黑龙江省实验中学2020-2021学年高二数学上学期期中试题 理(扫描版)

合集下载

2020-2021学年山东省实验中学高二(上)期中数学试卷 (解析版)

2020-2021学年山东省实验中学高二(上)期中数学试卷 (解析版)

2020-2021学年山东省实验中学高二(上)期中数学试卷一、选择题(共8小题).1.直线3x+2y﹣1=0的一个方向向量是()A.(2,﹣3)B.(2,3)C.(﹣3,2)D.(3,2)2.椭圆+=1的离心率是()A.B.C.D.3.两条平行直线2x﹣y+3=0和ax﹣3y+4=0间的距离为d,则a,d分别为()A.a=6,B.a=﹣6=﹣6,C.a=﹣6,D.a=6,4.如图,四棱锥P﹣OABC的底面是矩形,设,,,E是PC的中点,则()A.B.C.D.5.空间直角坐标系O﹣xyz中,经过点P(x0,y0,z0)且法向量为的平面方程为A(x﹣x0)+B(y﹣y0)+C(z﹣z0)=0,经过点P(x0,y0,z0)且一个方向向量为的直线l的方程为,阅读上面的材料并解决下面问题:现给出平面α的方程为3x﹣5y+z﹣7=0,经过(0,0,0)直线l 的方程为,则直线1与平面α所成角的正弦值为()A.B.C.D.6.已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.47.已知l,m是异面直线,A,B∈l,C,D∈m,AC⊥m,BD⊥m,AB=2,CD=1,则异面直线l,m所成的角等于()A.30°B.45°C.60°D.90°8.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P 在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二.多选题(共4小题).9.过点P(2,3),并且在两轴上的截距相等的直线方程为()A.x+y﹣5=0B.2x+y﹣4=0C.3x﹣2y=0D.4x﹣2y+5=0 10.已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m>n>0,则C是椭圆,其焦点在x轴上C.若m=n>0,则C是圆,其半径为D.若m=0,n>0,则C是两条直线11.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0)若圆C 上存在点P,使得∠APB=90°,则m的可能取值为()A.7B.6C.5D.812.已知F1,F2是椭圆的左、右焦点,动点在椭圆上,∠F1PF2的平分线与x轴交于点M(m,0),则m的可能取值为()A.1B.2C.0D.﹣1三、填空题(共4小题,每小题5分,共20分)13.已知平面α的一个法向量,平面β的一个法向量,若α⊥β,则y﹣x=.14.在棱长为1的正方体ABCD﹣A1B1C1D1中,E是线段DD1的中点,F是线段BB1的中点,则直线FC1到平面AB1E的距离为.15.已知F1,F2是椭圆的左、右焦点,弦AB过点F1,若△ABF2的内切圆的周长为2π,A,B两点的坐标是(x1,y1)(x2,y2),则|y1﹣y2|=.16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:Q (0,﹣3)是圆Q的圆心,圆Q过坐标原点O;点L、S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切.已知直线l过点O.(1)若直线l与圆L、圆S均相切,则l截圆Q所得弦长为;(2)若直线l截圆L、圆S、圆Q所得弦长均等于d,则d=.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知平行四边形ABCD的三个顶点的坐标为A(﹣1,4),B(﹣2,﹣1),C(2,3).(Ⅰ)在△ABC中,求边AC中线所在直线方程;(Ⅱ)求平行四边形ABCD的顶点D的坐标及边BC的长度;(Ⅲ)求△ABC的面积.18.(12分)已知△ABC的边AB边所在直线的方程为x﹣3y﹣6=0,M(2,0)满足,点T(﹣1,1)在AC边所在直线上且满足.(1)求AC边所在直线的方程;(2)求△ABC外接圆的方程;(3)若动圆P过点N(﹣2,0),且与△ABC的外接圆外切,求动圆P的圆心的轨迹方程.19.(12分)在如图所示的试验装置中,两个正方形框架ABCD,ABEF的边长都是1,且它们所在的平面互相垂直,活动弹子M,N分别在正方形对角线AC和BF上移动,且CM和BN的长度保持相等,记CM=BN=a(0<a<).(Ⅰ)求MN的长;(Ⅱ)a为何值时,MN的长最小并求出最小值;(Ⅲ)当MN的长最小时,求平面MNA与平面MNB夹角的余弦值.20.(12分)椭圆C1:的长轴长等于圆C2:x2+y2=4的直径,且C1的离心率等于,已知直线l:x﹣y﹣1=0交C1于A、B两点.(Ⅰ)求C1的标准方程;(Ⅱ)求弦AB的长.21.(12分)如图所示,在三棱柱ABC﹣A1B1C1中,四边形ABB1A1为菱形,∠AA1B1=,平面ABB1A1⊥平面ABC,AB=BC,AC=,E为AC的中点.(Ⅰ)求证:B1C1⊥平面ABB1A1;(Ⅱ)求平面EB1C1与平面BB1C1C所成角的大小.22.(12分)已知点A(1,0),点P是圆C:(x+1)2+y2=8上的任意一点,线段PA的垂直平分线与直线CP交于点E.(Ⅰ)求点E的轨迹方程;(Ⅱ)过点A的直线l与轨迹E交于不同的两点M,N,则△CMN的面积是否存在最大值?若存在,求出这个最大值及直线l的方程;若不存在,请说明理由.参考答案一、单选题(共8小题).1.直线3x+2y﹣1=0的一个方向向量是()A.(2,﹣3)B.(2,3)C.(﹣3,2)D.(3,2)解:依题意,(3,2)为直线的一个法向量,∴则直线的一个方向向量为(2,﹣3),故选:A.2.椭圆+=1的离心率是()A.B.C.D.解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.3.两条平行直线2x﹣y+3=0和ax﹣3y+4=0间的距离为d,则a,d分别为()A.a=6,B.a=﹣6=﹣6,C.a=﹣6,D.a=6,解:根据两条平行直线2x﹣y+3=0和ax﹣3y+4=0,可得=≠,可得a=6,可得两条平行直线即6x﹣3y+9=0和6x﹣3y+4=0,故它们间的距离为d==,故选:D.4.如图,四棱锥P﹣OABC的底面是矩形,设,,,E是PC的中点,则()A.B.C.D.解:∵四棱锥P﹣OABC的底面是矩形,,,,E是PC的中点,∴=+=﹣+=﹣+(+)=﹣+(﹣+)=﹣﹣+,故选:B.5.空间直角坐标系O﹣xyz中,经过点P(x0,y0,z0)且法向量为的平面方程为A(x﹣x0)+B(y﹣y0)+C(z﹣z0)=0,经过点P(x0,y0,z0)且一个方向向量为的直线l的方程为,阅读上面的材料并解决下面问题:现给出平面α的方程为3x﹣5y+z﹣7=0,经过(0,0,0)直线l 的方程为,则直线1与平面α所成角的正弦值为()A.B.C.D.解:∵平面α的方程为3x﹣5y+z﹣7=0,∴平面α的一个法向量为=(3,﹣5,1),∵经过(0,0,0)直线l的方程为,∴直线l的一个方向向量为=(3,2,﹣1),设直线1与平面α所成角为θ,则sinθ=|cos<,>|=||=||=,∴直线1与平面α所成角的正弦值为.故选:B.6.已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.4解:由圆的方程可得圆心坐标C(3,0),半径r=3;设圆心到直线的距离为d,则过D(1,2)的直线与圆的相交弦长|AB|=2,当d最大时弦长|AB|最小,当直线与CD所在的直线垂直时d最大,这时d=|CD|==2,所以最小的弦长|AB|=2=2,故选:B.7.已知l,m是异面直线,A,B∈l,C,D∈m,AC⊥m,BD⊥m,AB=2,CD=1,则异面直线l,m所成的角等于()A.30°B.45°C.60°D.90°解:由AC⊥m,BD⊥m,可得AC⊥CD,BD⊥CD,故可得=0,=0,∴=()•=+||2+=0+12+0=1,∴cos<,>==,∵与夹角的取值范围为[0,π],故向量的夹角为60°,∴异面直线l,m所成的角等于60°.故选:C.8.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P 在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.解:由题意可知:A(﹣a,0),F1(﹣c,0),F2(c,0),直线AP的方程为:y=(x+a),由∠F1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),代入直线AP:c=(2c+a),整理得:a=4c,∴题意的离心率e==.故选:D.二.多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.)9.过点P(2,3),并且在两轴上的截距相等的直线方程为()A.x+y﹣5=0B.2x+y﹣4=0C.3x﹣2y=0D.4x﹣2y+5=0解:当直线经过原点时,直线的斜率为k=,所以直线的方程为y=x,即3x﹣2y=0;当直线不过原点时,设直线的方程为x+y=a,代入点P(2,3)可得a=5,所以所求直线方程为x+y=5,即x+y﹣5=0.综上可得,所求直线方程为:x+y﹣5=0或3x﹣2y=0.故选:AC.10.已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m>n>0,则C是椭圆,其焦点在x轴上C.若m=n>0,则C是圆,其半径为D.若m=0,n>0,则C是两条直线解:曲线C:mx2+ny2=1.若m>n>0,方程化为,得>0,则C是椭圆,其焦点在y轴上,故A 正确;B错误;若m=n>0,方程化为,则C是圆,其半径为,故C错误;若m=0,n>0,方程化为,即y=,则C是两条直线,故D正确.故选:AD.11.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0)若圆C 上存在点P,使得∠APB=90°,则m的可能取值为()A.7B.6C.5D.8解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6,最小值为4,再由∠APB=90°,可得以AB为直径的圆和圆C有交点,得PO=|AB|=m,即4≤m≤6,结合选项可得,m的值可能取6和5.故选:BC.12.已知F1,F2是椭圆的左、右焦点,动点在椭圆上,∠F1PF2的平分线与x轴交于点M(m,0),则m的可能取值为()A.1B.2C.0D.﹣1解:由椭圆方程可得F1(,0),F2(),由y1>,可得<x1<,则直线PF1的方程为,即,直线PF2的方程为,即.∵M(m,0)在∠F1PF2的平分线,∴,①∵=,=,﹣<m<,∴①式转化为,即m=,又<x1<,∴<m<.结合选项可得m的可能取值为1,0,﹣1,故选:ACD.三、填空题(本题共4小题,每小题5分,共20分)13.已知平面α的一个法向量,平面β的一个法向量,若α⊥β,则y﹣x=1.解:∵平面α的一个法向量,平面β的一个法向量,α⊥β,∴=﹣x+y﹣1=0,解得y﹣x=1.故答案为:1.14.在棱长为1的正方体ABCD﹣A1B1C1D1中,E是线段DD1的中点,F是线段BB1的中点,则直线FC1到平面AB1E的距离为.解:如图,取C1C的中点G,连接BG,可得BF∥C1G,BF=C1G,则四边形BGC1F为平行四边形,∴C1F∥BG.连接EG,得EG∥CD∥AB,EG=CD=AB,则四边形ABGE为平行四边形,得BG∥AE,则FC1∥AE,∵AE⊂平面AB1E,FC1⊄平面AB1E,∴FC1∥平面AB1E,∴直线FC1到平面AB1E的距离等于F到平面AB1E的距离,∵正方体ABCD﹣A1B1C1D1中的棱长为1,∴,AE=,,则cos∠EAB1=,∴sin,则=.设F到平面AB1E的距离为h,由,得,即h=.∴直线FC1到平面AB1E的距离为.故答案为:.15.已知F1,F2是椭圆的左、右焦点,弦AB过点F1,若△ABF2的内切圆的周长为2π,A,B两点的坐标是(x1,y1)(x2,y2),则|y1﹣y2|=.解:由椭圆,得a2=25,b2=16,∴a=5,b=4,c==3,∴椭圆的焦点分别为F1(﹣3,0)、F2(3,0),设△ABF2的内切圆半径为r,∵△ABF2的内切圆周长为2π,∴r=1,根据椭圆的定义,得|AB|+|AF2|+|BF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=20.∴△ABF2的面积S=(|AB|+|AF2|+|BF2|)×r=×20×1=10,又∵△ABF2的面积S=+=×|y1|×|F1F2|+×|y2|×|F1F2|=×(|y1|+|y2|)×|F1F2|=3|y2﹣y1|(A、B在x轴的两侧),∴3|y1﹣y2|=10,解得|y1﹣y2|=.故答案为:.16.2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:Q (0,﹣3)是圆Q的圆心,圆Q过坐标原点O;点L、S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切.已知直线l过点O.(1)若直线l与圆L、圆S均相切,则l截圆Q所得弦长为3;(2)若直线l截圆L、圆S、圆Q所得弦长均等于d,则d=.解:(1)根据条件得到两圆的圆心坐标分别为(﹣4,0),(4,0),设公切线方程为y=kx+m(k≠0)且k存在,则,解得k=±,m=0,故公切线方程为y=±x,则Q到直线l的距离d=,故l截圆Q的弦长=2=3;(2)设方程为y=kx+m(k≠0)且k存在,则三个圆心到该直线的距离分别为:d1=,d2=,d3=,则d2=4(4﹣d12)=4(4﹣d22)=4(9﹣d32),即有()2=()2,①4﹣()2=9﹣()2,②解①得m=0,代入②得k2=,则d2=4(4﹣)=,即d=,故答案为:3;.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知平行四边形ABCD的三个顶点的坐标为A(﹣1,4),B(﹣2,﹣1),C(2,3).(Ⅰ)在△ABC中,求边AC中线所在直线方程;(Ⅱ)求平行四边形ABCD的顶点D的坐标及边BC的长度;(Ⅲ)求△ABC的面积.解:(1)设AC边的中点为M,则M(,),∴直线BM斜率k==,∴直线BM的方程为y+1=(x+2),化为一般式可得9x﹣5y+13=0,∴AC边中线所在直线的方程为:9x﹣5y+13=0(2)设点D坐标为(x,y),由已知得M为线段BD中点,∴有,解得,∴D(3,8),∵B(﹣2,﹣1),C(2,3)∴;(3)由B(﹣2,﹣1),C(2,3)可得直线BC的方程为x﹣y+1=0,∴点A到直线BC的距离d==2,∴△ABC的面积S=×4×2=8.18.(12分)已知△ABC的边AB边所在直线的方程为x﹣3y﹣6=0,M(2,0)满足,点T(﹣1,1)在AC边所在直线上且满足.(1)求AC边所在直线的方程;(2)求△ABC外接圆的方程;(3)若动圆P过点N(﹣2,0),且与△ABC的外接圆外切,求动圆P的圆心的轨迹方程.解:(1)∵∴AT⊥AB,又T在AC上∴AC⊥AB,△ABC为Rt△ABC,又AB边所在直线的方程为x﹣3y﹣6=0,所以直线AC的斜率为﹣3.又因为点T(﹣1,1)在直线AC上,所以AC边所在直线的方程为y﹣1=﹣3(x+1).即3x+y+2=0.(2)AC与AB的交点为A,所以由解得点A的坐标为(0,﹣2),∵∴M(2,0)为Rt△ABC的外接圆的圆心又r=.从△ABC外接圆的方程为:(x﹣2)2+y2=8.(3)因为动圆P过点N,所以|PN|是该圆的半径,又因为动圆P与圆M外切,所以,即.故点P的轨迹是以M,N为焦点,实轴长为的双曲线的左支.因为实半轴长,半焦距c=2.所以虚半轴长.从而动圆P的圆心的轨迹方程为.19.(12分)在如图所示的试验装置中,两个正方形框架ABCD,ABEF的边长都是1,且它们所在的平面互相垂直,活动弹子M,N分别在正方形对角线AC和BF上移动,且CM和BN的长度保持相等,记CM=BN=a(0<a<).(Ⅰ)求MN的长;(Ⅱ)a为何值时,MN的长最小并求出最小值;(Ⅲ)当MN的长最小时,求平面MNA与平面MNB夹角的余弦值.解:如图建立空间直角坐标系,A(1,0,0),C(0,0,1),F(1,1,0),E(0,1,0),∵CM=BN=a,∴M(,0,1﹣),N(,,0).(Ⅰ)=;(Ⅱ)=,当a=时,|MN|最小,最小值为;(Ⅲ)由(Ⅱ)可知,当M,N为中点时,MN最短,则M(,0,),N(,,0),取MN的中点G,连接AG,BG,则G(,,),∵AM=AN,BM=BN,∴AG⊥MN,BG⊥MN,∴∠AGB是平面MNA与平面MNB的夹角或其补角.∵,,∴cos<>==.∴平面MNA与平面MNB夹角的余弦值是.20.(12分)椭圆C1:的长轴长等于圆C2:x2+y2=4的直径,且C1的离心率等于,已知直线l:x﹣y﹣1=0交C1于A、B两点.(Ⅰ)求C1的标准方程;(Ⅱ)求弦AB的长.解:(Ⅰ)由题意可得2a=4,∴a=2,∵,∴c=1,∴b=,∴椭圆C1的标准方程为:.(Ⅱ)联立直线l与椭圆方程,消去y得:7x2﹣8x﹣8=0,设A(x1,y1),B(x2,y2),则,,∴|AB|===.21.(12分)如图所示,在三棱柱ABC﹣A1B1C1中,四边形ABB1A1为菱形,∠AA1B1=,平面ABB1A1⊥平面ABC,AB=BC,AC=,E为AC的中点.(Ⅰ)求证:B1C1⊥平面ABB1A1;(Ⅱ)求平面EB1C1与平面BB1C1C所成角的大小.【解答】(Ⅰ)证明:∵四边形ABB1A1为菱形,AB=BC,AC=,∴AC2=AB2+BC2,得AB⊥BC,又平面ABB1A1⊥平面ABC,平面ABB1A1∩平面ABC=AB,∴BC⊥平面ABB1A1,又B1C1∥BC,∴B1C1⊥平面ABB1A1;(Ⅱ)取A1B1的中点O,A1C1的中点N,连接OA,ON,∵B1C1⊥平面ABB1A1,∴ON⊥平面ABB1A1,得ON⊥OA1,ON⊥OA,又四边形ABB1A1为菱形,,O是A1B1的中点,∴OA⊥A1B1,故OA1,ON,OA两两互相垂直.以O为坐标原点,分别以OA1、ON、OA所在直线为x、y、z轴建立空间直角坐标系,∴B1(﹣1,0,0),C1(﹣1,2,0),E1(﹣1,1,),B(﹣2,0,),由图可知,平面EB1C1的一个法向量为,设平面BB1C1C的一个法向量为,则,取z=1,得.设平面EB1C1与平面BB1C1C所成角的大小为θ,则cosθ=|cos<>|=||=,又∵θ∈(0,],∴,故平面EB1C1与平面BB1C1C所成角的大小为.22.(12分)已知点A(1,0),点P是圆C:(x+1)2+y2=8上的任意一点,线段PA的垂直平分线与直线CP交于点E.(Ⅰ)求点E的轨迹方程;(Ⅱ)过点A的直线l与轨迹E交于不同的两点M,N,则△CMN的面积是否存在最大值?若存在,求出这个最大值及直线l的方程;若不存在,请说明理由.解:(Ⅰ)由题意可知:|EP|=|EA|,|CE|+|EP|=2,∴|CE|+|EA|=2>|CA|=2,∴点E的轨迹是以C,A为焦点的椭圆,且2a=2,c=1,∴其轨迹方程为.(Ⅱ)设M(x1,y1),N(x2,y2),不妨设y1>0,y2<0,由题意可知,直线l的斜率不为零,可设直线l的方程为x=my+1,联立方程,消去x得:(m2+2)y2+2my﹣1=0,则,,∴=,∴===,当且仅当即m=0时,△CMN的面积取得最大值,此时直线l的方程为x=1.。

