罗素悖论与第三次数学危机
数学的三次危机——第三次数学危机
三、第三次数学危机数学基础的第三次危机是由1897年的突然冲击而出现的,从整体上看到现在还没有解决到令人满意的程度。
这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。
由于集合概念已经渗透到众多的数学分支,并且实际上集合论已经成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。
1897年,福尔蒂揭示了集合论的第一个悖论;两年后,康托发现了很相似的悖论,它们涉及到集合论中的结果。
1902年,罗素发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。
罗素,英国人,哲学家、逻辑学家、数学家。
1902年著述《数学原理》,继而与怀德海合著《数学原理》(1910年~1913年),把数学归纳为一个公理体系,是划时代的著作之一。
他在很多领域都有大量著作,并于1950年获得诺贝尔文学奖。
他关心社会现象,参加和平运动,开办学校。
1968~1969年出版了他的自传。
罗素悖论曾被以多种形式通俗化,其中最著名的是罗索于1919年给出的,它讲的是某村理发师的困境。
理发师宣布了这样一条原则:他只给不自己刮胡子的人刮胡子。
当人们试图答复下列疑问时,就认识到了这种情况的悖论性质:“理发师是否可以给自己刮胡子?”如果他给自己刮胡子,那么他就不符合他的原则;如果他不给自己刮胡子,那么他按原则就该为自己刮胡子。
罗素悖论使整个数学大厦动摇了,无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷本末尾写道:“一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了。
当本书等待付印的时候,罗素先生的一封信把我就置于这种境地”。
狄德金原来打算把《连续性及无理数》第3版付印,这时也把稿件抽了回来。
发现拓扑学中“不动点原理”的布劳恩也认为自己过去做的工作都是“废话”,声称要放弃不动点原理。
自从在康托的集合论和发现上述矛盾之后,还产生了许多附加的悖论。
集合论的现代悖论与逻辑的几个古代悖论有关系。
数学悖论与三次数学危机
欧多克
二百年后,大约在公元前 二百年后,大约在公元前370年,才华横溢的 年 欧多克索斯建立起一套完整的比例论。 欧多克索斯建立起一套完整的比例论。他本人的 著作已失传,他的成果被保存在欧几里德《 著作已失传,他的成果被保存在欧几里德《几何 原本》一书第五篇中。 原本》一书第五篇中。欧多克索斯的巧妙方法可 以避开无理数这一“逻辑上的丑闻” 以避开无理数这一“逻辑上的丑闻”,并保留住 与之相关的一些结论, 与之相关的一斯的解决方式, 而引起的数学危机。但欧多克索斯的解决方式, 是借助几何方法, 是借助几何方法,通过避免直接出现无理数而实 现的。这就生硬地把数和量肢解开来。 现的。这就生硬地把数和量肢解开来。在这种解 决方案下, 决方案下,对无理数的使用只有在几何中是允许 合法的,在代数中就是非法的,不合逻辑的。 的,合法的,在代数中就是非法的,不合逻辑的。 或者说无理数只被当作是附在几何量上的单纯符 而不被当作真正的数。 号,而不被当作真正的数。
数学史上把贝克莱的问题称之为“ 数学史上把贝克莱的问题称之为“贝克 莱悖论” 笼统地说, 莱悖论”。笼统地说,贝克莱悖论可以表述 无穷小量究竟是否为0”的问题 的问题: 为“无穷小量究竟是否为 的问题:就无穷 小量在当时实际应用而言,它必须既是0, 小量在当时实际应用而言,它必须既是 , 又不是0。但从形式逻辑而言, 又不是 。但从形式逻辑而言,这无疑是一 个矛盾。 个矛盾。这一问题的提出在当时的数学界引 起了一定的混乱, 起了一定的混乱,由此导致了第二次数学危 机的产生。 机的产生。
希帕索斯悖论与第一次数学危机
希帕索斯悖论的提出与勾股定理的发现密切 相关。因此,我们从勾股定理谈起。 相关。因此,我们从勾股定理谈起。勾股定理是 欧氏几何中最著名的定理之一。 欧氏几何中最著名的定理之一。天文学家开普勒 曾称其为欧氏几何两颗璀璨的明珠之一。 曾称其为欧氏几何两颗璀璨的明珠之一。它在数 学与人类的实践活动中有着极其广泛的应用, 学与人类的实践活动中有着极其广泛的应用,同 时也是人类最早认识到的平面几何定理之一。 时也是人类最早认识到的平面几何定理之一。在 我国,最早的一部天文数学著作《周髀算经》 我国,最早的一部天文数学著作《周髀算经》中 就已有了关于这一定理的初步认识。不过, 就已有了关于这一定理的初步认识。不过,在我 国对于勾股定理的证明却是较迟的事情。 国对于勾股定理的证明却是较迟的事情。一直到 三国时期的赵爽才用面积割补给出它的第一种证 明。
由悖论引起的三次数学危机
由悖论引起的三次数学危机数学发展史上的第一次危机发生于古希腊时期,当时毕达哥拉斯学派所倡导的是一种称为“唯数论”的哲学观点。
