2019年福建省质检理科数学试题
福建省福州市2019届高三质检数学(理)试题
试卷第1页,总21页2019年福州市普通高中毕业班质量检测数学(理科)试卷(完卷时间:120分钟;满分150分)第Ⅰ卷1.设复数z 满足i 1i z ,则z 的共轭复数为A.1iB. 1iC.1iD.1i2.已知集合2213,20A x x Bx xx ,则A B U =A.12x xB.11x x C.211x x x ,或 D.1x x3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动的情况,随机抽取50名学生进行调查.将数据分组整理后,列表如下:参加场数0 1 2 3 4 5 6 7 参加人数占调查人数的百分比8%10%20%26%18%m%4%2%以下四个结论中正确的是A. 表中m 的数值为10B. 估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C. 估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D. 若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50 的样本,则分段间隔为25 4.等比数列na 的各项均为正实数,其前n 项和为n S .若3264,64a a a ,则5S A. 32 B. 31C. 64D.635. 已知sinπ162,且2θπ0,,则π3cos=A. 0B.12C. 1D.326.设抛物线24y x 的焦点为F ,准线为l ,P 为该抛物线上一点,PAl ,A 为垂足.若直线AF的斜率为3,则PAF △的面积为A. 23B. 43C.8D. 837.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为A.32 B.16C.323D.8038.已知函数()2sinf x x0,图象的相邻两条对称轴之间的距离为,将函数()f x 的图象向左平移3个单位长度后,得到函数()g x 的图象.若函数()g x 为偶函数,则函数()f x 在区间0,2上的值域是A. 1,12B.1,1 C.0,2D.1,29. 已知g x 为偶函数,h x 为奇函数,且满足2xg x h x.若存在11x,,使得不等式0m g x h x有解,则实数m 的最大值为A.-1B.35C. 1D.35第7题图。
2019年福州市质检理科试卷与解答
2019年福州市普通高中毕业班质量检测参考答案数学(理科)试卷 (完卷时间:120分钟;满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足i 1i z ⋅=-,则z 的共轭复数为 A.1i -+ B. 1i + C. 1i -- D. 1i -【简解】因为1i1i iz -==--,所以1+i z =-,故选A . 2.已知集合{}{}2213,20A x x B x x x =+>=--<,则AB =A. {}12x x <<B. {}11x x -<< C. {}211x x x -<<>,或 D. {}1x x >- 【简解】因为{}{}1,12A x x B x x =>=-<<,所以{}1AB x x =>-,故选D .3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动以下四个结论中正确的是 A. 表中m 的数值为10B. 估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C. 估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D. 若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50 的样本,则分段间隔为25【简解】A 中的m 值应为12; B 中应为380人; C 是正确的; D 中的分段间隔应为20,故选C . 4.等比数列{}n a 的各项均为正实数,其前n 项和为n S .若3264,64aa a ==,则5S =A. 32B. 31C. 64D.63【简解】解法一:设首项为1a ,公比为q ,因为0n a >,所以0q >,由条件得21511464a q a q a q ⎧⋅=⎪⎨⋅=⎪⎩,解得112a q =⎧⎨=⎩,所以531S =,故选B .解法二:设首项为1a ,公比为q ,由226464a a a ==,又34a =,∴2q =,又因为214a q ⋅=所以11a =,所以531S =,故选B .5. 已知sin π162θ⎛⎫-= ⎪⎝⎭,且2θπ0,⎛⎫∈ ⎪⎝⎭,则π3cos θ⎛⎫- ⎪⎝⎭= A. 0 B.12 C. 1 D. 32【简解】解法一:由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,π3θ=,代入πcos 3θ⎛⎫- ⎪⎝⎭得, πcos 3θ⎛⎫- ⎪⎝⎭=cos01=,故选C .解法二:由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,π3cos 62θ⎛⎫-= ⎪⎝⎭, 所以πππππππcos cos cos cos sin sin 13666666θθθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=--=-+-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选C . 6.设抛物线24y x =的焦点为F ,准线为l ,P 为该抛物线上一点,PA l ⊥,A 为垂足.若直线 AF 的斜率为3-,则PAF △的面积为A. 23B. 43C.8D. 83【简解】解法一:设准线与x 轴交于点Q ,因为直线AF 的斜率为3-, 2FQ =,60AFQ ∴∠=, 4FA =,又因为PA PF =,所以PAF △是边长为4的等边三角形,所以PAF △的面积为22334=4344FA ⨯=⨯.故选B . 解法二:设准线与x 轴交于点Q ,,)Pm n (,因为直线 AF 的斜率为3-, 2FQ =,60AFQ ∴∠=,所以23AQ =,所以23n =±,又因为24n m =,所以3m =,又因为4PA PF ==, 所以PAF △的面积为11423=4322PA n ⨯⨯=⨯⨯.故选B . 7.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为 A.32 B.16 C.323 D.803【简解】由三视图知,所求几何体的体积为直三棱柱的体积减去三第7题棱锥的体积321180442=323⨯-⨯⨯⨯12.故选D . 8.已知函数()()2sin f x x ωϕ=+0,ωϕπ⎛⎫><⎪2⎝⎭图象的相邻两条对称轴之间的距离为π2,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象.若函数()g x 为偶函数,则函数()f x 在区间0,2π⎛⎫⎪⎝⎭上的值域是 A. 1,12⎛⎤- ⎥⎝⎦B. ()1,1-C. (]0,2D.(]1,2- 【简解】由图象的相邻两条对称轴之间的距离为π2,所以T =π,又因为0ω>,所以2ωπ=π,解得=2ω.0,ωϕ><π2,将函数()f x 的图象向左平移3π个单位长度后,得到函数2()2sin 23g x x ϕπ⎛⎫=++ ⎪⎝⎭的图象.因为函数()g x 为偶函数,所以2,32k k ϕππ+=π+∈Z ,由ϕπ<2,解得 =6ϕπ- ,所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭.因为02x π<<,所以1sin 2126x π⎛⎫-<-≤ ⎪⎝⎭,所以函数()f x 在区间0,2π⎛⎫⎪⎝⎭上的值域是(]1,2-,故选D .9. 已知()g x 为偶函数,()h x 为奇函数,且满足()()2xg x h x -=.若存在[]11x ∈-,,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为A.-1B.35 C. 1 D. 35- 【简解】由()()2xg x h x -=,及()g x 为偶函数,()h x 为奇函数,得()()2222,22x x x xg x h x --+==-.由()()0m g x h x ⋅+≤得224121224141x x x x x x x m ---≤==-+++-,∵2141xy =-+为增函数,∴max 231415x ⎛⎫-= ⎪+⎝⎭,故选B .10.如图,双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过2F 作线段2F P 与C 交于点Q ,且Q 为2PF 的中点.若等腰△12PF F 的底边2PF 的长等于C 的半焦距,则C 的离心率为A.22157-+ B. 23 C. 22157+ D.32【简解】连结1QF ,由条件知12QF PF ⊥,且22c QF =.由双曲线定义知122cQF a =+,在12Rt F QF △中,()2222222c c a c ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭,解得C 的离心率22157e +=,故选C .11.如图,以棱长为1的正方体的顶点A 为球心,以2为半径做一个球面,则该正方体的表面被球面所截得的所有弧长之和为 A. 34πB.2π C.32π D.94π【简解】正方体的表面被该球面被所截得的弧长有相等的三部分,例如,与上底面截得的弧长是以1A 为圆心,1为半径的圆周长的14,所以弧长之和为23342ππ⨯=.故选C. 12. 已知数列{}n a 满足11a =,()2122124n n n n n a a a na n ++=++,则8a =A.64892- B. 32892- C. 16892- D. 7892- 【简解】因为()2122124n n n n n a a a na n ++=++,所以()22212411n n n na na n a n a +++=+, 所以2222124142n n n n n n a na n n n na a a a +⎛⎫+++==+⋅+ ⎪⎝⎭, 第10第11题图所以21122n n n n a a +⎛⎫++=+ ⎪⎝⎭,令2n n n b a =+,则21n n b b +=,两边取对数得1lg 2lg n n b b +=,又111lg lg 2lg3b a ⎛⎫=+=⎪⎝⎭,所以数列{}lg n b 是首项为lg 3,公比为2的等比数列. 所以112lg lg32lg3n n n b --=⋅=,所以123n n b -=,即1232n n n a -+=,从而1232n n na -=-,将8n =代入,选A.法二、因为()2122124n n n n n a a a na n ++=++,所以()22212411n n n n a na n a n a +++=+, 所以2222124142n n n n n n a na n n n na a a a +⎛⎫+++==+⋅+ ⎪⎝⎭, 所以21122n n n n a a +⎛⎫++=+ ⎪⎝⎭,令2n n n b a =+,则21n n b b +=,因为13b =,所以223b =,所以()224333b ==,所以()248433b ==,…,所以7264839b ==。
2019届福州市高中毕业质量检测2019年2月数学理科(含答案)
∴ a c sin A sin C sin A sin
2
1 2 2 ac a c 3 a c ,(当且仅当 a c 时,取等号)························ 9 分 4 2
因为 b
2
3 , 2
2
∴ a c 3 ,即 a c 3 ,······················································································10 分
又三角形两边之和大于第三边,所以
3 a c 3 ,·············································11 分 2
所以 a c 的取值范围是 18. (本小题满分 12 分)
3 2 , 3 .·············································································· 12 分
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分. 13.
3
14.
2
15.3
16.
