传送带与板块模型 PPT

合集下载

第15讲 板块模型和传送带模型(基础)

第15讲  板块模型和传送带模型(基础)

第15讲滑块—木板模型和传送带模型【教学目标】1.能够正确运用牛顿运动定律处理滑块—木板模型;2.会对传送带上的物体进行受力分析,能正确解答传送带上的物体的运动问题.【重、难点】以上两个模型都是重难点考点一滑块—木板模型1.模型概述一个物体在另一个物体表面上发生相对滑动,两者之间有相对运动,可能发生同向相对滑动或反向相对滑动.板块问题一般都涉及到受力分析、运动分析、临界问题、摩擦力的突变问题等,并且会涉及两物体的运动时间、速度、加速度、位移等各量的关系.在解决板块问题时基本上都会用到整体法和隔离法.2.三个基本关系(一)为保持相对静止或相对滑动,求最大外力或最小外力.(已知内力求外力)解题方法:往往求临界情况,即刚好没滑动(相对静止)时的外力.此时隐含两个条件:①静摩擦力为f m;②a相同.例1、如图所示,光滑水平面上放置质量分别为m、2m的A、B两个物体,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,则拉力F的最大值为()A.μmg B.2μmgC.3μmg D.4μmg(二)给定外力,判断是否相对滑动(已知外力求内力)例2、如图所示,质量为m 1的足够长的木板静止在水平面上,其上放一质量为m 2的物块.物块与木板的接触面是光滑的.从t =0时刻起,给物块施加一水平恒力F .分别用a 1、a 2和v 1、v 2表示木板、物块的加速度和速度大小,下列图象符合运动情况的是( )例3、如图所示,水平桌面上质量为m 的物块放在质量为2m 的长木板的左端,物块和木板间的动摩擦因数为μ,木板和桌面间的动摩擦因数为14μ,接触面间的最大静摩擦力等于滑动摩擦力.开始时物块和木板均静止,若在物块上施加一个水平向右的恒力F ,已知重力加速度为g ,下列说法正确的是( )A .当F >μmg 时,物块和木板一定发生相对滑动B .当F =μmg 时,物块的加速度大小为112μgC .当F =2μmg 时,木板的加速度大小为16μgD .不管力F 多大,木板的加速度始终为0(三)开始两物体不共速,那必然相对滑动,但一段时间之后可能共速(需分析) (1)如果会滑离,则找两者的位移关系; (2)如果不会滑离,两者一定会先共速,此后:①若系统无外力,则一起匀速;②若系统有外力,则按照(二)的方法判断是否相对滑动. 例4、如图所示,质量为M =4kg 的木板静止在光滑的水平面上,在木板的右端放置一个质量m =1kg 大小可以忽略的铁块,铁块与木板之间的摩擦因数μ=0.4,在铁块上加一个水平向左的恒力F =8N ,铁块在长L =6m 的木板上滑动.取g =10m/s 2.求经过多长时间铁块运动到木板的左端.变式1、如图所示,长为L=2m、质量为M=8kg的木板,放在水平地面上,木板向右运动的速度v0=6m/s时,在木板前端轻放一个大小不计,质量为m=2kg的小物块.木板与地面、物块与木板间的动摩擦因数均为μ=0.2,g=10 m/s2.求:(1)物块及木板的加速度大小;(2)物块滑离木板时的速度大小.变式2、如图所示,厚度不计的薄板A长l=5m,质量M=5kg,放在粗糙的水平地面上.在A上距右端x=3m处放一物体B(可视为质点),其质量m=2kg,已知A、B间的动摩擦因数μ1=0.1,A 与地面间的动摩擦因数μ2=0.2,原来系统静止.现在板的右端施加一大小恒定的水平向右的力F=26 N,将A从B下抽出.g=10 m/s2,求:(1)A从B下抽出前A、B的加速度各是多大;(2)B运动多长时间离开A.例5、(多选)如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()A.物块先向左运动,再向右运动B.物块向右运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零例6、如图所示,质量M=2kg足够长的木板静止在水平地面上,另一个质量m=1kg的小滑块以v0=6m/s的初速度滑上木板的左端.已知滑块与木板之间的动摩擦因数μ1=0.5,木板与地面的动摩擦因数μ2=0.1,g取l0m/s2.求:(1)求小滑块自滑上木板到相对木板处于静止的过程中,小滑块相对地面的位移大小;(2)求木板相对地面运动位移的最大值;(3)为使小滑块不能离开木板,则木板的长度至少多长.变式3、如图所示,物块A、木板B的质量均为m=10 kg,不计A的大小,木板B长L=3 m.开始时A、B均静止.现使A以水平初速度v0从B的最左端开始运动.已知A与B、B与水平面之间的动摩擦因数分别为μ1=0.3和μ2=0.1,g取10 m/s2.若A刚好没有从B上滑下来,则A的初速度v0为多大?求解“滑块—木板”类问题的方法技巧1.搞清各物体初始状态相对地面的运动和物体间的相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.2.正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.考点二传送带问题1.传送带的基本类型一个物体以初速度v0(v0≥0)在另一个匀速运动的物体上运动的力学系统可看成传送带模型.传送带模型按放置方向分为水平传送带和倾斜传送带两种,如图所示.(1)当传送带水平转动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质突变.(2)求解的关键在于对物体所受的摩擦力进行正确的分析判断.静摩擦力达到最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力只存在于发生相对运动的物体之间,因此两物体的速度相同时,滑动摩擦力要发生突变(滑动摩擦力变为零或变为静摩擦力).3.倾斜传送带(1)对于倾斜传送带,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数与传送带倾角的关系.若μ≥tan θ,且物体能与传送带共速,则共速后物体做匀速运动;若μ<tan θ,且物体能与传送带共速,则共速后物体相对于传送带做匀变速运动.(2)求解的关键在于分析物体与传送带间的相对运动情况,确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用,应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体的速度与传送带的速度相等时,物体所受的摩擦力有可能发生突变.4.传送带问题的动力学分析(1)水平传送带一直加速先加速后匀速vvvv传送带长度到达左端传送带长度先减速再向右加速,到达右端速度为传送带长度先减速再向右加速,最后匀速,到达右端速度为先以加速度先以加速度以加速度(一)水平传送带例7、如图所示,物块m在传送带上向右运动,两者保持相对静止.则下列关于m所受摩擦力的说法中正确的是()A.皮带传送速度越大,m受到的摩擦力越大B.皮带传送的加速度越大,m受到的摩擦力越大C.皮带速度恒定,m质量越大,所受摩擦力越大D.无论皮带做何种运动,m都一定受摩擦力作用例8、如图所示,水平放置的传送带以速度v=2m/s沿顺时针方向转动,现将一小物体轻轻地放在传送带A端,物体与传送带间的动摩擦因数μ=0.2,g取10 m/s2.若A端与B端相距6 m,则物体由A到B的时间为()A.2 s B.2.5 s C.3.5 s D.4 s 变式4、(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙模型,紧绷的传送带始终保持v=1m/s的恒定速率运行.旅客把行李(可视为质点)无初速度地放在A处,设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离为2m,g取10m/s2.若乘客把行李放到传送带的同时也以v=1m/s的恒定速率平行于传送带运动到B处取行李,则()A.乘客与行李同时到达B处B.乘客提前0.5s到达B处C.行李提前0.5s到达B处D.若传送带速度足够大,行李最快也要2s才能到达B处变式5、如图所示,水平传送带以不变的速度v=10m/s向右运动,将一煤块(可视为质点)轻放在传送带的左端,由于摩擦力的作用,煤块做匀加速运动,经过时间t=2s,速度达到v;再经过时间t′=4s,煤块到达传送带的右端,g取10 m/s2,求:(1)煤块与水平传送带间的动摩擦因数;(2)煤块从水平传送带的左端至右端通过的距离;(3)煤块在水平传送带上留下的划痕长度.