列举法求概率(1)列举

合集下载

用列举法求概率

用列举法求概率
出的数字能够整除第一次取出的数字的概率是多少?
解:由题意得两次抽取共有36种等可能出现的结果,
第二次取出的数字能够整除第一次取出的数字的结果
有14种,即有(1,1), (2,1), (2,2), (3,1), (3,3), (4,1), (4,2),
(4,4),(5,1),(5,5),(6,1),(6,2),(6,3),(6,6) ,
学时经过的每个路口都是绿灯,此事件发生的概率是
多少?
这个问题能用直接列表法和列表法解
决吗?有什么简单的解决办法吗?
解:根据题意画树状图如下:


第1路口
第2路口


绿 红

绿
绿


绿
第3路口 红 黄 绿 红 黄 绿红 黄 绿红 黄 绿红 黄 绿红 黄 绿 红 黄 绿红 黄 绿红 黄 绿
红 红 红红 红 红红 红 红黄 黄 黄黄 黄 黄黄 黄 黄 绿 绿 绿绿 绿 绿绿 绿 绿
3
.
关键是不重不漏地
解:由2, 3, 4这三个数字组成的无重复数字的所有三位数为234,
列举出由2,3,4组成
的无重复数字的所
243, 324, 342, 432, 423,共6种情况, 而“V”数有324和423,共2
有的三位数.
种情况,
故从2, 3, 4这三个数字组成的无重复数字的三位数中任意抽取一
①所有可能出现的结果是有限个;
②每个结果出现的可能性相等.
(3)所求概率是一个准确数,一般用分数表示.
新知探究 跟踪训练
例1 若我们把十位上的数字比个位和百位上数字都小的三位数称
为“V数”, 如756, 326 , 那么从2, 3, 4这三个数字组成的无重复数