, 0 e
三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分 12 分) (1)解:由角 A 、 B 、 C 成等差数列, 所以 2B A+C ,················································································································· 1 分 又因为 A+B +C = , 所以 B
福建省2019届高三质量检查数学试卷(理)
准考证号 姓名(在此试卷上答题无效)保密★启用前普通高中毕业班质量检查理 科 数 学注意事项:1.本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷2至4页。
2.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
3.全部答案答在答题卡上,答在本试卷上无效。
4.考试结束或,将本试卷和答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知复数z 满足z i z ,21-=为z 的共轭复数,则()2016z z -等于A.20162B.20162-C.i 20162D.i 20162-(2)已知全集为R ,集合{},086|121|2≤+-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤⎪⎭⎫ ⎝⎛=x x x B x A x,则=)(B C A RA.{}20|<≤x xB.{}42|≤≤x xC.{20|<≤x x 或}4>xD..{20|≤<x x 或}4≥x(3)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其意思为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布A.30尺B.90尺C.150尺D.180尺(4)已知抛物线()02:2>=p px y C 的焦点为F,P 为C 上一点,若,4=PF 点P 到y 轴的距离等于等于3,则点F 的坐标为A.(-1,0)B.(1,0)C.(2,0)D.(-2,0)(5)执行如图所示的程序框图,则输出的k 值为A.7B.9C.11D.13(6)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为A.101 B.51 C.103 D.52(7)如图,网格纸上小正方形的边长为2,粗线画出的是某几何体的三视图则该几何体的体积是A.π6B.π7C.π12D.π14(8)()622--x x 的展开式中2x 的系数等于 A.-48 B.48 C.234 D.432(9)设x ,y 满足,0223010⎪⎩⎪⎨⎧≤--≤-+≥y x y ax y 若2210y x x z +-=的最小值为-12,则实数a 的取值范围是A.21-≤a B.23-<a C. 21≥a D.23<a (10)已知A,B,C 在球O 的球面上,AB=1,BC=2, 60=∠ABC ,直线OA 与截面ABC 所成的角为 30,则球O 的表面积为 A.π4 B.π16 C.π34D.π316 (11)已知函数()()()e e b ax x xf x -++-=2,当0>x 时,()0≤x f ,则实数a 的取值范围为 A.0>a B.10≤<a C.1≥a D.1≤a(12)已知数列}{n a 的前n 项和为,,,046,21>==n n S S S S 且22122,+-n n n S S S ,成等比数列,12221-2,++n n n S S S ,成等差数列,则2016a 等于A.1008-B.1009-C.21008D.21009第Ⅱ卷本卷包括必考题和选考题两部分。
2019年福州市质检理科数学试卷
2019年福州市普通高中毕业班质量检测数学(理科)试卷 (完卷时间:120分钟;满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足i 1i z ⋅=-,则z 的共轭复数为 A. 1i -+ B. 1i + C. 1i -- D. 1i -2.已知集合{}{}2213,20A x x B x x x =+>=--<,则A B U = A. {}12x x << B. {}11x x -<< C. {}211x x x -<<>,或 D. {}1x x >-3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动的情况,随机抽取50名学生进行调查.将数据分组整理后,列表如下:参加场数1234567参加人数占调查人数的百分比 8% 10% 20% 26% 18% m% 4% 2% 以下四个结论中正确的是 A. 表中m 的数值为10B. 估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C. 估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D. 若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50 的样本,则分段间隔为25 4.等比数列{}n a 的各项均为正实数,其前n 项和为n S .若3264,64a a a ==,则5S =A. 32B. 31C. 64D.63 5. 已知sin π162θ⎛⎫-= ⎪⎝⎭,且2θπ0,⎛⎫∈ ⎪⎝⎭,则π3cos θ⎛⎫- ⎪⎝⎭= A. 0 B.12 C. 1 D. 326.设抛物线24y x =的焦点为F ,准线为l ,P 为该抛物线上一点,PA l ⊥错误!未找到引用源。
2019年福建省高三毕业班质量检查测试数学(理)试题 含答案
是唐代金银细工的典范之作.该杯型几何体的主体部分可近似看作是由双曲线 C : x2 − y2 = 1的右支与直线 39
x = 0 , y = 4 , y = −2 围成的曲边四边形 MABQ 绕 y 轴旋转一周得到的几何体,如图(2). N , P 分别为
C 的渐近线与 y = 4 ,y = −2 的交点,曲边五边形 MNOPQ 绕 y 同旋转一周得到的几何体的体积可由祖暅
y
满足约束条件
x
+
y
−1
0,
则
z
=
x
+
2
y
的最小值是(
)
y +1 0,
A. −5
B. −4
C. 0
D. 2
5.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球 O 的球面上,则球 O 的体积是( )
A. 8 2 3
B. 4 3
C.12
D.32 3
6.将函数
y
=
sin
2x
+
6
的图象向右平移
6
个单位长度后,所得图象的一个对称中心为(
)
A.
12
,
0
B.
4
,
0
C.
3
,
0
D.
2
,
0
7.已知 a = 2 , b = 5 5 , c = 7 7 ,则( )
2019年福建省质检模拟试题数学(理科)试卷及答案
2019年福建省高考模拟试题(1)数学(理科)试卷(考试时间:120分钟;满分:150分)第Ⅰ卷(选择题共60分)考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共21道题。
满分值:150分,考试时间:120分钟。
考生只交第Ⅰ卷答题卡和第Ⅱ卷.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U =R ,集合{}|1A y y x =≥,}{240B x Z x =∈-≤,则下列结论正确的是( )A .}{2,1AB =--B . ()(,0)U A B =-∞ðC .[0,)AB =+∞D . }{()2,1U A B =--ð2.已知向量(1,3)a =,(1,0)b =-,则|2|a b +=( )A .1 B. C. 2 D. 43.如图:正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 、K 、L 分别为AB 、BB 1、B 1C 1、C 1D 1、D 1D 、DA 的中点,则六边形EFGHKL 在正方体面上的射影可能是( )4.已知i 是虚数单位,使(1)ni +为实数的最小正整数n为( ) A .2B .4C .6D .85.已知sin()sin 0,32ππααα++=-<<则2cos()3πα+等于( )A .45-B .35-C .35D .456.下列说法中,不正确...的是( ) A .“x y =”是“x y =”的必要不充分条件;B .命题:p x ∀∈R ,sin 1x ≤,则:p x ⌝∃∈R ,sin 1x >;C .命题“若,x y 都是偶数,则x y +是偶数”的否命题是“若,x y 不是偶数,则x y +不是偶数”;D .命题:p 所有有理数都是实数,:q 正数的对数都是负数,则()()p q ⌝∨⌝为真命题. 7.已知实数,m n 满足01n m <<<,给出下列关系式①23m n = ②23log log m n = ③23m n =A .0个B .1个C .2个8.福建泉州市2008年的生产总值约为 3151亿元人民币,如果从此泉州市生产 总值的年增长率为10.5%,求泉州市最早 哪一年的生产总值超过8000亿元人民币?B C D A B C D A 1B 1C 1D 1 H G KLE某同学为解答这个问题设计了一个程序框图, 但不慎将此框图的一个处理框中的内容污染 而看不到了,则此框图中因被污染而看不到的 内容应是 ( )A .a a b =+B .a a b =⨯C .()na ab =+ D .na ab =⨯9.设函数()x f y =的定义域为R +,若对于给定的正数K ,定义函数()()()()⎩⎨⎧>≤=,,,,K x f x f K x f K x f K 则当函数()x x f 1=,1=K 时,()dx x f K ⎰241的值为( ) A .22ln 2+ B .12ln 2- C .2ln 2D .12ln 2+10.若在直线l 上存在不同的三个点C B A ,,,使得关于实数x 的方程20x OA xOB BC ++=有解(点O 不在l 上),则此方程的解集为( )(A) {}1- (B) ∅(C)⎪⎪⎩⎭(D){}1,0-第Ⅱ卷(非选择题 共100分)二、填空题:本大共5小题,每小题4分,满分20分.11. 某体育赛事志愿者组织有1000名志愿者,其中参加过2008年北京奥运会志愿服务的有250名,新招募的2010年广州亚运会志愿者750名.现用分层抽样的方法从中选出100名志愿者调查他们 的服务能力,则选出新招募的广州亚运会志愿者的人数是 . 12. 如图,在矩形ABCD 中,O AC AB ,2,1==为AC 中点,抛物线 的一部分在矩形内,点O 为抛物线顶点,点D B ,在抛物线上,在矩形内随机地放一点,则此点落在阴影部分的概率为 .13. 上海世博园中的世博轴是一条1000m 长的直线型通道,中国馆位于世博轴的一侧(如下图所示). 现测得中国馆到世博轴两端的距离相等,并且从中国馆看世博轴两端的视角为120. 据此数据计算,中国馆到世博轴其中一端的距离是 m .14. 若实数x 、y 满足20,,,x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩且2z x y =+的最小值为3,则实数b 的值为_____.CB世博轴·A 中国馆120º15.若等差数列{}n a 的首项为1,a 公差为d ,前n 项的和为n S ,则数列{}nS n为等差数列,且通项为1(1)2n S da n n =+-⋅.类似地,若各项均为正数的等比数列{}nb 的首项为1b ,公比为q ,前n 项的积为n T ,则数列为等比数列,通项为____________________.三、解答题:本大题共6小题,16—19各13分,20—21各14分,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本题满分13分)泉州市为鼓励企业发展“低碳经济”,真正实现“低消耗、高产出”,施行奖惩制度.通过制定评 分标准,每年对本市50%的企业抽查评估,评出优秀、良好、合格和不合格四个等次, 并根据等级给予相应的奖惩(如下表).