他们认为宇宙的本质就是数的和谐,一切事物都必须而且只能通过数学得到解释。
而他们所谓“数的和谐”是指一切事物和现象都可归结为整数或整数与整数之比。
他们深信这一观点无比正确,因此广泛利用它来解释各种现象。
而后不久即出现了我们前面介绍过的希帕索斯发现无理数的事件,而这一事件是由于一个简单的不公度线段的发现而引起的。
在一般人看来,对于任何两条不一样长的线段,我们都能找到第3条线段,使给定的两条线段都包含第3条线段的整数倍。
可是希帕索斯却发现,对于边长为l 的正方形,设它的对角线为x ,根据勾股定理,则有:2 )(2 2 22222=±==∴=+lx l x l x x l l 舍掉负根 这里出现的2,正好是1与2的比例中项(图153)。
但是无论如何了找不到两个整数之比等于2。
也就是说,x 和l 之间不可能是整数的比例关系,也就不可能找到一条线段,使x 和l 都包含它的整数倍。
因此,从数学的推导可以得出结论,那就是,与我们直观的观察和想像相反,的确存在着不可公度的线段,即不具有共同度量单位的线段。
不可公度线段的出现对毕达哥拉斯学派是一个沉重的打击,但这一怪现象毕竟是学派内部的人发现的,因此被称为毕达哥拉斯悖论或希帕索斯悖论。
希帕索斯为此而献出生命,但他的死并没有消除悖论的存在,却使数学界产生了极度的思想混乱,从而爆发屯第一次数学危机。
这次数学危机的解决导致无理数的诞生。
美籍华人数学家项武指出,有理数的准确翻译应该是“可比数”,无理数的准确翻译应该是“不可比数”。
经过这次惨痛的教训,古希腊数学家不得不承认直观和经验并非绝对可靠。
因此他们对一些凭经验而得到的几何知识都要求严格的推理加以证明,正是在这个过程中促进了欧氏几何和非欧几何的诞生。
数学史上的第二次危机发生在17世纪,涉及的是微积分理论基础的问题,是由贝克莱悖论引起的。
数学史三次危机简介
数学史三次危机简介
数学史上的三次危机,简要概括如下:
1. 第一次数学危机:公元前5世纪,毕达哥拉斯学派发现无理数,挑战了当时“万物皆数”(指整数或整数之比)的信念。
这次危机通过实数理论的建立得到解决。
2. 第二次数学危机:17至18世纪,围绕无穷小量的问题,主要与微积分的发展有关。
微积分学在理论不完善的情况下被广泛应用,但其基础—无穷小的概念受到质疑。
最终,通过实数理论和极限理论的建立,这次危机得到了缓解。
3. 第三次数学危机:19世纪末,集合论悖论的出现,如著名的罗素悖论,暴露了自洽性问题。
这些悖论挑战了集合论作为数学基础的地位。
至今,尽管哥德尔的不完备定理对形式系统的局限性做了阐述,但第三次数学危机并没有完全解决。
数学史上一共发生过三次危机,都是怎么回事
数学史上一共发生过三次危机,都是怎么回事?在数学历史上,有三次大的危机深刻影响着数学的发展,三次数学危机分别是:无理数的发现、微积分的完备性、罗素悖论。
第一次数学危机第一次数学危机发生在公元400年前,在古希腊时期,毕达哥拉斯学派对“数”进行了定义,认为任何数字都可以写成两个整数之商,也就是认为所有数字都是有理数。
但是该学派的一个门徒希帕索斯发现,边长为“1”的正方形,其对角线“√2”无法写成两个整数的商,由此发现了第一个无理数。
毕达哥拉斯的其他门徒知道后,为了维护门派的正统性,把希帕索斯杀害了,并抛入大海之中,看来古人也是解决不了问题时,先解决提出问题的人。
即便如此,无理数的发现很快引起了一场数学革命,史称第一次数学危机,这危机影响数学史近两千年的时间。
第二次数学危机微积分是一项伟大的发明,牛顿和莱布尼茨都是微积分的发明者,两人的发现思路截然不同;但是两人对微积分基本概念的定义,都存在模糊的地方,这遭到了一些人的强烈反对和攻击,其中攻击最强烈的是英国大主教贝克莱,他提出了一个悖论:从微积分的推导中我们可以看到,△x在作为分母时不为零,但是在最后的公式中又等于零,这种矛盾的结果是灾难性的,很长一段时间内数学家都找不到解决办法。
直到微积分发明100多年后,法国数学家柯西用极限定义了无穷小量,才彻底解决了这个问题。
第三次数学危机数学家总有一个梦想,试图建立一些基本的公理,然后利用严格的数理逻辑,推导和证明数学的所有定理;康托尔发明集合论后,让数学家们看到了曙光,法国科学家庞加莱认为:我们可以借助结合论,建造起整座数学大厦。
正在数学家高兴之时,英国哲学家、逻辑学家罗素,提出了一个惊人的悖论——罗素悖论:罗素悖论通俗描述为:在某个城市中,有一位名誉满城的理发师说:“我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。
”那么请问理发师自己的脸该由谁来刮?罗素悖论的提出,引发了数学上的又一次危机,数学家辛辛苦苦建立的数学大厦,最后发现基础居然存在缺陷,数学家们纷纷提出自己的解决方案;直到1908年,第一个公理化集合论体系的建立,才弥补了集合论的缺陷。
浅谈数学发展史中的三次危机