《概率》课后作业总结

《概率》课后作业总结

1. 2. 3. 4. 5. 用列举法求概率(一)、填空题 一个袋中装有10个红球、3个黄球,每个球只有颜色不同,现在任意摸出一个球,摸到 ______ 球的可能性较大. 掷一枚均匀正方体骰子,6个面上分别标有数字1, 2, 3, 4, 5, 6, (1)P (掷出的数字是1) = ____________________ ; (2) P (掷出的数字大于4) = . 某班的联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果, 标于一个转盘的相应区域上(如图所示),转盘可以自由转动,参与者 转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品.则 获得钢笔的概率为 ,获得 的概率大. 一副扑克牌有54张,任意从中抽一张. (1) __________________ 抽到大王的概率为 ; (2) _________________ 抽到A 的概率为 ; (3)__________________ 抽到红桃的概率为 ; (4) ___________________ 抽到红牌的概率为 ;(红桃或方块) (5) _________________________ 抽到红牌或黑牌的概率为 . 、选择题 一道选择题共有4个答案,其中有且只有一个是正确的, ). 则有: 图书 有一位同学随意地选了一个答案, 那么他选对的概率为( B.-2掷一枚均匀的正方体骰子,骰子概率为().A . 16一个口袋共有 是(). A . 4 5三、解答题 8.有10张卡片,每张卡片分别写有 6. 7.B.-450个球,其中白球 C . 1 36个面分别标有数字1, 1, 丄 42, 2, 3, 3,贝厂'3”朝上的C . 1320个,红球20个,蓝球10个,则摸到不是白球的概率C . 2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,从中任意摸取一张 卡片,问摸到2的倍数的卡片的概率是多少?3的倍数呢?5的倍数呢? 9.小李新买了一部手机,并设置了六位数的开机密码 (每位数码都是0〜9这10个数字中的 一个),第二天小李忘记了密码中间的两个数字,他一次就能打开手机的概率是多少 ? 课后作业: 一、填空题 10. _______________________________________________________________ 袋中有3个红球,2个白球,现从袋中任意摸出1球,摸出白球的概率是 _________________ . 11. 有纯黑、纯白的袜子各一双,小明在黑暗中穿袜子,左脚穿黑袜子,右脚穿白袜子的概 率为 _____ .涂有红色的概率为丄;③取到的球上涂有蓝色的概率为2概率为1,以上四个命题中正确的有().4A . 4个三、解答题17 .随意安排甲、乙、丙3人在3天节日中值班,每人值班1天.(1) 这3人的值班顺序共有多少种不同的排列方法 ? (2) 其中甲排在乙之前的排法有多少种? (3) 甲排在乙之前的概率是多少?18.甲、乙、丙三人参加科技知识竞赛,已知这三人分别获得了一、二、三等奖.在不知谁 获一等奖、谁获二等奖、谁获三等奖的情况下, “小灵通”凭猜测事先写下了获奖证书,则“小灵通”写对获奖名次的概率是多少 ?19.有两组相同的牌,每组4张,它们的牌面数字分别是1, 2, 3, 4,那么从每组中各摸出 一张牌,两张牌的牌面数字之和等于5的概率是多少?两张牌的牌面数字之和等于几的概 率最小?率是 ______ . 二、选择题 13. 一个均匀的正方体各面上分别标有数字 1, 2, 3, 4, 6, 8,其表面展开图如图所示,抛 掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的 2 1 1 1 A . 2 B . - C . 1D .- 3 2 3 6 14 .从6名同学中选出4人参加数学竞赛,其中甲被选中的概率是( 丄 C . 3 2 5)•2倍的概率是( .A .- 3 15.柜子里有两双不同的鞋, A . 12取出两只刚好配一双鞋的概率是 ( 1 C . 1 3 4 1 6 16 .设袋中有4个乒乓球,一个涂白色,一个涂红色,一个涂蓝、白两色, 蓝三色,今从袋中随机地取出一球.①取到的球上涂有白色的概率为 另一个涂白、红、 -;②取到的球上4-;④取到的球上涂有红色、蓝色的2C . 2个20 .用24个球设计一个摸球游戏,使得:(1) 摸到红球的概率是丄,摸到白球的概率是-,摸到黄球的概率是-;236(2) 摸到白球的概率是1,摸到红球和黄球的概率都是用列举法求概率(二)二、解答题3•在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各 1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1) 试用树状图(或列表法)表示摸球游戏所有可能的结果;(2) 如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.4•一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同. (1) 如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少 ? (2) 小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,一、选择题1. 在一个暗箱里放入除颜色外其他都相同的个球,取到红.球.的概率是( ).A. -B.-11 112. 号码锁上有3个拨盘,每个拨盘上有 拨一个号码,能打开锁的概率是(B . 1103个红球和 11个黄球,搅拌均匀后随机任取一11C .—140〜9共10个数字,能打开锁的号码只有一个.任意 ). C . 1 D. ?14D . 11000小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.5.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后, 指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.」©A6•“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少?(2)比赛中一人胜,二人负的概率是多少?313. 某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老 师从5人中选2人向全校学生介绍学好数学的经验, 得者,一人是二等奖获得者的概率是 A . 1B.-55三、 解答题 14 . 口袋里有红、绿、黄三种颜色的球,任意摸出1个绿球的概率是1求:则选出的2人中恰好一人是一等奖获(). C . 35 除颜色外其余都相同.其中有红球 4个,绿球5个,(1) 口袋里黄球的个数;(2)任意摸出1个红球的概率.7. 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大 小相同,三辆汽车经过这个十字路口,求下列事件的概率: (1) 三辆车全部直行; (2) 两辆车向右转,一辆车向左转; (3 )至少有两辆车向左转.课后作业: 一、填空题8•“五一”期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙 地到丙地有三条公路.每一条公路的长度如图所示 (单位:km),梁先生任选一条从甲地到 丙地的路线,这条路线正好是最短路线的概率是 ________________ .9. 同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是 ______ , _____ .10. 银行为储户提供的储蓄卡的密码由 0,1, 2,…,9中的6个数字组成.某储户的储蓄卡 被盗,盗贼如果随意按下6个数字,可以取出钱的概率是 ___________ .11. 小明和小颖做游戏:桌面上放有 5支铅笔,每次取1支或2支,由小明先取,最后取完铅笔的人获胜.如果小明获胜的概率为 1,那么小明第一次应取走 __________ 支. 二、 选择题 12. 有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白 色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同 的概率是().111A .丄B. -C .丄3 4515. 小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是 ________16. 请你设计一种均匀的正方体骰子,使得它掷出后满足下列所有条件:1(1) 奇数点朝上的概率为-;3⑵大于6的点数与小于3的点数朝上的概率相同.利用频率估计概率(一)7. 对某厂生产的直径为4cm 的乒乓球进行产品质量检查,结果如下: (1)计算各次检查中“优等品”的频率,填入表中;(2)该厂生产乒乓球优等品的概率约为多少 ?8. 某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小 亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为 25%,摸到黄、填空题当实验次数很大时,同一事件发生的频率稳定在相应的_______ 附近,所以我们可以通过多 次实验,用同一个事件发生的 _______ 估计这事件发生的概率.(填“频率”或“概率”) 50张牌,牌面朝下,每次抽出一张记下花色后放回,洗匀后再抽,抽到红桃、黑桃、梅 花、方片的频率依次是16%、24%、8%、52%,估计四种花色分别有 ________________ 张. 在一个8万人的小镇,随机调查了 1000人,其中有250人有订报纸的习惯,则该镇有订 报纸习惯的人大约为 ___________ 万人.为估计某天鹅湖中天鹅的数量,先捕捉 10只,全部做上记号后放飞.过了一段时间后, 重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅 __________ 只. 、选择题5.如果手头没有硬币,用来模拟实验的替代物可用 (C .锥体1. 2. 3.4.A .汽水瓶盖B .骰子 6. 在“抛硬币”的游戏中,如果抛了 A .确定的 B .可能的三、解答题 ). D .两个红球10000次,则出现正面的概率是50%,这是( ).C .不可能的D .不太可能的球的频率为40%,试估计出原纸箱中红球、黄球的数目.课后作业:一、填空题9•一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色, 再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有白球.10•某班级有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人, 其中共青团员4人.如果要在班内任选一人当学生代表,那么这个代表恰好在第一小组内的概率为_____________ ;现在要在班级任选一个共青团员当团员代表,问这个代表恰好在第一小组内的概率是_______ .二、解答题11.在5瓶饮料中有2瓶已过了保质期,从5瓶饮料中任取2瓶,贝U取到的2瓶都过了保质期的可能性是多少?请你用替代物进行模拟实验,估计问题的答案.12.某笔芯厂生产圆珠笔芯,每箱可装2000支.一位质检员误把一些已做标记的不合格产品也放入箱子里,若随机拿出100支,共做10次实验,这100支中不合格笔芯的平均数是5,你能估计箱子里有多少支不合格品吗?若每支合格品的利润为0.5元,如果顾客发现不合格品,需双倍赔偿(即每支赔1元),如果让这箱含不合格品的笔芯走上市场,根据你的估算这箱笔芯是赚是赔?赚多少或赔多少?13.为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机捕(1)估计池塘中鱼的总数.根据这种方法估算是否准确(2)请设计另一种标记的方法,使得估计更加精准.14.小明在乒乓球馆训练完后,不慎将若干白球放入了装有 30个橙色球的袋子中,已知两种 球除颜色外都相同,你能帮他设计一个方案来估计放进多少白球吗 ? 15.北京联通公司市场部经理小张想了解市内移动公司等对手的市场占有率及用户数量,你 能帮他设计一种方案估计出其他公司用户的数量吗 ? 16. 一口袋中只有若干粒白色围棋子,没有其他颜色的棋子;而且不许将棋子倒出来数,请 你设计一个方案估计出其中白色棋子的数目. 6利用频率估计概率(二) 1. 2. 3. 4. 、填空题 用频率来估计概率的值,得到的只是 _______ ,但随实验的次数增多,频率值与实际概率值 的差会越来越趋近于 _______ ,此时对这个事件发生概率值估计的准确性也就越大. 某单位共有30名员工,现有6张音乐会门票,领导决定分给 6名员工,为了公平起见, 他将员工们按1〜30进行编号,用计算器随机产生 _________ 〜 _____ 间的整数,随机产生 的 _____ 个整数对应的编号去听音乐会. 为了解某城市的空气质量,小明由于时间的限制,只随机记录了一年中 73天空气质量情 况,其中空气质量为优的有60天,请你估计该城市一年中空气质量为优的有 __________ . 利用计算器产生1〜5的随机数(整数),连续两次随机数相同的概率是 _____ . 、选择题 5.某口袋放有编号1〜6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次 ) 1 1 1 A . — B . 一 C .— 36 18 6 6 .某科研小组,为了考查某河流野生鱼的数量,从中捕捞 经过一段时间,再从中捕捞 300条,发现有标记的鱼有 ()摸到的球相同的概率是( D.-2 200条,作上标记后,放回河里,15条,则估计该河流中有野生鱼 B . 4000条 C . 2000条D . 1000条7•在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:⑴请估计:当n很大时,摸到白球的频率将会接近________ ;(2)假如你去摸一次,你摸到白球的概率是______ ,摸到黑球的概率是______ ;(3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.8.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由.课后作业:一、填空题9•均匀的正四面体各面分别标有1, 2, 3, 4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是__________ •如果没有正四面体,设计一个模拟实验用来替代此实验:________________________________ ,10.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的两端刚好都接有绳子的概率是______________ .11 •某数学兴趣小组为了估计n的值设计了投针实验.平行线间的距离a0.5m,针长为0.1m, 向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相交的概率的近似值,并估计出n的值.12.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC .为了知道它的面积,小明在封闭图形内划出了一个半径为1m的圆,在不远处向圈内掷石子,且记录如下:你能否求出封闭图形ABC的面积?试试看.13.地面上铺满了正方形的地砖(40cm X 40cm).现在向其上抛掷半径为5cm的圆碟,圆碟与地砖间的间隙相交的概率大约是多少?14.设计一个方案,估计10个人中有2个人生日相同的概率是多少?写出你的方案设计.15.一次战争期间,参战的一方的一名间谍深入敌国内部,他侦察到的情报如下:(1)该国参战部队有220个班建制;(2)他在敌国参战部队的不同地点侦察了22个班;22个班中有20个班严重缺员,另外2 个班只是基本满员;(3)敌国的士气不振.因此,他向本国发回消息:“敌国已基本失去战斗力”.你认为这名间谍的消息正确吗。

列举法求概率

列举法求概率



“掷两枚硬币”所有结果如下:








正正
正反
反正
反反
解: (1)两枚硬币两面一样包括两面都是正面,两面都是反面,共两种情形;所以学 生赢的概率是
2 1; 42
(2)一枚硬币正面朝上,一枚硬币反面朝上,共有反正,正反两种情形;所以老师 赢的概率是
2 1. 42
∵P(学生赢)=P(老师赢).
(5,1)
(6,1)
注意有序数
对要统一顺
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)

3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
6
(1,6)
问题2 怎样列表格?
列表法中表格构造特点: 一个因素所包含的可能情况
另一个因素所 包含的可能情 况
两个因素所组合的所有可能情况,即n
列表法
说明:如果第一个因素包含2 种情况;第二个因素包含3种 情况;那么所有情况 n=2×3=6.
典例精析
例1 同时掷两个质地均匀的骰子,计算下列事件的概率:
(1)两个骰子的点数相同;
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
解:由列表得,同时掷两枚骰子,可能出现的结果有36个,它们出现的可能性相等.