某企业投入100万元改造,由于自身技术原因,能达到以上四个等次的概率分别为111123824,,,,且由此增加的产值分别为60万元、40万元、20万元、5-万元.设该企业当年因改造而增加利润为ξ.(Ⅰ)在抽查评估中,该企业能被抽到且被评为合格以上等次的概率是多少? (Ⅱ)求的数学期望.17.(本题满分13分)如图,在棱长为1的正方体1111ABCD A B C D -中,P 为线段1AD 上的点,且满足1(0)D P PA λλ=>.(Ⅰ)当1λ=时,求证:平面11ABC D ⊥平面PDB ; (Ⅱ)试证无论λ为何值,三棱锥1D PBC -的体积恒为定值;(Ⅲ)求异面直线1C P 与1CB 所成的角的余弦值. 18.(本题满分13分)第17题图E如图,某污水处理厂要在一个矩形污水处理池)(ABCD 的池底水平铺设污水净化管道FHE Rt ∆(,H 是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H 是AB 的中点,F E ,分别落在线段AD BC ,上.已知20=AB 米,310=AD 米,记θ=∠BHE .(1)试将污水净化管道的长度L 表示为θ的函数,并写出定义域;(2)若2cos sin =+θθ,求此时管道的长度L ;(3)当θ取何值时,污水净化效果最好?并求出此时管道的长度.19.(本题满分13分)已知椭圆C :22221x y a b+=(0a b >>),其焦距为2c ,若c a =0.618≈),则称椭圆C 为“黄金椭圆”.(1)求证:在黄金椭圆C :22221x y a b+=(0a b >>)中,a 、b 、c 成等比数列.(2)黄金椭圆C :22221x ya b +=(0a b >>)的右焦点为2(,0)F c ,P 为椭圆C 上的任意一点.是否存在过点2F 、P 的直线l ,使l 与y 轴的交点R 满足23RP PF =-?若存在,求直线l 的斜率k ;若不存在,请说明理由.(3)在黄金椭圆中有真命题:已知黄金椭圆C :22221x y a b+=(0a b >>)的左、右焦点分别是1(,0)F c -、2(,0)F c ,以(,0)A a -、(,0)B a 、(0,)D b -、(0,)E b 为顶点的菱形ADBE 的内切圆过焦点1F 、2F .试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.20.(本题满分14分)已知二次函数()2f x ax bx c =++和“伪二次函数”()2g x ax =+ ln bx c x +(a 、b 、,c R ∈0abc ≠),(I )证明:只要0a <,无论b 取何值,函数()g x 在定义域内不可能总为增函数;(II )在二次函数()2f x ax bx c =++图象上任意取不同两点1122(,),(,)A x y B x y ,线段AB 中点的横坐标为0x ,记直线AB 的斜率为k , (i )求证:0()k f x '=;(ii )对于“伪二次函数”()2ln g x ax bx c x =++,是否有(i )同样的性质?证明你的结论.21.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中. (1)(本小题满分7分) 选修4一2:矩阵与变换若点A (2,2)在矩阵cos sin sin cos αααα-⎡⎤=⎢⎥⎣⎦M 对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.(2)(本小题满分7分) 选修4一4:坐标系与参数方程已知极坐标系的极点O 与直角坐标系的原点重合,极轴与x 轴的正半轴重合,曲线C 1:cos()4ρθπ+=与曲线C 2:24,4x t y t ⎧=⎨=⎩(t ∈R )交于A 、B 两点.求证:OA ⊥OB .(3)(本小题满分7分) 选修4一5:不等式选讲求证:*N n ∈∀,132212111+≥+++++n nn n n .第18题图2019年福建省高考模拟试题(1)数学(理科)试卷一、选择题:本题主要考查基础知识和基本运算. 1.B 2.C 3.D 4.D 5.B 6.C 7.C 8.B 9.D 10.A 二、本大题共4个小题;每小题5分,共20分.本题主要考查基础知识和基本运算. 11.75 12.311314.94 1511n b -= 三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.17.解:(Ⅰ)设该企业能被抽中的概率且评为合格以上等次的概率为P ,则111123238248P ⎛⎫=++⨯=⎪⎝⎭…………………4分 (Ⅱ)依题意,ξ的可能取值为185,105,80,60,50,40,0,60,------则1612181)50(,612131)0(,412121)60(=⨯=-==⨯===⨯==ξξξP P P412121)40(,48121241)185(=⨯=-==⨯=-=ξξP P ,111111111(60),(80),(105)326821624248P P P ξξξ=-=⨯==-=⨯==-=⨯=则其分布列为10分∴1111115(60406050801851054616486E ξ=-⨯+-⨯+--⨯+--⨯=-)()()()(万元) ………………………………13分18.解:方法一、证明:(Ⅰ)∵正方体1111ABCD A B C D -中,AB ⊥面11AA D D , 又11AB ABC D ⊂∴平面11ABC D ⊥平面11AA D D , ………………2分 ∵1λ=时,P 为1AD 的中点,∴1DP AD⊥, 又∵平面11ABC D 平面11AA D D 1AD =,∴DP ⊥平面11ABC D ,又DP ⊂平面PDB ,∴平面11ABC D ⊥平面PDB .………4分 (Ⅱ)∵11//AD BC , P 为线段1AD 上的点, ∴三角形1PBC 的面积为定值,即11122PBC S ∆==, ………………6分又∵//CD 平面11ABC D ,∴点D 到平面1PBC 的距离为定值,即h =, ………………8分 ∴三棱锥1D BPC -的体积为定值,即11111336D PBC PBC V S h -∆=⋅⋅==. 也即无论λ为何值,三棱锥1D PBC -的体积恒为定值16;………………………10分(Ⅲ)∵由(Ⅰ)易知1B C ⊥平面11ABC D ,又1C P ⊂平面11ABC D ,∴11B C C P ⊥, …………………………12分 即异面直线1C P 与1CB 所成的角为定值90,从而其余弦值为0.…………………13分 方法二、如图,以点D 为坐标原点,建立如图所示的坐标系.11(,0,)22P ,又(Ⅰ)当1λ=时,即点P 为线段1AD 的中点,则(0,0,0)D 、(1,1,0)B∴11(,0,)22PD =--,11(,1,)22PB =-,设平面PDB 的法向量为(,n x y z =, (1)分 则00PD n PB n ⎧⋅=⎪⎨⋅=⎪⎩,即11002211022x z x y z ⎧-+-=⎪⎪⎨⎪+-=⎪⎩,令1y =,解得(1,1,1)n =-, …2分又∵点P 为线段1AD 的中点,∴1DP AD ⊥,∴DP ⊥平面11ABC D ,∴平面11ABC D 的法向量为11(,0,)22PD =--, ……………3分∵110022PD n ⋅=+-=,∴平面11ABC D ⊥平面PDB , ………………………4分(Ⅱ)略;(Ⅲ)∵1(0)D P PA λλ=>,∴1(,0,)11P λλλ++, …………………10分 又1(0,1,1)C 、(0,1,0)C 、1(1,1,1)B ,∴1(,1,)11C P λλλλ-=-++,1(1,0,1)CB =, ……………………………11分∵110011C P CB λλλλ-⋅=++=++ …………………………………12分∴不管λ取值多少,都有11C P CB ⊥,即异面直线1C P 与1CB 所成的角的余弦值为0.……13分18.(1)解:10cos EH θ=,10sin FH θ=,10(0)sin cos 2EF πθθθ==<<.由于10tan BE θ=≤10tan AF θ=≤tan 3θ≤≤[,]63ππθ∈. 所以101010cos sin sin cos L θθθθ=++,[,]63ππθ∈.…………4分 (2)解:当sin cos θθ+=1sin cos 2θθ=,10(sin cos 1)1)sin cos L θθθθ++==(米). ……7分(3)解:10(sin cos 1)sin cos L θθθθ++=,设s i n c o s t θθ+=,则21s i n c o s 2t θθ-=,所以201L t =-.由于[,]63ππθ∈,所以sin cos )4t πθθθ=+=+∈.由于201L t =-在上单调递减,所以当t =即6πθ=或3πθ=时,L取得最大值1)米.答:当6πθ=或3πθ=时,污水净化效果最好,此时管道的长度为1)米. ……13分19.(1)证明:由c a =222b a c =-,得222222)b a c a =-=-=ac =,故a 、b 、c 成等比数列.(3分)(2)解:由题设,显然直线l 垂直于x 轴时不合题意,设直线l 的方程为()y k x c =-, 得(0,)R kc -,又2(,0)F c ,及23RP PF =-,得点P 的坐标为3(,)22c kc,(5分) 因为点P 在椭圆上,所以22223221c kc a b ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+=,又2b ac =,得229144c k c a a ⎛⎫+⋅= ⎪⎝⎭,20k >,故存在满足题意的直线l,其斜率k =(6分) (3)黄金双曲线的定义:已知双曲线C :22221x y a b-=,其焦距为2c ,若c a =a c =0.618≈),则称双曲线C 为“黄金双曲线”.(8分)在黄金双曲线中有真命题:已知黄金双曲线C :22221x y a b-=的左、右焦点分别是1(,0)F c -、2(,0)F c ,以1(,0)F c -、2(,0)F c 、(0,)D b -、(0,)E b 为顶点的菱形12F DF E 的内切圆过顶点(,0)A a -、(,0)B a .(10分) 证明:直线2EF 的方程为0bx cy bc +-=,原点到该直线的距离为d =,将2b ac =代入,得d ==,又将c =代入,化简得d a =, 故直线2EF 与圆222x y a +=相切,同理可证直线1EF 、1DF 、2DF 均与圆222x y a +=相切,即以(,0)A a -、(,0)B a 为直径的圆222x y a +=为菱形12F DF E 的内切圆,命题得证.(13分) 20.解:(I )如果0,()x g x >为增函数,则22()20c ax bx cg x ax b x x++'=++=>(1)恒成立, --------1分 当0x >时恒成立, 220ax bx c ++>(2)0,a <由二次函数的性质, (2)不可能恒成立.则函数()g x 不可能总为增函数. --------4分(II )(i )()()()222121212121()f x f x a x x b x x k x x x x --+-==--=02ax b +. --------6分由()2,f x ax b '=+00()2f x ax b '∴=+,……..7分 则0()k f x '=--------7分 (ii )不妨设21x x >,对于“伪二次函数”:法一:()2ln ()ln g x ax bx c x f x c x c =++=+-.()()2212112121()()ln x f x f x c g x g x x k x x x x -+-==--21021ln(),x c x f x x x '=+- (3)--------9分又()000()cg x f x x ''=+, 法二:()()()22221212112121()lnx a x x b x x c g x g x x k x x x x -+-+-==--=21021ln2x c x ax b x x ++-, (3) --------9分由(ⅰ)中(1)()0002c g x ax b x '=++, 如果有(ⅰ)的性质,则()0g x k '= , (4)比较(3)( 4)两式得21210lnx c x cx x x =-,0,c ≠即:212112ln2x x x x x x =-+,(4) --------12分不妨令21, 1, x t t x =>ln 211t t t =-+, (5) 设22()ln 1t s t t t -=-+,则22212(1)2(1)(1)()0(1)(1)t t t s t t t t t +---'=-=>++, ∴()s t 在(1,)+∞上递增, ∴()(1)0s t s >=.