2014年广东高考数学文科

合集下载

2014年普通高等学校招生全国统一考试文数(广东卷)

2014年普通高等学校招生全国统一考试文数(广东卷)

2014年普通高等学校招生全国统一考试(广东卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( )zxxkA. {}2,0B. {}3,2C. {}4,3D. {}5,3(2)已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+(3)已知向量)1,3(),2,1(==b a ,则=-a b ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4((4)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的学科网最大值等于( )A. 7B. 8C. 10D. 115.下列函数为奇函数的是( ) A.x x 212- B.x x sin 3 C.1cos 2+x D.x x 22+ 6.学科网为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.207.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是zxxk “B A sin sin ≤”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等9.若空间中四条两两不同的学科网直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11—13题)11.曲线53x y e =-+在点()0,2-处的切线方程为________.12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,学科网极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:本大题共6小题,满分80分16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,学科网且532()122f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求zxxk ()6f πθ- 17(本小题满分13分)某车间20名工人年龄数据如下表:(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3) 求这20名工人年龄的方差. 学科网18(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF(2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222.zxxk (1)求1a 的值;学科网(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a 20(本小题满分14分) 已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。

2014年高考真题(文科数学)广东卷 纯Word版解析可编辑

2014年高考真题(文科数学)广东卷 纯Word版解析可编辑

2014·广东卷(文科数学)1.[2014·广东卷] 已知集合M ={2,3,4},N ={0,2,3,5},则M ∩N =( ) A .{0,2} B .{2,3} C .{3,4} D .{3,5}1.B [解析] ∵M ={2,3,4},N ={0,2,3,5},∴M ∩N ={2,3}. 2.[2014·广东卷] 已知复数z 满足(3-4i)z =25,则z =( ) A .-3-4i B .-3+4i C .3-4i D .3+4i2.D [解析] ∵(3-4i)z =25,∴z =253-4i =25(3+4i )(3-4i )(3+4i )=3+4i. 3.[2014·广东卷] 已知向量a =(1,2),b =(3,1),则b -a =( ) A .(-2,1) B .(2,-1) C .(2,0) D .(4,3)3.B [解析] b -a =(3,1)-(1,2)=(2,-1).4.[2014·广东卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤8,0≤x ≤4,0≤y ≤3,则z =2x +y 的最大值等于( )A .7B .8C .10D .114.D [解析] 作出不等式组所表示的平面区域,如图中阴影部分所示.作出直线l :2x +y =0,平移该直线,当直线经过点A (4,3)时,直线l 的截距最大,此时z =zx +y 取得最大值,最大值是11 .5.[2014·广东卷] 下列函数为奇函数的是( ) A .2x -12x B .x 3sin xC .2cos x +1D .x 2+2x5.A [解析] 对于A 选项,令f (x )=2x -12x =2x -2-x ,其定义域是R ,f (-x )=2-x -2x=-f (x ),所以A 正确;对于B 选项,根据奇函数乘奇函数是偶函数,所以x 3sin x 是偶函数;C 显然也是偶函数;对于D 选项,根据奇偶性的定义,该函数显然是非奇非偶函数.6.[2014·广东卷] 为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .206.C [解析] 由题意得,分段间隔是100040=25.7.、[2014·广东卷] 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件 7.A [解析] 设R 是三角形外切圆的半径,R >0,由正弦定理,得a =2R sin A ,b =2R sin B .故选A.∵sin ≤A sin B ,∴2R sin A ≤2R sin B ,∴a ≤b .同理也可以由a ≤b 推出sin A ≤sin B .8.[2014·广东卷] 若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( )A .实半轴长相等B .虚半轴长相等C .离心率相等D .焦距相等8.D [解析] ∵0<k <5,∴5-k >0,16-k >0.对于双曲线:x 216-y 25-k =1,其焦距是25-k +16=221-k ;对于双曲线:x 216-k -y 25=1,其焦距是216-k +5=221-k .故焦距相等.9.、[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定9.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.10.、[2014·广东卷] 对任意复数ω1,ω2,定义ω1*ω2=ω1ω2,其中ω2是ω2的共轭复数,对任意复数z 1,z 2,z 3有如下四个命题:①(z 1+z 2)*z 3=(z 1*z 3)+(z 2*z 3); ②z 1*(z 2+z 3)=(z 1*z 2)+(z 1*z 3); ③(z 1*z 2)*z 3=z 1*(z 2*z 3); ④z 1*z 2=z 2*z 1.则真命题的个数是( ) A .1 B .2 C .3 D .410.B [解析] 根据新定义知,(z 1+z 2)*z 3=(z 1+z 2)z 3=(z 1*z 3)+(z 2*z 3),所以①正确;对于②,z 1*(z 2+z 3)=z 1z 2+z 3=z 1z 2+z 1z 3=(z 1*z 2)+(z 1*z 3),所以正确;对于③,左边=(z 1z 2)*z 3=z 1z 2 z 3;右边=z 1*(z 23)=z 1z 2 z 3=z 1z 2z 3=z 1z 2z 3→,不正确;对于④,可以通过举特殊例子进行判断,z 1=1+i ,z 2=2+i ,左边=z 1*z 2=z 1z 2=(1+i)(2+i)=3+i ,右边=z 2*z 1=z 2z 1=(2+i)(1-i)=3-i ,所以④不正确.11.、[2014·广东卷] 曲线y =-5e x +3在点(0,-2)处的切线方程为________.11.5x +y +2=0 [解析] ∵y ′=-5e x ,∴所求切线斜是k =-5e 0=-5,∴切线方程是y -(-2)=-5(x -0),即5x +y +2=0.12.[2014·广东卷] 从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为________.12.25 [解析] 所有事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),共10个,其中含有字母a 的基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),共4个,所以所求事件的概率是P =410=25.13.、[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.13.5 [解析] 在等比数列中,a 1a 5=a 2a 4=a 23=4.因为a n >0,所以a 3=2,所以a 1a 2a 3a 4a 5=(a 1a 5)(a 2a 4)a 3=a 53=25,所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5. 14.[2014·广东卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________.14.(1,2) [解析] 本题考查极坐标方程与直角坐标方程的转化以及曲线交点坐标的求解.曲线C 1的直角坐标方程是2x 2=y ,曲线C 2的直角坐标是x =1.联立方程C 1与C 2得⎩⎪⎨⎪⎧2x 2=y ,x =1,解得⎩⎪⎨⎪⎧y =2,x =1,所以交点的直角坐标是(1,2). 15.[2014·广东卷] (几何证明选讲选做题)如图1-1所示,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则△CDF 的周长△AEF 的周长=________.图1-115.3 [解析] 本题考查相似三角形的性质定理,周长比等于相似比.∵EB =2AE ,∴AE =13AB =13CD .又∵四边形ABCD 是平行四边形,∴△AEF ~△CDF ,∴△CDF 的周长△AEF 的周长=CD AE =3.16.、[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322.(1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.17.[2014·广东卷] 某车间20名工人年龄数据如下表:年龄(岁) 工人数(人)19 1 28 3 29 3 30 5 31 4 32 3 40 1 合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差. 18.、[2014·广东卷] 如图1-2所示,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC =PC =2,作如图1-3折叠:折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ; (2)求三棱锥M - CDE 的体积.图1-2 图1-319.[2014·广东卷] 设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1(a 1+1)+1a 2(a 2+1)+…+1a n (a n +1)<13.20.、[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.21.[2014·广东卷] 已知函数f (x )=13x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈⎝⎛⎭⎫0,12∪⎝⎛⎭⎫12,1,使得f (x 0)=f ⎝⎛⎭⎫12.。