九年级数学用列举法求概率1(1)

九年级数学用列举法求概率1(1)
把菜送进厨房。流水洗水二十秒。出来,顺手从餐桌上取一粒饴糖放进口中。饴糖,麦芽糖, 浦江朋友馈赠的。吃完糖继续喝黟山石墨。
有《黟县志》,清同治七年(1868)编的, 就记录了石墨茶。据此判断,此茶历史至少有一百五十多年。我查到一篇学术论文,说石墨茶的品质特征,色泽墨绿,白毫显现,外形紧细, 弯曲如钩。 又说,石墨茶“香气清高,滋味鲜醇, 汤色清澈,叶底鲜活”。我比对了一下,后面这几句话,若用来形容任何一款绿茶,怕也不会不恰如其分。姑且看看就好。
365备用登陆 黟山石墨
喝完涌溪火青,索性再喝一道黟山石墨。
这两种茶摆在一起,形状差不多,黟山石墨颜色再深一些。到底是石墨,名字摆在那里,不黑能叫墨吗?泡出来也很不一样。黟山石墨茶汤是红的,似有荔枝香,喝起来也像是红茶。
十余天宅在家中,喝茶自娱。一泡时,团状茶珠在水中舒展开来,依然筋筋道道的样子,仿佛老树枯墨。喝干一泡,去客厅健身。一组做下来,额头汗出,回书房水沸,又泡一道,茶叶又舒展一些, 茶汤澈亮,味道还是很浓。
黟山石墨用的是黄山大叶种,制茶不是取芽叶,而是普通的单片叶子。从壶中取一片叶子, 量了一下,长的一张是六点五厘米。
此时门铃响。不开门,就在门内问,谁呀。外面说,送菜的。上,向盒马鲜生订的蔬菜。这段非常时期,足不出户,也不与人正面 接触,少给社会添麻烦,唯看书观影喝茶是正道。

【数学】概率与统计解题方法及技巧

【数学】概率与统计解题方法及技巧

【数学】概率与统计解题⽅法及技巧⼀、概率(⼀)考点及要求考点1:确定事件和随机事件考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单⽣活事件中的必然事件、不可能事件、随机事件。

考点2:事件发⽣的可能性⼤⼩,事件的概率考核要求:(1)知道各种事件发⽣的可能性⼤⼩不同,能判断⼀些随机事件发⽣的可能事件的⼤⼩并排出⼤⼩顺序;(2)知道概率的含义和表⽰符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发⽣的频率之间的区别和联系,会根据⼤数次试验所得频率估计事件的概率。

注意:(1)在给可能性的⼤⼩排序前可先⽤“⼀定发⽣”、“很有可能发⽣”、“可能发⽣”、“不太可能发⽣”、“⼀定不会发⽣”等词语来表述事件发⽣的可能性的⼤⼩;(2)事件的概率是确定的常数,⽽概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数⾜够⼤时才能更精确。

考点3:等可能试验中事件的概率问题及概率计算考核要求:(1)理解等可能试验的概念,会⽤等可能试验中事件概率计算公式来计算简单事件的概率;(2)会⽤枚举法或画“树形图”⽅法求等可能事件的概率,会⽤区域⾯积之⽐解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

注意:(1)计算前要先确定是否为可能事件;(2)⽤枚举法或画“树形图”⽅法求等可能事件的概率过程中要将所有等可能情况考虑完整。

计算步骤:(1) 计算⼀次试验的基本事件总数n;(2) 设所求事件A,并计算事件A包含的基本事件的个数m;(3) 依公式值;(4) 答,即给问题⼀个明确的答复.(⼆)列举法求概率(1) 列举法求概率①⼀次试验中,可能出现的结果只有有限个.②⼀次试验中,各种结果出现的可能性⼤⼩相等.(2)列表法当⼀次试验要涉及两个因素并且可能出现的结果数⽬较多时,为不重不漏地列出所有可能的结果,通常采⽤列表法求事件发⽣的概率.(3)树形图法当⼀次试验要涉及3个或更多的因素时,列⽅形表就不⽅便了,为不重不漏地列出所有可能的结果,通常采⽤树形图来求事件发⽣的概率.(三)⽤频率估计概率1.频率的稳定性在做⼤量重复试验时,随着试验次数的增加,⼀个事件出现的频率,总在⼀个固定数的附近摆动,显⽰出⼀定稳定性.2.⽤频率估计概率⼀般地,在⼤量重复试验中,如果事件A发⽣的频率会稳定在某个常数p附近,那么事件A发⽣的概率P(A)=p.3. 频率和概率的区别频率和概率是两个不同的概念,⼆者既有区别⼜有联系,事件发⽣的概率是⼀个确定的值(理论值),⽽频率是不确定的(试验值),当试验次数较少时,频率的带下摇摆不定,当试验次数增⼤时,频率的⼤⼩波动变⼩,逐渐稳定在概率附近。

用列举法求概率

用列举法求概率

用列举法求概率在概率论中,列举法是一种常用的求解事件概率的方法。

该方法的核心思想是通过列举事件的可能出现情况并计算这些情况的频率,来推断事件出现的概率。

下面将通过一个例子详细说明如何使用列举法来计算概率。

例子假设一家公司有5个员工,其中3个是男性,2个是女性。

现在从这5个员工中随机选择1个人,求该人是男性的概率。

首先,我们列举可能的情况,即从5个人中选择1个人,共有5种可能:1.选择第1个员工,是男性2.选择第2个员工,是男性3.选择第3个员工,是男性4.选择第4个员工,是女性5.选择第5个员工,是女性接下来,我们计算每种情况的概率。

1.选择第1个员工,是男性的概率为3/52.选择第2个员工,是男性的概率为3/53.选择第3个员工,是男性的概率为3/54.选择第4个员工,是女性的概率为2/55.选择第5个员工,是女性的概率为2/5最后,根据概率的定义,该人是男性的概率为选择男性的情况数除以所有情况数,即3/5,约为0.6。

通过以上例子,我们可以看出,列举法是一种非常简单有效的求解事件概率的方法。

对于一些简单的问题,我们可以通过列举可能的情况并计算概率来快速得出答案。

当然,在实际应用中,我们也需要注意一些问题,比如是否考虑了所有可能的情况、每种情况的概率是否正确等。

只有在全面准确考虑了所有问题,我们才能得出可靠的概率结果。

最后,需要注意的是,在更加复杂的情况下,列举法可能不能很好地处理问题,此时我们可以尝试其他方法,比如概率公式法、贝叶斯法等。

掌握各种求解概率的方法,可以让我们更加准确、高效地解决问题。

列举法求概率

列举法求概率

列举法求概率概率是数学中一个重要的概念,它描述了某个事件发生的可能性大小。

列举法是求解概率的一种常用方法,下面将详细介绍列举法求概率的步骤和应用。

一、列举法求解概率的基本步骤1. 定义事件首先需要明确所要研究的事件,例如掷一枚硬币出现正面或反面、从一副扑克牌中抽出一张红桃牌等。

2. 构建样本空间样本空间是指所有可能结果组成的集合。

对于掷硬币这个例子,样本空间为{正面,反面};对于抽扑克牌这个例子,样本空间为{红桃A、红桃2、……、红桃K、方块A、方块2、……、方块K、黑桃A、黑桃2、……、黑桃K、草花A、草花2、……、草花K}。