∴ (5)式不可能成立,(4)式不可能成立,()0g x k '≠. --------13分 ∴“伪二次函数”()2ln g x ax bx c x =++不具有(ⅰ)的性质. --------14分21..解(1).解:2222-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦M ,即2cos 2sin 22sin 2cos 2αααα--⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦,……………………2分所以cos sin 1,sin cos 1.αααα-=-⎧⎨+=⎩ 解得cos 0,sin 1.αα=⎧⎨=⎩……………………5分所以0110M -⎡⎤=⎢⎥⎣⎦.由1M M -=1001⎡⎤⎢⎥⎣⎦,得10110M -⎡⎤=⎢⎥-⎣⎦.……………7分 另解:01=M 10-=10≠, 10110-⎡⎤=⎢⎥-⎣⎦M . 另解:01c o s 90s i n 910s i n 90c o s 90-︒-︒⎡⎤⎡⎤==⎢⎥⎢⎥︒︒⎣⎦⎣⎦M ,看作绕原点O 逆时针旋转90°旋转变换矩阵,于是1c o s (90)s i n (90)s i n (90)c o s (90)--︒--︒⎡⎤=⎢⎥-︒-︒⎣⎦M 0110⎡⎤=⎢⎥-⎣⎦. (2).曲线1C 的直角坐标方程4x y -=,曲线2C 的直角坐标方程是抛物线24y x =, 4分设11(,)A x y ,22(,)B x y ,将这两个方程联立,消去x ,得212416016y y y y --=⇒=-,421=+y y .………………3分016)(42)4)(4(212121212121=+++=+++=+∴y y y y y y y y y y x x .……5分∴0OA OB ⋅=,∴OB OA ⊥.………………………………………7分 (3).[]22)2()1(212111n n n n n n n ≥+++++⎪⎭⎫⎝⎛+++++ ,所以 132232)1(2121112222+=+=++≥⎪⎭⎫ ⎝⎛+++++n n n n n n n n n n n n ………………………… 7分。
福建省福州市2019届高三毕业班3月质检数学理
2019年福州市高中毕业班质量检测理科数学试卷(完卷时间:120分钟;满分:150分)第I卷(选择题共50分)一、选择题:本大题共10小题•每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的•1•已知集合A={( x,y)|y=lgx}, B={(x,y)|x=a},若A A B= 一,则实数a的取值范围是( ).A. a<1B. a< 1C. a<0D. a< 02•“实数a=1 ”是“复数(1 ai)i ( a€ R ,i为虚数单位)的模为2 ”的().A.充分非必要条件B.必要非充分条件3.4.5. C.充要条件执行如图所示的程序框图D.既不是充分条件又不是必要条件,输出的M的值是( )开始J 」—►M=2―►i=1A . 2B. -11c.—命题” x R,使得f (x )二xA. _X R,都有f (x)二XC. —x R,都有f (x) = x是i<5?否”的否定是B.不存在x -D. x R,使输出MR,使f (x) x已知等比数列{a n}的前n项积为二n,若a3 d a8A.512B.256C.81i=i+1M 二结束).D.166.如图,设向量OA = (3,1),OB =(13),若OC =入OA +卩OB,且入》卩> 1,则用阴影表示C点所9.若定义在R 上的函数f(x)满足f(-x)=f(x), f(2- x)=f(x), 且当x € [0,1]时,其图象是四分之一圆(如图所示),则函数A. f(x)=x+sinxB. f (x ) =cos x xC.f(x)=xcosx兀3兀D.f (x )= x(--)(-云)8.已知F i 、22x yF 2是双曲线—22 " (a>0,b>0)的左、右焦点a b,若双曲线左支上存在一点 P 与点F 2关于直线y =■ bx对称”则该双曲线的离心为().a、5A.-2B. 5C.2D.2H(x)= |xej —f(x)在区间[—3,1]上的零点个数为()3210.已知函数f (x )=x +bx+cx+d (b 、c 、d 为常数),当x € (0,1)时取得极大值,当x € (1,2)时取极小值,则1 2 2(b -) (c- 3)的取值范围是().2nH x(-1) sin 2n,x [2n,2n 1)9f(x)二-2,(n N)n ' :1z x(-1)n 1sin 2n 2,x [2 n 1,2 n 2)I. 2若数列{a m }满足 a m = f (m )(m N ),且的前 m 项和为 S m ,则 S 2014 - S 2006 = _____________2三、解答题:本大题共六个小题,共80分.解答应写出文字说明、证明过程和演算步骤.A •(旦,5)B. .5,5)2C. (37,25)4D.(5,25)第H 卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分. 11.5名同学排成一列,某个同学不排排头的排法种数为(用数字作答)12.如图所示,在边长为1的正方形OABC 中任取一点 M ,则点M 恰好取自 阴影部分的概率为 ____________ .2 213.若直线 x - y • 2 =0 与圆 C: (x -3) • (y -3) =4 相交于 A 、两点,则CA CB 的值14.已知某几何体的三视图(单位:cm )如图所示,则该几何体的表面积为15.已知函数A.5B.4C.3D.216. (本小题满分13分)在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图:甲地乙地8 01 2 4 7 8 8 92 0 0 1 2(优质品件数/总件数);规定:当产品中的此种元素含量羽5毫克时为优质品(I )试用上述样本数据估计甲、乙两地该产品的优质品率(n )从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数■的分布列及数学期望E().17. (本小题满分13分)已知函数f (x) = 2cos2x 2、3sin xcosx(x R)..(I)当[0,—]时,求函数f(x)的单调递增区间;2(n)设ABC的内角A,B,C的对应边分别为a,b,c,且c = 3, f(C)=2,若向量m=(1,sinA)与向量n = (2,sinB)共线,求a,b 的值.18. (本小题满分13分)如图,直角梯形ABCD中,.ABC =90°AB = BC二2AD=4,点E、F分别是AB、CD的中点,点G在EF上,沿EF将梯形AEFD翻折,使平面AEFD丄平面EBCF .(I)当AG+ GC最小时,求证:BD丄CG ;(n)当2V B- ADGE = V D-GBCF时,求二面角D- BG- C平面角的余弦值.19. (本小题满分13分)已知动圆C过定点(1,0),且与直线x= —1相切.(I)求动圆圆心C的轨迹方程;(H)设A、B是轨迹C上异于原点O的两个不同点,直线OA和OB的倾斜角分别为:-和一:,①当:;亠= _时,求证直线AB恒过一定点M;2②若很亠卩为定值v(0 ::: v :::二),直线AB是否仍恒过一定点若存在,试求出定点的坐标;若不存在请说明理由•20. (本小题满分14分)1已知函数f (x) = In (x+ ) -ax,其中a R且a = 0a(I)讨论f (x)的单调区间;(n)若直线y二ax的图像恒在函数f (x)图像的上方,求a的取值范围1(川)若存在为:::0 , x2• 0 ,使得f (x1) = f (x2) = 0 ,求证:x1 x2 0.a21. 本题设有(1 )、(2)、( 3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做, 则按所做的前两题计分•作答时,先用2B铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中•(1) (本小题满分7分)选修4-2:矩阵与变换.3 3^一£已知矩阵A= 若矩阵A属于特征值6的一个特征向量为S = ,属于特征值1的一个特征JC d丿<1丿曰一*3 \向量a = .1-2丿(I)求矩阵A的逆矩阵;(n)计算A3的值•<4丿(2) (本小题满分7分)选修4-4:坐标系与参数方程.在平面直角坐标系xoy 中,以O 为极点,x 轴非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为(I)写出曲线 C 的直角坐标方程和直线 I 的普通方程 (n)若 P( - 2,-4),求 |PM|+|PN| 的值.(3) (本小题满分7分)选修4-5:不等式选讲 设函数 f(x)=|x — 4|+|x - 3|,(I)求f(x)的最小值 m(n)当 a+2b+3c=m(a,b,c € R)时,求 a 2+ b 2+c 2的最小值.2019年福州市高中毕业班质量检测 数学(理科)试卷参考答案及评分标准1 —10 DABCA DCBBD16.解:(1)甲厂抽取的样本中优等品有乙厂抽取的样本中优等品有(II) 的取值为1, 2, 3. .......................... 5分v -4cosr ,直线I 的参数方程为(t 为参数),两曲线相交于M,N 两点.11.9612.1/313.014.18+ 2.3 cm 2 15.80427件,优等品率为—.10 左848件,优等品率为10 51 21 7 7 12故 的数学期望为(E ') 1 — 2 — 3 —二一 ........................... 13分15 15 15 517.解:(l) f (x) = 2cos 2 x . 3sin 2xA JIJ[ JI令-2k ?x z 2x2k 二,k Z ,26 22兀 n 兀 兀解得 2k … _2 x 岂 2k 二-即 k 二-一 一 x 一 k 二■一 ......... 4 分3 3 3 6JIJI■/[0,-]< f(x)的递增区间为[0,6】........... 6分 二二 1(n )由 f (C ) =2sin(2C —)1=2,得 sin(2C —)二—6 6 213二二 5二,’而C 0,二,所以2C,亘,所以2C 得C8分616 6 丿6P( =1)C8C2Cwi15P(C 1015 P ( =3)C83 10715= cos2x 、、3si n2x 1 =2sin2xsin A sin B1 26 3因为向量 m =(1,sinA)与向量n=(2,sinB)共线,所以a 1由正弦定理得:一=—① ................ 10分b 2由余弦定理得:c 2 = a 2 - b -2abcos —,即 a 2+b 2— ab=9 ② ........ 1 2分 3k =1即 EG=1 .............................. 8 分 T设平面DBG 的法向量为m =(X, y, Z ), •/ G(0,1,0),由①②解得a = ... 3, b = 2』313分18•解:(I )证明:•••点E 、F 分别是AB 、CD 的中点J EF//BC 又/ABC=90 °J AE 丄 EF , :•平面 AEFD 丄平面 EBCF ,J AE 丄平面 EBCF , AE 丄EF , AE 丄BE , 又 BE 丄 EF ,如图建立空间坐标系E - xyz. ........................... 