1][j],f[i-1][j-w[i]]+p[i]); if(f[i][j]==f[i-1][j-w[i]]+p[i])
g[i][j]=1;
}
else
f[i][j]=f[i-1][j];
}
}
i=n;
j=m;
while(i>0)
{
if(g[i][j]==0)
x[i]=0;
else
{
x[i]=1;
j=j-w[i];
}
i--;
}
for(i=1;i<=n;i++) cout<<x[i]<<"";
cout<<endl;
cout<<f[n][m]<<endl; }
return0;
}。

相关文档
最新文档