3. 确定事件发生的可能性在构建好样本空间后,需要确定所关注事件发生的可能性。

例如掷硬币出现正面和反面的概率相等,则P(正面)=P(反面)=1/2;抽到一张红桃牌的概率为P(红桃)=13/52=1/4。

4. 计算事件发生的概率最后,根据所得到的可能性,计算事件发生的概率。

例如掷硬币出现正面的概率为P(正面)=1/2;抽到一张红桃牌的概率为P(红桃)=1/4。

二、列举法求解概率的应用1. 掷骰子掷骰子是一个常见的游戏,我们可以使用列举法求解掷出某个点数的概率。

样本空间为{1,2,3,4,5,6},而掷出某个点数的事件可以表示为{1}、{2}、{3}、{4}、{5}或{6}。

因此,每个点数出现的概率均为1/6。

2. 抽扑克牌抽扑克牌也是一个常见的游戏,我们可以使用列举法求解抽到某种牌型(如顺子或同花顺)的概率。

样本空间为52张牌组成的集合,而顺子和同花顺分别有10种可能性(以A2345、23456、34567……10JQKJQKA等序列为例),因此它们出现的概率均为10/2598960。

3. 抛硬币抛硬币是一个简单的实验,我们可以使用列举法求解正反面出现的概率。

样本空间为{正面,反面},而正反面出现的概率均为1/2。

4. 抽彩票抽彩票也是一个常见的活动,我们可以使用列举法求解中奖的概率。

《25.2.1用列举法求概率(1)》名师教案(人教版九年级上册数学)

《25.2.1用列举法求概率(1)》名师教案(人教版九年级上册数学)