2分 翻折前,连结AC 交EF 于点G ,此时点G 使得AG+GC 最小.1EG= — BC=2,又•/ EA=EB =2 .2则 A(0,0,2),B(2,0,0),C(2,4,0), D(0,2,2),E(0,0,0),G(0,2,0),J =( -2,2,2),CG=(-2,-2,BD 丄 CG ...................... 5 分(n )解法一:设 EG=k,:AD //平面EFCB ,.点D 到平面EFCB 的距离为即为点 A 到平面EFCBC1=1 一2 V=AE — (7 k )又V ADGES四形ADGE3?B E=3(2' 2V B- ADGE = V D- GBCF ,'4 23(2 k)=3(7 -k),的距离..BG =(—2,1,0), BD =(—2,2,2),…h BD =0 2x+2y + 2z = 0 则: ,即n 1 BG =0 -2x y =04取 x = 1,则 y = 2,z = — 1,A n =(1,2, -1)...................... 10 分由于所求二面角 D-BF-C 的平面角为锐角(n )解法二:由解法一得 EG=1,过点D 作DH _ EF,垂足H,过点H 作BG 延长线的垂线垂足 O ,连接 OD. T 平面 AEFD 丄平面 EBCF,. DH _平面EBCF , OD _ OB,所以三DOH 就是所求 的二面角D- BG- C 的平面角 ..... ........ 9分2由于HG=1,在也OHG 中OH =三匸5 ,DH 又 DH=2,在:DOH 中 tan . DOH 511分OH所以此二面角平面角的余弦值为 丄6. .................. 1:分619. 解:(I )设动圆圆心 M(x,y),依题意点M 的轨迹是以(1,0)为焦点,直线x=— 1为准线的抛物线 ........ 2分 其方程为y 2=4x.- ................ 3分(n )设 A(X 1,y 1),B(X 2,y 2).2 2由题意得X 1枚2(否则■-二二)且X 1X 2丰(则X 1二丫1, X 2二匹44所以直线AB 的斜率存在,设直线AB 的方程为y=kx+b , 则将 y=kx+b 与 y 2=4x 联立消去 x,得 ky 2— 4y+4 b=0面BCG 的一个"(0,0,1)则 cos<I m II r )2| 所以此二面角平面角的余弦值为13分mm >=4 4b由韦达定理得 Yi 亠y 2 =—, y 1 y 2 = ------------- ................ 6分k k① 当= _时,tan : tan 1: =1所以上上二1,也 - ym = 0 , .................................. 7分2X i x 2—b 所以y i y 2=16,又由※知:y i y 2=—-所以b=4k;因此直线AB 的方程可表示为y=kx+ 4k,所以直线AB 恒 k过定点(一4,0)............ 8分■J T② 当.::■ 为定值”0 ::: V :::二)时若二=—,由①知,2直线AB 恒过定点 M (— 4,0) ............... 9分 当';_ 时,由「• - _ J ,得 tan J - tan (芒-1:,)=24所以直线AB 恒过定点(-4,) ............ 12分tan 6所以当二-2时,直线AB 恒过定点(—4,0).,「"兀4当时直线AB 恒过定点(-4,) . ........... 13分2tan 日120. 解:(I)f(x)的定义域为(-一,;).a1其导数f (x) = —- a =1 x +a1① 当a ::: 0时,f '(x) • 0 ,函数在(-丄,;)上是增函数; 2分atan”:亠 tan : 1 - tan : tan :4( % y 2) y i y 2 -16将※式代入上式整理化简可得此时,直线AB 的方程可表示为4b- 4 ky=kx + 4 k ,所以b= 4k11分2a xax+ 11②当a 0时,在区间(-,0) 上, f'(x) 0;在区间(0,+ m)上,f'(x):::0 .a1所以f(x)在(-一,0)是增函数,在(0,+ m )是减函数. ....... 4分a1(II)当a :::0时,取x = e -a1 1 1则f (e ) = 1 -a(e ) = 2 -ae 0 ae -1 = a(e ),不合题意.a a a2」1当 a . 0时令 h(x) = ax 一 f (x),则 h(x)=2ax_ln(x ) ...................... 6 分a问题化为求h(x) 0恒成立时a 的取值范围•1 .2a(x+p 由于h(x) =2a牛 ......... 7分1 1 xx -aa1 1 i.在区间(-,-)上,h '(x) 0 ;在区间(-一,•::)上,h '(x ) 0 .a 2a 2a1 1-h(x)的最小值为h( ),所以只需h( ) 02a 2a1 1 1 1 e即 2a () -ln()0, ln1, a .................... 9 分2a2a a 2a21 (川)由于当a :: 0时函数在(-一,;)上是增函数,不满足题意,所以a 0a1 构造函数:g(x)二 f (-X )- f(x)( x :: 0) a1 1.g (x)二 ln( x)「ln(x ) 2ax ........................... 11 分a a,/、1 1小2ax小则g(x ^^-^2^v^::0贝 y x xx 2a aa、 11所以函数g(x)在区间(一一,0)上为减函数.T 一一 £捲£0,则g(xj > g(0) = 0,a a于是 f (- xj- f (x )> 0,又 f (xj = 0,f (- xj> 0= f(X 2),由 f (x)在(0,址)上为减函数可知21. (1)(本小题满分7分)选修4-2 :矩阵与变换2 3 一 ~ 3-(3 d ) • 3d - 3c = 0的两个根为6和1,c+d = 6 1 = 2 3 3" ,.A =、3c — 2d = -2 d = 42 4解:(I )法一:依题意, x 2 -x 1.即 x x 2 014分所以A 4「3■'■■■ -'d丄3 3)故 d=4,c=2.- A =............. 2 分<2 4丿(2)(本小题满分7分)选修4-4 :坐标系与参数方程.解:(I )(曲线C 的直角坐标方程为y 2=4x,直线I 的普通方程x — y — 2=0. (4)x = _2+空 t| +42y _ _4 I. 2代入y 2=4x,得到t 2 -12J2t + 48 =0,设M,N 对应的参数分别为t i ,t 2则 11 ' 12 =12 \2,11t 2 - 48所以 |PM|+|PN|= |t i +t 2|= 12.2 ............. 7 分 (3))(本小题满分7分)选修4-5 :不等式选讲解:(I )法 1: f(x)=|x — 4|+|x — 3|> |(x — 4)— (x — 3)|=1, 故函数f(x)的最小值为1. m =1.4分A 3-1法二:A 2 -14=2 X633 A分*3、 |429〕.严丿= 1434丿152r— J 4 22」A3—13伦7 129 丫-1电6 130^4巾5 21 丫3 3) 〔87 129、14 22 人2 4 丿(86 130 y7分(n )直线I 的参数方程为(t 为参数),2x - 7, x _ 4法2: f (x ) = * 1,3 兰x< 4 . ----------------- 1分1-2 x, x v 3x> 4 时,f(x) > 1;x<3 时,f(x)>1,3 < x<4 时,f(x)=1, ----------------- 3 分故函数f(x)的最小值为1. m=1. ............. 4分2 2 2 2 2 2 2(n )由柯西不等式(a +b +c )(1 +2 +3 )泊+2b+3c) =1 ------------------ 5 分1故a2+b2+c2> - ............... 6 分14113当且仅当a二一,b二-,c —时取等号........7分14 7 14。
2019年福州市质检理科试卷与解答(1)
试卷第1页,总57页2019年福州市普通高中毕业班质量检测参考答案数学(理科)试卷 (完卷时间:120分钟;满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足i 1i z ⋅=-,则z 的共轭复数为 A. 1i -+ B. 1i + C. 1i -- D. 1i - 【简解】因为1i1i iz -==--,所以1+i z =-,故选A . 2.已知集合{}{}2213,20A x x B x x x =+>=--<,则A B U = A. {}12x x << B. {}11x x -<< C. {}211x x x -<<>,或 D. {}1x x >-【简解】因为{}{}1,12A x x B x x =>=-<<,所以{}1A B x x =>-U ,故选D . 3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动的情况,随机抽取50名学生进行调查.将数据分组整理后,列表如下:参加场数1234567参加人数占调查人数的百分比 8% 10% 20% 26% 18% m% 4% 2% 以下四个结论中正确的是 A. 表中m 的数值为10B. 估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C. 估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D. 若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50 的样本,则分段间隔为25【简解】A 中的m 值应为12; B 中应为380人; C 是正确的; D 中的分段间隔应为20,故选C . 4.等比数列{}n a 的各项均为正实数,其前n 项和为n S .若3264,64aa a ==,则5S =A. 32B. 31C. 64D.63【简解】解法一:设首项为1a ,公比为q ,因为0n a >,所以0q >,由条件得21511464a q a q a q ⎧⋅=⎪⎨⋅=⎪⎩,解得112a q =⎧⎨=⎩,所以531S =,故选B .解法二:设首项为1a ,公比为q ,由226464a a a ==,又34a =,∴2q =,又因为214a q ⋅=所以11a =,所以531S =,故选B .5. 已知sin π162θ⎛⎫-= ⎪⎝⎭,且2θπ0,⎛⎫∈ ⎪⎝⎭,则π3cos θ⎛⎫- ⎪⎝⎭=A. 0B.12 C. 1 D. 32【简解】解法一:由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,π3θ=,代入πcos 3θ⎛⎫- ⎪⎝⎭得, πcos 3θ⎛⎫- ⎪⎝⎭=cos01=,故选C .解法二:由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,π3cos 62θ⎛⎫-= ⎪⎝⎭, 所以πππππππcos cos cos cos sin sin 13666666θθθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=--=-+-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选C . 6.设抛物线24y x =的焦点为F ,准线为l ,P 为该抛物线上一点,PA l ⊥错误!未找到引用源。
(完整)2019年福州市高三下学期第二次市质检理科数学试卷(word版,有答案)
19.(12 分) 最近,中国房地产业协会主办的中国房价行情网 调查的一份数据显示,2018 年 7 月,大部分一线 城市的房租租金同比涨幅都在 10%以上.某部门
研究成果认为,房租支出超过月收入 1 的租户“幸 3
第 18 题 图
福指数”低,房租支出不超过月收入 1 的租户“幸 3
A. 2 3
B. 4 3
C.8 D. 8 3
7. 如图,网格纸上的小正方形的边长为 1,粗实线画出的是某几 何体的三视图,则该几何体的体积为
第 7 题图
数学(理科)试卷第 1 页,共 5 页
32
A.32 B.16 C.
3
80
D.