2014年广东高考数学(文科)真题--word高清版

2014年广东高考数学(文科)真题--word高清版

2014年普通高等学校招生全国统一考试(广东卷)数学(文科)一.选择题:本题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项符合题目要求(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( )A. {}2,0B. {}3,2C. {}4,3D. {}5,3(2)已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+(3)已知向量)1,3(),2,1(==b a ,则=-a b ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4((4)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的学科网最大值等于( )A. 7B. 8C. 10D. 115.下列函数为奇函数的是( ) A.x x 212- B.x x sin 3 C.1cos 2+x D.x x 22+ 6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.207.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是zxxk “B A sin sin ≤”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等9.若空间中四条两两不同的学科网直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题: ①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11—13题)11.曲线53x y e =-+在点()0,2-处的切线方程为________.12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin co s 22=与1cos =θρ,以极点为平面直角坐标系的原点,学科网极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:本大题共6小题,满分80分16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,学科网且532()122f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求zxxk ()6f πθ- 17(本小题满分13分)某车间20名工人年龄数据如下表:(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3) 求这20名工人年龄的方差. 学科网18(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF(2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222.zxxk (1)求1a 的值;学科网(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a 20(本小题满分14分)已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。

2014年全国高考文科数学试题及答案-广东卷

2014年全国高考文科数学试题及答案-广东卷

2014年普通高等学校招生全国统一考试(广东卷)数学 (文科)一、选择题1. 已知集合{}{}2,3,4,0,2,3,5,()M N M N ===I 则A. {}0,2B. {}2,3C. {}3,4D.{}3,52. 已知复数z 满足(34)25i z -=,则z =()A.34i --B.34i -+C.34i -D.34i + 3. 已知向量(1,2),(3,1)a b =,则b a -=()A.(-2,1)B.(2,-1)C.(2,0)D.(4,3)4. 若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于()A.7B.8C.10D.115. 下列函数为奇函数的是( )A.xx212-B.x x sin 3C.1cos 2+xD.xx 22+6. 为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A.50B.40C.25D.207. 在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,则“a b ≤”是“sin sin A B ≤”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8. 若实数k 满足05k <<,则曲线221165x y k-=-与曲线221165x y k -=-的()A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等9. 若空间中四条两两不同的直线1234,,,l l l l ,满足122334,//,l l l l l l ⊥⊥,则下列结论一定正确的是()A.14l l ⊥B.14//l lC.1l 与4l 既不垂直也不平行D. 1l 与4l 的位置关系不确定10. 对任意复数12,ωω,定义1212*ωωωω=,其中2ω是2ω的共轭复数,对任意复数123,,z z z ,有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.4 二、填空题(一)必做题(11-13)11. 曲线53xy e =-+在点(0,-2)处的切线方程为______________________12. 从字母a,b,c,d,e 中任取两个不同字母,则取到字母a 的概率为__________________ 13. 等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a________.14. (坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos =1ρθ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 交点的直角坐标为____________________15. (几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上,且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆∆的周长的周长=____________三、解答题16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且532()12f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差。

★2014年高考试题(广东卷-附答案)——文科数学

★2014年高考试题(广东卷-附答案)——文科数学

2014年普通高等学校招生全国统一考试(广东卷)数学 (文科)一.选择题:1、已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( ) A. {}2,0 B. {}3,2 C. {}4,3 D. {}5,32、已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+3、已知向量)1,3(),2,1(==b a,则=-a b ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4(4、若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )A. 7B. 8C. 10D. 11 5、下列函数为奇函数的是( ) A.x x212-B.x x sin 3C.1cos 2+xD.xx 22+ 6、为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A.50 B.40 C.25 D.207、在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的( ) A.充分必要条件 B.充分非必要条件 C.必要非充分条件 D.非充分非必要条件8、若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等9、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( ) A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题: ①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( ) A.1 B.2 C.3 D.4二、填空题:(一)必做题(11—13题)11.曲线53x y e =-+在点()0,2-处的切线方程为________.12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a _____. (二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:16、已知函数()sin(),3f x A x x R π=+∈,且532()122f π=(1) 求A 的值;(2)若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-17、某车间20名工人年龄数据如下表: (1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3) 求这20名工人年龄的方差.18、如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF. (1)证明:CF ⊥平面MDF (2)求三棱锥M-CDE 的体积.19、设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222.(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a20、已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。

2014年高考文科数学试题(广东卷)及参考答案

2014年高考文科数学试题(广东卷)及参考答案
A. B. ∥
C. 与 既不垂直也不平行D. 与 的位置关系不确定
10.对任意复数 ,定义 ,其中 是 的共轭复数,对任意复数 ,有如下四个命题:
① ;② ;
③ ;④
则真命题的个数是
A.1 B.2 C.3 D.4
二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.
(一)必做题(11~13题)
4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,全国统一考试(广东卷)
数学(文科)试题及参考答案
本试卷共4页,21小题,满分150分。考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签宇笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。
年龄(岁)工人数(人)
19 1
28 3
29 3
30 5
31 4
32 3
40 1
(1)求这20名工人年龄的众数与极差;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)求这20名工人年龄的方差.
18.(本小题满分13分)
如图2,四边形 为矩形, 平面 , , .作如图3折叠:折痕 ∥ ,其中点 分别为线段 上,沿 折叠后点 叠在线段 上的点记为 ,并且 .
15.(几何证明选讲选做题)如图1,在平行四边形

广东高考文科数学试卷附答案解析(word)

广东高考文科数学试卷附答案解析(word)

2014年普通高等学校招生全国统一考试(广东卷)(广东教育厅) 数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A iB iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数地是( ).A.xx212-B.x x sin 3C.1cos 2+xD.xx 22+ 答案:A111:()2,(),()22(),222(),A .x xxx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题地个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 地各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长16.(本小题满分12分) 已知函数()sin(),3f x A x x R π=+∈,且5()122f π=(1) 求A 地值;(2)若()()(0,)2f f πθθθ--=∈,求()6f πθ-553:(1)()sin()sin 3.121234(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336sin cos3sin 3sin (0,),2f A A A f x xf f πππππππθθθθππππθθθθπθθπθθ=+==∴===+∴--=+--+=+--+-===∴=∈解由得又cos ()3sin()3sin()3cos 36632f θππππθθθθ∴=∴-=-+=-===17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄地众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄地茎叶图; (3)求这20名工人年龄地方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为(2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)504132102011(121123412100)25212.62020+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2112,,2211.33CDE M CDE CDE CF DE PE S CD DE P CP MD V S MD ∆-∆=∴=∴==⋅=====∴=⋅=={}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3):,()(),221644111111(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)n k k n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又解法一当时(1)1111111()()11111141223(1)444444111111().11434331(1)44111111:(),.(1)2(21)(21)(21)22121(:)n n k k a a n n n n a a k k k k k k +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-=<=-++-+-+解法二以下略注解法二的放缩没有解法一的精确,在使用中第一项不放缩时才能得到答案2222002222220.:1(0)(1);(2)(,),,.:(1)3,954,1.94(2),,4x yC a ba bCP x y C P C Pcc e a b a cax yCx y+=>>====∴==-=-=∴+=已知椭圆的一个焦点为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x xx yy k x x yk x k y kx x y kxk y kx y kx k y kx-±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即2222200000122220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.kyx k x y k y k kxx yP x y+=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a Rf xa x f x f=+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得3232000033220002000000200000111111(2):()()1()()()12332221111()()()3222111111()()()()()322422211111()()()(4236122122f x f x x ax a x x a x x x x x x a x x x x x a x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-解法一2000020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,0,,01,7x x a x f x f x x a a a a x x +++∴∈=+++=<∴∆=-+=->=>∴<<<若存在使得必须在上有解方程的两根为依题意即0000025711,492148121,,1212155,,,,24425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)(1212422a a a x a a x f x f a x f x ∴<-<-<<-=-≠-∴∈----∈=⎧⎫∈-∞---∈⎨⎬⎩⎭即得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1)().2f =00:0,10,()3,11,(1)()(0,1),111(0,)(,1),()=();222()30,()(0,1,(1,5111),()(0,),(,1),422a i a f x x f x f ii a f x a f x <∴-≤--∈-<<-+-+=-解法二若从而由知在区间上是减函数故此时不存在使得若则函数在区间上递减在区间上递增若则在上递减在上递增显然此时不存在满足题意的000000;512)3,11,,(14212525255(1)()0,0,,;222412124513)0,01,,(0,1421775(0)()0,0,,2224124x a x x a f f a a x a x x a f f a -<<-<-∈-+->+>>--<<--<<<-+∈-+->--><--若则若题意中的存在则故只需即则故时存在满足题意的若则若题意中的存在则故只需即则故000007.12:25557111(,)(,),(0,)(,1)()().1244122222575111(,][,0),(0,)(,1)()().12124222a x a x f x f a x f x f <<-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭时存在满足题意的综上所述当时存在唯一的满足当时不存在使。