25.2.1 用列举法求概率(彭小永)一、教学目标(一)学习目标1.了解列举法的含义.2.理解“包含两步并且每一步的结果为有限多个情形”的意义.3.会用列举法计算简单的随机事件的概率.(二)学习重点用列举法计算简单的随机事件的概率(三)学习难点包含两步的随机事件的概率二、教学设计(一)课前设计1.预习任务(1)古典概型试验有两个特点:①一次试验中,可能出现的结果有有限个;②一次试验中,各种结果发生的可能性大小相同 .(2)列表法求概率:当一次试验要涉及两个因素,并且可能出现的结果数目较少时,为不重不漏列出所有可能结果,通常采用列举法 .(3)抛掷一枚质地均匀的硬币,正面朝上的概率是 0.5 ,反面朝上的概率是 0.5 .2.预习自测(1)甲、乙、丙三人站成一排拍照,则甲站在中间的概率为()A. B. C. D.【知识点】随机事件的概率【解题过程】解:甲有左、中、右三个位置可以选择,所以甲站中间的概率为.【思路点拨】列举甲站位所有的可能性,找出符合条件的,便可算出其概率.【答案】B(2)有5张看上去无差别的卡片,上面分别写着1、2、3、4、5,随机抽取3张,用抽到的 3个数字作为边长,恰好构成三角形的概率是()A. B. C. D.【知识点】随机事件的概率【数学思想】分类讨论思想【解题过程】解:所有的可能结果有:(1,2,3)、(1,2,4)、(1,2,5)、(1,3,4)、(1,3,5)、(1,4,5)、(2,3,4)、(2,3,5)、(2,4,5)、(3,4,5)共10种情况,只有(2,3,4)、(2,4,5)、(3,4,5)三种情况可以构成三角形,所以结果为.【思路点拨】列举出所有可能的情况,再利用“三角形的任意两边之和大于第三边,任意两边之差小于第三边”,找出符合条件的3组值,便得到答案.【答案】A(3)从-2、-1、0、1、2这5个数中任取一个数,作为关于的一元二次方程的值,则所得的方程有两个不相等的实数根的概率是 .【知识点】概率,根的判别式【解题过程】解:因为方程x2-x+k=0有两个不相等的实根,所以根的判别式,所以,有-2、-1和0满足要求,其概率为.【思路点拨】弄清一元二次方程有两个不相等实根的条件,找出的取值范围,再计算其概率.【答案】(4)在一个不透明的袋子中,有两个红球和两个白球,它们只有颜色上区别,从袋子里随机摸出一个球记下颜色后放回,再随机地摸出一个球,则两次都摸到白球的概率是 . 【知识点】用列举法求概率【解题过程】解:设4个球分别为红1、红2、白1、白2,则可列出下表:第二次第一次红1红2白1白2红1(红1,红1)(红1,红2)(红1,白1)(红1,白2)红2(红2,红1)(红2,红2)(红2,白1)(红2,白2)白1(白1,红1)(白1,红2)(白1,白1)(白1,白2)白2(白2,红1)(白2,红2)(白2,白1)(白2,白2)从表中可以看出,在总共16种情况中,只有4种符合要求,所以,所求的概率为.【思路点拨】用列表的方法便可轻松地找到答案. 如果第一次摸了不放回,则在表格中的从左上到右下这条对角线上的四组数据不会出现. 也就是说,做这种题时,要特别注意第一次摸出后是否放回的问题,它对结果有较大的影响.【答案】(二)课堂设计1.知识回顾(1)必然事件、不可能事件发生的概率分别是 1和0 ;随机事件的概率大于0且小于1 . (2)如果在一次试验中,有n种可能的结果,它们发生的可能性都相同,事件A包含其中的m种结果,那么事件A发生的概率P(A)= ( ) .2.问题探究探究一温故知新,引出课题●活动①请思考后,回答下列问题(1)抛掷两枚质地均匀的硬币,有哪些可能的结果?请写出这些结果.(2)抛掷一枚质地均匀的硬币两次,有哪些可能的结果?请写出这些结果.(3)“同时抛掷两枚质地均匀的硬币两次”与“先后两次抛掷一枚质地均匀的硬币”,这两种试验的所有可能结果是一样的吗?由学生思考后,举手回答.【设计意图】让学生通过回答前两个问题,初步学会使用列举法解决问题.探究二利用列举法求概率,解决实际问题●活动①初试列举法例1 同时抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币反面朝上.【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】解:同时抛掷两枚硬币,有以下四种结果:(正,正)、(正、反)、(反,正)、(反、反);(1)由于全部正面朝上的结果(正,正)这只有1种,所以,P(两次正面朝上);(2)由于全部反面朝上的结果(反,反)这只有1种,所以,P(两次反面朝上)(3)由于一枚正面朝上、一枚反面朝上的结果有(正,反)与(反,正)两种,所以,P(一正.一反)【思路点拨】排列出所有可能的结果,再找出符合条件的,便可轻松得解. 特别注意试验结果要不重不漏.【答案】(1);(2);(3).练习:在一个不透明的盒子里有3个分别标有5、6、7的小球,他们除数字外其他均相同. 充分摇匀后,先摸出1个球不放回,再摸出一个球,那么这两个球上的数字之和为奇数的概率为 .【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】解:∵摸出的所有可能结果有:(5,6)、(5,7)、(6,5)、(6,7)、(7,5)、(7,6)共6种情况,它们之和分别为11、12、11、13、12、13共4个奇数和2个偶数,∴P(两数之和为奇数)【思路点拨】用列举法得出所有可能的结果,找出符合条件的,问题便迎刃而解.特别注意事先摸出的球是否放回对概率的影响,还要注意不重不漏.【答案】【设计意图】让学生在列举法的使用上熟能生巧.●活动②用列表法求概率例2 同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子的点数和是9;(3)至少有一枚骰子的点数为2.【知识点】用列表法求概率【数学思想】分类讨论思想【解题过程】解:两枚骰子分别记为1和2,可用下表列举出所有可能的结果:第1枚1 2 3 4 5 6第2枚1 (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2 (1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3 (1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4 (1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5 (1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6 (1,6)(2,6)(3,6)(4,6)(5,6)(6,6)由上表可以看出,同时掷两枚骰子,可能出现36种结果,并且它们出现的可能性相等. (1)两枚骰子的点数相同(记为事件A)的结果有6种,分别是(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(6,6),所以P(A)=;(2)两枚骰子的点数之和为9(记为事件B)的结果有4种,分别是(3,6)、(4,5)、(5,4)、(6,3)所以P(B)=;(3)至少有一枚点数为2(记为事件C)的结果有11种(见上表),所以P(C)=.【思路点拨】分横行和纵列将两枚骰子的点数排列出来,计算符合条件的结果即可. 要注意不重不漏.【答案】(1);(2);(3)练习:有A、B两只不透明口袋,每只口袋里装有两只相同的球,A袋中的两只球上分别写了“细”“致”的字样,B袋中的两只球上分别写了“信”“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是( )A.13B.14C.23D.34【知识点】用列表法求概率【解题过程】解:摸球的结果如下:A袋B袋细致信细信致信心细心致心共有4种可能的结果,且每种结果是等可能性的. 所以抽出“细心”的概率为 . 【思路点拨】用列表法可以轻松得解,注意不重不漏,还要注意摸球讲不讲顺序.【答案】 .●活动③拓展提高,解答概率综合题例3 有一枚均匀的正四面体,四个面上分别标有数字1、2、3、4,小红随机地抛掷一次,把着地一面的数字记为,另有三张背面完全相同,正面分别写着-2、-1、1的卡片,小亮将其混合,正面朝下旋转在桌面上,并从中抽取一张,把卡片正面的数字记为.然后他们计算出S=x+y的值.和-2 -1 11 -1 0 22 0 1 33 1 2 44 2 3 5(1)用列表法表示出S的所有可能情况;(2)分别求出当S=0和S<2时的概率. 【知识点】用列表法求概率【数学思想】分类讨论思想【解题过程】解:(1)列表如右,共12种情况.(2)P(S=0)=; P(S<2).【思路点拨】用表格将所有情况列举出来,然后找出符合条件的即可轻松得解.【答案】(1)共有如上表的12种情况. (2)P(S=0)=;P(S<2).练习:某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛. 九年级1班经过投票初选,小亮和小丽票数全班并列第一,现在他们都想代表全班参赛. 经过班长与他们协商决定,用掷骰子的办法让获胜者去参赛. 规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面都是偶数,则小丽胜;否则视为平局,若为平局,继续上述游戏,直到分出胜负为止. 如果小亮和小丽都按上述规则各掷一次骰子,解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表法说明理由.【知识点】用列表法求概率【解题过程】解:(1)∵朝上一面的点数为奇数有3种情况,∴P(奇数)(2)由题意知,可列表如下:1 2 3 4 5 61 (1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2 (1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3 (1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4 (1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5 (1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6 (1,6)(2,6)(3,6)(4,6)(5,6)(6,6)由上表可知:共有36种等可能的结果,其中小亮和小丽获胜各有9种结果,∴P(小亮胜)P(小丽胜).【思路点拨】列表法求概率是一种很常见的方法.【答案】(1)P(奇数);(2)公平.小亮与小丽获胜的概率同样大(表格见上). 【设计意图】强化列表法求概率,使其熟练掌握.3. 课堂总结知识梳理(1)列举法的使用条件:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,我们可通过列举试验结果的方法,求出随机事件发生的概率.(2)列表法的使用条件:当一次试验要涉及的因素只有两个(我们也常称为两步操作试验),且每一步的结果为有限多个情形,我们常通过列表的方法列举所有可能的结果,找出事件A可能发生的结果,再利用公式P(A)求它的概率.(3)使用列举法求概率时,要求做到不重不漏.重难点归纳(1)只有有限多个情形时,我们可以使用列举法;(2)当一次试验要涉及两个因素(或叫两步),且每一步的结果为有限多个情形,我们可以通过列表法求它的概率;(3)使用列举法求概率时,要求做到不重不漏. (三)课后作业 基础型 自主突破1. 