3
8. 已知函数
f (x) 2sinx
0,
图
象的相邻
两条对称轴
福指数”高.为了了解甲、乙两小区租户的幸福指 数高低,随机抽取甲、乙两小区的租户各 100 户
进行调查.甲小区租户的月收入以0,3 ,3,6 ,6,9 ,9,12 ,12,15(单位:千元)
分组的频率分布直方图如上: 乙小区租户的月收入(单位:千元)的频数分布表如下:
数学(理科)试卷第 3 页,共 5 页
2019 年 福 州 市 普 通 高 中 毕 业 班 质 量 检 测
数学(理科)试卷
(完卷时间:120 分钟;满分 150 分) 第 Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只 有一项是符合题目要求的。
1. 1 i 设复数 z 满足 i z 1i ,则 z 的共轭复数为 A. B. 1 i C. 1 i D. 1 i
,则 a8
2019年普通高等学校招生全国统一考试福建卷理科数学试题及答案
2019年普通高等学校招生福建卷理工类数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数10)11(ii +-的值是( )A .-1B .1C .-32D .32 2.tan15°+cot15°的值是( )A .2B .2+3C .4D .3343.命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充分而不必要条件; 命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则 ( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真4.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是真正三角形,则这个椭圆的离心率是 ( )A .3332 B .32C .22D .235.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题:①若m ⊂α,n ∥α,则m ∥n ; ②若m ∥α,m ∥β,则α∥β;③若α∩β=n ,m ∥n ,则m ∥α且m ∥β; ④若m ⊥α,m ⊥β,则α∥β. 其中真命题的个数是 ( )A .0B .1C .2D .36.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为 ( )A .2426C A B .242621C A C .2426A AD .262A7.已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是( )8.已知a 、b 是非零向量且满足(a -2b ) ⊥a ,(b -2a ) ⊥b ,则a 与b的夹角是( )A .6πB .3πC .32π D .65π 9.若(1-2x )9展开式的第3项为288,则)111(lim 2n n xx x +++∞→ 的值是( )A .2B .1C .21D .5210.如图,A 、B 、C 是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60°,O 为球心,则直线 OA 与截面ABC 所成的角是( ) A .arcsin 63B .arccos 63C .arcsin33 D .arccos3311.定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,5]时,f(x)=2-|x -4|,则( ) A .f (sin6π)<f (cos 6π) B .f (sin1)>f (cos1)C .f (cos 32π)<f (sin 32π)D .f (cos2)>f (sin2)12.如图,B 地在A 地的正东方向4 km 处,C地在B 地的北偏东30°方向2 km 处,河流 的没岸PQ (曲线)上任意一点到A 的距离 比到B 的距离远2 km.现要在曲线PQ 上 选一处M 建一座码头,向B 、C 两地转运 货物.经测算,从M 到B 、M 到C 修建公 路的费用分别是a 万元/km 、2a 万元/km , 那么修建这两条公路的总费用最低是( ) A .(27-2)a 万元 B .5a 万元C .(27+1) a 万元D .(23+3) a 万元第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. 13.直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 .14.设函数⎪⎩⎪⎨⎧-+=ax x x f 11)()0()0(=≠x x 在x =0处连续,则实数a 的值为 . 15.某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1; ③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是 (写出所有正 确结论的序号).16.如图1,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一 个无盖的正六棱柱容器.当这个正六棱柱容器的 底面边长为 时,其容积最大.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设函数f(x)=a ·b ,其中向量a=(2cos x ,1),b =(cos x , 3sin2x ),x ∈R.(Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ; (Ⅱ)若函数y=2sin2x 的图象按向量c=(m ,n)(|m|<2π)平移后得到函数y=f(x)的图象,求实数m 、n 的值. 18.(本小题满分12分)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率.在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA=SC=23,M 、N 分别为AB 、SB 的中点.(Ⅰ)证明:AC ⊥SB ;(Ⅱ)求二面角N —CM —B 的大小; (Ⅲ)求点B 到平面CMN 的距离.20.(本小题满分12分)某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(今年为第一年)的利润为500(1+n21)万元(n 为正整数). (Ⅰ)设从今年起的前n 年,若该企业不进行技术改造的累计纯利润为A n 万元,进行技术改造后的累计纯利润为B n 万元(须扣除技术改造资金),求A n 、B n 的表达式;(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?已知f(x)=222+-x ax (x ∈R)在区间[-1,1]上是增函数.(Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)=x1的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由. 22.(本小题满分12分)如图,P 是抛物线C :y=21x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q. (Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求||||||||SQ ST SP ST +的取值范围.2004年普通高等学校招生福建卷理工类数学试题参考答案一、1.A 2.C 3.D 4.A 5.B 6.C 7.C 8.B 9.A 10.D 11.D 12.B 二、13.45 14.1/2 15.1,3 16.2/3三、17. 本小题主要考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,考查运算能力.满分12分.解:(Ⅰ)依题设,f(x)=2cos 2x +3sin2x =1+2sin(2x +6π). 由1+2sin(2x +6π)=1-3,得sin(2 x +6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x +6π≤65π,∴2x +6π=-3π, 即x =-4π.(Ⅱ)函数y=2sin2x 的图象按向量c=(m ,n)平移后得到函数y=2sin2(x -m)+n 的图象,即函数y=f(x)的图象. 由(Ⅰ)得 f(x)=2sin2(x +12π)+1. ∵|m|<2π,∴m=-12π,n=1.18.本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力.满分12分.ξ的概率分布如下:甲答对试题数ξ的数学期望 E ξ=0×301+1×103+2×21+3×61=59. (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则P(A)=310361426C C C C +=1202060+=32, P(B)=310381228C C C C +=1205656+=1514. 因为事件A 、B 相互独立,方法一:∴甲、乙两人考试均不合格的概率为P(B A ⋅)=P(A )P(B )=1-32)(1-1514)=451. ∴甲、乙两人至少有一人考试合格的概率为 P=1-P(B A ⋅)=1-451=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 方法二:∴甲、乙两人至少有一个考试合格的概率为P=P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B) =32×151+31×1514+32×1514=4544. 答:甲、乙两人至少有一人考试合格的概率为4544. 19.本小题主要考查直线与直线,直线与平面,二面角,点到平面的距离等基础知识,考查空间想象能力和逻辑推理能力.满分12分.解法一:(Ⅰ)取AC 中点D ,连结SD 、DB. ∵SA=SC ,AB=BC , ∴AC ⊥SD 且AC ⊥BD ,∴AC ⊥平面SDB ,又SB ⊂平面SDB , ∴AC ⊥SB.(Ⅱ)∵AC ⊥平面SDB ,AC ⊂平面ABC , ∴平面SDB ⊥平面ABC.过N 作NE ⊥BD 于E ,NE ⊥平面ABC , 过E 作EF ⊥CM 于F ,连结NF , 则NF ⊥CM.∴∠NFE 为二面角N -CM -B 的平面角.∵平面SAC ⊥平面ABC ,SD ⊥AC ,∴SD ⊥平面ABC. 又∵NE ⊥平面ABC ,∴NE ∥SD.∵SN=NB ,∴NE=21SD=2122AD SA -=21412-=2,且ED=EB.在正△ABC 中,由平几知识可求得EF=41MB=21, 在Rt △NEF 中,tan ∠NFE=EFEN=22, ∴二面角N —CM —B 的大小是arctan22. (Ⅲ)在Rt △NEF 中,NF=22EN EF +=23, ∴S △CMN =21CM ·NF=233,S △CMB =21BM ·CM=23. 设点B 到平面CMN 的距离为h ,∵V B-CMN =V N-CMB ,NE ⊥平面CMB ,∴31S △CMN ·h=31S △CMB ·NE , ∴h=CMNCMB S NE S ⋅=324.即点B 到平面CMN 的距离为324.解法二:(Ⅰ)取AC 中点O ,连结OS 、OB.∵SA=SC ,AB=BC , ∴AC ⊥SO 且AC ⊥BO.∵平面SAC ⊥平面ABC ,平面SAC ∩平面 ABC=AC ∴SO ⊥面ABC ,∴SO ⊥BO.如图所示建立空间直角坐标系O -x yz.则A (2,0,0),B (0,23,0),C (-2,0,0), S (0,0,22),M(1,3,0),N(0,3,2). ∴=(-4,0,0),=(0,23,22), ∵·=(-4,0,0)·(0,23,22)=0, ∴AC ⊥SB.(Ⅱ)由(Ⅰ)得=(3,3,0),=(-1,0,2).设n=(x ,y ,z )为平面CMN 的一个法向量, ·n=3x +3y=0, 则 取z=1,则x =2,y=-6,MN ·n=-x +2z=0,∴n=(2,-6,1),又=(0,0,22)为平面ABC 的一个法向量, ∴cos(n ,||||OS n ⋅=31.∴二面角N -CM -B 的大小为arccos31. (Ⅲ)由(Ⅰ)(Ⅱ)得MB =(-1,3,0),n=(2,-6,1)为平面CMN的一个法向量,∴点B 到平面CMN 的距离d=|||·|n n =324.20.本小题主要考查建立函数关系式、数列求和、不等式的等基础知识,考查运用数学知识解决实际问题的能力.满分12分. 解:(Ⅰ)依题设,A n =(500-20)+(500-40)+…+(500-20n)=490n -10n 2;B n =500[(1+21)+(1+221)+…+(1+n 21)]-600=500n -n 2500-100. (Ⅱ)B n -A n =(500n -n 2500-100) -(490n -10n 2)=10n 2+10n -n 2500-100=10[n(n+1) - n 250-10].因为函数y=x (x +1) - n 250-10在(0,+∞)上为增函数,当1≤n ≤3时,n(n+1) - n 250-10≤12-850-10<0;当n ≥4时,n(n+1) - n 250-10≥20-1650-10>0.∴仅当n ≥4时,B n >A n .答:至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润.21.本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分.解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 222)2()2(2+---x ax x , ∵f(x)在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设ϕ(x )=x 2-ax -2, 方法一:① ⇔ ⎩⎨⎧≤-+=-≤--=021)1(021)1(a a ϕϕ⇔-1≤a ≤1,∵对x ∈[-1,1],f(x)是连续函数,且只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0∴A={a |-1≤a ≤1}. 方法二:①⇔⎪⎩⎪⎨⎧≤-+=-≥021)1(02a a ϕ或⎪⎩⎪⎨⎧≤--=<021)1(02a a ϕ⇔ 0≤a ≤1 或 -1≤a ≤0 ⇔ -1≤a ≤1.∵对x ∈[-1,1],f(x)是连续函数,且只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0 ∴A={a |-1≤a ≤1}.(Ⅱ)由222+-x a x =x1,得x 2-ax -2=0, ∵△=a 2+8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根,x 1+x 2=a ,x 1x 2=-2, 从而|x 1-x 2|=212214)(x x x x -+=82+a . ∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立, 当且仅当m 2+tm+1≥3对任意t ∈[-1,1]恒成立, 即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ② 设g(t)=m 2+tm -2=mt+(m 2-2), 方法一:② ⇔ g(-1)=m 2-m -2≥0,g(1)=m 2+m -2≥0, ⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}. 方法二:当m=0时,②显然不成立; 当m ≠0时,②⇔ m>0,g(-1)=m 2-m -2≥0 或 m<0,g(1)=m 2+m -2≥0 ⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m|m ≥2,或m ≤-2}.。
福建省福州市2019届高三质检数学(理科)试题及答案