2020-2021学年黑龙江省大庆实验中学高二上学期10月月考理科综合化学试题及答案

2020-2021学年黑龙江省大庆实验中学高二上学期10月月考理科综合化学试题及答案

2020-2021学年黑龙江省大庆实验中学高二上学期10月月考理科综合化学试题★祝考试顺利★(含答案)满分:100分 时间:90分钟一.单选题 (每题只有一个选项是正确的,1-15题每题2分,16-20题每题3分,共45分)1.下列能量的转化过程中,由化学能转化为电能的是( )2.化学反应速率的决定因素是( )A .反应物的浓度B .催化剂C .反应物的结构与性质D .反应温度3.在不同情况下测得()()()()A g 3B g 2C g 2D g ++的下列反应速率,其中反应速率最大的是( )A .v (D)=0.5 mol/(L ·s)B .v (C)=0.8 mol/(L ·s)C .v (B)=0.6 mol/(L ·s)D .v (A)= 0.2 mol/(L ·s)4.下列关于化学平衡常数的说法正确的是()A.在任何条件下,同一个反应的化学平衡常数是相同的B.当改变反应物的浓度时,化学平衡常数会发生改变C.化学平衡常数随反应体系压强的变化而变化D.对于一个给定的化学方程式,化学平衡常数的大小只与温度有关,与反应物的浓度无关5.下列有关活化分子和活化能的说法不正确的是()A.发生有效碰撞的分子一定是活化分子B.升高温度,可增加单位体积内活化分子数C.增加气体反应物的浓度,可以提高活化分子百分数D.使用催化剂可降低活化能,提高单位体积内活化分子百分数6.25℃、101 kPa时,1.00gCH4完全燃烧生成稳定的化合物放出55.6 kJ热量,下列热化学方程式正确的是()A.CH4 (g) + 2O2(g) = CO2(g) +2H2O (g) △H= - 889.6 kJ·mol- 1B.116CH4(g)+18O2(g) =116CO2(g)+18H2O(g) △H= -55.6 kJ·mol- 1C.CH4 (g) + 2O2(g) =CO2(g) + 2H2O (1) △H= +889.6 kJ·mol- 1D.CH4 (g) +2O2(g) = CO2(g) + 2H2O (1) △H= -889.6 kJ·mol- 17.金刚石和石墨是碳元素的两种结构不同的单质(同素异形体)。

黑龙江省大庆铁人中学2020-2021学年高二上学期期中考试化学试题 含答案

黑龙江省大庆铁人中学2020-2021学年高二上学期期中考试化学试题 含答案

铁人中学2019级高二上学期期中考试化学试题相对原子质量:O ——16 Cu ——64 Ag ——108试题说明:1、本试题满分100分,答题时间90分钟。

2、请将答案填写在答题卡上,考试结束后只交答题卡。

第Ⅰ卷选择题部分(50分)一、选择题(共20小题,每小题只有一个正确选项,1—10题每小题2分,11—20题每小题3分)1.为防止流感病毒的传播,许多公共场所都注意环境消毒,以下消毒药品属于强电解质的是( )A.84消毒液B.高锰酸钾C.酒精D.醋酸2.最近《科学》杂志评出“十大科技突破”,其中“火星上‘找’到水的影子”名列第一。