为支援灾区,小明准备通过爱心热线捐款,他只记得号码的前5位,后三位由5、1、2这三个数字组成,但具体顺序忘记了.他第一次就拨通电话的概率是( ) A. 12 B. 14 C. 16 D. 18【知识点】用列举法求概率 【数学思想】分类讨论思想【解题过程】5、1、2这三个数字的排列方式有:512、521、125、152、215、251共6种,其中只有一种是正确的,所以,他第一次就拨通电话的概率是16.【思路点拨】用列举法不重不漏地将三个数排列出来是关键. 【答案】C 2.在的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是( )A .1 B.34 C.12 D.14【知识点】用列举法求概率 【解题过程】解:方框中符号的填法共有:(+,+)(-,-)、(+,-)、(-,+)4 种,只有 (+,+)与(-,+)2种符合要求,所以能构成完全平方式的概率为12.【思路点拨】记住完全平方式的符号特点,再用列举法排列出所有的情况,便可求得其概率. 【答案】C3.如图所示,每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为_______. 【知识点】用列举法求概率【解题过程】解:翻动木牌有6种情形,只有两种情况可以中奖,中奖的概率为【思路点拨】找出所有的情形和符合条件的个数即可计算出相应的概率.【答案】.4.从-2、-1、2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是________.【知识点】用列举法求概率【解题过程】-2、-1、2这三个数学共有6种排法,分别是(-2,-1)、(-1,-2)、(-2,2)、(-1,2)、(2,-2)、(2,-1),其中只有(2,-2)和(2,-1)在第四象限,其它的均不合要求,所以该点在第四象限的概率为.【思路点拨】第四象限的点的横、纵坐标分别为正和负,只有两个点符合条件,其概率为.【答案】5.将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是________.【知识点】用列举法求概率【解题过程】长度为8厘米的木棍截成长为整数的三段,共有5组结果,它们分别是:(1,1,6)、(1,2,5)、(1,3,4)、(2,2,4)、(2,3,3),其中只有(2,3,3)这一种情形能构成三角形,其概率为.【思路点拨】注意不重不漏;还要注意三角形的任意两边之和大于第三边,任意两边之差小于第三边.【答案】 .6. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.34【知识点】用列举法求概率小明小华A BA (A,A)(B,A)B (A,B)(B,B)【解题过程】分别将“打扫社区卫生”和“参加社会调查”记为事件A和事件B,则两人的选择有如下情况,同时选择“参加社会调查”(事件B)的只有一种情况,其概率为14.【思路点拨】用表格排列出所有的情况和符合条件的情况,即可求出其概率.【答案】1 4能力型师生共研7. 如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”“2”“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为________.【知识点】用列表法求概率【思想方法】分类讨论思想【解题过程】解:可列表如右,共有9种可能的情况,其中只有4种情况符合题意,所以P(两次都是奇数).1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3) (2,3) (3,3)【思路点拨】利用表格排列出所有可能的情况,再找出符合题意的即可.【答案】P (两次都是奇数).8. 一个口袋中有4个相同的小球,分别写有字母A 、B 、C 、D ,随机地抽取一个小球后放回,再随机抽取一个小球.(1)试用列表法列举出两次抽出的球上字母的所有可能结果; (2)求两次抽出的球上字母相同的概率. 【知识点】用列表法求概率 【数学思想】分类讨论思想 【解题过程】解:(1)根据题意,可以列表如右,共有16种可能的结果.(2)因为在总共的16种情况中,只有4种是两个字母相同的情况,所以P (两次的字母相同).【思路点拨】利用表格排列出所有可能的情况,再找出符合题意的即可.【答案】(1)共有16种情况(见上表); (2)P (两次的字母相同).探究型 多维突破9. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色. 求可配成紫色的概率. 【知识点】用列表法求概率 【数学思想】数形结合思想 【解题过程】第1次 第2次A B C DA (A ,A) (B ,A) (C ,A) (D ,A) B (A ,B) (B ,B) (C ,B) (D ,B) C(A ,C) (B ,C) (C ,C) (D ,C)D(A ,D) (B ,D) (C ,D) (D ,D)红 蓝1 蓝2红 (红,红) (红,蓝1) (红,蓝2)解:由于必须是等可能性的,所以需将第2个转盘的蓝色分成蓝1和蓝2 ,因此可列出右表,从表中可以看出,共有6种等可能情况,有3种可以配成紫色,所以P (配成紫色).【思路点拨】只有红配蓝或者蓝配红可以配成紫色;用列表法可以轻松得出所有可能的情况.【答案】P (配成紫色) .10. 如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可以使小灯泡发光.(1)任意闭合其中一个开关,小灯泡发光的概率是多少? (2)任意闭合其中的两个开关,小灯泡发光的概率是多少? 【知识点】用列举法求概率 【数学思想】分类讨论思想 【解题过程】解:(1)由电路图可知,闭合开关D 可以使灯光发光,只闭合A 、B 、C 三个都不使灯光发光,所以,P (闭合一个开关可发光).(2)闭合两个开关的情况如表中所示,其中只有开关D 闭合的才能让小灯光发光,共有6种情况,所以,P (闭合两个开关可发光). 第1 个 第2个A BCDA (B ,A ) (C ,A ) (D ,A )B (A ,B )(C ,B ) (D ,B )C (A ,C ) (B ,C )(D ,C )D(A ,D ) (B ,D ) (C ,D )【思路点拨】注意灯泡发光的一个基本条件是连通有电源的电路.蓝 (蓝,红) (蓝,蓝1) (蓝,蓝2)【答案】(1)P(闭合一个开关可发光);(2)P(闭合两个开关可发光).自助餐1.从2、3、4、5中任选两个数,分别记作m、n,那么点( m,n)在函数图象上的概率为()A. B. C. D.【知识点】用列举法求概率【数学思想】函数思想,分类讨论思想【解题过程】.从2、3、4、5中任选两个数作为点的坐标,分别是(2,3)、(2,4)、(2,5)、(3,2)、(3,4)、(3,5)、(4,2)、(4,3)、(4,5)、(5,2)、(5,3)、(5,4)共有12种情况,在函数图象上的只有(3,4)和(4,3)两个点,所以P(点在函数上). 【思路点拨】选两个数,相当于选了一个数后,不放回,再选一个数. 选了第一个数后是否放回对结果有直接的影响,务必重视.【答案】D2.小强和小华两人玩“石头、剪子、布”游戏,随机出手一次,则两人平局的概率为()A. B. C. D.【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】若三个动作分别简记为“石、剪、布”,则两人出手的情况包括:(石,石)、(石,剪)、(石,布)、(剪,石)、(剪,剪)、(剪,布)、(布,石)、(布,剪)、(布,布)九种情况,平局只有3种,所以两人平局的概率为.【思路点拨】用列举法排出所有可能的情况,指出平局的3种情况,即可得到答案.【答案】B3.同时抛掷A、B两个小正方体骰子,正面朝上的数字分别记为,并以此确定点P(),那么,点P落在抛物线上的概率为 .【知识点】用列举法求概率【数学思想】函数思想,数形结合思想【解题过程】解:如下表所示,得到的点共有36种情况,只有(1,2)、(2,2)两个点满足要求,所以,点P在抛物线上的概率为 .x y 1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)【思路点拨】用列表法找出所有的点,再将1、2、3、4、5、6作为变量的值代入函数的解析式,求出的值,找出符合条件的点P,便可轻松得解.【答案】.4.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲任选一个数字,记为m,将它放回后,再由乙任选一个数字,记为n. 若m、n满足,则称两人心有灵犀,那么两人心有灵犀的概率是 .【知识点】用列举法求概率【数学思想】分类讨论思想【解题过程】解:从下表可知,共有16种可能的情况,符合条件的有10种,其概率为.甲结果0 1 2 3乙0 0 1 2 31 1 0 1 22 2 1 0 13 3 2 1 0【思路点拨】用表格排列出所有可能的情况,找出符合条件的情况即可轻松得解.【答案】 .5.一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各一个,这些球除颜色外都相同.求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是红球;(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是红球.【知识点】用列举法求概率【解题过程】解:(1)共有4种情况,摸出红球的概率为;(2)如图,共有16种情况,两次均为红色的只有1种,其概率为.第1 次红黄蓝白第2次红(红,红)(黄,红)(蓝,红)(白,红)黄(红,黄)(黄,黄)(蓝,黄)(白,黄)蓝(红,蓝)(黄,蓝)(蓝,蓝)(白,蓝)白(红,白)(黄,白)(蓝,白)(白,白)【思路点拨】第一次摸出后是否放回对结果有着重大影响.【答案】(1)摸出红球的概率为;(2)两次均为红色的概率为.6.六一儿童节前夕,某市“关心下一代工作委员会”决定对品学兼优的“留守儿童”进行彰.某校八年级8个班中只能选两个班级参加这项活动,且八(1)班必须参加,另外再从其他班级中选一个班参加活动.八(5)班有学生建议采用如下的方法:将一个带着指针的圆形转盘分成面积相等的4个扇形,并在每个扇形上分别标有1、2、3、4四个数字,转动转盘两次,将两次指针所指的数字相加(当指针指在某一条等分线上时视为无效,重新转动),和为几就选哪个班参加.你认为这种方法公平吗?请说明理由.【知识点】用列表法求概率【数学思想】数形结合思想【解题过程】解:我认为这个方法不公平,理由如下:我们可以用下表列出所有可能的情况. 两次得到的数字之和分别为2、3、4、5、3、4、5、6、4、5、6、7、5、6、7、8共16种情况. 所以,八(2)班被选中的概率为116,八(3)班被选中的概率为216=18,八(4)班被选中的概率为316,八(5)班被选中的概率为416=14,八(6)班被选中的概率为316,八(7)班被选中的概率为216=18,八(8)班被选中的概率为116,所以这种方法不公平.第1 次和第2次1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8【思路点拨】用列表法将所有可能的情况排列出来,算出各个班被选中的概率,通过比较确定是否公平.【答案】这种方法不公平,理由如上.。