2019年福州市普通高中毕业班质量检测数学(理科)试卷(完卷时间:120分钟;满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数满足i 1i z ⋅=-,则的共轭复数为 A. 1i -+ B. 1i + C. 1i -- D. 1i -2.已知集合{}{}2213,20A x x B x x x =+>=--<,则A B U = A. {}12x x << B. {}11x x -<< C. {}211x x x -<<>,或 D. {}1x x >-3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动的情况,随机抽取50名学生进行调查.将数据分组整理后,列表如下:以下四个结论中正确的是 A. 表中m 的数值为10B. 估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C. 估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D. 若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50 的样本,则分段间隔为25 4.等比数列的各项均为正实数,其前项和为.若3264,64a a a ==,则5S =A. 32B. 31C. 64D.63 5. 已知sin π162θ⎛⎫-= ⎪⎝⎭,且2θπ0,⎛⎫∈ ⎪⎝⎭,则π3cos θ⎛⎫- ⎪⎝⎭= A. 0 B.12 C. 1 D.z z {}n a n n S6.设抛物线24y x =的焦点为F ,准线为l ,P 为该抛物线上一点,PA l ⊥,A 为垂足.若直线 AF的斜率为PAF △的面积为A.B. C.8D. 7.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为 A.32 B.16 C.323 D.8038.已知函数()()2sin f x x ωϕ=+0,ωϕπ⎛⎫><⎪2⎝⎭图象的相邻两条对称轴之间的距离为π2,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象.若函数()g x 为偶函数,则函数()f x 在区间0,2π⎛⎫⎪⎝⎭上的值域是A. 1,12⎛⎤- ⎥⎝⎦B. ()1,1-C. (]0,2D.(]1,2-9.已知()g x 为偶函数,()h x 为奇函数,且满足()()2xg x h x -=.若存在[]11x ∈-,,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为A.-1B.35 C. 1 D. 35- 10.如图,双曲线的左、右焦点分别为12,F F ,过2F 作线段2F P 与C 交于点Q ,且Q 为2PF 的中点.若等腰△12PF F 的底边2PF 的长等于C 的半焦距,则的离心率为A.B. 23C. D.3211.如图,以棱长为1的正方体的顶点A正方体的表面被球面所截得的所有弧长之和为2222:1(0,0)x y C a b a b-=>>C 第7题图第10题图第11题图A.34πC. 32πD.94π 12. 已知数列{}n a 满足11a =,()2122124n n n n n a a a na n++=++,则8a =A.64892-B.32892-C.16892-D.7892-第Ⅱ卷本卷包括必考题和选考题两部分.第 13~21 题为必考题,每个试题考生都必须作答.第 22 、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知两个单位向量,a b r r,满足a b += ,则与的夹角为__________.14.已知点()0,2A ,动点(),P x y 的坐标满足条件0x y x≥⎧⎨≤⎩,则PA 的最小值是.15. ()()2511ax x +-的展开式中,所有x 的奇数次幂项的系数和为-64,则正实数a 的值为__________. 16.已知函数()2e()ln 2e x f x a x =-有且只有一个零点,则实数a 的取值范围是__________. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17. (12分)ABC △的内角,,的对边分别为,,.若角,,成等差数列,且b =(1)求ABC △的外接圆直径; (2)求a c +的取值范围.ab A B C a bc A B C如图,四棱锥P ABCD -,//AB CD ,90BCD ∠=︒,224AB BC CD ===,PAB △为等边三角形,平面PAB ⊥平面ABCD ,Q 为PB 中点. (1) 求证:AQ ⊥平面 PBC ; (2)求二面角B PC D --的余弦值.第18题最近,中国房地产业协会主办的中国房价行情网调查的一份数据显示,2018年7月,大部分一线城市的房租租金同比涨幅都在10%以上.某部门研究成果认为,房租支出超过月收入13的租户“幸福指数”低,房租支出不超过月收入13的租户“幸福指数”高.为了了解甲、乙两小区租户的幸福指数高低,随机抽取甲、乙两小区的租户各100户进行调查.甲小区租户的月收入以[)03,,[)36,,[)69,,[)912,,[]1215,(单位:千元)分组的频率分布直方图如上:乙小区租户的月收入(单位:千元)的频数分布表如下:(1)设甲、乙两小区租户的月收入相互独立,记M 表示事件“甲小区租户的月收入低于6千元,乙小区租户的月收入不低于6千元”.把频率视为概率,求M 的概率;(2)利用频率分布直方图,求所抽取甲小区100户租户的月收入的中位数;(3)若甲、乙两小区每户的月租费分别为2千元、1千元.请根据条件完成下面的22⨯列联表,并说明能否在犯错误的概率不超过 0.001 的前提下认为“幸福指数高低与租住的小区”有关.附:临界值表参考公式:2()()()()()n ad bc K a b c d a c b d -=++++.20. (12分)已知圆O :222x y r +=,椭圆()2222:10x y C a b a b+=>>的短半轴长等于圆O 的半径,且过C 右焦点的直线与圆O 相切于点12D ⎛ ⎝⎭. (1)求椭圆C 的方程;(2)若动直线l 与圆O 相切,且与C 相交于,A B 两点,求点O 到弦AB 的垂直平分线距离的最大值.21. (12分) 已知函数()()()ln 11xf x a x a x=-+∈+R ,2m 12e e ()x g x x +=-. (1)求函数()f x 的单调区间;(2)若0a <,[]12,0,e x x ∀∈,不等式12()()f x g x ≥恒成立,求实数m 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一个题目计分. 22. [选修44-:坐标系与参数方程] (10分)在直角坐标系中,直线的参数方程为12x t y a ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数,a ∈R ).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=,射线()03θρπ=≥与曲线C 交于,O P 两点,直线与曲线C 交于,A B 两点.(1)求直线的普通方程和曲线C 的直角坐标方程; (2)当AB OP =时,求a 的值.23.[选修45-:不等式选讲] (10分) 已知不等式21214x x ++-<的解集为M. (1)求集合;(2)设实数,a M b M ∈∉,证明:1ab a b +≤+.xOy l x l l M2019年福州市普通高中毕业班质量检测参考答案数学(理科)试卷(完卷时间:120分钟;满分150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数满足i 1i z ⋅=-,则的共轭复数为 A. 1i -+ B. 1i + C. 1i -- D. 1i - 【简解】因为1i1i iz -==--,所以1+i z =-,故选A . 2.已知集合{}{}2213,20A x x B x x x =+>=--<,则A B U = A. {}12x x << B. {}11x x -<< C. {}211x x x -<<>,或 D. {}1x x >-【简解】因为{}{}1,12A x x B x x =>=-<<,所以{}1A B x x =>-U ,故选D .3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动的情况,随机抽取50名学生进行调查.将数据分组整理后,列表如下:以下四个结论中正确的是 A. 表中m 的数值为10B. 估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C. 估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D. 若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50 的样本,则分段间隔为25 【简解】A 中的m 值应为12; B 中应为380人; C 是正确的; D 中的分段间隔应为20,故选C . 4.等比数列的各项均为正实数,其前项和为.若3264,64a a a ==,则5S =A. 32B. 31C. 64D.63z z {}n a n n S【简解】解法一:设首项为1a ,公比为q ,因为0n a >,所以0q >,由条件得21511464a q a q a q ⎧⋅=⎪⎨⋅=⎪⎩,解得112a q =⎧⎨=⎩,所以531S =,故选B .解法二:设首项为1a ,公比为q ,由226464a a a ==,又34a =,∴2q =,又因为214a q ⋅=所以11a =,所以531S =,故选B . 5. 已知sin π162θ⎛⎫-= ⎪⎝⎭,且2θπ0,⎛⎫∈ ⎪⎝⎭,则π3cos θ⎛⎫- ⎪⎝⎭= A. 0 B.12 C. 1D. 【简解】解法一:由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,π3θ=,代入πcos 3θ⎛⎫- ⎪⎝⎭得,πcos 3θ⎛⎫- ⎪⎝⎭=cos 01=,故选C .解法二:由π1sin 62θ⎛⎫-= ⎪⎝⎭,且π0,2θ⎛⎫∈ ⎪⎝⎭得,πcos 62θ⎛⎫-= ⎪⎝⎭, 所以πππππππcos cos cos cos sin sin 13666666θθθθ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=--=-+-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选C . 6.设抛物线24y x =的焦点为F ,准线为l ,P 为该抛物线上一点,PA l ⊥,A 为垂足.若直线 AF 的斜率为PAF △的面积为A.B. C.8D. 【简解】解法一:设准线与x 轴交于点Q ,因为直线AF的斜率为,2FQ =,60AFQ ∴∠=o,4FA =,又因为PA PF =,所以PAF △是边长为4的等边三角形,所以PAF △224FA =B . 解法二:设准线与x 轴交于点Q ,,)Pm n (,因为直线 AF的斜率为2FQ =,60AFQ ∴∠=o ,所以AQ =n =±24n m =,所以3m =,又因为4PA PF ==, 所以PAF △的面积为11422PA n ⨯⨯=⨯⨯B . 7.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为 A.32 B.16 C.323 D.803【简解】由三视图知,所求几何体的体积为直三棱柱的体积减去三棱锥的体积321180442=323⨯-⨯⨯⨯12.故选D . 8.已知函数()()2sin f x x ωϕ=+0,ωϕπ⎛⎫><⎪2⎝⎭图象的相邻两条对称轴之间的距离为π2,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象.若函数()g x 为偶函数,则函数()f x 在区间0,2π⎛⎫⎪⎝⎭上的值域是A. 1,12⎛⎤- ⎥⎝⎦B. ()1,1-C. (]0,2D.(]1,2- 【简解】由图象的相邻两条对称轴之间的距离为π2,所以T =π,又因为0ω>,所以2ωπ=π,解得=2ω.0,ωϕ><π2,将函数()f x 的图象向左平移3π个单位长度后,得到函数2()2sin 23g x x ϕπ⎛⎫=++ ⎪⎝⎭的图象.因为函数()g x 为偶函数,所以2,32k k ϕππ+=π+∈Z ,由ϕπ<2,解得=6ϕπ- ,所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭. 因为02x π<<,所以1sin 2126x π⎛⎫-<-≤ ⎪⎝⎭,所以函数()f x 在区间0,2π⎛⎫⎪⎝⎭上的值域是(]1,2-,故选D . 9.已知()g x 为偶函数,()h x 为奇函数,且满足()()2xg x h x -=.若存在[]11x ∈-,,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为A.-1B.35 C. 1 D. 35-第7题【简解】由()()2xg x h x -=,及()g x 为偶函数,()h x 为奇函数,得()()2222,22x x x xg x h x --+==-.由()()0m g x h x ⋅+≤得224121224141x x x x x x x m ---≤==-+++-,∵2141x y =-+为增函数,∴max231415x⎛⎫-= ⎪+⎝⎭,故选B . 10.如图,双曲线的左、右焦点分别为12,F F ,过2F 作线段2F P 与C 交于点Q ,且Q 为2PF 的中点.若等腰△12PF F 的底边2PF 的长等于C 的半焦距,则的离心率为A. B. 23C. D.32【简解】连结1QF ,由条件知12QF PF ⊥,且22c QF =.由双曲线定义知122cQF a =+,在12Rt FQF △中,()2222222c c a c ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭,解得的离心率27e +=,故选C .11.如图,以棱长为1的正方体的顶点A球面,则该正方体的表面被球面所截得的所有弧长之和为 A.34πC. 32πD.94π【简解】正方体的表面被该球面被所截得的弧长有相等的三部分,例如,与上底面截得的弧长是以1A 为圆心, 1为半径的圆周长的14,所以弧长之和为23342ππ⨯=.故选C.12. 已知数列{}n a 满足11a =,()2122124n n n n n a a a na n++=++,则8a =A.64892- B.32892- C.16892- D.7892-【简解】因为()2122124n n n n n a a a na n ++=++,所以()22212411n n n n a na n a n a +++=+, 2222:1(0,0)x y C a b a b-=>>C C 第10第11题图所以2222124142n n n n n n a na n n n na a a a +⎛⎫+++==+⋅+ ⎪⎝⎭, 所以21122n n n n a a +⎛⎫++=+ ⎪⎝⎭,令2n n nb a =+,则21n n b b +=,两边取对数得1l g 2l g n n b b +=,又111l g l g 2l g 3b a ⎛⎫=+=⎪⎝⎭,所以数列{}lg n b 是首项为lg 3,公比为2的等比数列.所以112lg lg32lg3n n n b --=⋅=,所以123n n b -=,即1232n n n a -+=,从而1232n n n a -=-,将8n =代入,选A.法二、因为()2122124n n n n n a a a na n ++=++,所以()22212411n n n na na n a n a +++=+, 所以2222124142n n n n n n a na n n n na a a a +⎛⎫+++==+⋅+ ⎪⎝⎭, 所以21122n n n n a a +⎛⎫++=+ ⎪⎝⎭,令2n n n b a =+,则21n n b b +=,因为13b =,所以223b =,所以()224333b ==,所以()248433b ==,…,所以7264839b ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
A.