下列关于水的说法中正确的是()A.加入电解质一定会破坏水的电离平衡,其中酸和碱通常都会抑制水的电离B.水的电离和电解都需要电,常温下都是非自发过程C.水电离出的c(H+)=10-7mol/L的溶液一定呈中性D.水的离子积不仅只适用于纯水,升高温度一定使水的离子积增大3.下列化学用语书写正确的是( )A.水溶液中NH4HSO4的电离方程式:NH4HSO4NH4++H++SO42-B.水溶液中H2CO3的电离方程式:H2CO32H++CO32-C.NaHCO3溶液水解的离子方程式:HCO-3+H2O CO2-3+H3O+D.AlCl3溶液水解的离子方程式:Al3++3H2O Al(OH)3+3H+4.下列说法正确的是()A.若用水润湿过的pH试纸去测pH相等的H2SO4和H3PO4,H3PO4的误差更大B.用10 mL的量筒量取8.58 mL 0.10 mol·L-1的稀盐酸C.准确量取25.00 mLKMnO4溶液,可选用50 mL酸式滴定管D.用广泛pH试纸测得0.10mol/LNH4Cl溶液的pH=5.25.关于如图所示①、②两个装置的叙述,正确的是()A.装置名称:①是原电池,②是电解池B.硫酸浓度变化:①增大,②减小C.电极反应式:①中阳极4OH--4e-2H2O+O2↑,②中正极Zn-2e-Zn2+D.离子移动方向:①中H+向阴极方向移动,②中H+向负极方向移动6.关于如图所示各装置的叙述中,正确的是()④A.装置①是原电池,总反应是:Cu+2Fe3+===Cu2++2Fe2+B.装置②通电一段时间后石墨I电极附近溶液红褐色加深C.若用装置③精炼铜,则d极为粗铜,c极为纯铜,电解质溶液为CuSO4溶液D.装置④中钢闸门应与电源的负极相连被保护,该方法叫做外加电流的阴极保护法7.室温下,有两种溶液:①0.01mol·L-1NH3·H2O溶液、②0.01mol·L-1NH4Cl溶液,下列操作可以使两种溶液中c(NH+4)都增大的是()A.加入少量H2O B.加入少量NaOH固体C.通入少量HCl气体D.升高温度8.已知室温时,0.1mol·L-1某一元酸HA的电离平衡常数约为1×10-7,下列叙述错误的是()A.该溶液的pH=4B.此溶液中,HA约有0.1%发生电离C.加水稀释,HA的电离平衡向右移动,HA的电离平衡常数增大D.由HA电离出的c(H+)约为水电离出的c(H+)的106倍9.合理利用某些盐能水解的性质,能解决许多生产、生活中的问题,下列叙述的事实与盐水解的性质无关的是()A.金属焊接时可用NH4Cl溶液作除锈剂B.配制FeSO4溶液时,加入一定量Fe粉C.长期施用铵态氮肥会使土壤酸化D.向FeCl3溶液中加入CaCO3粉末后有气泡产生10.下列叙述正确的是()A.室温下,pH=2的盐酸与pH=12的氨水等体积混合后pH>7B.pH=4的盐酸溶液,稀释至10倍后pH>5C.100 ℃时,将pH=2的盐酸与pH=12的NaOH溶液等体积混合,溶液显中性D.在100 ℃的温度下,0.001 mol/L的NaOH溶液,pH=1111.常温下,浓度均为0.1 mol·L-1的下列四种盐溶液,其pH测定如下表所示:下列说法正确的是()A.四种溶液中,水的电离程度:①>②>④>③B.Na2CO3和NaHCO3溶液中,粒子种类不相同C.将等浓度的CH3COOH和HClO溶液比较,pH小的是HClOD.Na2CO3和NaHCO3溶液中分别加入NaOH固体,恢复到原温度,c(CO32-)均增大12.N A表示阿伏加德罗常数的值,以下说法正确的是( )A.常温下pH=13的Ba(OH)2溶液中含有Ba2+数目为0.05N AB.0.1L 0.5mol/L CH3COOH溶液中含有的H+数小于0.05N AC.100mL 1.0mol/L NaHCO3溶液中的HCO3-数目为0.1 N AD.用惰性电极电解CuSO4溶液,外电路中通过电子数目为N A时,阳极产生5.6L气体13.常温时,下列各组溶液中的离子一定能够大量共存的是()A.由水电离出的c(H+)=1.0×10-13mol/L的溶液中:Na+、Cl-、NH4+、SO32-B.含有大量的Al3+溶液中:K+、Na+、CO32-、HCO3-C.使甲基橙试液变黄的溶液中:Fe2+、Mg2+、NO3-、Cl-D.c(H+)=1.0×10-13mol/L的溶液中:Na+、S2-、CO32-、SO42-14.下列说法正确的是()(A)(B) (C) (D)A.制备Fe(OH)2并能较长时间观察其颜色B.测定盐酸浓度C.蒸干AlCl3饱和溶液制备AlCl3晶体D.记录滴定终点读数为12.20 mL15.相同温度、相同浓度下的八种溶液,其pH由小到大的顺序如图所示,图中①②③④⑤代表的物质可能分别为()A.NH4Cl(NH4)2SO4CH3COONa NaHCO3NaOHB.(NH4)2SO4NH4Cl CH3COONa NaHCO3NaOHC.(NH4)2SO4NH4Cl NaOH CH3COONa NaHCO3D.CH3COOH NH4Cl(NH4)2SO4NaHCO3NaOH16.下列表述或判断不正确的是()A.根据CH3COO-+H2O CH3COOH+OH-能说明CH3COOH是弱电解质B.根据NH3+H3O +NH4++H2O能说明NH3结合H+的能力比H2O强C.pH相等的①Na2CO3;②NaOH;③CH3COONa三种溶液,物质的量浓度的大小顺序为:③>①>②D.相同条件下等物质的量浓度的①NaCl溶液;②NaOH溶液;③HCl溶液中由水电离出的c(H+):③>①>②17.下列实验能达到预期目的是()编号实验内容实验目的A等体积pH=2的HX和HY两种酸分别与足量的铁反应,排水法收集气体,HX放出的氢气多且反应速率快证明HX酸性比HY强B室温下,用pH试纸分别测定浓度为0.1 mol·L-1NaClO溶液和0.1 mol·L-1NaF溶液的pH比较HClO和HF溶液的酸性C向含有酚酞的Na2CO3溶液中加入少量BaCl2固体,溶液红色变浅证明Na2CO3溶液中存在水解平衡D 向MgCl2溶液加入NaOH溶液除去MgCl2溶液中的Fe3+18.如图是以葡萄糖为燃料的微生物燃料电池结构示意图。

哈尔滨市第九中学2020-2021学年高二上学期期末考试理科数学试题-含答案

哈尔滨市第九中学2020-2021学年高二上学期期末考试理科数学试题-含答案

哈尔滨市第九中学2020--2021学年度.上学期期末学业阶段性评价考试高二学年数学学科(理)试卷(考试时间:120分钟满分:150分共2页第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项符合题目要求)1.过点M(-4,3)和N(-2,1)的直线方程是A.x -y+3=0B.x+y+1=0C.x -y -1=0D.x+y -3=02.双曲线221169y x -=的虚半轴长是 A.3 B.4 C.6 D.83.直线x+y=0被圆22|6240x y x y +-++=截得的弦长等于A.4B.2 .C .D 4.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河."诗中隐含着一个有趣的数学问题--“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221,x y +≤若将军从点A(4,-3)处出发,河岸线所在直线方程为x+y=4,并假定将军只要到达军营所在区域即回到军营,则“将军饮马"的最短总路程为A.8B.7C.6D.55.已知抛物线2:4C y x =的焦点为F,过点F 的直线与抛物线交于A,B 两点,满足|AB|=6,则线段AB 的中点的横坐标为A.2B.4C.5D.66.直线kx -y+2k+1=0与x+2y -4=0的交点在第四象限,则k 的取值范围为A.(-6,-2) 1.(,0)6B - 11.(,)26C -- 11.(,)62D -- 7.设12,F F 分别为双曲线22134x y -=的左,右焦点,点P 为双曲线上的一点.若12120,F PF ︒∠=则点P 到x 轴的距离为.A .B .C .D 8.已知点A(-2,3)在抛物线C 2:2y px =的准线上,过点A 的直线与C 在第一象限相切于点B,记C 的焦点为F,则直线BF 的斜率为1.2A2.3B3.4C4.3D 9.已知点(x,y)满足:221,,0x y x y +=≥,则x+y 的取值范围是.[A B.[-1,1] .C .D10.设双曲线221916x y -=的右顶点为A,右焦点为F,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B,则△AFB 的面积为32.15A 34.15B 17.5C 19.5D 11.已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B,F 为其右焦点,若AF ⊥BF,设∠ABF=α,且[,]64ππα∈则该椭圆的离心率e 的取值范围是.A .1]B .C .D12.如图,,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离等于1.2A B.1.C.D 第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分)13.圆222200x y x y ++--=与圆2225x y +=相交所得的公共弦所在直线方程为___.14.若三个点(-2,1),(-2,3),(2,-1)中恰有两个点在双曲线222:1(0)x C y a a-=>上,则双曲线C 的渐近线方程为___. 15.椭圆221123x y +=的焦点分别是12,F F 点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么1||PF 是2||PF 的___倍.16.过抛物线2:2(0)C y px p =>的焦点F 的直线l 与C 相交于A,B 两点,且A,B 两点在准线上的射影分别为M,N ,,,MFN BFN AFM MFN S S S S λμ∆∆∆==则λμ=___. 三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)在①圆经过C(3,4),②圆心在直线x+y -2=0上,③圆截y 轴所得弦长为8且圆心E 的坐标为整数;这三个条件中任选一个,补充在下面的问题中,进行求解.已知圆E 经过点A(-1,2),B(6,3)且___;(1)求圆E 的方程;(2)求以(2,1)为中点的弦所在的直线方程.18.(本题满分12分)已知抛物线C:22(0)y px p =>,焦点为F,准线为1,抛物线C 上一点M 的横坐标为3,且点M 到焦点的距离为4.(1)求抛物线的方程;(2)设过点P(6,0)的直线'l 与抛物线交于A,B 两点,若以AB 为直径的圆过点F,求直线'l 的方程.19.(本题满分12分)在平面直角坐标系xOy 中,直线l的参数方程为12x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=2acosθ(a>0),且曲线C 与直线l 有且仅有一个公共点.(1)求a;(2)设A,B 为曲线C.上的两点,且,3AOB π∠=求|OA|+|OB|的最大值.20.(本题满分12分)在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos ,sin .x t y t αα=+⎧⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2:4cos .C ρθ=(1)求曲线2C 的直角坐标方程;(2)若点A(1,0),且1C 和2C 的交点分别为点M,N,求11||||AM AN +的取值范围.21.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的焦点为12(F F 且过点1).2 (1)求椭圆C 的方程;(2)设椭圆的上顶点为B,过点(-2,-1)作直线交椭圆于M,N 两点,记直线MB,NB 的斜率分别为,,MB NB k k 试判断MB NB k k +是否为定值?若为定值,求出该定值;若不是定值,说明理由.22.(本题满分12分)已知点F 是椭圆2222:1(0)x y C a b a b+=>>的右焦点,过点F 的直线l 交椭圆于M,N 两点,当直线l 过C 的下顶点时,l当直线l垂直于C的长轴时,△OMN的面积为3 . 2(1)求椭圆C的标准方程;(2)当|MF|=2|FN|时,求直线l的方程;(3)若直线l上存在点P满足|PM|,|PF|,|PN|成等比数列,且点P在椭圆外,证明:点P在定直线上.。