25.2用列举法求概率(1)课件

25.2用列举法求概率(1)课件
25.2. 用列举法求概率(1) 用列举法求概率( )
直接分类列举
学习目标 1、理解P(A)= (在一 次试验中有n种可能的结果,其中A 包含m种)的意义. 2、应用P(A)= 解决一些实际 问题. 3、复习概率的意义,为解决利 用一般方法求概率的繁琐,探究用 特殊方法—列举法 求概率的简便方法,然后应用这种 方法解决一些实际问题.
A 圆圆
2
3 1
4 甲
1
2
3
6
5 乙
4
作业:1、完成练习册相关内容 P138.综合运用5 拓广探索8
7、先后抛掷三枚均匀的硬币,至少出现一 、先后抛掷三枚均匀的硬币, 次正面的概率是( 次正面的概率是( )
8、有100张卡片(从1号到 、 张卡片( 号到100号),从中任取 从中任取1 张卡片 号到 号),从中任取 取到的卡号是7的倍数的概率为 的倍数的概率为( 张,取到的卡号是 的倍数的概率为( )。 9、某组16名学生,其中男女生各一半,把全 、某组 名学生 其中男女生各一半, 名学生, 组学生分成人数相等的两个小组, 组学生分成人数相等的两个小组,则分得每 小组里男、女人数相同的概率是( ) 小组里男、女人数相同的概率是( 10一个口袋内装有大小相等的 个白球和已编 一个口袋内装有大小相等的1个白球和已编 一个口袋内装有大小相等的 有不同号码的3个黑球 从中摸出2个球 个黑球, 个球. 有不同号码的 个黑球,从中摸出 个球 (1)共有多少种不同的结果? )共有多少种不同的结果? 个黑球有多种不同的结果? (2)摸出 个黑球有多种不同的结果? )摸出2个黑球有多种不同的结果 (3)摸出两个黑球的概率是多少? )摸出两个黑球的概率是多少?
D.1. . .
4.一个均匀的立方体六个面上分别标有数 ,2,3, 一个均匀的立方体六个面上分别标有数1, , , 一个均匀的立方体六个面上分别标有数 4,5,6.右图是这个立方体表面的展开图.抛 , , .右图是这个立方体表面的展开图. 掷这个立方体, 掷这个立方体,则朝上一面上的数恰好等于朝下 一面上的数的一半的概率是( 一面上的数的一半的概率是( ).

3用列举法求概率(1)

3用列举法求概率(1)

7 10-3 = P(在B区域踩中地雷)= 9×9-9 72
3 7 > ∵ 8 72
∴第二步应踩在B区域
例2、 抛两枚硬币
思考
① 正 正 反 反 ② 正 反 正 反
“同时掷两枚硬 币”,与“先后两次 掷一枚硬币”,这两 种试验的所有可能结 果一样吗?
一样
(1)思考:共有几种可能的结果? 共有4种可能的结果 (2)求下列事件发生的概率:
1 ①P(两枚硬币全部正面向上)=____ 4 1 ②P(两枚硬币全部反面向上)=____ 4
1 ③P(一枚硬币正面向上,一枚硬币反面向上)=____ 2
5 例3、如图,A、B、C、D四张卡片上分别写有-2, 3 , ,π四 7 个实数,从中任取两张卡片.
-2
A
3
B
5 7
C
π
D
(1)请列举出所有可能的结果(用字母A、B、C、D表示); BC BD CD AB AC AD (2)求取到的两个数都是无理数的概率. 1 P(取到的两个数都是无理数)= 6 像这样,把所有可能的结果都列出来,通过分析进 而得出相应事件发生的概率的方法,叫做列举法.
第一轮
(书本 P134 练习:1、2)
第二轮
1、甲、乙、丙三人随意地排成一排,甲排在乙后面的概率
1 为_____. 2
2、从1、2、3、4、5的5个数中任取2个,它们的和是偶数的
2 概率为_____. 5
3、有5件衬衫,其中两件是次品,从中任取两件,求下列
事件发生的概率:
3 ①P(都是正品)=____ 10
3、书本:P137—138 习题:1、2、4 (5分钟)
1、会用列举的方法计算一些简单事件发生的概率. 2、体会在生活实际中概率的应用. 3、提高自己分析问题的能力,激发学习数学的兴趣.

用列举法求概率1

用列举法求概率1

解:由题意画出树状图:







红 红
故 P都是蓝色 = 1蓝
6
由树状图可以 看出,所有可能 出现的结果共有 4个,都是蓝色 珠子的结果有1 个。
10.回顾例3,如果小王在游戏开始时踩中 的第一个格上出现了标号1,则下一步踩 在哪一个区域比较安全?
解:根据题意,我们可以画出如下的“树 形图”:
这些结果出现的可能性相等。
(1)只有一个元音字母的结果(红色)有5个, 即ACH,ADH,BCI,BDI,BEH,所以P (一个元音)5 =
12
有两个元音字母的结果(绿色)有4个,即 ACI,ADI,AEH,BEI,所以
P(两个元音)= 4 = 1
12 3
(1)取出的3个一小次球实上验恰涉好及有三1个个、2个和3个 元音字母因的素概(率或分更别多是)多时少,?列表
就不方便了,为了不重不 (2)取出漏的的3列个出小所球有上可全能是结辅果音,字母的概率 是多少? 通常采用树形图。
树形图的方法
第一步:可能产生的结果为A和B,两者出 现的可能性相同且不分先后,写在第一行。 第二步:可能产生的结果有C、D和E,三 者出现的可能性相同且不分先后,从A和B 分别画出三个分支,在分支下的第二行分 别写上C、D和E。
踩B区域。
例4:掷两枚硬币,求下列事件的概率: (1)两枚硬币全部正面朝上; (2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面朝上。
解:我们把掷两枚硬币所能产生的结果全部列 举出来,它们是:正正,正反,反正,反反。 所有的结果共有4个,并且这4个节结果出现 的可能性相等。
(1)所有的结果中,满足两枚硬币全部正面 朝上(记为事件A)的结果只有一个,即“正 正”,所以P(A)=1

列举法求概率

列举法求概率
6 8 A 1 4 7 B 5
探究活动2
解:在表格里列举为
解:拔动两个转盘的可能结果在表格里列举 出来的可能性共有九个. 事件A盘胜的可能性有(6,4)、(6,5)、 (8,4)、(8,5)、(8,7),共五个; 事件B盘胜的可能性有(1,4)、(1,5)、 (1,7)、(6,7),共四个;
5 P(A盘胜)= 9
探究活动3
同时掷两个质地均匀的骰子活动,
1、两个骰子的点数相同的概率. 2、两个骰子点数的和是9的概率. 3、至少有一个骰子点数为2的概率.
解:由列表法列举得
事件掷两个骰子发生的可能性共有36个
1、两个骰子的点数相同发生的可能性共有6个
6 1 P(两个骰子的点数相同)= = 6 36
2、两个骰子点数的和是9发生的可能性共有4个
1 个

P(向上的面点数是2)= 6
1、在九(5)班计算概率中,有一道练习题有部分的 同学是这样做的: 掷两枚硬币,求两枚硬币全部正面向上的概率? 解:掷两枚硬币发生的可能有:正正,正反,反反, 共3个;
事件两枚硬币全部正面向上发生的可能有1个;
1 P(两枚硬币全部正面向上)= 3
探究
这道题解题过程和结果对不对?如果不 对,错在哪里?并把其改正。
正确解题
解:掷两枚硬币发生的可能有:正正,正 反,反正,反反,共4个; 事件两枚硬币全部正面向上发生的可能 有1个; P(两枚硬币全部正面向上)= 1
4
有一个游戏活动,两名同学分别拔动A、 B两个转盘,使之转动,指针指数大的一方 为获胜者,。 由于两个转盘上的数字不同,如果你上 来,你会选哪一个转盘?说说你的理由
4 1 6 7
3
2
9
8
练习

25.2用列举法求概率(1)

25.2用列举法求概率(1)
学生反思,回顾本节课所学的知识。
帮助学生进一步理解本节的知识点,巩固学生所学的内容。
学生独立完成解题过程,教师适当的进行指导。
小结环节的设置能够让学生养成自主归纳课堂重点的习惯,提高学生的学习能力.
针对本课时的主要问题,从多个角度、分层次进行检测,达到学有所成、了解课堂学习效果的目的.
通过本题的研究,使学生能更深层次的理解用列表法求概率这一知识点
2′
1、掷一枚硬币,正面向上的概率是()
2、掷一个骰子,观察向上一面的点数,点数大于4的概率是()
3、袋子中有五个红球,三个绿球,这些球除了颜色外都相同,从袋子中随机的摸一个球,它是红色的概率是()
例1、
同时向空中抛掷两枚质地均匀的硬币,求下列事件的概率:
(1)两枚硬币全部正面向上;
(2)两枚硬币全部反面向上;
A、3/16 B、3/8 C、5/8 D、13/16
2、在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为()
3、甲乙两名同学做摸牌游戏.他们在桌上放了一副扑克牌中的4张牌,牌面分别是J,Q,K,K.游戏规则是:将牌面全部朝下,从这4张牌中随机取1张牌记下结果放回,洗匀后再随机取1张牌,若两次取出的牌中都没有K,则甲获胜,否则乙获胜.你认为甲乙两人谁获胜的可能性大?用列表的方法说明理由.