2
,
1
B.
1,
2
1
C.
2
,
0
1
D.
2
,1
12.在△ABC 中, B 30 , BC 3, AB 2 3 , D 是边 BC 上的点, B ,C 关于直线 AD
的对称点分别为 B , C ,则△BBC 的面积的最大值为
新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如下:
旧个税税率表(起征点 3500 元)
新个税税率表(起征点 5000 元)
缴税 每月应纳税所得额(含税) 税率 每月应纳税所得额(含税) 税率
级数 收入 起征点
(%) 收入 起征点 专项附加扣除 (%)
1 不超过 1500 元的部分
理科数学试题 第 4 页(共 5 页)
22.[选修 4-4:坐标系与参数方程](10 分)
3
x 1 5 t,
在直角坐标系 xOy 中,直线 l 的参数方程为
( t 为参数) .以坐标原点为极点, x
y 1 4t
5
轴的正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 2 2 ,点 P 的极坐标为 1 sin2
赡养老人 2000 元/月等.
假设该市该收入层级的 IT 从业者都独自享受专项附加扣除,将预估的该市该收入层级的 IT
从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:
(1)设该市该收入层级的 IT 从业者 2019 年月缴个税为 X 元,求 X 的分布列和期望;
(2)根据新旧个税方案,估计从 2019 年 1 月开始,经过多少个月,该市该收入层级的 IT 从
3 不超过 3000 元的部分
3
2 超过 1500 元至 4500 元的部分
10 超过 3000 元至 12000 元的部分
10
3 超过 4500 元至 9000 元的部分
20 超过 12000 元至 25000 元的部分 20
4 超过 9000 元至 35000 元的部分 25 超过 25000 元至 35000 元的部分 25
业者各月少缴交的个税之和就超过其 2019 年的月收入?
21.(12 分)
已知函数 f (x) x e2x a .
(1)若 y 2x 是曲线 y f (x) 的切线,求 a 的值;
(2)若 f (x)≥1 x ln x ,求 a 的取值范围.
(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题 计分。
上的点的最小距离等于它到 y 轴的距离.记 P 的轨迹为 E . (1)求 E 的方程;
(2)过点 F 的直线交 E 于 A, B 两点,以 AB 为直径的圆 D 与平行于 y 轴的直线相切于点
M ,线段 DM 交 E 于点 N ,证明:△AMB 的面积是△AMN 的面积的四倍.
20.(12 分) “工资条里显红利,个税新政入民心”.随着 2019 年新年钟声的敲响,我国自 1980 年以来,
B.x 1 x 2 C.x 1 x≤2 D.x x≥2
2.若复数 z 满足 z 1i 1 i ,则 z
A. i
B.1 i
C. 2
D.1
3.经统计,某市高三学生期末数学成绩 X ~N 85, 2 ,且 P 80 X 90 0.3 ,则从该市
93 3
A.
2
63
B.
7
93
C.
7
33
D.
2
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
π
13.已知向量 a 与 b 的夹角为 , a b 1 ,且 a a b ,则实数 =3Biblioteka n14.若
2x2
1
展开式的二项式系数之和为 64,则展开式中的常数项是
只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣
除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、
既符合子女教育扣除又符合赡养老人扣除的人数之比是 2:1:1:1;此外,他们均不符合其他专项附
加扣除.新个税政策下该市的专项附加扣除标准为:住房 1000 元/月,子女教育每孩 1000 元/月,
A. a b c
B. a c b
C. b a c
D. c b a
8.某商场通过转动如图所示的质地均匀的 6 等分的圆盘进行抽奖活动,当指针指
向阴影区域时为中奖.规定每位顾客有 3 次抽奖机会,但中奖 1 次就停止抽
奖.假设每次抽奖相互独立,则顾客中奖的概率是
4
A.
27
理科数学试题 第 3 页(共 5 页)
力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.2019 年 1 月 1 日起实施
的个税新政主要内容包括:(1)个税起征点为 5000 元;(2)每月应纳税所得额(含税) 收入 个税起征点 专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.
以 AO 为直径的圆与 AD 的另一个交点为 C , P 为 SD 的中点.现给出以下结
论:
P
①△SAC 为直角三角形; ②平面 SAD 平面 SBD ; ③平面 PAB 必与圆锥 SO 的某条母线平行.
其中正确结论的个数是
D C
A
O
B
A.0
B.1
C.2
D.3
11.已知函数 f x ln 1 x x 1,且 f a f a 1 2 ,则实数 a 的取值范围是
N 是 B1C 的中点, M 是棱 AA1 上的一点,且 AA1 CM . (1)证明: MN∥平面 ABC ;
C B
C1 N
B1
(2)若 AB A1B ,求二面角 A CM N 的余弦值. A
M
A1
19.(12 分)
在平面直角坐标系 xOy 中,圆 F : x 12 y2 1外的点 P 在 y 轴的右侧运动,且 P 到圆 F
y= 4
y
A
NM
是唐代金银细工的典范之作.该杯型几何体的主体 理科数学试题 第 2 页(共 5 页) 图(1)
O
x
y = -2
BP Q
图(2)
x2 y2 部分可近似看作是由双曲线 C : 1的右支与直线 x 0 , y 4 , y 2 围成的曲
39
边四边形 MABQ 绕 y 轴旋转一周得到的几何体,如图(2). N , P 分别为 C 的渐近线与
2
的体积是
82 A. π
3
B. 4 3π
C. 12 π
D. 32 3π
2
π
π
6.将函数 y sin(2x ) 的图象向右平移 个单位长度后,所得图象的一个对称中心
6
6
为
A. ( , 0)
12
B. ( , 0)
4
C. ( , 0)
3
D. ( , 0)
2
7.已知 a 2 , b 5 5 , c 7 7 ,则
理科数学试题 第 5 页(共 5 页)
1
B.
3
5
C.
9
19
D.
27
9.设椭圆 E 的两焦点分别为 F1 , F2 ,以 F1 为圆心, F1F2 为半径的圆与 E 交于 P , Q 两点.
理科数学试题 第 1 页(共 5 页)
若 △PF1F2 为直角三角形,则 E 的离心率是
A. 2 1
5 1
B.
2
2
C.
2
D. 2 1
S
10.如图, AB 是圆锥 SO 的底面圆 O 的直径, D 是圆 O 上异于 A , B 的任意一点,
y 4 , y 2 的交点,曲边五边形 MNOPQ 绕 y 轴旋转一周得到的几何体的体积可由祖
暅原理(祖暅原理:“幂势既同,则积不容异”.意思是:两等高的几何体在同高处被截得的
两截面面积均相等,那么这两个几何体的体积相等)求得.据此,可求得该金杯的容积 是 .(杯壁厚度忽略不计) 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题, 每个试题考生都必须作答。第 22、23 为选考题,考生根据要求作答。 (一)必考题:共 60 分。 17.(12 分)
任选一名高三学生,其成绩不低于 90 分的概率是
A. 0.35
B. 0.65
C. 0.7
x y 1≥0,
4.若 x, y 满足约束条件 x y 1≤0, 则 z x 2 y 的最小值是
y
1≥0,
D. 0.85
A. 5
B. 4
C. 0
D. 2
2
5.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球 O 的球面上,则球 O
5 超过 35000 元至 55000 元的部分 30 超过 35000 元至 55000 元的部分 30
…
…
…
…
…
随机抽取某市 1000 名同一收入层级的 IT 从业者的相关资料,经统计分析,预估他们 2019
年的人均月收入为 24000 元.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多
2
,
4
.
(1)求 C 的直角坐标方程和 P 的直角坐标;