(二)倾斜传送带例9、滑块能沿静止的传送带匀速滑下,如图所示,若在下滑时突然开动传送带向上传动,此时滑块的运动将()A.维持原来匀速下滑B.减速下滑C.向上运动D.可能相对地面不动变式6、如图所示,粗糙的传送带与水平方向的夹角为θ,当传送带静止时,在传送带上端轻放一小物块,物块下滑到底端所用时间为t,则下列说法正确的是()A.当传送带顺时针转动时,物块下滑的时间可能大于tB.当传送带顺时针转动时,物块下滑的时间可能小于tC.当传送带逆时针转动时,物块下滑的时间等于tD.当传送带逆时针转动时,物块下滑的时间小于t例10、如图所示,传送带与水平地面的夹角为θ=37°,A、B两端相距L=64m,传送带以v=20m/s 的速度沿逆时针方向转动,在传送带上端A点无初速度地放上一个质量为m=8kg的物体(可视为质点),它与传送带之间的动摩擦因数为μ=0.5,求物体从A点运动到B点所用的时间.(重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8)物体沿着倾斜的传送带向下加速运动到与传送带速度相等时,若μ≥tanθ,物体随传送带一起匀速运动;若μ<tanθ,物体将以较小的加速度a=g sinθ-μg cosθ继续加速运动.例11、如图所示,传送带与水平面成夹角θ=30°、以v 0=10m/s 的速度瞬时针转动,在传送带A 端轻轻地放一个质量m =0.5kg 的小物体,它与传送带间的动摩擦因数为μ=23.已知A 、B 两端相距L =25m ,重力加速度g 取10m/s 2.求物体从A 运动到B 所需的时间.变式7、如图所示,传送带与水平地面的夹角θ=37°,A 、B 两端相距L =12m ,质量为m =1kg 的物体以v 0=14m/s 的速度沿AB 方向从A 端滑上传送带,物体与传送带间的动摩擦因数为μ=0.5,传送带顺时针转动的速度v =4m/s ,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.6,求物体从A 点到达B 点所需的时间.【能力展示】【小试牛刀】1.如图所示,在光滑的水平面上有一个长为0.64m、质量为4kg的木板B,在B的左端有一个质量为2kg、可视为质点的铁块A,A与B之间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小相等,g取10m/s2.当对A施加水平向右的拉力F=10N时,将A从B的左端拉到右端的时间为()A.0.8 s B.0.6 sC.1.1 s D.1.0 s2.如图所示,木块A质量为1 kg,木块B的质量为2 kg,叠放在水平地面上,A、B间的最大静摩擦力为1 N,B与地面间的动摩擦因数为0.1,g取10 m/s2,今用水平力F作用于B,则保持A、B 相对静止的条件是F不超过()A.1 N B.3 NC.4 N D.6 N3.如图所示,足够长的传送带与水平面间夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻地放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则下图中能客观地反映小木块的速度随时间变化关系的是()4.(多选)如图所示,水平传送带A、B两端点相距s=3.5m,以v0=2m/s的速度(始终保持不变)顺时针运转,今将一小煤块(可视为质点)无初速度地轻放在A端,已知小煤块与传送带间的动摩擦因数为0.4.由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕,小煤块从A运动到B 的过程中(g取10 m/s2)()A.所用的时间是2 sB.所用的时间是2.25 sC.划痕长度是3 mD.划痕长度是0.5 m5.(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为13μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力F ,则木板加速度大小a 可能是( )A .a =μgB .a =23μgC .a =13μgD .a =F 2m -13μg 6.如图所示,长度l =2m ,质量M =23kg 的木板置于光滑的水平地面上,质量m =2kg 的小物块(可视为质点)位于木板的左端,木板和小物块间的动摩擦因数μ=0.1,现对小物块施加一水平向右的恒力F =10 N ,取g =10 m/s 2.求:(1)若木板M 固定,小物块离开木板时的速度大小;(2)若木板M 不固定,小物块从开始运动到离开木板所用的时间.7.如图所示为一水平传送带装置示意图,绷紧的传送带AB 始终保持v =1m/s 的恒定速率运行,一质量为m =4kg 的行李(可视为质点)无初速度地放在A 处.设行李与传送带间的动摩擦因数μ=0.1,A 、B 间的距离 l =2 m ,g 取10 m/s 2.求:(1)行李在传送带上运动的时间;(2)如果提高传送带的运行速率,行李就能被较快地传送到B 处.求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.【大显身手】8.(多选)如图所示,倾角为θ的足够长的传送带以恒定的速率v0沿逆时针方向运行.t=0时,将质量m=1kg的小物块(可视为质点)轻放在传送带上,物块速度随时间变化的图象如图所示.设沿传送带向下为正方向,重力加速度g取10 m/s2.则()A.摩擦力的方向始终沿传送带向下B.1~2 s内,物块的加速度为2 m/s2C.传送带的倾角θ=30°D.物块与传送带之间的动摩擦因数μ=0.59.如图甲所示,质量为M=2kg的木板B静止在水平面上,可视为质点的物块A从木板的左侧以某一初速度沿木板上表面水平冲上木板,A和B的v-t图象如图乙所示,重力加速度g=10m/s2,求:(1)A与B上表面之间的动摩擦因数μ1;(2)B与水平面间的动摩擦因数μ2;(3)A的质量m.10.如图所示,质量M=8kg的小车放在光滑水平面上,在小车左端加一水平推力F=8 N.当小车向右运动的速度达到3m/s时,在小车右端轻轻地放一个大小不计、质量m=2 kg的小物块.小物块与小车间的动摩擦因数μ=0.2,小车足够长.g取10 m/s2,则:(1)放上小物块后,小物块及小车的加速度各为多大?(2)经多长时间两者达到相同的速度.(3)从小物块放上小车开始,经过t′=3s小物块通过的位移大小为多少?11.如图所示,将物块M轻放在匀速传送的传送带的A点,已知传送带速度大小v=2m/s,传送带顺时针转动,AB=2m,BC=8m,M与传送带的动摩擦因数μ=0.5,试求物块由A运动到C点共需要多长时间.(M经过B点时速度大小不变,方向沿着BC方向,g取10 m/s2,sin 37°=0.6,cos 37°=0.8)第15讲 板块模型和传送带模型答案例1、C 例2、D 例3、B 例4、2s变式1、(1)2 m/s 2 3 m/s 2 (2)0.8 m/s 变式2、(1)2 m/s 2,1 m/s 2(2)2s 例5、BC 例6、(1)3.5m (2)1m (3)3m 变式3、2 6 m/s例7、B 例8、C 变式4、BD 变式5、(1)0.5 (2)50 m (3)10m 变式6、D 例9、A例10、答案:4 s解析:开始时物体下滑的加速度:a 1=g (sin 37°+μcos 37°)=10 m/s 2,运动到与传送带共速的时间为:t 1=v a 1=2010 s =2s ,下滑的距离:s 1=12a 1t 12=20m ;由于mg sin37°>μmg cos 37°,故物体2s 后继续加速下滑,且此时:a 2=g (sin 37°-μcos 37°)=2 m/s 2,s 2=64 m -s 1=44 m ,根据s 2=vt 2+12a 2t 22,解得:t 2=2 s ,故共用时间t =t 1+t 2=4 s .例11、4.5s 变式7、2s【能力展示】1.A 2.D 3.D 4.AD 5.CD 6.(1)4 m/s (2)2 s7.(1) 2.5s (2)2 s 2 m/s 8.BD 9.(1)0.2 (2)0.1 (3)6 kg10.(1)2 m/s 2 0.5 m/s 2 (2)2 s (3)8.4 m11.3.2 s。