2014年高考文科数学广东卷

2014年高考文科数学广东卷

在 绝密★启用前
2014 年普通高等学校招生全国统一考试(广东卷)
数学(文科)
此 本试卷共 4 页,21 小题,满分 150 分.考试用时 120 分钟.
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场
号、座位号填写在答题卡上.用 2B 铅笔将试卷类型(A)填涂在答题卡相
B. x3 sin x
C. 2cos x 1
() D. x2 2x
6.为了解 1 000 名学生的学习情况,采用系统抽样的方法,从中抽取容量为 40 的样本,则
分段的间隔为
()
A.50
B.40
C.25
D.20
7.在△ABC 中,角 A , B ,C 所对应的边分别为a ,b , c ,则“a≤b ”是“sin A≤sin B ”的
.
15.(几何证明选讲选做题)如图 1,在平行四边形 ABCD 中,
点 E 在 AB 上且 EB=2 AE, AC 与 DE 交 于 点 F ,则
△CDF的周长 △AEF的周长

.
三、解答题:本大题共 6 小题,满分 80 分.解答须写出文字说明、证明过程和演算步骤.
16.(本小题满分 12 分)
已知函数 f (x) Asin(x π) , x R ,且 f (5π) 3 2 .
姓名________________ 准考证号_____________
------ -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------