浅谈数学发展史中的三次危机摘要:在数学发展的历史长河中,危机与发展是并存的。
在数学发展史中出现了三次危机,人们通过对危机的探索,最终消除了它,并促进了数学的不断发展和进步。
第一次数学危机是人们对万物皆数的误解,随着无理数的发现进而度过了把第一次数学危机。
第二次数学危机是人们对无穷小的误解,而微积分的出现产生了一种新的方法——分析法,分析法是算和证的结合,是通过无穷趋近而确定某一结果。
罗素悖论的发现,导致了数学史上的第三次危机。
为了探求其根源和解决难题的途径,数学界、逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展。
归根结底,导致三次危机的原因,是由于人的认识。
关键词:危机;万物皆数;无穷小;分析方法;集合一、前言历史上,数学的发展又顺利也有曲折。
打的挫折也可以叫做危机。
危机也意味着挑战,危机的解决就意味着进步。
所以,危机往往是数学发展的先导。
数学发展史上有三次数学危机。
每一次危机,都是数学的基本部分受到质疑。
实际上,也恰恰是这三次危机,引发了数学上的三次思想解放,大大推动了数学科学的发展。
二、无理数的发现---第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。
罗素悖论与第三次数学危机
罗素悖论与第三次数学危机自相矛盾的悖论,是数学史上一直困扰着数学家的难题之一。
20世纪英国著名哲学家、数学家罗素曾经提出过一个著名的悖论——“理发师难题”,其内容如下:西班牙的塞维利亚有一个理发师,这位理发师有一条极为特殊的规定:他只给那些“不给自己刮胡子”的人刮胡子。
理发师这个拗口的规定,对于除他自己以外的别人,并没有什么难理解的地方。
但是回到他自己这里,问题就麻烦了。
如果这个理发师不给自己刮胡子,那么按照规定,他就应该给自己刮胡子;可是他给自己刮胡子的话,按照规定他又不应该给自己刮胡子。
因此,这位理发师无论是否给自己刮脸,都不符合自己的那条规定。
这真是令人哭笑不得的结果。
罗素还提出过与“理发师难题”相似的几个悖论,数学上将这些悖论统称为“罗素悖论”或者“集合论悖论”。
为什么又叫“集合论悖论”呢?因为“罗素悖论”都可以用集合论中的数学语言来描述,归结成一种说法就是:在某一非空全集中,有这样一个确定的集合,这个集合中“只有不属于这个集合的元素”。
那么,全集中的某一个指定元素,和这个确定集合之间是什么关系呢?不难分析,如果这个元素包含于这个集合的话,那么根据这个集合的定义,这个元素就应该是“不属于这个集合”的元素;可如果这个元素“不属于这个集合”,那么根据这个集合的定义,这个元素就应该在这个集合中,即包含于这个集合。
这就是说,全集中的每一个元素,与这个确定集合之间都不存在确定的包含关系,这无疑是讲不通的。
自从康托尔创立了数学领域中的“集合论”,用集合论中的观点来诠释各个数学概念之间的逻辑关系,真可谓是“天衣无缝”。
因此集合论被誉为“数学大厦的基石”。
然而“罗素悖论”的发现,证明了集合论中竟然存在自相矛盾的悖论,这足以暴露集合论本身的缺陷。
“罗素悖论”在20世纪数学理论中引起了轩然大波。
“数学大厦的基石”竟然出现了明显的“裂缝”,那么人类耗费数千年心血建立起来的“数学殿堂”,会不会倒塌呢?一时间,数学界众说纷纭,悲观者甚至因此把当代数学比作“建立在沙滩上的庞然大物”。
数学史上的三次危机
数学史上的三次危机(文章转载自数学进展简史)从哲学上来看,矛盾是无处不存在的,即便以确定无疑著称的数学也不例外。
数学中有大大小小的许多矛盾,例如正与负、加与减、微分与积分、有理数与无理数、实数与虚数等等。
在整个数学进展过程中,还有许多深刻的矛盾,例如有穷与无穷、连续与离散、存在与构造、逻辑与直观、具体对象与抽象对象、概念与运算等等。
在数学史上,贯穿着矛盾的斗争与解决。
当矛盾激化到涉及整个数学的基础时,就会产生数学危机。
而危机的解决,往往能给数学带来新的内容、新的进展,甚至引起革命性的变革。
数学的进展就经历过三次关于基础理论的危机。
一、第一次数学危机从某种意义上来讲,现代意义下的数学,也确实是作为演绎系统的纯粹数学,来源予古希腊毕达哥拉斯学派。
它是一个唯心主义学派,兴盛的时期为公元前500年左右。
他们认为,“万物皆数”(指整数),数学的知识是可靠的、准确的,而且能够应用于现实的世界,数学的知识由于纯粹的思维而获得,不需要观看、直觉和日常体会。
整数是在关于对象的有限整合进行运算的过程中产生的抽象概念。
日常生活中,不仅要运算单个的对象,还要度量各种量,例如长度、重量和时刻。
为了满足这些简单的度量需要,就要用到分数。
因此,假如定义有理数为两个整数的商,那么由于有理数系包括所有的整数和分数,因此关于进行实际量度是足够的。
有理数有一种简单的几何说明。
在一条水平直线上,标出一段线段作为单位长,假如令它的定端点和右端点分别表示数0和1,则可用这条直线上的间隔为单位长的点的集合来表示整数,正整数在0的右边,负整数在0的左边。