高中教育物理必修一《拓展课八 传送带模型和板块模型》教学课件

高中教育物理必修一《拓展课八 传送带模型和板块模型》教学课件
拓展课八 传送带模型和板块模型
目标要求 1.会对传送带上的物体进行受力分析,掌握传送带模型的一般分析 方法. 2.能正确解答传送带上的物体的运动问题. 3.建立板块模型的分析方法. 4.能运用牛顿运动定律处理板块问题.
拓展1 传送带模型 【归纳】 1.基本类型 传送带运输是利用货物和传送带之间的摩擦力将货物运送到其他地 方去,有水平传送带和倾斜传送带两种基本模型. 2.分析流程
3.注意问题 求解的关键在于根据物体和传送带之间的相对运动情况,确定摩擦 力的大小和方向.当物体的速度与传送带的速度相同时,物体所受的 摩擦力有可能发生突变.
【典例】 例 1 传送带是现代生产、生活中广泛应用的运送货物的运输工具, 其大量应用于工厂、车站、机场、地铁站等.如图,地铁一号线的某 地铁站内有一条水平匀速运行的行李运输传送带,假设传送带匀速运 动的速度大小为v,且传送带足够长.某乘客将一个质量为m的行李箱 轻轻地放在传送带一端,行李箱与传送带间的动摩擦因数为μ.当行李 箱的速度与传送带的速度刚好相等时,地铁站突然停电,假设传送带 在制动力的作用下立即停止运动,求行李箱在传送带上运动的总时 间.
【典例】
例 4 长为1.0 m的长木板B静止放在水平冰面上,小物块A以某一初速 度从长木板B的左端冲上长木板B,直到A、B的速度达到相同,大小 为v′=0.4 m/s.再经过t0=0.4 s的时间A、B一起在水平冰面上滑行了一 段距离后停在冰面上.若小物块A可视为质点,它与长木板B的质量相 同,A、B间的动摩擦因数μ1=0.25.(g取10 m/s2)求:
总结提升
倾斜传送带向下传送物体,当物体加速运动与传送带速度相等时: (1)若μ≥tan θ,物体随传送带一起匀速运动; (2)若μ<tan θ,物体不能与传送带保持相对静止,物体将以较小的加 速度a=g sin θ-μg cos θ继续做加速运动.

板块模型、传送带

板块模型、传送带

传送带问题的分析技巧.模型特征(1)水平传送带模型摩擦因数μ=0.1。

工件滑上A 端瞬时速度v A =4 m/s ,到达B 端的瞬时速度设为v B ,则( )A .若传送带不动,则vB =3 m/sB .若传送带以速度v =4 m /s 逆时针匀速转动,v B =3m/sC.若传送带以速度v=2 m/s顺时针匀速转动,v B=3 m/sD.若传送带以速度v=2 m/s顺时针匀速转动,v B=2 m/s2、如图所示,水平传送带A、B两端点相距x=4 m,以v0=2 m/s的速度(始终保持不变)顺时针运转,今将一小煤块(可视为质点)无初速度地轻放至A点处,已知小煤块与传送带间的动摩擦因数为0.4,g取10 m/s2.由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕.则小煤块从A运动到B的过程中( )A.小煤块从A运动到B的时间是 2 sB.小煤块从A运动到B的时间是2.25 sC.划痕长度是4 mD.划痕长度是0.5 m3、如图所示,有一水平放置的足够长的皮带输送机以v=5 m/s的速率沿顺时针方向运行。

有一物块以v0=10 m/s的初速度从皮带输送机的右端沿皮带水平向左滑动。

若物块与皮带间的动摩擦因数μ=0.5,并取g=10 m/s2,求物块从滑上皮带到离开皮带所用的时间。

传送带以恒定的速率v=10 m/s运动,已知它与水平面成α=37°,如图所示,PQ=16 m,将一个小物体无初速度地放在P点,小物体与传送带间的动摩擦因数为μ=0.5,问当传送带逆时针转动时,小物体运动到Q点的时间为多少?.(2017·武汉月考)如图所示,AB、CD为两个光滑的平台,一倾角为37°,长为5 m的传送带与两平台平滑连接。