2014年广东省高考文科数学试卷及参考答案与试题解析

2014年广东省高考文科数学试卷及参考答案与试题解析

2014年广东省高考文科数学试卷及参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=( )A.{0,2}B.{2,3}C.{3,4}D.{3,5}2.(5分)已知复数z满足(3-4i)z=25,则z=( )A.-3-4iB.-3+4iC.3-4iD.3+4i3.(5分)已知向量=(1,2),=(3,1),则-=( )A.(-2,1)B.(2,-1)C.(2,0)D.(4,3)4.(5分)若变量x,y满足约束条件,则z=2x+y的最大值等于( )A.7B.8C.10D.115.(5分)下列函数为奇函数的是( )A.2x-B.x3sinxC.2cosx+1D.x2+2x6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.207.(5分)在△ABC中,角A、B、C所对应的边分别为a,b,c,则“a≤b”是“sinA≤sinB”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.(5分)若实数k满足0<k<5,则曲线-=1与-=1的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等9.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω12,其中2是ω2的共轭复数,对任意复数z 1,z2,z3有如下命题:①(z1+z2)*z3=(z1*z3)+(z2*z3)②z1*(z2+z3)=(z1*z2)+(z1*z3)③(z1*z2)*z3=z1*(z2*z3);④z1*z2=z2*z1则真命题的个数是( )A.1B.2C.3D.4二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11-13题)11.(5分)曲线y=-5e x+3在点(0,-2)处的切线方程为.12.(5分)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为.13.(5分)等比数列{an }的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=.(二)(14-15题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)-f(-θ)=,θ∈(0,),求f(-θ).(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.18.(13分)如图1,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2作如图2折叠;折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF ⊥CF.(1)证明:CF⊥平面MDF;(2)求三棱锥M-CDE的体积.19.(14分)设各项均为正数的数列{an }的前n项和为Sn满足Sn2-(n2+n-3)Sn-3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有++…+<.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.21.(14分)已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈(0,)∪(,1),使得f(x)=f().2014年广东省高考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=( )A.{0,2}B.{2,3}C.{3,4}D.{3,5}【分析】根据集合的基本运算即可得到结论.【解答】解:∵M={2,3,4},N={0,2,3,5},∴M∩N={2,3},故选:B.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z满足(3-4i)z=25,则z=( )A.-3-4iB.-3+4iC.3-4iD.3+4i【分析】由题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:∵满足(3-4i)z=25,则z===3+4i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)已知向量=(1,2),=(3,1),则-=( )A.(-2,1)B.(2,-1)C.(2,0)D.(4,3)【分析】直接利用向量的减法的坐标运算求解即可.【解答】解:∵向量=(1,2),=(3,1),∴-=(2,-1)故选:B.【点评】本题考查向量的坐标运算,基本知识的考查.4.(5分)若变量x,y满足约束条件,则z=2x+y的最大值等于( )A.7B.8C.10D.11【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=-2x+z,平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点B(4,2)时,直线y=-2x+z的截距最大,此时z最大,此时z=2×4+2=10,故选:C.【点评】本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.5.(5分)下列函数为奇函数的是( )A.2x-B.x3sinxC.2cosx+1D.x2+2x【分析】根据函数的奇偶性的定,对各个选项中的函数进行判断,从而得出结论.【解答】解:对于函数f(x)=2x-,由于f(-x)=2-x-=-2x=-f(x),故此函数为奇函数.对于函数f(x)=x3sinx,由于f(-x)=-x3(-sinx)=x3sinx=f(x),故此函数为偶函数.对于函数f(x)=2cosx+1,由于f(-x)=2cos(-x)+1=2cosx+1=f(x),故此函数为偶函数.对于函数f(x)=x2+2x,由于f(-x)=(-x)2+2-x=x2+2-x≠-f(x),且f(-x)≠f(x),故此函数为非奇非偶函数.故选:A.【点评】本题主要考查函数的奇偶性的判断方法,属于基础题.6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.20【分析】根据系统抽样的定义,即可得到结论.【解答】解:∵从1000名学生中抽取40个样本,∴样本数据间隔为1000÷40=25.故选:C.【点评】本题主要考查系统抽样的定义和应用,比较基础.7.(5分)在△ABC中,角A、B、C所对应的边分别为a,b,c,则“a≤b”是“sinA≤si nB”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件【分析】直接利用正弦定理以及已知条件判断即可.【解答】解:由正弦定理可知⇒=,∵△ABC中,∠A,∠B,∠C均小于180°,角A、B、C所对应的边分别为a,b,c,∴a,b,sinA,sinB都是正数,∴“a≤b”⇔“sinA≤sinB”.∴“a≤b”是“sinA≤sinB”的充分必要条件.故选:A.【点评】本题考查三角形中,角与边的关系正弦定理以及充要条件的应用,基本知识的考查.8.(5分)若实数k满足0<k<5,则曲线-=1与-=1的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等【分析】根据k的取值范围,判断曲线为对应的双曲线,以及a,b,c的大小关系即可得到结论. 【解答】解:当0<k<5,则0<5-k<5,11<16-k<16,即曲线-=1表示焦点在x轴上的双曲线,其中a2=16,b2=5-k,c2=21-k,曲线-=1表示焦点在x轴上的双曲线,其中a2=16-k,b2=5,c2=21-k,即两个双曲线的焦距相等,故选:D.【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a,b,c是解决本题的关键.9.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【分析】根据空间直线平行或垂直的性质即可得到结论.【解答】解:在正方体中,若AB所在的直线为l2,CD所在的直线为l3,AE所在的直线为l1,若GD所在的直线为l4,此时l1∥l4,若BD所在的直线为l4,此时l1⊥l4,故l1与l4的位置关系不确定,故选:D.【点评】本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω12,其中2是ω2的共轭复数,对任意复数z 1,z2,z3有如下命题:①(z1+z2)*z3=(z1*z3)+(z2*z3)②z1*(z2+z3)=(z1*z2)+(z1*z3)③(z1*z2)*z3=z1*(z2*z3);④z1*z2=z2*z1则真命题的个数是( ) A.1 B.2 C.3 D.4【分析】根据已知中ω1*ω2=ω12,其中2是ω2的共轭复数,结合复数的运算性质逐一判断四个结论的真假,可得答案.【解答】解:①(z1+z2)*z3=(z1+z2)=(z1+z2=(z1*z3)+(z2*z3),正确;②z1*(z2+z3)=z1()=z1(+)=z1+z1=(z1*z2)+(z1*z3),正确;③(z1*z2)*z3=z1,z1*(z2*z3)=z1*(z2)=z1()=z1z3,等式不成立,故错误;④z1*z2=z1,z2*z1=z2,等式不成立,故错误;综上所述,真命题的个数是2个,故选:B.【点评】本题以命题的真假判断为载体,考查了复数的运算性质,细心运算即可,属于基础题.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(11-13题)11.