以q为分母的分数,能够用每一单位间隔分为q等分的点表示。
因此,每一个有理数都对应着直线上的一个点。
古代数学家认为,如此能把直线上所有的点用完。
然而,毕氏学派大约在公元前400年发觉:直线上存在不对应任何有理数的点。
专门是,他们证明了:这条直线上存在点p不对应于有理数,那个地点距离op等于边长为单位长的正方形的对角线。
20数学界大逆袭:揭秘第三次数学危机如何神奇解决
数学界大逆袭:揭秘第三次数学危机如何神奇解决在数学的历史长河中,曾经爆发过三次著名的数学危机,它们如同数学界的“黑洞”,吞噬着数学家们的智慧和勇气。
今天,我们将重点讲述这三次危机中的最后一次——第三次数学危机,以及它是如何被解决的。
相信我,这将是一段比任何数学公式都要精彩的探秘之旅!一、危机的导火索第三次数学危机,也被称为“罗素悖论引发的危机”。
它的导火索源于英国哲学家、逻辑学家伯特兰·罗素在1901年提出的一个著名悖论。
这个悖论针对的是当时如日中天的集合论,特别是由德国数学家康托尔提出的“所有集合的集合”这一概念。
罗素构建了一个非常有趣的悖论:假设存在一个由“所有不包含自身的集合”组成的集合R。
那么,R是否包含自身呢?如果R包含自身,那么根据定义,它就不应该被包含在内;如果R不包含自身,那么它符合“所有不包含自身的集合”的定义,应该被包含在内。
这个悖论如同一个无法解开的魔法结,让数学家们陷入了深深的困惑。
二、危机的蔓延罗素悖论的提出,如同在数学界投下了一颗原子弹。
它动摇了集合论的基础,使得许多原本被认为是严谨的数学推理都变得可疑。
更糟糕的是,这个悖论似乎无法用现有的数学工具来解决。
数学家们开始怀疑,他们辛辛苦苦建立起来的数学大厦是否建立在沙滩上?三、拯救数学的英雄就在数学界陷入一片混乱之际,一位名叫库尔特·哥德尔的德国数学家站了出来。
他决定用自己的智慧来解决这个看似无解的悖论。
哥德尔采用了一种全新的方法——形式化方法。
他试图将数学建立在更加严谨的逻辑基础上,从而避免罗素悖论这类问题的出现。
经过艰苦的努力,哥德尔在1931年取得了突破性进展。
他提出了著名的“不完备性定理”,这个定理指出:任何包含算术的形式系统,如果是一致的(即无矛盾的),则必定是不完备的(即存在无法证明也无法证伪的命题)。
这一发现震惊了数学界,因为它意味着数学家们不可能构建出一个既完备又一致的形式化数学系统。
三次数学危机的产生与解决
感谢观看
解决措施
针对三次数学危机,数学家们提出了各种解决措施。在第一次数学危机中, 欧多克索斯提出了实数的概念,将数学从困境中解脱出来;在第二次数学危机中, 数学家们对集合论进行严格的公理化,提出了公理化集合论;在第三次数学危机 中,
数学家们发展出了新的数学逻辑系统——模态逻辑,为数学的发展提供了更 加坚实的基础。
三次数学危机的产生与解决
目录
01 第一次数学危机
03 第三次数学危机
02 第内容
目录
06 总结
数学作为一门基础学科,是人类文明的重要组成部分。然而,在数学发展史 上,曾先后出现过三次严重的危机。本次演示将分别探讨这三次数学危机的产生 背景、原因及后果,并提出相应的解决措施。
第一次数学危机
第一次数学危机发生在公元前580年至568年之间的古希腊时期。这场危机的 起因主要在于当时数学界对无理数认识的不足。古希腊的数学家们认为,所有的 数都可以表示为整数或分数,即有理数。然而,当时希腊数学家希帕索斯发现了 一个问题:如果将
正方形的对角线进行等分,那么所得的线段长度就无法用有理数来表示。这 个发现动摇了当时数学界的基础,引发了第一次数学危机。
第二次数学危机
第二次数学危机发生在19世纪末期。这次危机源于康托尔的集合论,由于集 合论的某些基本概念含混不清,引发了数学界的恐慌。这场危机的根本原因是, 当时数学家们并未对集合论进行严格的公理化。为了解决这次危机,数学家们对 集合论进行了深入
研究,最终由策梅洛提出了公理化集合论,平息了这次危机。
发展。而在第三次数学危机时期,人们对数学的认知发生了根本性的改变, 使数学进入了一个全新的发展阶段。
总结
三次数学危机的产生与解决,是人类文明发展的重要组成部分。这些危机不 仅推动了数学的快速发展,而且也启示人们要不断深入思考和探索数学的内涵和 基础。通过了解三次数学危机的历史背景、原因、后果及解决措施,我们可以更 好地理解数学的
史上数学三大危机简介
---------------------------------------------------------------最新资料推荐------------------------------------------------------史上数学三大危机简介数学三大危机数学三大危机简述:第一,希帕索斯(Hippasu,米太旁登地方人,公元前 5 世纪)发现了一个腰为 1 的等腰直角三角形的斜边(即根号 2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论。