现有一小物体以10 m/s的速度沿平台AB向右运动,当传送带静止时,小物体恰好能滑到平台CD上,问:(1)小物体跟传送带间的动摩擦因数为多大?(2)当小物体在平台AB上的运动速度低于某一数值时,无论传送带顺时针运动的速度多大,小物体都不能到达平台CD,求这个临界速度。

高考物理一轮总复习 第三章 牛顿运动定律 能力课2 动力学中的“传送带”“板块”模型课件

高考物理一轮总复习 第三章 牛顿运动定律 能力课2 动力学中的“传送带”“板块”模型课件

2021/12/9
第十页,共三十八页。
|反 思 总 结|
求解的关键在于对物体所受的摩擦力进行正确的分析判断.物体的速度与传 送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.
2021/12/9
第十一页,共三十八页。
情景 情景 1 情景 2
2021/12/9
考向二 倾斜传送带模型
图示
滑块可能的运动情况
2021/12/9
第二十四页,共三十八页。
考点二 动力学中的“板块”模型——多维探究 |记要点|
1.分析“板块”模型时要抓住一个转折和两个关联
2021/12/9
第二十五页,共三十八页。
2.两种类型 类型图示
2021/12/9
规律分析 木板 B 带动物块 A,物块恰好不从木板上掉下的临界条件 是物块恰好滑到木板左端时二者速度相等,则位移关系为 xB=xA+L 物块 A 带动木板 B,物块恰好不从木板上掉下的临界条件 是物块恰好滑到木板右端时二者速度相等,则位移关系为 xB+L=xA
第六页,共三十八页。
情景 3
2021/12/9
(1)传送带较短时,滑块一直减速到达左端 (2)传送带较长时,滑块还要被传送带传回右端.其 中当 v0>v 时,返回时速度为 v;当 v0<v 时,返回 时速度为 v0
第七页,共三十八页。
【例 1】 如图所示,水平传送带两端相距 x=8 m,工件与传送带间的动摩擦 因数 μ=0.6,工件滑上 A端时速度 vA=10 m/s,设工件到达 B端时的速度大小为 vB.(取 g=10 m/s2)
则有 a1=mgsin37°+mμmgcos37°=10 m/s2 设当物体运动速度等于传送带转动速度时经历的时间为 t1,位移为 x1,则有 t1 =av1=1100 s=1 s,x1=12a1t12=5 m<l=16 m

4.5 牛顿运动定律的应用(连接体、传送带、板块模型) 课件 必修第一册

4.5 牛顿运动定律的应用(连接体、传送带、板块模型) 课件   必修第一册
(2)将木块换成墨块,在水平传送带上留下的痕迹有多长?
v0=2m/s
v
连接体模型
板块模型
F
N
解:(1)木块从左端到达右端所需的时间t.
木块向右做匀加速直线运动,由牛顿第二定律得:
Ff
设经时间t1木块的速度与传送带速度相等
G
经3米木块的速度就增加到与传送带的速度相等。此时摩擦力消失,
只剩下重力和支持力,木块向右与传送带共速做匀速直线运动。
(2)木板至少多长,物块才能与木板最终保持相对静止?
(3)物块与木板相对静止后,物块受到的摩擦力为多大?
答案:(1)a1=2m/s2 a2=1m/s2 (2)0.5m (3)6.29N
B.10 m/s2,8 N
C.8 m/s2,6 N
D.6 m/s2,9 N
总结:(1)先整体,后隔离。
)
传送带模型
板块模型
例 5 、 如图所示,物块A、B用一条绕过轻质定滑轮的轻绳相连,轻绳两部分分别处于
竖直和水平状态,A、B的质量分别为M、m,重力加速度为g,不计一切摩擦.现将系
统由静止释放,B向左运动。
v0<v
μ>tan
(a g cos g sin )
匀加速
A
θ
先匀加到v,后匀速
μ<tan
v0>v
μ>tan
(g sin g cos )】
匀减速 【a
先【a1
(g sin g cos )】匀减,当(v物 v传 )后再以 a2匀减
(g sin g cos )】
的张力大小为( D )
A.F-2μmg
1
B.3F+μmg
1
C.3F-μmg

高三一轮力学两大观点解决两类模型(传送带板块)课件

高三一轮力学两大观点解决两类模型(传送带板块)课件

应用场景
当传送带模型中涉及到物体的静止 或匀速直线运动等问题时,可以使 用力的平衡来求解。
解题步骤
先根据题意分析出物体所受的各个 力,然后根据力的平衡列出等式, 最后求解出物体的受力情况、速度 等物理量。
03
解决两类模型的方法与技巧
解决水平传送带模型的方法与技巧
受力分析
首先对滑块进行受力分析,明 确滑块受到重力、支持力和摩
实例二:倾斜传送带模型的实例分析
总结词
倾斜传送带模型相对于水平传送带模型更为复杂,需要考虑重力的影响,同时考察学生对受力分析和牛顿第二定 律的综合运用能力。
详细描述
在倾斜传送带模型中,当传送带静止时,物体可能做匀加速或匀减速运动;当传送带匀速运动时,物体可能一直 做匀速运动,也可能先做匀加速或匀减速运动;当传送带加速运动时,物体可能一直做匀加速或匀减速运动;当 传送带减速运动时,物体可能一直做匀减速或匀加速运动。
先根据题意分析出物体所受的合外力 ,然后根据动能定理列出等式,最后 求解出物体的速度、位移等物理量。
应用 外力做功等问题时,可以使用动能定 理来求解。
机械能守恒定律在传送带模型中的应用
机械能守恒定律
系统内重力、弹力和非保守力( 摩擦力、空气阻力等)做功的总
和等于系统机械能的变化。
根据受力分析和运动状态判断,结合动能 定理,求解滑块在多过程传送带上运动的 相关问题。
04
传送带模型中的常见问题解析
传送带模型中的相对运动问题解析
总结词
理解相对运动原理,分析物体在传送带上的运动 状态。
总结词
掌握速度和加速度的合成与分解,运用运动学公 式解决问题。
详细描述
相对运动问题主要考察学生对运动相对性的理解 ,要求能够准确判断物体在传送带上的运动状态 (加速、减速或匀速),进而分析物体的受力情 况和运动轨迹。