(5分)曲线y=-5e x+3在点(0,-2)处的切线方程为5x+y+2=0. .【分析】利用导数的几何意义可得切线的斜率即可.【解答】解:y′=-5e x,∴y′|x=0=-5.因此所求的切线方程为:y+2=-5x,即5x+y+2=0.故答案为:5x+y+2=0.【点评】本题考查了导数的几何意义、曲线的切线方程,属于基础题.12.(5分)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为.【分析】求得从字母a,b,c,d,e中任取两个不同字母、取到字母a的情况,利用古典概型概率公式求解即可.【解答】解:从字母a,b,c,d,e中任取两个不同字母,共有=10种情况,取到字母a,共有=4种情况,∴所求概率为=.故答案为:.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.13.(5分)等比数列{an }的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5= 5 .【分析】可先由等比数列的性质求出a3=2,再根据性质化简log2a1+log2a2+log2a3+log2a4+log2a5=5log2a3,代入即可求出答案.【解答】解:log2a1+log2a2+log2a3+log2a4+log2a5=log2a1a2a3a4a5=log2a35=5log2a3.又等比数列{an }中,a1a5=4,即a3=2.故5log2a3=5log22=5.故选为:5.【点评】本题考查等比数列的性质,灵活运用性质变形求值是关键,本题是数列的基本题,较易.(二)(14-15题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为(1,2) .【分析】直接由x=ρcosθ,y=ρsinθ化极坐标方程为直角坐标方程,然后联立方程组求得答案.【解答】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,即y=2x2.由ρcosθ=1,得x=1.联立,解得:.∴曲线C1与C2交点的直角坐标为(1,2).故答案为:(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=3 .【分析】证明△CDF∽△AEF,可求.【解答】解:∵四边形ABCD是平行四边形,EB=2AE,∴AB∥CD,CD=3AE,∴△CDF∽△AEF,∴==3.故答案为:3.【点评】本题考查三角形相似的判断,考查学生的计算能力,属于基础题.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)-f(-θ)=,θ∈(0,),求f(-θ).【分析】(1)通过函数f(x)=Asin(x+),x∈R,且f()=,直接求A的值;(2)利用函数的解析式,通过f(θ)-f(-θ)=,θ∈(0,),求出cosθ,利用两角差的正弦函数求f(-θ).【解答】解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=,∴f()=Asin(+)=Asin=,∴.(2)由(1)可知:函数f(x)=3sin(x+),∴f(θ)-f(-θ)=3sin(θ+)-3sin(-θ+)=3[()-()]=3•2sinθcos=3sinθ=,∴sinθ=,∴cosθ=,∴f(-θ)=3sin()=3sin()=3cosθ=.【点评】本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查.(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.【分析】(1)根据众数和极差的定义,即可得出;(2)根据画茎叶图的步骤,画图即可;(3)利用方差的计算公式,代入数据,计算即可.【解答】解:(1)这20名工人年龄的众数为30,极差为40-19=21;(2)茎叶图如下:(3)年龄的平均数为:=30.这20名工人年龄的方差为S2=[(19-30)2+3×(28-30)2+3×(29-30)2+5×(30-30)2+4×(31-30)2+3×(32-30)2+(40-30)2]=12.6.【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题.18.(13分)如图1,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2作如图2折叠;折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF ⊥CF.(1)证明:CF⊥平面MDF;(2)求三棱锥M-CDE的体积.【分析】(1)要证CF⊥平面MDF,只需证CF⊥MD,且CF⊥MF即可;由PD⊥平面ABCD,得出平面PCD⊥平面ABCD,即证MD⊥平面PCD,得CF⊥MD;(2)求出△CDE的面积S△CDE ,对应三棱锥的高MD,计算它的体积VM-CDE.【解答】解:(1)证明:∵PD⊥平面ABCD,PD⊂平面PCD, ∴平面PCD⊥平面ABCD;又平面PCD∩平面ABCD=CD,MD⊂平面ABCD,MD⊥CD,∴MD⊥平面PCD,CF⊂平面PCD,∴CF⊥MD;又CF⊥MF,MD、MF⊂平面MDF,MD∩MF=M,∴CF⊥平面MDF;(2)∵CF⊥平面MDF,∴CF⊥DF,又∵Rt△PCD中,DC=1,PC=2,∴∠P=30°,∠PCD=60°,∴∠CDF=30°,CF=CD=;∵EF∥DC,∴=,即=,∴DE=,∴PE=,∴S△CDE=CD•DE=;MD===,∴VM-CDE =S△CDE•MD=××=.【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.19.(14分)设各项均为正数的数列{an }的前n项和为Sn满足Sn2-(n2+n-3)Sn-3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有++…+<.【分析】(1)本题可以用n=1代入题中条件,利用S1=a1求出a1的值;(2)利用an 与Sn的关系,将条件转化为an的方程,从而求出an;(3)利用放缩法,将所求的每一个因式进行裂项求和,即可得到本题结论. 【解答】解:(1)令n=1得:,即.∴(S1+3)(S1-2)=0.∵S1>0,∴S1=2,即a1=2.(2)由得:.∵an>0(n∈N*),∴Sn>0.∴.∴当n≥2时,,又∵a1=2=2×1,∴.(3)由(2)可知=,∀n∈N*,=<=(),当n=1时,显然有=<;当n≥2时,<+=-•<所以,对一切正整数n,有.【点评】本题考查了数列的通项与前n项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.【分析】(1)根据焦点坐标和离心率求得a和b,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k的一元二次方程,利用韦达定理表示出k1•k2,进而取得x和y的关系式,即P点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A、B两点分别位于椭圆长轴与短轴的端点,P的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P(x0,y)的切线为y=k(x-x)+y,+=+=1,整理得(9k2+4)x2+18k(y0-kx)x+9[(y-kx)2-4]=0,∴△=[18k(y0-kx)]2-4(9k2+4)×9[(y-kx)2-4]=0,整理得(x02-9)k2-2x×y×k+(y2-4)=0,∴-1=k1•k2==-1,∴x02+y2=13.把点(±3,±2)代入亦成立,∴点P的轨迹方程为:x2+y2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y关系.21.(14分)已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈(0,)∪(,1),使得f(x)=f().【分析】对第(1)问,先求导,再通过一元二次方程的实根讨论单调性;对第(2)问,可将f(x0)=f()转化为f(x)-f()=0,即将“函数问题”化为“方程是否有实根问题”处理.【解答】解:(1)由f(x)得f′(x)=x2+2x+a,令f′(x)=0,即x2+2x+a=0,判别式△=4-4a,①当△≤0即a≥1时,f′(x)≥0,则f(x)在(-∞,+∞)上为增函数.②当△>0即a<1时,方程f′(x)=0的两根为,即, 当x∈(-∞,-1-)时,f′(x)>0,则f(x)为增函数;当时,f′(x)<0,则f(x)为减函数;当,+∞)时,f′(x)>0,则f(x)为增函数.综合①、②知,a≥1时,f(x)的单调递增区间为(-∞,+∞),a<1时,f(x)的单调递增区间为(-∞,和,+∞),f(x)的单调递减区间为.(2)∵=====.∴若存在∪,使得,即,则关于x的方程4x2+14x+7+12a=0在∪内必有实数解.∵a<0,∴△=142-16(7+12a)=4(21-48a)>0,方程4x2+14x+7+12a=0的两根为,即,>0,∴,∵x依题意有,且,即,且,∴49<21-48a<121,且21-48a≠81,得,且.∴当∪时,存在唯一的∪,使得成立;当∪∪{}时,不存在∪,使得成立.【点评】1.求含参数的函数的单调区间时,导函数的符号往往难以确定,如果受到参数的影响,应对参数进行讨论,讨论的标准要根据导函数解析式的特征而定.如本题中导函数为一元二次函数,就有必要考虑对应方程中的判别式△.2.对于存在性问题,一般先假设所判断的问题成立,再由假设去推导,若求得符合题意的结果,则存在;若得出矛盾,则不存在.。