海南中学2020-2021学年高二上学期期中考试 数学试题(含答案)

海南中学2020-2021学年高二上学期期中考试 数学试题(含答案)

海南中学2020-2021学年高二上学期期中考试化学试题(本试卷总分150分,总时量120分钟)一、单项选择题:本题共8小题,每小题5分,共40分. 1. 椭圆22:416C x y +=的焦点坐标为( )A .(±B .(±C .(0,±D .(0,±2. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )A .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==3. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )A .顶点B .焦点C .离心率D .长轴和短轴4. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( ) A .1-或3B .1或3-C .3-D .15. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )A .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<6. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )A B . C .12 D .7. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( ) A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=8. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )A .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( ) A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=10. 已知直线:10l y -+=,则下列结论正确的是( )A .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过2)与直线l 40y --=11. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( ) A .1y x =+B .2y =C .430x y -=D .210x y -+=12. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )A .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当m =时,ABF 为直角三角形D .当1m =时,ABF三、填空题:本题共4小题,每小题5分,共20分.13. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .14. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .15. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .16. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则MN 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程.18. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)点(,)P x y 在轨迹C 上,求2yx -的最小值.19. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小.20. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且45||MN =,求m 的值.21. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD⊥平面ABCD.(2)在下列①②③三个条件中任选一个,补充在下面问题处,若问题中的四棱锥存在,求AB的长度;若问题中的四棱锥不存在,说明理由.①CF与平面PCD所成角的正弦值等于15;②DA与平面PDF所成角的正弦值等于34;③P A与平面PDF所成角的正弦值等于3.问题:若点F是AB的中点,是否存在这样的四棱锥,满足?(注:如果选择多个条件分别解答,按第一个解答计分.)22.(12分)已知椭圆2222:1(0)x yM a ba b+=>>的离心率为223,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+42.(1)求椭圆M的方程;(2)设直线:l x ky m=+与椭圆M交于A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.参考答案一、单项选择题:本题共8小题,每小题5分,共40分. 23. 椭圆22:416C x y +=的焦点坐标为( )CA .(±B .(±C .(0,±D .(0,±24. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )DA .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==25. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )CA .顶点B .焦点C .离心率D .长轴和短轴26. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( )B A .1-或3B .1或3-C .3-D .127. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )DA .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<28. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )AA B . C .12 D .29. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( )A A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=30. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )BA .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 31. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( )ABD A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=32. 已知直线:10l y -+=,则下列结论正确的是( )CDA .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过点2)且与直线l 40y --=33. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( )BC A .1y x =+B .2y =C .430x y -=D .210x y -+=34. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )ACDA .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当2m =时,ABF 为直角三角形D .当1m =时,ABF【解析】设椭圆的左焦点为F ',则||||AF BF '=,所以||||||||AF BF AF AF '+=+为定值6,A 正确;ABF ∆的周长为||||||AB AF BF ++,因为||||AF BF +为定值6,易知||AB 的范围是(0,6),所以ABF ∆的周长的范围是(6,12),B 错误;将y 与椭圆方程联立,可解得(A ,B ,又易知F ,所以2(60AF BF =+=,所以ABF ∆为直角三角形,C 正确;将1y =与椭圆方程联立,解得(A ,B ,所以112ABF S ∆=⨯=D 正确.三、填空题:本题共4小题,每小题5分,共20分.35. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .336. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .21537. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .34(,0,)55--38. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则MN 的取值范围是 .【解析】直线()()21340m x m y m +-+--=化为 (3)240m x y x y --+--=,令30{ 240x y x y --=--=,解得1{2x y -=.=∴直线()()21340m x m y m +-+--=过定点12Q -(,). ∴点M 在以PQ 为直径的圆上,圆心为线段PQ 的中点11C --(,)线段MN 长度的最大值5CN r =+==线段MN 长度的最大值5CN r =-==故答案为5⎡+⎣.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 39. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程. 解:(1)设线段BC 的中点为D . 因为B(6,−7),C(0,−3), 所以BC 的中点D(3,−5),所以BC 边上的中线所在直线的方程为y−0−5−0=x−43−4, 即5x −y −20=0.(2)因为B(6,−7),C(0,−3), 所以BC 边所在直线的斜率k BC =−3−(−7)0−6=−23,所以BC 边上的高所在直线的斜率为32,所以BC 边上的高所在直线的方程为y =32(x −4), 即3x −2y −12=0.40. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)求2yx -的最小值. 解:(1)设动点M(x,y), 根据题意得,√(x+1)2+y 2√(x−2)2+y 2=12,化简得,(x +2)2+y 2=4,所以动点M 的轨迹方程为(x +2)2+y 2=4. (2)设过点(2,0)的直线方程为y =k(x −2), 圆心到直线的距离d =√k 2+1≤2,解得−√33≤k ≤√33, 所以yx−2的最小值为−√33.41. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小. (1)证明:∵F,G 分别为PB,EB 中点,∴FG PE ∥,,FG PED PE PED ⊄⊂平面平面,FG PED ∴平面∥. (2)解:EA ABCD EA PD ⊥平面,∥,PD ABCD ∴⊥平面. 又ABCD 四边形为矩形,,,DA DC DP ∴两两垂直.故以D 为坐标原点,DA,DC,DP 所在直线分别为x,y,z 轴建立空间直角坐标系,、则1(0,0,2),(2,2,0),(0,2,0),(2,0,1),(1,1,1),(2,1,),(0,1,1)2P B C E F G H ,(0,2,2),(2,0,0)PC CB =-=设平面PBC 的法向量为(,,)n x y z =,则0n PC n CB ⎧⋅=⎪⎨⋅=⎪⎩,即22020y z x -=⎧⎨=⎩,所以可取(0,1,1)n =,同理可取平面FGH 的法向量为(0,1,0)m =,设平面FGH 与平面PBC 的夹角为θ, 则||2cos ||||m n m n θ⋅==⋅,又[0,]2πθ∈,∴平面FGH 与平面PBC 夹角为4π.42. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且||MN =,求m 的值. 解:(1)把圆x 2+y 2−8x −12y +36=0, 化为标准方程得(x −4)2+(y −6)2=16, 所以圆心坐标为(4,6),半径为R =4,则两圆心间的距离d =√(42+(6−2)2=5, 因为两圆的位置关系是外切,所以d =R +r ,即4+√5−m =5,解得m =4, 故m 的值为4;(2)因为圆心C 的坐标为(1,2), 所以圆心C 到直线l 的距离d =√5=√55, 所以(√5−m)2=(12|MN|)2+d 2=(2√55)2+(√55)2,即5−m =1,解得m =4, 故m 的值为4.43. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD ⊥平面ABCD .(2)在下列①②③三个条件中任选一个,补充在下面问题 处,若问题中的四棱锥存在,求AB 的长度;若问题中的四棱锥不存在,说明理由.①CF 与平面PCD 所成角的正弦值等于15; ②DA 与平面PDF 所成角的正弦值等于34; ③P A 与平面PDF 所成角的正弦值等于3. 问题:若点F 是AB 的中点,是否存在这样的四棱锥,满足 ? (注:如果选择多个条件分别解答,按第一个解答计分.) (1)证明:=90PAB ∠,AB PA ∴⊥, ∵底面ABCD 为矩形,∴AB AD ⊥, 又,PA AD PAD ⊂平面,且PAAD A =,AB PAD ∴⊥平面,又AB ABCD ⊂平面,故平面PAD ⊥平面ABCD.(2)解:取AD 中点为O ,∵4PA PD AD ===,∴OA ⊥OP ,以O 为原点,OA,OP 所在直线分别为x,z 轴建立空间直角坐标系,设2(0)AB a a =>, 则(1,0,0),(1,0,0),(0,0,3),(1,2,0),(1,2,0),(1,,0)A D P B a C a F a --, 选①:(2,,0),(0,2,0),(1,0,3)CF a DC a DP =-==,设平面PCD 的法向量为(,,)n x y z =,则00n DC n DP ⎧⋅=⎪⎨⋅=⎪⎩,即2030ay x z =⎧⎪⎨+=⎪⎩,∴可取(3,0,1)n =-,设CF 与平面PCD 所成角为θ,则2||315sin 5||||4CF n CF n aθ⋅===⋅+,解得1a =, ∴符合题意的四棱锥存在,此时22AB a ==. 选②:(2,0,0),(1,0,3)(2,,0)DA DP DF a ===,,设平面PDF 的法向量为(,,)n x y z =,则00n DP n DF ⎧⋅=⎪⎨⋅=⎪⎩,即3020x z x ay ⎧+=⎪⎨+=⎪⎩,∴可取(3,)n a a =--,设DA 与平面PDF 所成角为θ, 则||3sin 4||||2DA n DA n θ⋅===⋅,解得3a =, ∴符合题意的四棱锥存在,此时26AB a ==. 选③:易知P A 与平面PDF 所成角小于APD ∠,设P A 与平面PDF 所成角为θ,则sin sin sin32APD πθ<∠==,故不存在符合题意的四棱锥.44. (12分)已知椭圆2222:1(0)x y M a b a b +=>>的离心率为3,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为(1)求椭圆M 的方程;(2)设直线:l x ky m =+与椭圆M 交于A ,B 两点,若以AB 为直径的圆经过椭圆的 右顶点C ,求m 的值.解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为6+4√2, 所以2a +2c =6+4√2,又椭圆的离心率为2√23, 即c a =2√23, 所以c =2√23a , 所以a =3,c =2√2.所以b =1, 椭圆M 的方程为x 29+y 2=1;(Ⅱ)由{x =ky +m x 29+y 2=1消去x 得(k 2+9)y 2+2kmy +m 2−9=0,设A(x 1,y 1),B(x 2,y 2),则有y 1+y 2=−2km k +9,y 1y 2=m 2−9k +9.①因为以AB 为直径的圆过点C ,所以CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0.由CA ⃗⃗⃗⃗⃗ =(x 1−3,y 1),CB ⃗⃗⃗⃗⃗ =(x 2−3,y 2), 得(x 1−3)(x 2−3)+y 1y 2=0. 将x 1=ky 1+m ,x 2=ky 2+m 代入上式, 得(k 2+1)y 1y 2+k(m −3)(y 1+y 2)+(m −3)2=0. 将①代入上式,解得m =125或m =3.。