第四章牛顿运动定律专题(四)——传送带模型和板块模型

第四章牛顿运动定律专题(四)——传送带模型和板块模型

牛顿运动定律专题(四)——传送带模型和板块模型知识点一 传送带模型 例1:水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.绷紧的传送带AB 始终保持恒定的速率v =1 m/s 运行,一质量为m =4 kg 的行李无初速度地放在A 处,传送带对行李的滑动摩擦力使行李开始做直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.求:(1)行李从A 到B 的运动时间。

(2)如果提高传送带的运行速率,行李就能被较快地传送到B 处,求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.练习1:如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间;(2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间.班级:姓名:知识点二木板—木块模型例2:如图所示,厚度不计的薄板A长l=5m,质量M=5kg,放在水平地面上.在A上距右端x=3m处放一物体B(大小不计),其质量m=2kg,已知A、B间的动摩擦因数μ1=0.1,A与地面间的动摩擦因数μ2=0.2,原来系统静止.现在板的右端施加一大小恒定的水平力F=26N,持续作用在A上,将A从B下抽出.g =10m/s2,求:(1)A从B下抽出前A、B的加速度各是多大;(2)B运动多长时间离开A.练习2:如图所示,质量为M=1kg的长木板静止在光滑水平面上,现有一质量为m=0.5kg的小滑块(可视为质点)以v0=3m/s的初速度从左端沿木板上表面冲上木板,带动木板向前滑动.已知滑块与木板上表面间的动摩擦因数μ=0.1,重力加速度g取10 m/s2,木板足够长.求:(1)滑块在木板上滑动过程中,长木板受到的摩擦力大小和方向;(2)滑块在木板上滑动过程中,滑块相对于水平面的加速度a的大小;(3)滑块与木板达到的共同速度v的大小.。

传送带模型和滑块(第一课堂)高中一年级物理精品教学课件PPT

传送带模型和滑块(第一课堂)高中一年级物理精品教学课件PPT
5
A运动到B所需的时间。(g取10 m/s2)
解析 刚将物体无初速度地放上传送带时,物体做加速运动,受力如图甲所
示,
由牛顿第二定律得
x轴方向上:mgsin 30°+f=ma1
y轴方向上:N-mgcos 30°=0
又f=μN
联立解得a1=g(sin 30°+μcos 30°)=8 m/s2
物体加速到与传送带速度相等所用的时间为
2
2
解得v0=6 m/s。
答案 (1)3 m/s2
1.5 m/s2
(2)6 m/s
变式训练2如图所示,厚度不计的木板A长l=5 m,质量M=5 kg,放在水平地面
上。在A上距右端s=3 m处放一物体B(大小不计),其质量m=2 kg,已知A、B
间的动摩擦因数μ1=0.1,A与地面间的动摩擦因数μ2=0.2,原来系统静止。

2
a
=
=3
m/s
1
动,设其加速度大小为a1,则有


木板 B 向右做匀加速运动,设其加速度大小为 a2,则有 a2=
=1.5 m/s2。

(2)A刚好没有从B上滑下来,则A滑到B最右端时的速度和B的速度相同,设
为v,则有v=v0-a1t
v=a2t
0 +
位移关系:L=
t- t
一质量为m=1 kg的小滑块,滑块可视为质点,滑块与传送带间的动摩擦因
数μ=0.2,传送带长L=2 m,重力加速度g取10 m/s2。求:
(1)滑块从传送带左端到右端的时间;
(2)滑块相对传送带滑行的位移的大小。
解析 (1)滑块在传送带上滑行时的加速度


a= =

传送带模型和板块模型ppt课件

传送带模型和板块模型ppt课件
10
v≥ 2gR,物块就能返回到 A 点,则 R≤2vg2,A 错误;若减 小传送带速度,只要传送带的速度 v≥ 2gR,物块就能返回 到 A 点,B 正确;若增大传送带的速度,由于物块返回到圆 弧轨道的速度不变,只能滑到 A 点,不能滑到圆弧轨道的最 高点,C 错误、D 正确。
11
多维角度 3 倾斜同向加速再加速 [例 3] (2017·黄冈中学模拟)(多选)在大型物流货场,广 泛的应用传送带搬运货物。如图甲所示,倾斜的传送带以恒 定速率运动,皮带始终是绷紧的,将 m=1 kg 的货物放在 传送带上的 A 点,经过 1.2 s 到达传送带的 B 点。用速度传 感器测得货物与传送带的速度 v 随时间 t 变化的图象如图乙 所示,已知重力加速度 g=10 m/s2。由 v-t 图象可知( )
6
电动机多做的功一部分转化成了物体的动能,另一部分转化 为 内 能 , 则 电 动 机 多 做 的 功 W = 12mv2-12mv20 + Q = 12×1×42-22+2 J= 8 J,D 错误。
7
多维角度 2 水平反向减速再加速 [例 2] (2017·漳州检测)(多选)如图所示,足够长的水平 传送带以速度 v 沿逆时针方向转动,传送带的左端与光滑 圆弧轨道底部平滑连接,圆弧轨道上的 A 点与圆心等高, 一小物块从 A 点静止滑下,再滑上传送带,经过一段时间 又返回圆弧轨道,返回圆弧轨道时小物块恰好能到达 A 点, 则下列说法正确的是( )
14
同理 0.2~1.2 s 内 a2=ΔΔvt22=1.24- -20.2 m/s2=2 m/s2,mgsinθ -μmgcosθ=ma2,联立解得:cosθ=0.8,μ=0.5,B 正确; 整 个 过 程 货 物 与 传 送 带 间 的 滑 动 摩 擦 力 大 小 均 为 Ff = μmgcosθ=4 N,则 0~0.2 s 内传送带对货物做功为:W1= Ffx1=4×0.2 J=0.8 J,0.2~1.2 s 内传送带对货物做功为:W2 =-Ffx2=-4×3 J=-12 J,W=W1+W2=-11.2 J,所以 整个过程,传送带对货物做功大小为 11.2 J,C 错误;根据 功能关系,货物与传送带摩擦产生的热量等于摩擦力乘以相