2014年广东高考文科数学真题及答案

2014年广东高考文科数学真题及答案

2014年广东高考文科数学真题及答案一、选择题1. 已知集合{}{}2,3,4,0,2,3,5,()M N MN ===则A. {}0,2B. {}2,3C. {}3,4D.{}3,52. 已知复数z 满足(34)25i z -=,则z =()A.34i --B.34i -+C.34i -D.34i +3. 已知向量(1,2),(3,1)a b =,则b a -=()A.(-2,1)B.(2,-1)C.(2,0)D.(4,3)4. 若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于()A.7B.8C.10D.115. 下列函数为奇函数的是( )A.x x212-B.x x sin 3C.1cos 2+xD.xx 22+6. 为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A.50B.40C.25D.207. 在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,则“a b ≤”是“sin sin A B ≤”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8. 若实数k 满足05k <<,则曲线221165x y k-=-与曲线221165x y k -=-的()A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等9. 若空间中四条两两不同的直线1234,,,l l l l ,满足122334,//,l l l l l l ⊥⊥,则下列结论一定正确的是()A.14l l ⊥B.14//l lC.1l 与4l 既不垂直也不平行D. 1l 与4l 的位置关系不确定10. 对任意复数12,ωω,定义1212*ωωωω=,其中2ω是2ω的共轭复数,对任意复数123,,z z z ,有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.4 二、填空题(一)必做题(11-13)11. 曲线53xy e =-+在点(0,-2)处的切线方程为______________________12. 从字母a,b,c,d,e 中任取两个不同字母,则取到字母a 的概率为__________________ 13. 等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a________.14. (坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos =1ρθ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 交点的直角坐标为____________________15. (几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上,且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆∆的周长的周长=____________三、解答题16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且532()122f π=(1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差。

2014广东文科数学高考试题

2014广东文科数学高考试题

2014年普通高等学校招生全国统一考试(广东卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( )A. {}2,0B. {}3,2C. {}4,3D. {}5,3(2)已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+(3)已知向量)1,3(),2,1(==b a ,则=-a b ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4((4)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )A. 7B. 8C. 10D. 115.下列函数为奇函数的是( ) A.x x 212- B.x x sin 3 C.1cos 2+x D.x x 22+ 6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.207.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是 “B A sin sin ≤”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11—13题)11.曲线53x y e =-+在点()0,2-处的切线方程为________.12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABC D 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF 三.解答题:本大题共6小题,满分80分16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且5()122f π=(1) 求A 的值;(2) 若()()(0,)2f f πθθθ--=∈,求()6f πθ- 17(本小题满分13分)某车间20名工人年龄数据如下表:(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3) 求这20名工人年龄的方差.18(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.(1) 证明:CF ⊥平面MDF(2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222. (1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a 20(本小题满分14分) 已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。

2014高考广东卷文科数学真题及答案解析

2014高考广东卷文科数学真题及答案解析

2014高考广东卷文科数学真题及答案解析注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己姓名和考生号、考场号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处。

”2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案信息号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( ) A. {}2,0 B. {}3,2 C. {}4,3 D. {}5,32.已知复数z 满足25)43(=-z i ,则=z ( )A.i 43--B. i 43+-C. i 43-D. i 43+3.已知向量)1,3(),2,1(==b a,则=-a b ( )A. )1,2(-B. )1,2(-C. )0,2(D. )3,4(4.若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )A. 7B. 8C. 10D. 11 5.下列函数为奇函数的是( ) A.xx 212-B.x x sin 3C.1cos 2+xD.xx 22+ 6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.207.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的( ) A.充分必要条件 B.充分非必要条件 C.必要非充分条件 D.非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( ) A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*; 则真命题的个数是( ) A.1 B.2 C.3 D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11—13题)11.曲线53x y e =-+在点()0,2-处的切线方程为________.12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________. (二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:本大题共6小题,满分80分 16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且5()122f π=(1) 求A 的值;(2)若()()(0,)2f fπθθθ--=∈,求()6fπθ-17(本小题满分13分)某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差. 年龄(岁)工人数(人)19 128 329 330 531 432 340 1合计20如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF. (1) 证明:CF ⊥平面MDF(2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222.(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。

2014年高考广东文科数学试题及答案(word解析版)