2020-2021学年黑龙江省哈师大附中高二第一学期期中数学(理)试题【解析版】

2020-2021学年黑龙江省哈师大附中高二第一学期期中数学(理)试题【解析版】

2020-2021学年黑龙江省哈师大附中高二第一学期期中数学(理)试题【解析版】一、单选题1350x y +-=的倾斜角为( ) A .300 B .600C .1200D .1500【答案】C【解析】∵350x y +-=的斜率为:3-直线的倾斜角为α,所以tan 3α=-120α=︒,故选C.2.已知直线l 过点(1,2)-且与直线2340x y -+=垂直,则l 的方程是( ) A .3210x y +-= B .3270x y ++= C .2350x y -+= D .2380x y -+=【答案】A【详解】直线2x –3y +1=0的斜率为2,3则直线l 的斜率为3,2-所以直线l 的方程为32(1).3210.2y x x y -=-++-=即故选A3.抛物线22y x =的焦点坐标为( ) A .(1,0) B .1(4,0)C .1(0,)4D .1(0,)8【答案】D【分析】将抛物线方程化为标准方程,即可得出开口方向和p ,进而求出焦点坐标. 【详解】解:整理抛物线方程得212x y =∴焦点在y 轴,14p =∴焦点坐标为1(0,)8故选D4.设F 1,F 2分别是椭圆2212516x y +=的左,右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( ) A .4 B .3 C .2 D .5【答案】A【解析】由题意知OM 是12PF F △的中位线,∵3OM =,∴26PF =,又12210PF PF a +==,∴14PF =,故选A.5.点(4,2)P -与圆224x y +=上任一点连线的中点的轨迹方程是( ) A .22(2)(1)1x y -++= B .22(2)(1)4x y -++= C .22(4)(2)4x y ++-= D .22(2)(1)1x y ++-= 【答案】A【解析】试题分析:设圆上任一点为()00,Q x y ,PQ 中点为(),M x y ,根据中点坐标公式得,0024{22x x y y =-=+,因为()00,Q x y 在圆224x y +=上,所以22004x y +=,即()()2224224x y -++=,化为22(2)(1)1x y -++=,故选A.【解析】1、圆的标准方程;2、“逆代法”求轨迹方程.【方法点晴】本题主要考查圆的标准方程、“逆代法”求轨迹方程,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标(),x y ,根据题意列出关于,x y 的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把,x y 分别用第三个变量表示,消去参数即可;④逆代法,将()()00x g x y h x =⎧⎪⎨=⎪⎩代入()00,0=f x y .本题就是利用方法④求M 的轨迹方程的.6.过原点的直线l 与双曲线226x y -=交于A ,B 两点,点P 为双曲线上一点,若直线PA 的斜率为2,则直线PB 的斜率为( )A .4B .1C .12D .14【答案】C【分析】设(,)A m n ,(,)B m n --,(,)P x y ,代入双曲线的方程,作差,可得22221y nx m-=-,再由直线的斜率公式,结合平方差公式,计算可得所求值. 【详解】由题意可设(,)A m n ,(,)B m n --,(,)P x y , 则226m n -=,226x y -=, 即有2222y n x m -=-,即22221y n x m -=-, 由PA y n k x m -=-,PB y nk x m+=+, 可得2222·1PA PBy n k k x m -==-, 因为2PA k =,所以12PB k =. 故选:C .7.如果椭圆221369x y +=的弦被点()4,2平分,则这条弦所在的直线方程是( )A .20x y -=B .240x y +-=C .23120x y +-=D .280x y +-=【答案】D【分析】设这条弦的两端点1122(,),(,)A x y B x y ,则:2222112211369369x y x y +=+=,,用点差法得到:12120369x x y y k +++=,代入中点坐标,即得解斜率k . 【详解】设这条弦的两端点1122(,),(,)A x y B x y ,斜率为1212y y k x x -=-,则:2222112211369369x y x y +=+=,两式相减得:2222121212121212()()()()00369369x x y y x x x x y y y y ---+-++=∴+=变形得:12120369x x y y k +++=,又弦中点为:()4,2,故12k =-故这条弦所在得直线方程为:1242()y x -=--,即280x y +-= 故选:D【点睛】本题考查了点差法在弦中点问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.8.设12,F F 是双曲线22124y x -=的两个焦点,P 是双曲线上的一点,且1234PF PF =,则12PF F △的面积等于( ) A .2 B .83C .24 D .48【答案】C【详解】双曲线的实轴长为2,焦距为1210F F =.根据题意和双曲线的定义知1222241233PF PF PF PF PF =-=-=,所以26PF =,18PF =, 所以2221212PF PF F F +=,所以12PF PF ⊥.所以121211682422PF F SPF PF =⋅=⨯⨯=. 故选:C【点睛】本题主要考查了焦点三角形以及椭圆的定义运用,属于基础题型.9.已知抛物线22y px =(0p >)的焦点F 与双曲线22145x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且2AK =,则A 点的横坐标为( ) A .2 B .3C .23D .4【答案】B【详解】因为已知条件中,抛物线22(0)y px p =>的焦点F 与双曲22145x y -=的右焦点重合,而双曲线中,a=2,5b =可知右焦点(3,0),抛物线的准线x=-2p,故点K (-2p ,0),设点A (x,y ),且22(0)y px p =>,则2AK AF =,可知222()2()()2222p p px y x x px ++=+∴+=,且由于3,62p p ==,解得点A 的横坐标为3, 故选:B.点评:解决该试题的关键是利用双曲线的性质以及抛物线的定义,运用坐标表示处关系式2AK AF =,然后借助于等式来求解点A 的坐标,属于基础题.10.已知抛物线2:8y x τ=,过抛物线τ的焦点且斜率为k 的直线l 交τ于M ,N 两点,已知(2,3)P -,0PM PN =,则k =( ) A .34B .43C .12D .2【答案】B【分析】本题先根据题意写出直线l 的直线方程,然后联立直线l 与抛物线τ的方程,消去y ,化简整理可得关于x 的一元二次方程,根据韦达定理可得12284x x k+=+,124x x =,接着计算出12y y +,12y y 关于k 的表达式,写出向量PM ,PN 的坐标式,代入并化简计算PM PN ,根据0PM PN =可进一步计算出k 的值,得到正确选项. 【详解】解:由题意,画图如下:由抛物线方程28y x =,可知抛物线τ的焦点坐标为(2,0),则直线l 的直线方程为:(2)y k x =-,显然0k ≠. 设1(M x ,1)y ,2(N x ,2)y ,则联立2(2)8y k x y x =-⎧⎨=⎩, 消去y ,整理得22224(2)40k x k x k -++=, 故12284x x k+=+,124x x =, 121212288(2)(2)(4)(44)y y k x k x k x x k k k∴+=-+-=+-=+-=, 2221212121228(2)(2)[2()4][42(4)4]16y y k x x k x x x x k k=--=-++=-++=-,1(2PM x =+,13)y -,2(2PN x =+,23)y -,∴1212·(2)(2)(3)(3)PM PN x x y y =+++--121212122()43()9x x x x y y y y =++++-++28842(4)41639k k =+++--⋅+22(34)k k -=,0PM PN =,∴22(34)0k k-=,解得43k =. 故选:B .【点睛】关键点睛:本题主要考查向量与解析几何的综合问题.考查了方程思想,韦达定理的应用,向量的运算能力,解答本题的关键是由题意1212·(2)(2)(3)(3)PM PN x x y y =+++--,然设出直线方程,与抛物线方程联立,写出韦达定理,在代入得到关于k 的方程.本题属中档题.11.点(),0F c 为双曲线()222210,0x y a b a b-=>>的右焦点,点P 为双曲线左支上一点,线段PF 与圆22239c b x y ⎛⎫-+= ⎪⎝⎭相切于点Q ,且2PQ QF =,则双曲线的离心率是( ) A 2 B 3C 5D .2【答案】C【解析】试题分析:设1(,0)F c -是双曲线的左焦点,圆222()39c b x y -+=的圆心为(,0)3c M ,半径为3b ,由于14233c cF M c MF =+==,又2PQ QF =,因此1//PF QM ,所以1F P PF ⊥,13PF MQ b ==,222243PF c b c a =-=+,由双曲线定义得12PF PF a -=,2232c a b a +=,解得5ce a==.故选C . 【解析】双曲线的几何性质,双曲线的定义,直线与圆的位置关系.【名师点睛】本题考查直线与双曲线相交问题,解题时,借助几何方法得出1PFF ∆中线段与,,a b c 的关系及1PFF ∆的性质,大大减少了计算量,而且明确得出了,,a b c 的等式,方便求出双曲线的离心率.这是我们在解解析几何问题要注意地方法. 12.如图,椭圆的中心在坐标原点,焦点在x 轴上,A 1,A 2,B 1,B 2为椭圆的顶点,F 2为右焦点,延长B 1F 2与A 2B 2交于点P ,若∠B 1PB 2为钝角,则该椭圆离心率的取值范围是( )A .52⎫-⎪⎪⎝⎭B .52⎛- ⎝⎭C .510,2⎛⎫⎪ ⎪⎝⎭ D .51,12⎛⎫- ⎪⎪⎝⎭【答案】C【分析】过1B 作直线22A B 的垂线l ,题意说明射线1B P 在直线l 上方,由此可得,,a b c 的不等关系(利用直线与x 轴交点得出不等式),从而可得离心率的范围. 【详解】设直线l 为过1B 且与22A B 垂直的直线,易知22,B A bk a=-则直线l 的斜率为a k b=, 而()10,B b -,则该直线l 的方程为ay x b b=-,所以该直线与x 轴的交点坐标为2,0b a ⎛⎫ ⎪⎝⎭,要使得12B PB ∠为钝角,则说明直线1B P 在直线l 上方,故满足2b c a <,结合222b a c =-,得到22,,cac a c e a<-=结合得210e e +-<,结合01,e <<解得51e ⎛-∈ ⎝⎭. 故选:C.【点睛】本题考查求椭圆离心率的范围,解题关键是利用过1B 与直线22A B 垂直的直线l 与射线1B P 关系得出不等式.二、填空题13.若,x y 满足约束条件1020220x y x y x y -+≥-≤+-≤⎧⎪⎨⎪⎩,则z x y =+的最大值为_____________.【答案】32【解析】试题分析:由下图可得在1(1,)2A 处取得最大值,即max 13122z =+=.【解析】线性规划.【方法点晴】本题考查线性规划问题,灵活性较强,属于较难题型.考生应注总结解决线性规划问题的一般步骤(1)在直角坐标系中画出对应的平面区域,即可行域;(2)将目标函数变形为a zy x b b=-+;(3)作平行线:将直线0ax by +=平移,使直线与可行域有交点,且观察在可行域中使zb最大(或最小)时所经过的点,求出该点的坐标;(4)求出最优解:将(3)中求出的坐标代入目标函数,从而求出z 的最大(小)值.14.若双曲线C 经过点(2,2),且与双曲线2214y x -=具有相同渐近线,则双曲线C的标准方程为 .【答案】221312x y -=【解析】试题分析:由题意设双曲线C 的标准方程为224y x λ-=,又过点(2,2),所以3,λ=-221312x y -=.【解析】双曲线渐近线15.倾斜角为45的直线l 经过抛物线24y x =的焦点F ,且与抛物线交于A ,B 两点,则AB 的长为__________________. 【答案】8【分析】直线l 的方程为1y x =-,与抛物线方程联立可得2610x x -+=,从而可得6A B x x +=,再根据抛物线的定义即可求出AB 的长.【详解】抛物线24y x =的焦点F 的坐标为(1,0),所以直线l 的方程为0tan 45(1)y x -=-,即1y x =-,由214y x y x=-⎧⎨=⎩,得2610x x -+=,所以6A B x x +=, 由抛物线的定义可知628A B AB x x p =++=+=,所以AB 的长为8. 故答案为:8【点睛】本题主要考查直线与抛物线的位置关系,考查抛物线焦点弦长的求法,属于中档题.16.已知过抛物线2:4C y x =焦点F 的直线交抛物线C 于P ,Q 两点,交圆2220x y x +-=于M ,N 两点,其中P ,M 位于第一象限,则11PM QN+的最小值为_____. 【答案】2【分析】设11(,)P x y ,22(,)Q x y ,根据题意可设直线PQ 的方程为1x my =+,将其与抛物线C 方程联立可求出121=x x ,结合图形及抛物线的焦半径公式可得12||||1PM QN x x ⋅==,再利用基本不等式,即可求出11PM QN+的最小值. 