高考物理总复习第三章牛顿运动定律能力课2动力学中的“传送带、板块”模型课件

高考物理总复习第三章牛顿运动定律能力课2动力学中的“传送带、板块”模型课件
由 L=12at2,解得 t=4 s。 答案(dáàn) 4 s
第十二页,共37页。
【变式训练1】 如图3所示,水平轨道AB段为粗糙水平面,
BC段为一水平传送带,两段相切于B点,一质量(zhìliàng)为
m=1 kg 的物块(可视为质点),静止于A点,AB距离为x=2
m。已知物块与AB段和BC段的动摩擦因数均为μ=0.5,g取
第十四页,共37页。
[常考点(kǎo diǎn)]“板块”模型
1.分析“板块”模型时要抓住一个转折(zhuǎnzhé)和两个关联
第十五页,共37页。
2.两种类型(lèixíng)
类型图示
规律分析
木板B带动物块A,物块恰好不从木板上掉 下的临界条件是物块恰好滑到木板左端时 二者速度相等,则位移关系为xB=xA+L
图4
第十七页,共37页。
(1)滑块滑动(huádòng)到A点时的速度大小; (2)滑块滑动(huádòng)到长木板上时,滑块和长木板的加速度大小分别为多少? (3)通过计算说明滑块能否从长木板的右端滑出。 解析 (1)设滑块在高水平面上的加速度为a, 根据牛顿第二定律有F=ma 根据运动学公式有v2=2aL0 代入数据解得v=6 m/s。 (2)设滑块滑动(huádòng)到长木板后,滑块的加速度为a1,长木板的加速度为a2, 根据牛顿第二定律,对滑块有μ1mg=ma1 代入数据解得a1=5 m/s2 对长木板有μ1mg-μ2(m+M)g=Ma2,代入数据解得a2=0.4 m/s2。
速度满足 v≥ 2μgL。
答案
(1)先匀加速,后匀速
v2 (2)2μg
v2 μg
(3)Lv+2μvg
(4)v≥ 2μgL
第四页,共37页。