2014年高考广东文科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年广东,文1,5分】已知集合{}2,3,4M =,{}0,2,3,5N =,则M N =( )(A ){}0,2 (B ){}2,3 (C ){}3,4 (D ){}3,5 【答案】B 【解析】{}2,3MN =,故选B .【点评】本题主要考查集合的基本运算,比较基础. (2)【2014年广东,文2,5分】已知复数z 满足(34i)25z -=,则z =( )(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】D【解析】2525(34i)25(34i)=34i 34i (34i)(34i)25z ++===+--+,故选D .【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i 的幂运算性质,属于基础题. (3)【2014年广东,文3,5分】已知向量(1,2)a =,(3,1)b =,则b a -=( )(A )(2,1)- (B )(2,1)- (C )(2,0) (D )(4,3) 【答案】B【解析】()2,1b a -=-,故选B .【点评】本题考查向量的坐标运算,基本知识的考查.(4)【2014年广东,文4,5分】若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于( )(A )7 (B )8 (C )10 (D )11 【答案】C 【解析】作出不等式组对应的平面区域如图:由2z x y =+,得2y x z =-+,平移直线2y x z =-+, 由图象可知当直线2y x z =-+经过点()4,2B 时,直线2y x z =-+的截距最大,此时z 最大,此时24210z ==⨯+=,故选C . 【点评】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键. (5)【2014年广东,文5,5分】下列函数为奇函数的是( )(A )122x x - (B )3sin x x (C )2cos 1x + (D )22x x +【答案】A【解析】对于函数()122x x f x =-,()()112222x x x x f x f x ---=-=-=-,故此函数为奇函数;对于函数()3sin f x x x =,()()()()33sin sin f x x x x x f x -=--==,故此函数为偶函数;对于函数()2cos 1f x x =+,()()()2cos 12cos 1f x x x f x -=-+=+=,故此函数为偶函数;对于函数()22x f x x =+,()()()2222x x f x x x f x ---=-+=+≠-,同时()()f x f x -=≠故此函数为非奇非偶函数,故选A .【点评】本题主要考查函数的奇偶性的判断方法,属于基础题.(6)【2014年广东,文6,5分】为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )(A )50 (B )40 (C )25 (D )20 【答案】C【解析】∵从1000名学生中抽取40个样本,∴样本数据间隔为1000÷40=25,故选C . 【点评】本题主要考查系统抽样的定义和应用,比较基础. (7)【2014年广东,文7,5分】在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,则“a b ≤”是“sin sin A B ≤”的( )(A )充分必要条件 (B )充分非必要条件 (C )必要非充分条件 (D )非充分非必要条件 【答案】A【解析】由正弦定理可知sin sin a bA B=,∵ABC ∆中,角A 、B 、C 所对应的边分别为a ,b ,c ,∴a ,b ,sin A ,sin B 都是正数,sin sin a b A B ≤⇔≤.∴“a b ≤”是“sin sin A B ≤”的充分必要条件,故选A .【点评】本题考查三角形中,角与边的关系正弦定理以及充要条件的应用,基本知识的考查.(8)【2014年广东,文8,5分】若实数k 满足05k <<,则曲线221165x y k-=-与曲线221165x y k -=-的( ) (A )实半轴长相等 (B )虚半轴长相等 (C )离心率相等 (D )焦距相等 【答案】D【解析】当05k <<,则055k <-<,111616k <-<,即曲线221165x y k-=-表示焦点在x 轴上的双曲线,其中216a =,25b k =-,221c k =-,曲线221165x y k -=-表示焦点在x 轴上的双曲线,其中216a k =-,25b =,221c k =-,即两个双曲线的焦距相等,故选D .【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a ,b ,c 是解决本题的关键. (9)【2014年广东,文9,5分】若空间中四条两两不同的直线1234,,,l l l l ,满足122334,//,l l l l l l ⊥⊥,则下列结论一定正确的是( )(A )14l l ⊥ (B )14//l l (C )1l 与4l 既不垂直也不平行 (D )1l 与4l 的位置关系不确定 【答案】D【解析】在正方体中,若AB 所在的直线为2l ,CD 所在的直线为3l ,AE 所在的直线为1l , 若GD 所在的直线为4l ,此时14//l l ,若BD 所在的直线为4l ,此时14l l ⊥,故1l 与4l 的位 置关系不确定,故选D .【点评】本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.(10)【2014年广东,文10,5分】对任意复数12,ωω,定义1212*ωωωω=,其中2ω是2ω的共轭复数,对任意复数123,,z z z ,有如下四个命题: ①1231323()()()z z z z z z z +=**+*②1231213()()()z z z z z z z +=**+*; ③123123()()z z z z z z *=***④1221z z z z *=*;则真命题的个数是( )(A )1 (B )2 (C )3 (D )4 【答案】B【解析】①12312313231323()()()()()()z z z z z z z z z z z z z z +++*===*+*,正确;②12312312312131213()()()()()()()z z z z z z z z z z z z z z z z z +=+=+=+=**+*,正确;③123123123123123(),()()(),z z z z z z z z z z z z z z z ===≠左边=*=右边*左边右边,等式不成立,故错误;④12122121,,z z z z z z z z ==≠左边=*右边=*左边右边,等式不成立,故错误; 综上所述,真命题的个数是2个,故选B .【点评】本题以命题的真假判断为载体,考查了复数的运算性质,细心运算即可,属于基础题. 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13) (11)【2014年广东,文11,5分】曲线53x y e =-+在点()0,2-处的切线方程为 . 【答案】520x y ++= 【解析】'5x y e =-,'5x y =∴=-,因此所求的切线方程为:25y x +=-,即520x y ++=.【点评】本题考查了导数的几何意义、曲线的切线方程,属于基础题. (12)【2014年广东,文12,5分】从字母,,,,a b c d e 中任取两个不同字母,则取到字母a 的概率为 .【答案】25【解析】142542105C P C ===.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.(13)【2014年广东,文13,5分】等比数列{}n a 的各项均为正数,且154a a =, 则2122232425log log log log log a a a a a ++++= . 【答案】5【解析】设2122232425log log log log log S a a a a a =++++,则2524232221log log log log log S a a a a a =++++,215225log ()5log 410S a a ∴===,5S ∴=.【点评】本题考查等比数列的性质,灵活运用性质变形求值是关键,本题是数列的基本题,较易. (二)选做题(14-15题,考生只能从中选做一题) (14)【2014年广东,文14,5分】(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos =1ρθ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 交点的直角坐标为 . 【答案】(1,2)【解析】由22cos sin ρθθ=得22cos =sin ρθρθ(),故1C 的直角坐标系方程为:22y x =,2C 的直角坐标系方程为:1x =,12,C C ∴交点的直角坐标为(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题. (15)【2014年广东,文15,5分】(几何证明选讲选做题)如图,在平行四边形ABCD 中,点E 在AB 上,且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆=∆的周长的周长. 【答案】3【解析】由于CDF AEF ∆∆∽,3CDF CD EB AEAEF AE AE∆+∴===∆的周长的周长.【点评】本题考查三角形相似的判断,考查学生的计算能力,属于基础题.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.(16)【2014年广东,文16,12分】已知函数()sin ,3f x A x x R π⎛⎫=+∈ ⎪⎝⎭,且512f π⎛⎫= ⎪⎝⎭.(1)求A 的值;(2)若()()0,2f f πθθθ⎛⎫--=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.解:(1)553()sin()sin 121234f A A ππππ=+==3A ∴.(2)由(1)得:()3sin()3f x x π=+,()()3sin()3sin()33f f ππθθθθ∴--=+--+3(sin coscos sin )3(sin()cos cos()sin )6sin cos 3sin 3333πππππθθθθθθ=+--+-===sin 0,2πθθ⎛⎫∴=∈ ⎪⎝⎭,cos θ∴==()3sin()3sin()3cos 36632f ππππθθθθ∴-=-+=-==【点评】本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查. (17)【2014年广东,文17,12分】某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差. 解:(1)这这20名工人年龄的众数为30,极差为40﹣19=21.(2)茎叶图如下: (3)年龄的平均数为:(1928329330531432340)3020+⨯+⨯+⨯+⨯+⨯+=,这20名工人年龄的方差为:2222222111(11)3(2)3(1)50413210(121123412100)25212.6202020⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+=+++++=⨯=⎣⎦【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题. (18)【2014年广东,文18,14分】如图1,四边形ABCD 为矩形,PD ABCD ⊥平面,1,2AB BC PC ===,做如图2折叠:折痕//EF DC ,其中点,E F 分别在线段,PD PC 上,沿EF 折叠后,点P 叠在线段AD 上的点记为M ,并且MF CF ⊥. (1)证明:CF MDF ⊥平面; (2)求三棱锥M CDE -的体积. 解:(1)PD ⊥平面ABCD ,PD PCD ⊂,∴平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =,MD ⊂平面ABCD ,MD CD ⊥,MD ∴⊥平面PCD ,CF ⊂平面PCD ,CF MD ∴⊥,又 CF MF ⊥,MD ,MF ⊂平面MDF ,MD MF M =,CF ∴⊥平面MDF .(2)CF ⊥平面MDF ,CF DF ∴⊥,又易知060PCD ∠=,030CDF ∴∠=,从而11==22CF CD ,EF DC ∥,DE CFDP CP ∴=122,DE ∴=,PE ∴=12CDE S CD DE ∆=⋅=,2MD ===,1133M CDE CDE V S MD -∆∴=⋅== 【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.(19)【2014年广东,文19,14分】设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足222(3)3()0,n n S n n S n n n N *-+--+=∈.(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++.解:(1)令1n =得:211(1)320S S ---⨯=,即21160S S +-=,11(3)(2)0S S ∴+-=,10S >,12S ∴=,即12a =.(2)由222(3)3()0nn S n n S n n -+--+=,得:2(3)()0n n S S n n ⎡⎤+-+=⎣⎦,0()n a n N *>∈,0n S ∴>,从而30n S +>,2n S n n ∴=+,∴当2n ≥时,221(1)(1)2n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦,又1221a ==⨯,2()n a n n N *∴=∈. (3)当k N *∈时,22313()()221644k k k k k k +>+-=-+, 111111111111131111(1)2(21)4444()()()(1)()(1)2444444k k a a k k k k k k k k k k ⎡⎤⎢⎥∴==⋅<⋅=⋅=⋅-⎢⎥++⎡⎤⎢⎥+-+-+--⋅+-⎢⎥⎣⎦⎣⎦11221111111111()()111111(1)(1)(1)41223(1)444444n n a a a a a a n n ⎡⎤⎢⎥∴+++<-+-++-⎢⎥+++⎢⎥-----+-⎣⎦1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0111111()11434331(1)44n n =-=-<+-+-. 【点评】本题考查了数列的通项与前n 项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.(20)【2014年广东,文20,14分】已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为.(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解:(1)cc e a ===3a ∴=,222954b a c =-=-=,∴椭圆C 的标准方程为:22194x y +=. (2)若一切线垂直x 轴,则另一切线垂直于y 轴,则这样的点P 共4个,它们坐标分别为(3,2)-±,(3,2)±.若两切线不垂直与坐标轴,设切线方程为00()y y k x x -=-,即00()y k x x y =-+,将之代入椭圆方程22194x y +=中并整理得:2220000(94)18()9()40k x k y kx x y kx ⎡⎤++-+--=⎣⎦,依题意,0∆=, 即22220000(18)()36()4(94)0k y kx y kx k ⎡⎤----+=⎣⎦,即22004()4(94)0y kx k --+=, 2220000(9)240x k x y k y ∴--+-=,两切线相互垂直,121k k ∴=-,即2020419y x -=--,220013x y ∴+=, 显然(3,2)-±,(3,2)±这四点也满足以上方程,∴点P 的轨迹方程为2213x y +=.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y 关系.(21)【2014年广东,文21,14分】已知函数321()1()3f x x x ax a R =+++∈.(1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()=()2f x f .解:(1)'2()2f x x x a =++,方程220x x a ++=的判别式:44a ∆=-,∴当1a ≥时,0∆≤,'()0f x ∴≥,此时()f x 在(,)-∞+∞上为增函数.当1a <时,方程220x xa ++=的两根为1-(,1x ∈-∞-时,'()0f x >,∴此时()f x为增函数,当(11x ∈--,'()0f x <,此时()f x 为减函数,当(1)x ∈-+∞时,'()0f x >,此时()f x 为增函数,综上,1a ≥时,()f x 在(,)-∞+∞上为增函数,当1a <时,()f x 的单调增函数区间为(,1-∞-,(1)-++∞,()f x的单调递减区间为(11---.(2)3232332200000001111111111()()1()()()1()()()2332223222f x f x x ax a x x a x ⎡⎤⎡⎤⎡⎤-=+++-+++=-+-+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦200011()(414712)122x x x a =-+++∴若存在011(0,)(,1)22x ∈,使得01()()2f x f =, 必须2004147120x x a +++=在11(0,)(,1)2上有解.0a <,21416(712)4(2148)0a a ∴∆=-+=->,00x >,0x ∴ 01<,即711<,492148121a ∴<-<,即2571212a -<<-,12,得54a =-,故欲使满足题意的0x 存在,则54a ≠-,∴当25557(,)(,)124412a ∈----时,存在唯一的011(0,)(,1)22x ∈满足01()()2f x f =.当2575(,][,0)12124a ⎧⎫∈-∞---⎨⎬⎩⎭时,不存在011(0,)(,1)22x ∈使01()()2f x f =.【点评】(1)求含参数的函数的单调区间时,导函数的符号往往难以确定,如果受到参数的影响,应对参数进行讨论,讨论的标准要根据导函数解析式的特征而定.如本题中导函数为一元二次函数,就有必要考虑对应方程中的判别式△.(2)对于存在性问题,一般先假设所判断的问题成立,再由假设去推导,若求得符合题意的结果,则存在;若得出矛盾,则不存在.。