【详解】圆2220x y x +-=可化为22(1)1x y -+=,圆心坐标为(1,0),半径为1, 抛物线C 的焦点(1,0)F ,可设直线PQ 的方程为1x my =+,设11(,)P x y ,22(,)Q x y ,由214x my y x=+⎧⎨=⎩,得2440y my --=,所以124y y =-, 又2114y x =,2224y x =,所以222121212()14416y y y y x x =⋅==,因为1212||||(||||)(||||)(11)(11)1PM QN PF MF QF NF x x x x ⋅=--=+-+-==, 所以111122PM QN PM QN+≥⋅=,当且仅当||||1PM QN ==时,等号成立. 所以11PM QN+的最小值为2. 故答案为:2【点睛】本题主要考查抛物线的几何性质,基本不等式求最值,考查基本运算能力,属于中档题.三、解答题17.已知动圆M 过点(2,0)F ,且与直线2x =-相切. (Ⅰ)求圆心M 的轨迹E 的方程;(Ⅱ)斜率为1的直线l 经过点F ,且直线l 与轨迹E 交于点,A B ,求线段AB 的垂直平分线方程.【答案】(Ⅰ)28y x =;(Ⅱ)100x y +-=.【分析】(Ⅰ)由题意得圆心M 到点(2,0)F 等于圆心到直线2x =-的距离,利用两点间距离公式,列出方程,即可求得答案.(Ⅱ)求得直线l 的方程,与椭圆联立,利用韦达定理,可得1212,x x x x +的值,即可求得AB 中点00(,)P x y 的坐标,根据直线l 与直线AB 垂直平分线垂直,可求得直线AB 垂直平分线的斜率,利用点斜式即可求得方程.【详解】(Ⅰ)设动点(,)M x y 22(2)|2|x y x -+=+, 化简得轨迹E 的方程:28y x =;(Ⅱ)由题意得:直线l 的方程为:2y x =-,由228y x y x=-⎧⎨=⎩,得21240x x -+=,2124140∆=-⨯⨯>,设1122(,),(,)A x y B x y ,AB 中点00(,)P x y 则121212,4x x x x +==, 所以12062x x x +==,0024y x =-=, 又AB 垂直平分线的斜率为-1,所以AB 垂直平分线方程为100x y +-=.【点睛】本题考查抛物线方程的求法,抛物线的几何性质,解题的关键是直线与曲线联立,利用韦达定理得到1212,x x x x +的表达式或值,再根据题意进行化简和整理,考查计算求值的能力,属基础题.18.已知圆22 :(3)(4)4C x y -+-=,(1)若直线1l 过定点1,0A ,且与圆C 相切,求1l 的方程.(2)若圆D 的半径为3,圆心在直线2:20l x y +-=上,且与圆C 外切,求圆D 的方程.【答案】(1)1x =或()314y x =-;(2)()()22319x y -++=或()()22249x y ++-=.【分析】(1)将1l 的斜率分成存在和不存在两种情况,结合圆心到直线的距离等于半径,求得1l 的方程.(2)设出圆D 的圆心,利用两圆外切的条件列方程,由此求得圆心D 的坐标,进而求得圆D 的方程.【详解】(1)圆C 的圆心为()3,4C ,半径为12r =.当直线1l 斜率不存在时,即直线1x =,此时直线与圆相切.当直线1l 斜率存在时,设直线1l 的方程为()1y k x =-,即kx y k 0--=,由于1l 与圆C 相切,圆心到直线的距离等于半径,即23421k k k --=+,即221k k -=+34k =,直线1l 的方程为()314y x =-. 综上所述,直线1l 的方程为1x =或()314y x =-. (2)由于圆D 圆心在直线2l 上,设圆心(),2D a a -+,圆D 的半径23r =,由于圆D 与圆C 外切,所以12CD r r =+()()22324235a a -+-+-=+=,即()()223225a a -++=,解得3a =或2a =-.所以圆心()3,1D -或()2,4D -.所以圆D 的方程为()()22319x y -++=或()()22249x y ++-=.【点睛】本小题主要考查直线和圆的位置关系,考查圆与圆的位置关系,考查直线方程和圆的方程的求法,属于基础题.19.如图,在四棱锥P ABCD -中,四边形ABCD 为菱形,60BAD ∠=︒,PAD ∆为正三角形,平面PAD ⊥平面ABCD ,且E ,F 分别为AD ,PC 的中点.(1)求证://DF 平面PEB ;(2)求直线EF 与平面PDC 所成角的正弦值. 【答案】(1)证明见解析;(2)65. 【分析】(1)取PB 中点G ,推出//FG BC ,证明四边形DEGF 是平行四边形,得到//DF EG ,然后证明//DF 平面PEB .(2)以E 为原点,EA ,EB ,EP 分别为x ,y ,z 轴建立空间直角坐标系,求出平面PDC 的法向量,求出EF ,利用空间向量的数量积求解EF 与平面PDC 所成角的正弦值.【详解】(1)证明:取PB 中点G ,因为F 是PC 中点,//FG BC ∴,且12FG BC =,E 是AD 的中点,则//DE BC ,且12DE BC =, //FG DE ∴,且FG DE =,∴四边形DEGF 是平行四边形,//DF EG ∴,又DF ⊂/平面PEB ,EG ⊂平面PEB ,//DF ∴平面PEB .(2)因为E 是正三角形PAD 边为AD 的中点,则PE AD ⊥.因为平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,PE ⊂平面PAD ,PE ∴⊥平面ABCD ,四边形ABCD 为菱形,60BAD ∠=︒,∴正三角形BAD 中,BE AD ⊥,以E 为原点,EA ,EB ,EP 分别为x ,y ,z 轴建立空间直角坐标系, 不妨设菱形ABCD 的边长为2,则1AE ED ==,2PA =,3PE =223BE AB AE =-=则点33(0,0,0),(1,0,0),(3,0),3),(1,)22E D C PF ---, ∴(1DC =-30),(1DP =,03),设平面PDC 的法向量为(n x =,y ,)z ,则·0·0n DC n DP ⎧=⎨=⎩,即3030x z x y ⎧=⎪⎨-+=⎪⎩,解得33x x z⎧=⎪⎨=⎪⎩,不妨令1z =,得(3n =-,1-,1);又33(22EF =-, 设EF 与平面PDC 所成角为θ,∴36sin |cos |55?2EF n θ=<>=⋅=,.所以EF 与平面PDC 6. 【点睛】对于线面角可以转化为直线的方向向量与平面的法向量的夹角运算,对于证明线线关系,线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明.20.如图,正三棱柱111ABC A B C -中,12AB AA ==,点D ,E 分别为AC ,1AA 的中点.(1)求点1B 到平面BDE 的距离; (2)求二面角1D BE C --的余弦值. 【答案】(12;(2)14. 【分析】(1)建立空间坐标系,求出平面BDE 的法向量n ,则1B 到平面BDE 的距离为1·nB n B ;(2)求出平面1BEC 的法向量m ,计算m ,n 的夹角得出二面角的大小. 【详解】解:(1)取11A C 的中点1D ,连结1DD ,则1DD ⊥平面ABC ,ABC ∆是等边三角形,BD AC ∴⊥,以D 为原点,分别以DA ,DB ,1DD 所在直线为坐标轴建立空间直角坐标系D xyz -, 则(0D ,0,0),(0B 30),(1E ,0,1),1(0B 32),1(1C -,0,2),∴(0DB =30),(1DE =,0,1),1(0BB =,0,2),设平面BDE 的法向量为1(n x =,1y ,1)z ,则·0·0n DB n DE ⎧=⎨=⎩,即111300x z ⎧=⎪⎨+=⎪⎩,令11z =可得(1n =-,0,1),∴点1B 到平面BDE 的距离为1·22B n nB ==(2)(1BE =,3-1),1(2EC =-,0,1),设平面1BEC 的法向量为2(m x =,2y ,2)z ,则1·0·0m BE m EC ⎧=⎪⎨=⎪⎩,即222223020xy z x z ⎧-+=⎪⎨-+=⎪⎩, 令21x =可得(1m =,3,2),cos m ∴<,·14222m n n m n >===⨯, ∴二面角1D BE C --的余弦值为14.【点睛】关键点睛:(1)解题关键是建立空间坐标系,求出平面BDE 的法向量n ,进而用公式求解;(2)解题关键是设平面1BEC 的法向量为2(m x =,2y ,2)z ,则1·0·0m BE m EC ⎧=⎪⎨=⎪⎩,求出m 后,利用公式求解二面角1D BE C --的余弦值,难度属于中档题21.已知椭圆()2222:10x y C a b a b+=>>的左顶点和下顶点分别为A ,B ,25AB =过椭圆焦点且与长轴垂直的弦的长为2. (1)求椭圆C 的方程;(2)已知M 为椭圆C 上一动点(M 不与A ,B 重合),直线AM 与y 轴交于点P ,直线BM 与x 轴交于点Q ,证明:AQ BP ⋅为定值.【答案】(1)221164x y +=;(2)证明见解析. 【分析】(1)根据25AB =2225a b +=,再由过椭圆焦点且与长轴垂直的弦的长为2,得到2a b =,列出方程组,求得22,a b 的值,即可求解;(2)由(1)得到点,A B 的坐标,设出,,M P Q 的坐标,由点M 在椭圆上,结合,,A P M 三点共线,求得AQ BP ⋅表示,即可求解.【详解】(1)由题意,椭圆C 的左顶点和下顶点分别为,A B ,可得(,0),(0,)A a B b -- 因为25AB =2225AB a b =+=又由过椭圆焦点且与长轴垂直的弦的长为2,可得222b a=,即2a b =,联立方程组,解得2216,4a b ==,所以椭圆的方程为221164x y +=.(2)由(1)可得(4,0),(0,2)A B --,设00(,),(0,),(,0)P Q M x y P y Q x ,因为点M 在椭圆上,所以2200416x y +=,由,,A P M 三点共线,可得0044P y y x =+, 同理可得0022Q x x y =+, 所以0000002482484242Q P x y x y x y x y AQ BP ++++⋅=+⋅+=⋅++2200000000000000004(4164816)4(16164816)(8)(2)248x y x y x y x y x y x y x y x y +++++++++==+++++000000002481616248x y x y x y x y +++==+++,即16AQ BP ⋅=,所以AQ BP ⋅为定值.【点睛】本题主要考查了椭圆的标准方程的求解,以及椭圆的性质的综合应用,其中解答中根据椭圆的方程,结合三点共线求得P y 和Q x 是解答得关键,着重考查推理与运算能力,属于难题.22.已知椭圆2222:1(0)x y C a b a b+=>>经过点3()-,且短轴长为2. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 交于P ,Q 两点,且OP OQ ⊥,求OPQ △面积的取值范围.【答案】(1)2214x y +=;(2)4[,1]5. 【分析】(1)利用已知条件求出a ,b ,然后求解椭圆方程;(2)()i 当OP ,OQ 斜率一个为0,一个不存在时,1OPQ S ∆=;()ii 当OP ,OQ 斜率都存在且不为0时,设:OP l y kx =,1(P x ,1)y ,2(Q x ,2)y ,由2214y kx x y =⎧⎪⎨+=⎪⎩求出P 的坐标,然后推出Q 坐标,求解||OP ,||OQ ,求出三角形的面积的表达式,利用基本不等式求解最值. 【详解】(1)由题意知,221314a b+=,22b =,解得2a =,1b =, 故椭圆方程为:2214x y +=.(2)()i 当OP ,OQ 斜率一个为0,一个不存在时,1OPQ S ∆=,()ii 当OP ,OQ 斜率都存在且不为0时,设:OP l y kx =,1(P x ,1)y ,2(Q x ,2)y ,由2214y kx x y =⎧⎪⎨+=⎪⎩消y 得212414x k =+,2222112414k y k x k ==+, 22114y x k x y ⎧⎪⎪⎨=-+=⎪⎪⎩,得222244k x k =+,222222144y x k k ==+, ∴2222221122224444,144k k OP x y OQ x y k k ++=+==+=++ ∴22222421144441··2922144421OPQk k S OP OQ k k k k k ∆++===+++++ 又24222999012142k k k k k <=≤++++,所以415OPQ S ∆<, 综上,OPQ △面积的取值范围为4[,1]5.【点睛】方法点睛:与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)几何法:结合定义利用图形中几何量之间的大小关系或曲线之间位置关系列不等式,再解不等式.(2)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围.(3)利用代数基本不等式.代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思.(4)结合参数方程,利用三角函数的有界性.直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式.(5)利用数形结合分析解答.。