相传当时毕达哥拉斯派的人正在海上,但就因为这一发现而把希帕索斯抛入大海;第二,微积分的合理性遭到严重质疑,险些要把整个微积分理论推翻;第三,罗素悖论:S 由一切不是自身元素的集合所组成,那 S 包含 S 吗?用通俗一点的话来说,小明有一天说:我正在撒谎!问小明到底撒谎还是说实话。
罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!第一次数学危机毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题万物皆数是该学派的哲学基石。
毕达哥拉斯学派所说的数仅指整数。
而一切数均可表成整数或整数之比则是这一学派的数学信仰。
1 / 6然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的掘墓人。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为 1 的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数的诞生。
小小的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。
第三次数学危机的解决【罗素悖论与第三次数学危机】
个数算来算去,忽大忽小,最终都会演化成 4―2―1,因此把 4―2―1 称为
“冰雹数〞十分形象。
鲁宾逊的桌子
这个趣题摘自鲁宾逊的日记,在《鲁宾逊漂流记》的现今版本中你是 找不到的,因为它被删去了。
“第三天早晨,我在沉船漂浮物中找到一块木板,上面有很多洞。我的 仆人星期五始终在叨念,说我们迫切需要一张方桌,用来喝下午茶。于是我 就把这块木板给了他,要他用这块板做成一张没有洞的正方形桌面。我盼
中最基本的东西,所以一经提出就在当时的数学界引起了极大震动,第三
冰雹数
次数学危机由此爆发。
悖论的源头在于康托尔构造集合时使用的概括原则。这一原则说,“全 部满足某种性质〞的元素可以构成一个集合,这样的集合概念很宽泛。因 此要消除悖论就必需建立新的原则来对集合作出某种限制。
任意写出一个正整数 N,将其根据以下规律变换: 假如 N 是奇数,则下一步变成 3N&载可任意编辑,页眉双击删除即可。
假如 N 是偶数,则下一步变成 N/2……
望桌面尽可能大,而且最终成形的桌面最多只能由两块板拼成。〞
得到的结果重复上述步骤,如此循环演算下去。发觉了吗?无论 N 是什
星期五听了主人的要求以后一筹莫展。除了把洞填掉之外,你能帮他
假如 S 属于 S,那么依据 S 的定义,S 就不属于 S;反之,假如 S 不属于 S,同
公理化集合论体系把本来直观的集合概念建立在严格的公理基础之
样依据定义,S 就应当属于 S。
上,集合论从今进展到公理化阶段(1908 年以前由康托尔创立的集合论后
这就是有名的“罗素悖论〞,它特别浅显易懂,而且涉及的都是集合论 被称为朴实集合论),第三次数学危机得到了圆满解决。
第2页共2页
进入高中后,我们学习的第一个数学概念就是“集合〞。讨论集合的 有循环或者说“反身自指〞的特征,因此不同意有这种定义便可以解决问
三大数学危机
三大数学危机数学危机是数学公理在定义上的不完全或不够严谨,导致在理性推论下,将会得到错误的结论。
例如:在无理数还没被发现之前,在毕氏定理中出现腰长为1的等腰直角三角形的斜边长度,竟是无法写成有理数的数。
这是第一次数学危机。
第二次数学危机得解决微积分引入无穷小量而产生的极值问题(飞矢不动的悖论)。
第三次数学危机则是因罗素悖论而起,罗素悖论点出了数学集合论中的缺失。
飞矢不动悖论是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论中的一个。
人们通常把这些悖论称为芝诺悖论。
芝诺提出,由于箭在其飞行过程中的任何瞬间都有一个暂时的位置,所以它在这个位置上和不动没有什么区别。
中国古代的名家惠施也提出过,“飞鸟之景,未尝动也”的类似说法。
芝诺问他的学生:“一支射出的箭是动的还是不动的?”“那还用说,当然是动的。
”“确实是这样,在每个人的眼里它都是动的。
可是,这支箭在每一个瞬间里都有它的位置吗?”“有的,老师。
”“在这一瞬间里,它占据的空间和它的体积一样吗?”“有确定的位置,又占据着和自身体积一样大小的空间。
”“那么,在这一瞬间里,这支箭是动的,还是不动的?”“不动的,老师”“这一瞬间是不动的,那么其他瞬间呢?”“也是不动的,老师”“所以,射出去的箭是不动的?”罗素悖论(Russell's paradox),也称为理发师悖论,是罗素于1901年提出的悖论,一个关于类的内涵问题。
罗素悖论当时的提出,造成了第三次数学危机。
理发师悖论”悖论内容一位理发师说:“我只给不给自己刮脸的人刮脸。