传送带模型”和“板—块”模型

传送带模型”和“板—块”模型

传送带模型1.水平传送带模型(1)(2)(1)(2)(1)(2)返回时速度为2.(1)(2)(1)(2)(3)解传送带问题的思维模板1.无初速度的滑块在水平传送带上的运动情况分析3.无初速度的滑块在倾斜传送带上的运动情况分析4.有初速度的滑块在倾斜传送带上的运动情况分析“传送带”模型和“板—块”模型是近几年高考命题的热点,如2015年全国卷ⅠT25、全国卷ⅡT25、2017年全国卷ⅢT25,都是以“板—块”模型为素材的问题.两类模型涉及弹力及摩擦力的分析判断与计算、牛顿运动定律、匀变速直线运动规律、动量、能量等主干知识,具有条件隐蔽、过程复杂等特点,既能训练学生的科学思维,又能联系科学、生产和生活实际,是很好的能力考查类题目的命题背景.模型一:“传送带”模型[示例1] 某工厂为实现自动传送工件设计了如图所示的传送装置,它由一个水平传送带AB 和倾斜传送带CD 组成,水平传送带长度L AB =4 m ,倾斜传送带长度L CD =4.45 m ,倾角为θ=37°,AB 和CD 通过一段极短的光滑圆弧板过渡,AB 传送带以v 1=5 m /s 的恒定速率顺时针运转,CD 传送带静止.已知工件与传送带间的动摩擦因数均为μ=0.5,重力加速度g 取10 m/s 2.现将一个工件(可看作质点)无初速度地放在水平传送带最左端A 点处,求:(1)工件被第一次传送到CD 传送带沿传送带上升的最大高度和所用的总时间;(2)要使工件恰好被传送到CD 传送带最上端,CD 传送带沿顺时针方向运转的速度v 2的大小(v 2<v 1). [思路探究] (1)工件在水平传送带上运动时受到哪几个力作用?工件在水平传送带上做什么运动? (2)工件到达B 点的速度是多大?(3)工件在倾斜传送带上运动时受到哪几个力作用?(4)工件在倾斜传送带上做什么运动?如何理解第(2)问中“恰好”? [解析] (1)工件刚放在传送带AB 上时,在摩擦力作用下做匀加速运动,设其加速度大小为a 1,速度增加到v 1时所用时间为t 1,位移大小为x 1,受力分析如图甲所示,则F N1=mgF f1=μF N1=ma 1 联立解得a 1=5 m/s 2.由运动学公式有t 1=v 1a 1=55 s =1 sx 1=12a 1t 21=12×5×12 m =2.5 m由于x 1<L AB ,工件随后在传送带AB 上做匀速直线运动到B 端,则匀速运动的时间为t 2=L AB -x 1v 1=0.3 s工件滑上CD 传送带后在重力和滑动摩擦力作用下做匀减速运动,设其加速度大小为a 2,速度减小到零时所用时间为t 3,位移大小为x 2,受力分析如图乙所示,则F N2=mg cos θmg sin θ+μF N2=ma 2 由运动学公式有x 2=0-v 21-2a 2联立解得a 2=10 m/s 2,x 2=1.25 m 工件沿CD 传送带上升的最大高度为 h =x 2sin θ=1.25×0.6 m =0.75 m 沿CD 上升的时间为t 3=0-v 1-a 2=0.5 s故总时间为t=t1+t2+t3=1.8 s.(2)CD传送带以速度v2向上传送时,当工件的速度大于v2时,滑动摩擦力沿传送带向下,加速度大小仍为a2;当工件的速度小于v2时,滑动摩擦力沿传送带向上,受力分析图如图丙所示,设其加速度大小为a3,两个过程的位移大小分别为x3和x4,由运动学公式和牛顿运动定律可得-2a2x3=v22-v21mg sin θ-μF N2=ma3-2a3x4=0-v22L CD=x3+x4解得v2=4 m/s.[答案](1)0.75 m 1.8 s(2)4 m/s[规律总结]传送带问题的“三点说明”(1)传送带问题的实质是相对运动问题,物体与传送带间的相对运动方向决定摩擦力的方向.因此,明确物体与传送带间的相对运动方向是解决该问题的关键.(2)传送带问题还常常涉及临界问题,即物体与传送带速度相同,这时会出现摩擦力改变的临界状态,具体如何改变根据具体情况判断.(3)分析求解此类问题的思路[应用提升练]1.如图所示,水平传送带静止不动,质量为1 kg的小物体以4 m/s的水平初速度滑上传送带的左端,最终以2 m/s的速度从传送带的右端滑下.如果令传送带逆时针方向匀速转动,小物体仍然以4 m/s的水平初速度滑上传送带的左端,则小物体离开传送带时()A.速度小于2 m/sB.速度等于2 m/sC.速度大于2 m/sD.不能到达传送带右端解析:当传送带不动时,物体受到向左的滑动摩擦力,在传送带上向右做匀减速运动,最终离开传送带.当传送带逆时针转动时,物体仍然相对传送带向右运动,所以受到的摩擦力仍然向左,与传送带静止时比较,受力情况完全相同,运动情况一致,最后从传送带离开时速度仍然是2 m/s.本题正确答案为B.答案:B2.如图所示为粮袋的传送装置,已知A、B间长度为L,传送带与水平方向的夹角为θ,工作时其运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A点将粮袋放到运行中的传送带上.关于粮袋从A到B的运动,以下说法正确的是(设最大静摩擦力等于滑动摩擦力)()A.粮袋到达B点的速度可能大于v,可能小于v,还可能等于vB.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将一定以速度v做匀速运动C.若μ≥tan θ,则粮袋从A到B一定一直做加速运动D.不论μ大小如何,粮袋从A到B一直做匀加速运动,且a>g sin θ解析:开始时,粮袋相对传送带向上运动,受重力、支持力和沿传送带向下的摩擦力,由牛顿第二定律可知,mg sin θ+μF N=ma,F N=mg cos θ,解得a=g sin θ+μg cos θ,故B项错误;粮袋加速到与传送带相对静止时,若mg sin θ>μmg cos θ,即当μ<tan θ时粮袋将继续做匀加速运动,若mg sin θ≤μmg cos θ,即当μ≥tan θ时,粮袋从A到B可能一直做匀加速运动,也可能先做匀加速运动,当速度与传送带相同后做匀速运动,C、D项错误,A项正确.答案:A模型二:“板—块”模型[示例2](2017·高考全国卷Ⅲ)如图,两个滑块A和B的质量分别为m A=1 kg和m B=5kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.[思路探究](1)A、B在木板上滑动时,木板所受的力有哪些?木板做什么运动?(2)A、B哪一个先与木板共速?共速后各自做什么运动?[解析](1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B所受的摩擦力大小分别为f1、f2,木板所受地面的摩擦力大小为f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1.在物块B与木板达到共同速度前有f1=μ1m A g①f2=μ1m B g②f3=μ2(m+m A+m B)g③由牛顿第二定律得f1=m A a A④f2=m B a B⑤f2-f1-f3=ma1⑥设在t1时刻,B与木板达到共同速度,其大小为v1.由运动学公式有v1=v0-a B t1⑦v1=a1t1⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B =v 0t 1-12a B t 21⑩设在B 与木板达到共同速度v 1后,木板的加速度大小为a 2.对于B 与木板组成的体系,由牛顿第二定律有f 1+f 3=(m B +m )a 2⑪由①②④⑤式知,a A =a B ;再由⑦⑧式知,B 与木板达到共同速度时,A 的速度大小也为v 1,但运动方向与木板相反.由题意知,A 和B 相遇时,A 与木板的速度相同,设其大小为v 2.设A 的速度大小从v 1变到v 2所用的时间为t 2,则由运动学公式,对木板有v 2=v 1-a 2t 2⑫ 对A 有v 2=-v 1+a A t 2⑬在t 2时间间隔内,B (以及木板)相对地面移动的距离为s 1=v 1t 2-12a 2t 22⑭在(t 1+t 2)时间间隔内,A 相对地面移动的距离为 s A =v 0(t 1+t 2)-12a A (t 1+t 2)2⑮A 和B 相遇时,A 与木板的速度也恰好相同. 因此A 和B 开始运动时,两者之间的距离为 s 0=s A +s 1+s B ⑯联立以上各式,并代入数据得s 0=1.9 m ⑰ (也可用如图所示的速度—时间图线求解)[答案] (1)1 m/s (2)1.9 m[规律总结]分析“板—块”模型的四点注意(1)从速度、位移、时间等角度,寻找滑块与滑板之间的联系. (2)滑块与滑板共速是摩擦力发生突变的临界条件. (3)滑块与滑板存在相对滑动的临界条件①运动学条件:若两物体速度不等,则会发生相对滑动.②力学条件:一般情况下,假设两物体间无相对滑动,先用整体法算出一起运动的加速度,再用隔离法算出滑块“所需要”的摩擦力F f ,比较F f 与最大静摩擦力F fm 的关系,若F f >F fm ,则发生相对滑动.(4)滑块不从滑板上掉下来的临界条件是滑块到达滑板末端时,两者共速.[应用提升练]3.(多选)(2018·湖南邵阳高三质检)如图甲所示,一质量为m ′的长木板静置于光滑水平面上,其上放置一质量为m 的小滑块.木板受到水平拉力F 作用时,用传感器测出长木板的加速度a 与水平拉力F 的关系如图乙所示,重力加速度g 取10 m/s 2,下列说法正确的是( )A .小滑块的质量m =2 kgB .小滑块与长木板之间的动摩擦因数为0.1C .当水平拉力F =7 N 时,长木板的加速度大小为3 m/s 2D .当水平拉力F 增大时,小滑块的加速度一定增大解析:对整体分析,由牛顿第二定律有F =(m ′+m )a ,当F =6 N 时,此时两物体具有最大共同加速度,代入数据解得m ′+m =3 kg ,当F 大于6 N 时,根据牛顿第二定律得a =F -μmg m ′=F m ′-μmg m ′,知图线的斜率k =1m ′=1,解得m ′=1 kg ,小滑块的质量为m =2 kg ,故A 正确;根据图象可知,μmg =4 N ,代入数据解得μ=0.2,所以a 与F 的数值关系为a =F -4,当F =7 N 时,长木板的加速度为a =3 m/s 2,故B 错误,C 正确;当拉力增大到一定的值后,两物体发生滑动时,小滑块的加速度为a ′=μmgm =2 m/s 2,即使拉力再增大,小滑块的加速度也不变,故D 错误.答案:AC4.如图所示,有两个高低不同的水平面,高水平面光滑,低水平面粗糙.一质量为5 kg 、长度为2 m 的长木板靠在低水平面边缘,其表面恰好与高水平面平齐,长木板与低水平面间的动摩擦因数为0.05,一质量为1 kg 可视为质点的滑块静止放置在高水平面上,距边缘A 点3 m ,现用大小为6 N 、水平向右的外力拉滑块,当滑块运动到A 点时撤去外力,滑块以此时的速度滑上长木板.滑块与长木板间的动摩擦因数为0.5,g 取10 m/s 2.求:(1)滑块滑动到A 点时的速度大小;(2)滑块滑动到长木板上时,滑块和长木板的加速度大小分别为多少? (3)通过计算说明滑块能否从长木板的右端滑出. 解析:(1)根据牛顿第二定律有F =ma 根据运动学公式有v 2=2aL 0 联立方程代入数据解得v =6 m/s其中m 、F 分别为滑块的质量和受到的拉力,a 是滑块的加速度,v 即是滑块滑到A 点时的速度大小,L 0是滑块在高水平面上运动的位移.(2)根据牛顿第二定律, 对滑块有μ1mg =ma 1 代入数据解得a 1=5 m/s 2对长木板有μ1mg -μ2(m +M )g =Ma 2 代入数据解得a 2=0.4 m/s 2.其中M 为长木板的质量,a 1、a 2分别是此过程中滑块和长木板的加速度,μ1、μ2分别是滑块与长木板间和长木板与低水平面间的动摩擦因数.(3)设滑块滑不出长木板,从滑块滑上长木板到两者相对静止所用时间为t ,则 v -a 1t =a 2t代入数据解得t =109s则此过程中滑块的位移为x 1=v t -12a 1t 2长木板的位移为x 2=12a 2t 2x 1-x 2=103m>L式中L =2 m 为长木板的长度,所以滑块能滑出长木板右端. 答案:(1)6 m /s (2)5 m/s 2 0.4 m/s 2 (3)见解析。