黑龙江省哈尔滨市第六中学2020-2021学年高二上学期期中考试化学试题 Word版含答案

黑龙江省哈尔滨市第六中学2020-2021学年高二上学期期中考试化学试题 Word版含答案

哈尔滨市第六中学2019级上学期期中考试 高二化学试题一、选择题(每題2分,共50分)1.化学反应可视为旧键断裂和新键形成的过程。

化学键的键能是形成(或拆开)1 mol 化学键时释放(或吸收)的能量。

已知白磷(P 4)和六氧化四磷(P 4O 6)的分子结构如下图所示,现提供以下化学键的键能:P —P 198 kJ ·mol -1,P —O 360 kJ ·mol -1,氧气分子内氧原子间的键能为498 kJ ·mol -1。

则P 4+3O 2P 4O 6的反应热ΔH 为( )A.+1 638 kJ ·mol -1B.-1 638 kJ ·mol -1C.-126 kJ ·mol -1D.+126 kJ ·mol -12.下列说法正确的是( )A.水解反应是吸热反应B.升高温度可以抑制盐类的水解C.正盐水溶液的pH 均为7D.酸式盐的pH 均小于73.在一定温度下,冰醋酸加水稀释过程中,溶液的导电能力如图所示,下列说法有误的是( )A.“O ”点导电能力为0的理由是在“O ”点处醋酸未电离,无自由移动的离子B.A 、B 、C 三点溶液c(H +)由大到小的顺序为B>A>CC.若使C 点溶液中c(CH 3COO -)增大,溶液的c(H +)减小,可加入少量醋酸钠粉末 D.B 点导电能力最强说明B 点离子物质的量最大 4.下列根据反应原理设计的应用,不正确的是( )A.C O 32-+H 2O HC O 3-+OH -;用热的纯碱溶液清洗油污B.A l 3++3H 2OAl(OH)3(胶体)+3H +;明矾净水C.TiCl 4+(x+2)H 2O(过量)TiO 2·xH 2O ↓+4HCl;制备TiO 2纳米粉D.SiCl 2+H 2OSn(OH)Cl ↓+HCl;配制氯化亚锡溶液时加入NaOH5.用纯净的CaCO 3与100 mL 稀盐酸反应制取CO 2,实验过程记录如图所示(CO 2的体积已折算为标准状况下的体积)。

2020-2021学年黑龙江省大庆实验中学高二下学期期中数学复习卷(2)(含解析)

2020-2021学年黑龙江省大庆实验中学高二下学期期中数学复习卷(2)(含解析)

2020-2021学年黑龙江省大庆实验中学高二下学期期中数学复习卷(2)一、单选题(本大题共21小题,共60.0分)1.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集有()A. 3个B. 4个C. 6个D. 8个2.已知i为虚数单位,复数z=2i(2−i)的实部为a,虚部为b,则log a b等于()A. 0B. 1C. 2D. 33.θ=π4(ρ≥0)表示的图形是()A. 一条直线B. 一条射线C. 一条线段D. 圆4.集合,,给出下列四个图形,其中能表示以为定义域,为值域的函数关系的是().A.B.C.D.A. AB. BC. CD. D5.如图,若图中直线 1, 2, 3的斜率分别为k1,k2,k3,则A. k1<k2<k3B. k3<k1<k2C. k3<k2<k1D. k1<k3<k26.命题“∀x∈[0,+∞),e x≥1+sinx”的否定是()A. ∀x∈[0,+∞),e x<1+sinxB. ∀x∉[0,+∞),e x≥1+sinxC. ∃x∈[0,+∞),e x<1+sinxD. ∃x∉[0,+∞),e x<1+sinx7.已知椭圆x2a2+y2b2=1(a>b>0)的离心率为2√55,以原点为圆心,以椭圆短半轴长为半径的圆与直线y=2x+1相切,则a=()A. 2B. √5C. √3D. 18.若f(x)在R上是奇函数,且有f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(11)=()A. 242B. −242C. 2D. −29. 设命题p :lg(2x −1)≤0,命题q :x−(a+1)x−a≤0,若q 是p 的必要不充分条件,则实数a 的取值范围是( )A. [0,12]B. (0,12)C. [0,12)D. ⌀10. 在同一平面直角坐标系中,经过伸缩变换{x′=7xy′=4y后,曲线C 变为曲线x′2+8y′2=1,则曲线C 的方程为( )A. 49x 2+128y 2=1B. 49x 2+64y 2=1C. 49x 2+32y 2=1D. 249x 2+12y 2=111. 对于任意的两个实数对(a,b)和(c,d),规定(a,b)=(c,d)当且仅当a =c ,b =d ;运算“⊗”为:(a,b)⊗(c,d)=(ac −bd,bc +ad), 运算“⊕”为:(a,b)⊕(c,d)=(a +c,b +d),设p ,q ∈R ,若(1,2)⊗(p,q)=(5,0),则(1,2)⊕(p,q)=( )A. (0,−4)B. (4,0)C. (0,2)D. (2,0)12. 1.设椭圆(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为,则此椭圆的方程为( )A. B. C.D.13. 2.下列结论错误的是A. 若“p 且q ”与“﹁p 或q ”均为假命题,则p 真q 假.B. 若一个命题的逆命题为真,则它的否命题也一定为真;C. “x =1”是“x 2−3x +2=0”的充分不必要条件.D. “若am 2<bm 2,则a <b ”的逆命题为真.14. 3.是成立的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件15. 4.若椭圆的离心率,则m 值A. 3B. 3或C.D. 或16. 5.函数f(x)=ax 3−x在R上为减函数,则()A. a≤0B. a<1C. a<2D.17. 6.设,则方程不能表示的曲线为A. 椭圆B. 双曲线C. 抛物线D. 圆18.7.在三棱锥P−ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F分别是棱AB,BC,CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为()A. B. C. D.19.8.已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是A. B. C. D.20.9.过抛物线的焦点的直线交抛物线于两点,点是原点,若;则的面积为()A. B. C. D.21.10.直线L经过双曲(a>0,b>0)右焦点F与其一条渐近线垂直且垂足为A,与另一条渐近线交于B点,=,则双曲线的离心率为()A. B. C. D. 2二、单空题(本大题共4小题,共20.0分)22.i是虚数单位,则|i1+i|的值为______.23.在平面上取定一点O,从O出发引一条射线Ox,再取定一个长度单位及计算角度的正方向(取逆时针方向为正),就称建立了一个极坐标系,这样,平面上任一点P的位置可用有序数对(ρ,θ)确定,其中ρ表示线段OP的长度,θ表示从Ox到OP的角度.在极坐标系下,给出下列命题:(1)平面上的点A(2,−π6)与B(2,2kπ+11π6)(k∈Z)重合;(2)方程θ=π3和方程ρsinθ=2分别都表示一条直线;(3)动点A在曲线ρ(cos2θ2−12)=2上,则点A与点O的最短距离为2;(4)已知两点A(4,2π3),B(4√33,π6),动点C在曲线ρ=8上,则△ABC面积的最大值为40√33.其中正确命题的序号为______ (填上所有正确命题的序号).24.观察如图,则第______行的各数之和等于20172.12 3 43 4 5 6 74 5 6 7 8 9 10…25.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=10,则弦AB的长度为______ .三、解答题(本大题共6小题,共70.0分)26.已知命题p:关于x的方程x2+2x+a=0有实数解,命题q:关于x的不等式x2+ax+a>0的解集为R,若(¬p)∧q是真命题,求实数a的取值范围.27.在平面直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知在极坐标系中,A(3√3,π2),B(3,π3),圆C的方程为ρ=2cosθ.(1)求在平面直角坐标系xOy中圆C的标准方程;(2)已知P为圆C上的任意一点,求△ABP面积的最大值.28.已知函数f(x)=x2+2ax,x∈[−5,5].(1)若y=f(x)−2x是偶函数,求f(x)的最大值和最小值;(2)如果f(x)在[−5,5]上是单调函数,求实数a的取值范围。

黑龙江省佳木斯市第一中学2020-2021学年高二上学期期中考试 数学(理) PDF版含答案

黑龙江省佳木斯市第一中学2020-2021学年高二上学期期中考试 数学(理) PDF版含答案
3
法二:(等体积法)设 A1 到平面 AD1E 的距离为 d
在 AD1E 中,AD1= 2 2 , AE 5 , D1E 3
∴ cos D1 AE
AD12 AE 2 D1E 2 2 AD1 AE
859 22 2
5
10 10
,∴ sin
D1 AE
3 10 10
S ∴ AD1E
1 2
AD1 AE sin D1 AE
数学理科 第4页共5页
21.(12 分)如图所示,四棱锥 P ABCD 的底面为矩形,侧棱及底边 BC 、DA 的 长均为 2, AB 、 CD 的长为 2 2 , E 是 PD 中点.
(1)证明 PB //平面 ACE ; (2)求异面直线 PB 与 AE 所成的角的余弦值。
22.(12 分)(如图 1)等边 ABC 的边长为 3,点 D ,E 分别是边 AB ,AC 上的点,
所以 | a 3c | (-1)2 12 12 3
(2)设 b x, y, z ,则由题可知
2x y 2z 1,
x 2, x 2,
x2
y2
z2
9,
解得
y
1,

y
1,
x z 0,
z 2, z 2,
所以
b
2,
1,
2

b
2,
1,
2
.
19. 【解】以 A 为原点,AD、AB、AA1 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系, 则 A(0,0,0),A1(0,0,2),D(2,0,0),D1(2,0,2),E(0,2,1)
: V圆柱
16π 3
:
32π 3
:16π