”那么他是否给自己刮脸呢?如果他给的话,但按照他的话,他就不该给自己刮脸;如果他不给的话,但按照他的话,他就该给自己刮脸。
于是矛盾出现了。
罗素悖论我们通常希望:任给一个性质,满足该性质的所有类可以组成一个类。
但这样的企图将导致悖论:罗素悖论:设性质P(x)表示“”,现假设由性质P确定了一个类A——也就是说“”。
数学发展史上三次数学危机
数学发展史上三次数学危机第一次数学危机“无理数的产生”第一次危机发生在公元前580~568 年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。
毕达哥拉斯学派认为“万物皆数” ,这个数就是整数,他们确定数学的目的是企图通过数的奥秘来探索宇宙的永恒真理,并且认为宇宙间的一切现象都能归结为整数或整数之比。
后来这个学派发现了毕达哥拉斯学定理(勾股定理),他们认为这是一件很了不起的事,然而了不起的事后面还有更了不起的事。
毕达哥拉斯学派的希帕索斯从毕达哥拉斯定理出发,发现边长为 1 的正方形对角线不能用整数来表示,这就产生了这个无理数。
这无疑对“万物皆数” 产生了巨大的冲击,由此引发了第一次数学危机。
第二次数学危机“微积分工具”18 世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。
但是不管是牛顿,还是莱布尼茨所创立的微积分理论都是不严格的。
危机的起源因为牛顿和莱布尼茨的微积分理论是建立在无穷小分析之上的,但他们对作为基本概念的无穷小量的理解与应用是混乱的。
1734 年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础——无穷小的问题,提出了所谓贝克莱悖论。
笼统的说,贝克莱悖论可以表述为“无穷小量究竟是否为0”的问题。
这一问题的提出在当时的数学界引起了一定的混乱,由此导致了第二次数学危机的产生。
第三次数学危机“罗素悖论”到 19 世纪末,康托尔的集合论已经得到数学家的承认,集合论也成功地应用到其他的数学分支。
集合论是数学的基础,由于集合论的使用,数学似乎已经达到了无懈可击的地步。
但是,正当数学家们熟练地应用集合论时,数学帝国又爆发了一次危机。
康托尔集合论的创造性成果为数学提供了广泛的理论基础,所以在 1900 年巴黎国际数学会议上,法国大数学家庞加莱宣称:“数学的严格性,看来直到今天才可以说实现了。
数学历史上三大危机
数学历史上三大危机数学作为一门研究数量、结构、变化和空间等概念的学科,自诞生以来就不断面临着各种挑战和危机。
其中,数学历史上最为著名的三大危机,分别是无理数的发现、无穷小量的悖论以及集合论中的罗素悖论。
这三大危机不仅推动了数学的发展,也深刻地影响了数学哲学和科学哲学的演变。
一、无理数的发现无理数的发现是数学史上的一次重大突破,也是数学历史上第一次危机。
自古以来,人们一直认为所有的数都可以表示为分数,即两个整数的比例。
然而,公元前5世纪,古希腊数学家毕达哥拉斯学派发现了一个重要的几何事实:边长为1的正方形的对角线长度无法用两个整数的比例来表示。
这个发现不仅颠覆了毕达哥拉斯学派关于数的理论,也引发了一场关于无理数存在性的哲学争论。
无理数的发现揭示了数学中存在着一类无法用分数精确表示的数,这对当时的数学观念产生了巨大的冲击。
为了解决这个问题,古希腊数学家们发展了无理数的理论,并提出了诸如平方根、立方根等概念。
无理数的发现不仅推动了数学的发展,也促使人们重新审视数学的基础和本质。
二、无穷小量的悖论无穷小量的悖论是数学史上第二次重大危机。
在17世纪,随着微积分的诞生,无穷小量的概念逐渐被引入数学研究。
然而,无穷小量的性质和应用却引发了诸多悖论和争论。
例如,无穷小量是0还是非0?无穷小量乘以无穷大是什么?这些问题困扰着当时的数学家,也对微积分的发展产生了阻碍。
为了解决无穷小量的悖论,数学家们进行了深入的研究和探索。
19世纪,柯西、黎曼等数学家提出了极限的概念,建立了微积分的严格基础。
极限概念的引入不仅解决了无穷小量的悖论,也推动了数学分析的进一步发展。
三、集合论中的罗素悖论集合论中的罗素悖论是数学史上第三次重大危机。
19世纪末,德国数学家康托尔创立了集合论,为数学提供了一个全新的研究对象。
然而,1901年,英国哲学家罗素发现了一个关于集合论的基本悖论:一个集合如果包含所有不包含自身的集合,那么这个集合是否包含自身?罗素悖论揭示了集合论中存在的基本矛盾,对数学的基础产生了严重的挑战。
数学悖论与三次数学危机
数学发展从来不是完全直线式的,而是常常出现悖论。
历史上一连串的数学悖论动摇了人们对数学可靠性的信仰,数学史上曾经发生了三次数学危机。
数学悖论的产生和危机的出现,不单给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望,促进了数学的繁荣。
危机产生、解决、又产生的无穷反复过程,不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。