25.2.1用列举法求概率
例1:例2
练习1练习2
练习3
反思
升华
课题
25.2用列举法求概率
课型
新授课
课时
1
主备
万家中学数学组

25.2用列举法求概率(1)课件

25.2用列举法求概率(1)课件
如果同时取出两 个球又会怎样? 个球又会怎样?
课堂小结
你有什么收获? 你有什么收获? 利用列举法求概率的关键在于正确列举出试验结 果的各种可能性和事件中包含的各种可能性; 果的各种可能性和事件中包含的各种可能性;而 列举的方法通常有直接分类列举、列表、 列举的方法通常有直接分类列举、列表、画树形 图等.( 种方法后面继续学习) 图等 (后2种方法后面继续学习) 种方法后面继续学习
一袋子中装有红,绿各一个小球, 随机摸出1个小球后放回,再随机 摸出一个。求下列事件的概率: (1)第一次摸到红球,第二次摸 到绿球。 (2)两次都摸到相同颜色的小球。 (3)两次摸到的球中有一个绿球和 一个红球。
一个袋中里有2个黄球和1 一个袋中里有2个黄球和1个蓝球,除颜色外 其余特征均相同,若从这个袋中任取1 其余特征均相同,若从这个袋中任取1个球 后放回,然后再随机取出一个, 后放回,然后再随机取出一个,两次都是黄 球的概率为多少? 球的概率为多少?
1.随机掷一枚均匀的硬币两次,两次正面都朝上的概 .随机掷一枚均匀的硬币两次, 率是( 率是( ).
1 1 3 A. 4 B. C. D.1. . . . . . 4 2
2.从甲地到乙地可坐飞机、火车、汽车,从乙地到丙 .从甲地到乙地可坐飞机、火车、汽车, 地可坐飞机、火车、汽车、轮船, 地可坐飞机、火车、汽车、轮船,某人乘坐以上交 通工具,从甲地经乙地到丙地的方法有( 通工具,从甲地经乙地到丙地的方法有( )种. A.4 B.7 C.12 D.81. . . . . .
25.2. 用列举法求概率(1) 用列举法求概率( )
直接分类列举
1. 当A是必然事件时,P(A)= 当B是不可能事件时,P(B)= 当C是随机事件时,P(C)的范围是

初三【数学(人教版)】25.2 用列举法求概率(1)

初三【数学(人教版)】25.2 用列举法求概率(1)

第2枚
1
2
3
4
5
6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
第 1
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

5 (5,1) (5,2) (5,3) (5,4) (5,5) 6 :(6,1) (6,2) (6,3) (6,4) (6,5)
分析:两枚骰子可能出现的结果:
6
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
1.两枚是奇数 ൡ 至少有一枚是奇数
2.一枚是奇数一枚是偶数
3. 0枚是奇数(都是偶数)
27 3 P(C)= 36 = 4 .
第2枚
1
2
3
4

1 (1,1) (1,2) (1,3) (1,4) (1,5)

2 (2,1) (2,2) (2,3) (2,4) (2,5)
3 (3,1) (3,2) (3,3) (3,4) (3,5)
1
4 (4,1) (4,2) (4,3) (4,4) (4,5)
第2枚
1
2
3
4
5
6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
1
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用列举法求概率(1)
学习目标:
1、应用P(A)解决一些实际问题.
2、掌握用列举法求概率的简便方法, 然后用这种方法解决一些实际问题
▪ 二 自学指导1 ▪ 认真阅读课本133-134页内容理解以下问题
▪ 例1中A区域有几个方格,有几颗地雷?遇到 地雷的概率是多少?
▪ B区域有多少方格数,有几颗地雷?遇到地 雷的概率是多少?
▪ 正确理解例2
解:A区有8个方格3个雷, 遇雷的概率为3/8
B区有9×9-9=72个小方格, 还有10-3=7个地雷, 遇到地雷的概率为7/72, 由于3/8大于7/72, 所以第二步应踩B区
同时掷两枚硬币: 与”先后两次掷一枚硬币: 这两种可能结果一样吗?
问题1.掷一枚硬币,落地后会出现几种结果? 正反面向上2种可能性相等
课时小结
本节课我们学习了哪些内容,你 有什么收获?
布置作业 156-157页 3,4,5题
思考题:
▪ 小颖为九年级1班毕业联欢会设计了一个“配 紫色”的游戏:下面是两个可以自由转动的转 盘,每个转盘被分成面积相等的几个扇形.游 戏者同时转动两个转盘,两个转盘停止转动时, 若有一个转盘的指针指向蓝色,另一个转盘的 指针指向红色,则“配紫色”成功,游戏者获 胜.求游戏者获胜的概率.蓝红红红蓝
蓝红 红
蓝红
2
2 3、投掷一枚质地均匀的骰子,点数小于5的概率为
_________。
4、一3副扑克牌,任意抽取1张,抽到黑桃8的概率
是_____51_4 ___。
伸手游戏:规定每个同学伸出一只手 (只能手心或手背朝上)
问题1:只有一个同学伸出一只手时, 结果有几种?2种:手心朝上或手背朝上 问题2:有甲乙二个同学同时各伸出一只 手时,结果有几种? 4如种果:二二人人当都中手一心人朝先出上,,一二人人后都出手结背果朝会上, 甲有手变心化朝吗上?乙手背朝上,甲手背朝上乙 手心朝上 如果把甲乙的手换成二枚硬币,那么 结果又有几种呢
问题2.抛掷一个骰子,它落地时向上的数有几 种可能?
6种等可能的结果 问题3.从分别标有1.2.3.4.5.的5根纸签中随机抽 取一根,抽出的签上的标号有几种可能?
5种等可能的结果。
等可能性事件
等可能性事件的两的特征: 1.出现的结果有限多个; 2.各结果发生的可能性相等;
等可能性事件的概率可以用列举法而求得。
列举法就是把要数的对象一一列举出来分析求解 的方法.
练习:
▪ 袋子中装有红、绿各一个小球,除颜色外 无其他差别,随机摸出一个小球后放回, 再随机摸出一个。求下列事件的概率:
▪ (1)第一次摸到红球,第二次摸到绿球 ▪ (2)两次都摸到相同颜色的小球; ▪ (3)两次摸到的球中有一个绿球和一个红
球。
红红 红绿 绿红 绿绿
1、盒中有3个黄球,2个白球,1个红球,每个球除颜色
外都相同,从中任意摸出一球,

则P(摸到白球)=________13,
P(摸到黑球)=________,0

P(摸到黄球)=_______1_, 2

P(摸到红球)=_____1___。
6

2、柜子里有20双鞋,取出左脚穿的一只鞋的概率为 _____1____。
相关文档
最新文档