黑龙江省实验中学2020_2021学年高二物理上学期期中试题

黑龙江省实验中学2020_2021学年高二物理上学期期中试题

黑龙江省实验中学2020-2021学年高二物理上学期期中试题考试时间:90分钟满分:100分Ⅰ卷(选择题共56分)一、选择题(本题共14小题,每小题4分,共56分.在每小题给出的四个选项中,第1~9题只有一项符合题目要求,第10~14题有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分.)1.关于静电场的电场强度和电场线,下列说法正确的是()A.电场中某点的场强方向跟电荷在该点所受电场力的方向相同B.E=2Q k仅适用于真空中点电荷形成的电场rC.当初速度为零时,放入电场中的电荷仅在电场力作用下的运动轨迹一定与电场线重合D.在一个以点电荷为中心,r为半径的球面上,各处的电场强度都相同2.如图所示,实线为三个电荷量相同的带正电的点电荷1Q、2Q、3Q的电场线分布,虚线为某试探电荷从a点运动到b点的轨迹,则下列说法正确的是()A.该试探电荷为负电荷B.b点的电场强度比a点的电场强度小C.该试探电荷从a点到b点的过程中电势能先增加后减少D.该试探电荷从a点到b点的过程中动能先增加后减少3.如图所示,平行板电容器经开关S与电池连接,a处固定有一电荷量非常小的点电荷,S是闭合的,φa表示a点的电势,F表示点电荷受到的静电力,现将电容器的A板向上稍微移动,使两板间的距离增大,则()A.φa变大,F变大B.φa变大,F变小C.φa不变,F不变D.φa变小,F变小4.在如图所示的电路中,电源的电动势为E,内阻为r,平行板电容器C的两金属板水平放置,R1和R2为定值电阻,P为滑动变阻器R的滑动触头,G为灵敏电流表,A为理想电流表.开关S闭合后,C的两板间恰好有一质量为m、电荷量为q的油滴处于静止状态。

则若将P向上移动,过程中下列说法正确的是()A.油滴带正电B.A表的示数变大C.油滴向上加速运动D.G中有由a→b的电流5.某数码相机的锂电池电动势为3.6V,容量为1000mA h ,若关闭液晶屏拍摄,每拍一张照片消耗电能约32J,根据以上信息估算每充满电一次可拍摄多少张照片()A.150 B.200 C.300 D.4006.在如图甲所示的电路中,电源电动势为3.0V,内阻不计,L1、L2、L3为相同规格的三个小灯泡,这种小灯泡的伏安特性曲线如图乙所示。

2020-2021学年高二化学人教版选修五第四章《生命中的基础有机化学物质》测试题(含答案) (1)

2020-2021学年高二化学人教版选修五第四章《生命中的基础有机化学物质》测试题(含答案) (1)

(2)B
C+D,等物质的量的 C、D 分别与足量的 NaOH 溶液反应时,消耗
的 NaOH 的质量之比为 1∶2,C、D 的相对分子质量相差 30 且 C、D 结构中均无支
链,则 B 的结构简式为________。
(3)若 A 和乙酸在一定条件下反应后生成相对分子质量为 134 的 E,写出 E 所有可
的是( )
A.葡萄糖能发生氧化反应和水解反应
B.植物油能使溴的四氯化碳溶液褪色
C.油脂的水解又叫皂化反应
D.蛋白质溶液遇硝酸变黄,称为蛋白质的焰色反应
14.化学与生产和生活密切相关。下列过程中没有发生化学变化的是
A.肥皂水作蚊虫叮咬处的清洗剂
B.明矾作净水剂
C.粉碎机粉碎中药 鲜
D.浸有 KMnO4 溶液的硅藻泥用于花卉保
第四章《生命中的基础有机化学物质》测试题
一、单选题
1.下列说法中,不正确的是
A.油脂水解的产物中一定含甘油
B.糖类、油脂和蛋白质都属于高分子化合物
C.氨基酸既能与盐酸反应,也能与 NaOH 反应
D.医疗上用 75%的酒精消毒是因为其能使蛋白质变性
2.有一种二肽,分子式为 C8H14N2O5,发生水解后得到丙氨酸和另一种氨基酸,则此 氨基酸的化学式为( )
有砖红色沉淀产
C
在水浴中加热 5min,然后加入足量氢氧化钠溶液至溶液呈碱性,

再加入新制氢氧化铜悬浊液并加热至沸腾
①A、B 两方案无明显现象的原因分别是 ________________________________________________。 ②确定某糖溶液是蔗糖而不是葡萄糖的方法是
________________________________________________。 (2)不同油脂在酸性和碱性条件下水解的共同产物是________,油脂在________(填 “酸”或“碱”)性条件下水解更彻底。 (3)在实验中,有时手上不慎沾上少许浓硝酸,处理后沾过硝酸的部位可能出现的明 显现象是________,原因是________________________________________________。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑龙江省高二数学上学期期中试题理(扫描版)
一、 选择题
BCBDCC CACABD 二、
填空题
13.10,8⎛⎫ ⎪⎝⎭
[]0,8 三、
解答题
17. 解:(1)设(),M x y ,因为2AM BM k k ⋅=-,所以
()2111
y y
x x x ⋅=-≠±+-化简 得:()2
2
221x y x +=≠± …………….4分
(2)设()11,C x y ,()22,D x y 当直线l x ⊥轴时,直线l 的方程为1
2x =
,则1,22C ⎛ ⎝⎭
,1,2D ⎛ ⎝⎭
,其中点不是N ,不合题意 设直线l 的方程为112y k x ⎛
⎫-=-
⎪⎝⎭
将()11,C x y ,()22,D x y 代入()2
2
221x y x +=≠±得
221122x y += (1) 222222x y += (2)
(1)-(2) 整理得:()12121212221121
x x y y k x x y y +-⨯=
=-=-=--+⨯
直线l 的方程为112y x ⎛⎫
-=--
⎪⎝

,经检验符合0∆> 即所求直线l 的方程为2230x y +-= …………10分 18.解:(Ⅰ)连结1A C 交1AC 于点O ,连结OD
1A C 交1AC 于点O ∴O 是1A C 的中点

D 是BC 的中点 ∴OD 是1A BC ∆的一条中位线
∴ 1A B ∥OD 又 1OD ADC ⊂平面
∴ 1A B ∥平面1ADC ………5分
(Ⅱ)以点D 为坐标原点,DB 所在直线为X 轴,AD 所在直线为Y 轴,垂直于面ABC 的直线为Z 轴,建立空间直角坐标系,则D (0,0,0),A (0
,0),C (12-,0,0)1
1C 012-(,,) 在平面ADC 1中,DA=(0
,0),1DC = 1012(,,)-
设m=(,,)xyz为平面ADC 1的一个法向量,则有1m?DA=0m?DC =0
⎧⎪⎨⎪⎩
,即0102
y x z ⎧=⎪⎪⎨⎪-+=⎪⎩
不妨令2x =,则1z =,0y =,所以()2,0,1m =
又1A 012⎛⎫
- ⎪ ⎪⎝⎭
,,则()10,0,1A A →=- 设1A A 与平面1ADC 所成角为θ,则1sin cos ,m A A θ==
11·m A A m
A A
⋅=
5
∴ 1A A 与平面1ADC 所成角的正弦值为5
. ………………12分
19. 解:(1)22
194
x y += ………4分
(2)由题可知,直线l 的斜率必存在,设直线l 的方程为()6y k x =-,()0,0P x , 则()()()()12
1202101020
0660PM PN y y k k k x x x k x x x x x x x +=
+=⇒--+--=--
即()()12012026120x x x x x x -+++=①
联立()()
22
222214910893636094
6x y k x k x k y k x ⎧+
=⎪⇒+-+⨯-=⎨⎪=-⎩
,且0∆>,则2122
2
122108499363649k x x k k x x k ⎧+=⎪⎪+⎨⨯-⎪=⎪+⎩
将其代入①得()()22
20003546964902
k k
x x k x --+++=⇒=
故0x 的值为
3
2
…………….12分 20. 解:(1)取AD 中点O ,连接,,OP OB BD . 因为PA PD =,所以PO AD ⊥.
因为菱形ABCD 中,60BCD ∠=,所以AB BD =. 所以BO AD ⊥.
因为BO PO O ⋂=,且,BO PO ⊂平面POB ,所以AD ⊥平面POB . 所以AD PB ⊥. ………………5分 (2)由(1)可知,BO AD ⊥,PO AD ⊥, 因为侧面PAD ⊥底面ABCD ,且平面PAD
底面
ABCD AD =,
所以PO ⊥底面ABCD .
以O 为坐标原点,如图建立空间直角坐标系O xyz -.
则0()10D -,,,0()13E -,,,()001P ,,,0()23C -,,,()1
00A ,,, 设() 01PQ PC λλ=<<,(2)31PC -=-,,,(10)1PA =-,,.
设(),,Q x y z ,则( ,),1PQ x y z =-,又因为 23()PQ PC λλλλ=--=,,,
所以2 31x y z λ
λλ=-⎧⎪=⎨⎪=-+⎩
,即1()23Q λλλ--+,,
,( 0)30DE =,,, 1231()DQ λλλ--=,,, 131PE =--(,,)
, 23PQ λλλ=--(,,), 设平面DEQ 的法向量()1
,,n x y z =,
则11
30 (12)(1)0n DE y n DQ x z λλ⎧⋅==⎪⎨⋅=-+-=⎪⎩, 所以平面DEQ 的法向量为1 1021
()n λλ
--=,,, 设平面PEQ 的法向量为2( ),,n x y z =,
则2220 0
n PQ x y z n
PE x z λλ⎧⋅=-+-=⎪⎨⋅=--=⎪⎩
,取1y =,得2 n =(, 因为平面DEQ ⊥平面PEQ ,
所以12 0110210n n λλ=⨯-+⨯-=⋅()(),解得1
2
λ=
, 故Q 为PC 中点时,平面DEQ ⊥平面PEQ . …………………12分 21. 解:(1)设AB 直线方程为1x ty =+,与2
4y x =联立得 2
440y ty --=,0∆> 恒成立
设()()112
2,,,A x y B x y , 124y y =-,1212111
()2222
AOB S y y y y ∆=
-=+≥⨯= 所以面积最小值为2.当且仅当122y y =-= 时取得。

……………5分 (2)设直线AB 的方程为()1y k x m =-,()()1122,,,A x y B x y ,
由()124y k x m y x
⎧=-⎨=⎩得2
11
440k y y k m --=,1214y y k +=,124y y m =-, 故21122,M m k k ⎛⎫+
⎪⎝⎭,同理22222,N m k k ⎛⎫
+ ⎪⎝
⎭ ∴直线MN 的方程为1221122y k k x m k k ⎛⎫
-=-- ⎪⎝
⎭,即()122y k k x m =-+,
∴直线MN 恒过定点()m,2. ………………12分
22.解:
(1)由已知得:1c =,2
2
1a b -
=
,2c =所以
22
a =
220a -=,解得a b ==
椭圆的方程22
132
x y += ……………4分
(2)①当直线的斜率为0时,显然不成立.
②设直线:1l x my =+,()()
1122,,,A x y B x y ,
联立222361
x y x my ⎧+=⎨=+⎩得()22
23440m y my ++-=
则121222
44
,2323
m y y y y m m --+=
⋅=++ 1ABF ∆中AB 边上的中线长为
111122
F A F B +=
=
22m
=⎝ ==
令223t m =+
则223m t =
-
得1112F A F B + ===由22F A F B λ=,得1
122
,y y y y λλ=--=
, ()2
2
12122
21121
42223
y y y y m y y y y m λλ+---+=++==+ 12λ≤≤,()22231
4120,232t m m t λλ-⎡⎤+-==∈⎢⎥+⎣⎦
11134,
43t t ∴≤≤≤≤,111
2
F A F B + ,24⎤∈⎥⎣⎦
1ABF ∆中AB 边上中线长的取值范围是24⎤
⎢⎥⎣⎦
………………12分。

相关文档
最新文档