数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。
悖论是指在某一一定的理论体系的基础上,根据合理的推理原则,推出了两个互相矛盾的命题,或者是证明了这样一个复合命题,它表现为两个互相矛盾的命题的等价式[1] 。
数学悖论在数学理论中的发展是一件严重的事,因为它直接导致了人们对于相应理论的怀疑,而如果一个悖论所涉及的面十分广泛的话,甚至涉及到整个学科的基础时,这种怀疑情绪又可能发展成为普遍的危机感,特别是一些重要悖论的产生自然引起人们对数学基础的怀疑以及对数学可靠性信仰的动摇。
数学史上曾经发生过三次数学危机,每次都是由一两个典型的数学悖论引起的。
本文回顾了历史上发生的三次数学危机,重点介绍了三次数学危机对数学发展的重要作用。
公元前六世纪,在古希腊学术界占统治地位的毕达哥拉斯学派,其思想在当时被认为是绝对权威的真理,毕达哥拉斯学派倡导的是一种称为“唯数论”的哲学观点,他们认为宇宙的本质就是数的和谐[2] 。
他们认为万物皆数,而数只有两种,就是正整数和可通约的数(即分数,两个整数的比),除此之外不再有别的数,即是说世界上只有整数或分数。
毕达哥拉斯学派在数学上的一项重大贡献是证明了毕达哥拉斯定理[3] ,也就是我们所说的勾股定理。
勾股定理指出直角三角形三边应有如下关系,即 a2 =b2 +c 2,a 和 b 分别代表直角三角形的两条直角边, c 表示斜边。
然而不久毕达哥拉斯学派的一个学生希伯斯很快便发现了这个论断的问题。
三次数学危机论文精选全文
精选全文完整版(可编辑修改)浅谈数学发展史中的三次“危机”数学常常被人们认为是自然科学中发展得最完善的一门学科,但在数学的发展史中,却经历了三次危机,人们为了使数学向前发展,从而引入一些新的东西使问题化解,在第一次危机中导致无理数的产生;第二次危机发生在十七世纪微积分诞生后,无穷小量的刻画问题,最后是柯西解决了这个问题;第三次危机发生在19世纪末,罗素悖论的产生引起数学界的轩然大波,最后是将集合论建立在一组公理之上,以回避悖论来缓解数学危机。
本文回顾了数学上三次危机的产与发展,并给出了我对这三次危机的看法,最后得出确定性丧失的结论。
一、数学史上的第一次“危机”第一次数学危机是发生在公元前580~568年之间的古希腊。
那时的数学正值昌盛,特别是以毕达哥拉斯为代表的毕氏学派对数的认识进行了研究,他们认为“万物皆数”。
所谓数就是指整数,他们确定数的目的是企图通过揭示数的奥秘来探索宇宙的永恒真理,信条是:宇宙间的一切现象都能归结为整数或整数之比,即世界上只存在整数与分数,除此之外他们不认识也不承认别的数。
在那个时期,上述思想是绝对权威、是“真理”。
但是不久人们发现即使边长为1的正方形对角线不是可比数。
这样毕达哥拉斯“万物皆数”是不成立的,绝对的权威受到了严重的挑战:一方面证明单位正方形对角线的长不是整数分数,按照他们的观点,这种长度不是数!另一方面,他们不承认自己的观点有问题,这就陷入了极大的矛盾之中,这是第一次数学危机。
二、数学史上的第二次“危机”第二次数学危机发生在十七世纪。
十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。
其实我翻了一下有关数学史的资料,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到很多年后,牛顿和莱布尼兹开辟了新的天地——微积分。
微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾。
数学史上的三大数学危机
a
d
t
a mt
d nt
5
实例
① 形数(表示图形所用点的个数)
6
三边形数 四边形数 五边形数
六边形数
3
4
5
6
6
9
12
15
10
16
22
28
15
25
35
45
1 3 (2n 1) n2
1 5 (4n 3) 2n2 n
1 2 n n(n 1) 2
1 4 (3n 2) n(3n 2) 2
实数理论—极限理论—微积分。 而“历史顺序”则正好相反。
29
三、第三次数学危机
1.“数学基础”的曙光——集合论
到19世纪,数学从各方面走向成熟。非欧几何 的出现使几何理论更加扩展和完善;实数理论(和 极限理论)的出现使微积分有了牢靠的基础;群的 理论、算术公理的出现使算术、代数的逻辑基础更 为明晰,等等。人们水到渠成地思索:整个数学的 基础在哪里?正在这时,19世纪末,集合论出现了。 人们感觉到,集合论有可能成为整个数学的基础。
34
罗素悖论是:以 M表示“是其本身成员的
所有集合的集合”(所有异常集合的集合),
而以 N表示“不是它本身成员的所有集合的集
合”(所有正常集合的集合),于是任一集合
或者属于M ,或者属于 N ,两者必居其一,且
只居其一。然后问:集合N 是否是它本身的 成员?(集合 N 是否是异常集合?)