新教材高中物理第4章运动和力的关系素养提升课6传送带模型和板_块模型pptx课件新人教版必修第一册

新教材高中物理第4章运动和力的关系素养提升课6传送带模型和板_块模型pptx课件新人教版必修第一册

关系
此时的摩擦力作用情况
滑块与滑板之间发生相对运动时,二者速度不相同,明
确滑块与滑板的速度关系,从而确定滑块与滑板受到的
摩擦力情况,应注意摩擦力发生突变的情况
滑块和滑板向同一方向运动时,它们的相对滑行距离等
于它们的位移之差
位移关系
滑块和滑板向相反方向运动时,它们的相对滑行距离等
于它们的位移之和
【典例3】
(2)经多长时间两者达到相同的速度;
(3)从小物块放在长木板上开始,经过t=1.5 s小物块的位移大小为多少。
[思路点拨] 解此题注意以下三点:
(1)“长木板足够长”说明小物块不会滑出木板。
(2)判断“两者达到相同的速度”后小物块的运动情况。
(3)明确“从小物块放在长木板上开始,经过t=1.5 s”内小物块的运
速度为零的匀加速[a=g(sin θ+μcos θ)]直线运
μ<tan θ 动,速度与传送带速度相同后滑动摩擦力反向,
物体相对传送带下滑,继续做向下的匀加速[a
=g(sin θ-μcos θ)]直线运动
命题角度1 水平传送带模型
【典例1】
如图所示,水平传送带以不变的速度v=10 m/s向右运
动,将工件(可视为质点)轻轻放在传送带的左端,由于摩擦力的作





= ,传送带运动的位移x2=vt= ,径迹长L=x2-x1= ,由



此可知选项D正确,B、C错误。]
2.(多选)如图甲所示,足够长的传送带与水平面夹角为θ,在传送
带上某位置轻轻放置一小木块,小木块与传送带间动摩擦因数为μ,
小木块速度随时间变化关系如图乙所示,v0、t0已知,则(重力加速
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传送带与板块模型
预习检测
• 1、我们目前学过的摩擦力分为哪几种?
滑动摩擦力、静摩擦力
• 2、摩擦力产生的条件是什么?
有相对运动或相对运动趋势
• 3、两物体有接触有挤压相对静止后它们直接有摩 擦力吗?
可能有也可能没有,具体情况具 体分析
导入
新授内容
• 例1.如图所示,一水平传送带长为20m,以2m/s的速 度做匀速运动。已知某物体与传送带间的动摩擦因
a=1m/s2 t=1s
以10m/s的速度顺时针转动,在传送带下端轻轻地放一
个质量m=0.5㎏的物体,它与传送带间的动摩擦因数
μ=0.9,已知传送带从A→B的长度L=50m,则物体从A
到B需要的时间为多少?
9.16s
1、加速度大小是多少? 2、相对静止后 f 消失了吗?为什么?
传送带问题的分析思路:
初始条件 相对运动
判断滑动摩擦力 的大小和方向
(a)滑块放到滑板上时,滑块和滑板分别怎么运动?加 速度大小分别是多少?
(b)1秒后滑块和滑板的速度及位移分别是多少?
(c) 滑块轻放在滑板上开始,经历多长时间后点累了,稍作休息
大家有疑问的,可以询问和交流
训练检测
• 1.如图所示,长2m,质量为1kg的木板静止在光滑 水平面上,一木块质量也为1kg(可视为质点), 与木板之间的动摩擦因数为0.2。要使木块在木板 上从左端滑向右端而不至滑落,则木块初速度的
数为0.1,现将该物体由静止轻放到传送带的A端。 求物体被送到另一端B点所需的时间。(g取10m/s2)
11s
A
B
v
1、物体放在传送带上后怎样运动?为什么? 2、加速度大小是多少? 3、物体是否会一直匀加速?为什么?如果不 会那之后运动状态是怎样的?
【典例2】如图所示,传送带与地面成夹角θ=37°,
最大值为( D )
A.1m/s
B.2 m/s
C.3 m/s
D.4 m/s
• 2.质量为1kg的木板B静止在水平面上,可视为质 点的物块A从木板的左侧沿木板表面水平冲上木板, 如图甲所示。A和B经过1s达到同一速度,后共同减 速直至静止,其vt图象如图乙所示,g=10m/s2,求: (1)A与B间的动摩擦因数μ1,B与水平面间的动摩擦 因数μ2; (2)A的质量m。
由物体速度变化再 分析相对运动来判 断以后的受力及运 动状态的改变
分析出物体受的合 外力和加速度大小 和方向
例2.如图所示,一质量为M=4kg的滑板以12m/s的速度 在光滑水平面上向右做匀速直线运动(滑板足够长), 某一时刻,将质量为m=2kg可视为质点的滑块轻轻放在 滑板的最右端,已知滑块和滑板之间的动摩擦因数为 μ=0.2问:
μ1=0.2;μ2=0.1 m=6kg
3.右图为一水平传送带装置示意图,绷紧的传送带A、 B始终保持v=1m/s的恒定速率运行;一质量为m=4kg的 行李无初速地放在A处,传送带对行李的滑动摩擦力使 行李开始做匀加速直线运动,随后行李又以与传送带 相等的速率做匀速直线运动.设行李与传送带间的动摩 擦因数μ=0.1,AB间的距离l=2m,g取10m/s2. (1)求行李刚开始运动时所受的滑动摩擦力大小与加 速度大小; (2)求行李做匀加速直线运动的时间;
相关文档
最新文档