35
如果 N 是它本身的成员,则按 M 及 N 的定 义,N 是 M 的成员,而不是 N 的成员,即N 不
有公式 S(t) 1 gt ,2 其中 g 是固定的重力加速度。
2
我们要求物体在t 0
从罗素悖论到第三次数学危机
• (3)无序对公理:对任意集合X,Y,存在集合Z,使得X,Y是它仅有的元素。 也
就是说:我们可以用一个集合 Z={X,Y} 来表示任给的两个集合 X,Y,称之为X 与Y的无序对。 •
• (4)并集公理:任给一族M,存在UM(称为M的并)它的元素恰好为M中所含
元素的元素。 也就是说:我们可以把族M的元素的元素汇集到一起,组成一 个新集合。 注:为了方便描述,定义族表示其元素全为集合的集合。 • (5)幂集公理(子集之集公理):对任意集合X,存在集合P(X),它的元素恰 好就是X的一切子集。 也就是说:存在以已知集合的一切子集为元素的集合。
存在的。
• 罗素悖论的形式帮助我们看清了这一点:对于任何一个集合 A,总存在一个 集合 B,使得 B 不在 A 里面。换而言之,不存在所有集合的集合。
第三次数学危机的后续
• 罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他
刚要出版的《算术的基本法则》第2卷末尾写道: "一位科学家不会碰到比这 更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的 时候,罗素先生的一封信把我置于这种境地"。于是终结了近12年的刻苦钻研。 • 承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数
得诺贝尔文学奖,以表彰其“多样且重要的作品,持续不断的追求人道主义
理想和思想自由”。他的代表作品有《幸福之路》、《西方哲学史》、《数 学原理》、《物的分析》等。
数学危机
• 数学危机是数学在发展中种种矛盾, 数学中有大大小小的许多矛盾,比如正
与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是 整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散, 乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。在 整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
罗素悖论与第三次数学危机
自相矛盾的悖论,是数学史上一直困扰着数学家的难题之一。
20世纪英国著名哲学家、数学家罗素曾经提出过一个著名的悖论——“理发师难题”,其内容如下:
西班牙的塞维利亚有一个理发师,这位理发师有一条极为特殊的规定:他只给那些“不给自己刮胡子”的人刮胡子。
理发师这个拗口的规定,对于除他自己以外的别人,并没有什么难理解的地方。
但是回到他自己这里,问题就麻烦了。
如果这个理发师不给自己刮胡子,那么按照规定,他就应该给自己刮胡子;可是他给自己刮胡子的话,按照规定他又不应该给自己刮胡子。
因此,这位理发师无论是否给自己刮脸,都不符合自己的那条规定。
这真是令人哭笑不得的结果。
罗素还提出过与“理发师难题”相似的几个悖论,数学上将这些悖论统称为“罗素悖论”或者“集合论悖论”。
为什么又叫“集合论悖论”呢?因为“罗素悖论”都可以用集合论中的数学语言来描述,归结成一种说法就是:在某一非空全集中,有这样一个确定的集合,这个集合中“只有不属于这个集合的元素”。
那么,全集中的某一个指定元素,和这个确定集合之间是什么关系呢?不难分析,如果这个元素包含于这个集合的话,那么根据这个集合的定义,这个元素就应该是“不属于这个集合”的元素;可如果这个元素“不属于这个集合”,那么根据这个集合的定义,这个元素就应该在这个集合中,即包含于这个集合。
这就是说,全集中的每一个元素,与这个确定集合之间都不存在确定的包含关系,这无疑是讲不通的。
自从康托尔创立了数学领域中的“集合论”,用集合论中的观点来诠释各个数学概念之间的逻辑关系,真可谓是“天衣无缝”。
因此集合论被誉为“数学大厦的基石”。
然而“罗素悖论”的发现,证明了集合论中竟然存在自相矛盾的悖论,这足以暴露集合论本身的缺陷。
“罗素悖论”在20世纪数学理论中引起了轩然大波。
“数学大厦的基石”竟然出现了明显的“裂缝”,那么人类耗费数千年心血建立起来的“数学殿堂”,会不会倒塌呢?一时间,数学界众说纷纭,悲观者甚至因此把当代数学比作“建立在沙滩上的庞然大物”。
这就是数学史上著名的“第三次数学危机”。