2014年广东省高考数学试卷(文科)(含解析版)

2014年广东省高考数学试卷(文科)(含解析版)

2014年广东省高考数学试卷(文科)一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5} 2.(5分)已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i3.(5分)已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1)B.(2,﹣1)C.(2,0)D.(4,3)4.(5分)若变量x,y满足约束条件A.7B.8,则z=2x+y的最大值等于()C.10D.115.(5分)下列函数为奇函数的是()A.2x﹣B.x3sinx C.2cosx+1D.x2+2x6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.207.(5分)在△ABC中,角A、B、C所对应的边分别为a,b,c,则“a≤b”是“sinA ≤sinB”的()A.充分必要条件C.必要非充分条件8.(5分)若实数k满足0<k<5,则曲线A.实半轴长相等B.虚半轴长相等B.充分非必要条件D.非充分非必要条件﹣=1与﹣=1的()C.离心率相等D.焦距相等9.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4C.l1与l4既不垂直也不平行B.l1∥l4D.l1与l4的位置关系不确定10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω1对任意复数z1,z2,z3有如下命题:①(z1+z2)*z3=(z1*z3)+(z2*z3)②z1*(z2+z3)=(z1*z2)+(z1*z3)③(z1*z2)*z3=z1*(z2*z3);④z1*z2=z2*z1则真命题的个数是()A.1B.2C.3其中2,2是ω2的共轭复数,D.4二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(1113题)11.(5分)曲线y=﹣5e x+3在点(0,﹣2)处的切线方程为.12.(5分)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为.13.(5分)等比数列{an }的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=.(二)(1415题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)191283293305314323401合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.18.(13分)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2作如图2折叠;折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M ﹣CDE 的体积.19.(14分)设各项均为正数的数列{a n }的前n 项和为S n 满足S n 2﹣(n 2+n ﹣3)S n ﹣3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有++…+<.20.(14分)已知椭圆C:为.+=1(a>b>0)的右焦点为(,0),离心率(1)求椭圆C的标准方程;(2)若动点P(x0,y)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.21.(14分)已知函数f(x)=x3+x2+ax+1(a∈R).(1)求函数f(x)的单调区间;(2)当a<0时,试讨论是否存在x0∈(0,)∪(,1),使得f(x)=f().2014年广东省高考数学试卷(文科)参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5}【考点】1E:交集及其运算.【专题】5J:集合.【分析】根据集合的基本运算即可得到结论.【解答】解:∵M={2,3,4},N={0,2,3,5},∴M∩N={2,3},故选:B.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z满足(3﹣4i)z=25,则z=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】由题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:∵满足(3﹣4i)z=25,则z===3+4i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)已知向量=(1,2),=(3,1),则﹣=()A.(﹣2,1)B.(2,﹣1)C.(2,0)D.(4,3)【考点】99:向量的减法;9J:平面向量的坐标运算.【专题】5A:平面向量及应用.【分析】直接利用向量的减法的坐标运算求解即可.【解答】解:∵向量=(1,2),=(3,1),∴﹣=(2,﹣1)故选:B.【点评】本题考查向量的坐标运算,基本知识的考查.4.(5分)若变量x,y满足约束条件A.7,则z=2x+y的最大值等于()C.10D.11B.8【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B(4,2)时,直线y=﹣2x+z的截距最大,此时z最大,此时z=2×4+2=10,故选:C.【点评】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键.5.(5分)下列函数为奇函数的是()A .2x ﹣B .x 3sinxC .2cosx +1D .x 2+2x【考点】3K :函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的定,对各个选项中的函数进行判断,从而得出结论.【解答】解:对于函数f (x )=2x ﹣故此函数为奇函数.对于函数f (x )=x 3sinx ,由于f (﹣x )=﹣x 3(﹣sinx )=x 3sinx=f (x ),故此函数为偶函数.对于函数f (x )=2cosx +1,由于f (﹣x )=2cos (﹣x )+1=2cosx +1=f (x ),故此函数为偶函数.对于函数f (x )=x 2+2x ,由于f (﹣x )=(﹣x )2+2﹣x =x 2+2﹣x ≠﹣f (x ),且f (﹣x )≠f (x ),故此函数为非奇非偶函数.故选:A .【点评】本题主要考查函数的奇偶性的判断方法,属于基础题.6.(5分)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为(),由于f (﹣x )=2x ﹣﹣=﹣2x =﹣f (x ),A .50B .40C .25D .20【考点】B4:系统抽样方法.【专题】5I :概率与统计.【分析】根据系统抽样的定义,即可得到结论.【解答】解:∵从1000名学生中抽取40个样本,∴样本数据间隔为1000÷40=25.故选:C .【点评】本题主要考查系统抽样的定义和应用,比较基础.7.(5分)在△ABC 中,角A 、B 、C 所对应的边分别为a ,b ,c ,则“a ≤b”是“sinA ≤sinB”的()A .充分必要条件C .必要非充分条件B .充分非必要条件D .非充分非必要条件【考点】HP :正弦定理.【专题】5L :简易逻辑.【分析】直接利用正弦定理以及已知条件判断即可.【解答】解:由正弦定理可知⇒=,∵△ABC 中,∠A ,∠B ,∠C 均小于180°,角A 、B 、C 所对应的边分别为a ,b ,c ,∴a ,b ,sinA ,sinB 都是正数,∴“a ≤b”⇔“sinA ≤sinB”.∴“a ≤b”是“sinA ≤sinB”的充分必要条件.故选:A .【点评】本题考查三角形中,角与边的关系正弦定理以及充要条件的应用,基本知识的考查.8.(5分)若实数k 满足0<k <5,则曲线A .实半轴长相等B .虚半轴长相等﹣=1与﹣=1的()C .离心率相等D .焦距相等【考点】KC :双曲线的性质.【专题】5D :圆锥曲线的定义、性质与方程.【分析】根据k 的取值范围,判断曲线为对应的双曲线,以及a ,b ,c 的大小关系即可得到结论.【解答】解:当0<k <5,则0<5﹣k <5,11<16﹣k <16,即曲线﹣=1表示焦点在x 轴上的双曲线,其中a 2=16,b 2=5﹣k ,c 2=21﹣k ,曲线﹣=1表示焦点在x 轴上的双曲线,其中a 2=16﹣k ,b 2=5,c 2=21﹣k ,即两个双曲线的焦距相等,故选:D .【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a ,b ,c 是解决本题的关键.9.(5分)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是()A .l 1⊥l 4C .l 1与l 4既不垂直也不平行B .l 1∥l 4D .l 1与l 4的位置关系不确定【考点】LO :空间中直线与直线之间的位置关系.【专题】5F :空间位置关系与距离.【分析】根据空间直线平行或垂直的性质即可得到结论.【解答】解:在正方体中,若AB 所在的直线为l 2,CD 所在的直线为l 3,AE 所在的直线为l 1,若GD 所在的直线为l 4,此时l 1∥l 4,若BD 所在的直线为l 4,此时l 1⊥l 4,故l 1与l 4的位置关系不确定,故选:D.【点评】本题主要考查空间直线平行或垂直的位置关系的判断,比较基础.10.(5分)对任意复数ω1,ω2,定义ω1*ω2=ω1对任意复数z 1,z 2,z 3有如下命题:①(z 1+z 2)*z 3=(z 1*z 3)+(z 2*z 3)②z 1*(z 2+z 3)=(z 1*z 2)+(z 1*z 3)③(z 1*z 2)*z 3=z 1*(z 2*z 3);④z 1*z 2=z 2*z 1则真命题的个数是()A.1其中2,2是ω2的共轭复数,B.2C.3D .4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】5L:简易逻辑;5N :数系的扩充和复数.【分析】根据已知中ω1*ω2=ω12,其中2是ω2的共轭复数,结合复数的运算性质逐一判断四个结论的真假,可得答案.【解答】解:①(z 1+z 2)*z 3=(z 1+z 2)确;=(z 1+z 2=(z 1*z 3)+(z 2*z 3),正②z 1*(z 2+z 3)=z 1(③(z 1*z 2)*z 3=z 1成立,故错误;④z 1*z 2=z 1,z 2*z 1=z 2)=z 1(+)=z 1+z 1=(z 1*z 2)+(z 1*z 3),正确;)=z 1z 3,等式不,z 1*(z 2*z 3)=z 1*(z 2)=z 1(,等式不成立,故错误;综上所述,真命题的个数是2个,故选:B .【点评】本题以命题的真假判断为载体,考查了复数的运算性质,细心运算即可,属于基础题.二、填空题(共3小题,考生作答4小题,每小题5分,满分15分)(一)必做题(1113题)11.(5分)曲线y=﹣5e x +3在点(0,﹣2)处的切线方程为5x +y +2=0..【考点】6H :利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】利用导数的几何意义可得切线的斜率即可.【解答】解:y′=﹣5e x ,∴y′|x=0=﹣5.因此所求的切线方程为:y +2=﹣5x ,即5x +y +2=0.故答案为:5x +y +2=0.【点评】本题考查了导数的几何意义、曲线的切线方程,属于基础题.12.(5分)从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为.【考点】C6:等可能事件和等可能事件的概率.【专题】5I :概率与统计.【分析】求得从字母a ,b ,c ,d ,e 中任取两个不同字母、取到字母a 的情况,利用古典概型概率公式求解即可.【解答】解:从字母a ,b ,c ,d ,e 中任取两个不同字母,共有取到字母a ,共有∴所求概率为故答案为:.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.13.(5分)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.=10种情况,=4种情况,=.【考点】4H :对数的运算性质;87:等比数列的性质;89:等比数列的前n 项和.【专题】54:等差数列与等比数列.【分析】可先由等比数列的性质求出a 3=2,再根据性质化简log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5log 2a 3,代入即可求出答案.【解答】解:log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2a 1a 2a 3a 4a 5=log 2a 35=5log 2a 3.又等比数列{a n }中,a 1a 5=4,即a 3=2.故5log 2a 3=5log 22=5.故选为:5.【点评】本题考查等比数列的性质,灵活运用性质变形求值是关键,本题是数列的基本题,较易.(二)(14-15题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为(1,2).【考点】Q8:点的极坐标和直角坐标的互化.【专题】5S:坐标系和参数方程.【分析】直接由x=ρcosθ,y=ρsinθ化极坐标方程为直角坐标方程,然后联立方程组求得答案.【解答】解:由2ρcos2θ=sinθ,得:2ρ2cos2θ=ρsinθ,即y=2x2.由ρcosθ=1,得x=1.联立,解得:.∴曲线C1与C2交点的直角坐标为(1,2).故答案为:(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则=3.【考点】%H:三角形的面积公式.【专题】58:解三角形.【分析】证明△CDF∽△AEF,可求.【解答】解:∵四边形ABCD是平行四边形,EB=2AE,∴AB∥CD,CD=3AE,∴△CDF∽△AEF,∴==3.故答案为:3.【点评】本题考查三角形相似的判断,考查学生的计算能力,属于基础题.四、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤)16.(12分)已知函数f (x )=Asin (x +(1)求A 的值;(2)若f (θ)﹣f (﹣θ)=),x ∈R ,且f ()=.,θ∈(0,),求f (﹣θ).【考点】GP :两角和与差的三角函数.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】(1)通过函数f (x )=Asin (x +A 的值;(2)利用函数的解析式,通过f (θ)﹣f (﹣θ)=利用两角差的正弦函数求f (﹣θ).),x ∈R ,且f (,)=,,θ∈(0,),求出cosθ,),x ∈R ,且f ()=,直接求【解答】解:(1)∵函数f (x )=Asin (x +∴f (∴)=Asin (.+)=Asin=(2)由(1)可知:函数f (x )=3sin (x +∴f (θ)﹣f (﹣θ)=3sin (θ+=3[(=3•2sinθcos ∴sinθ=∴cosθ=,,=3sinθ=,),))])﹣3sin (﹣θ+)﹣(∴f(﹣θ)=3sin()=3sin()=3cosθ=.【点评】本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查.17.(13分)某车间20名工人年龄数据如下表:年龄(岁)19282930313240合计工人数(人)133543120(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.【考点】BA:茎叶图;BB:众数、中位数、平均数;BC:极差、方差与标准差.【专题】5I:概率与统计.【分析】(1)根据众数和极差的定义,即可得出;(2)根据画茎叶图的步骤,画图即可;(3)利用方差的计算公式,代入数据,计算即可.【解答】解:(1)这20名工人年龄的众数为30,极差为40﹣19=21;(2)茎叶图如下:(3)年龄的平均数为:这20名工人年龄的方差为S 2=2=30.[(19﹣30)2+3×(28﹣30)2+3×(29﹣30)+5×(30﹣30)2+4×(31﹣30)2+3×(32﹣30)2+(40﹣30)2]=12.6.【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题.18.(13分)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2作如图2折叠;折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M ﹣CDE 的体积.【考点】LF :棱柱、棱锥、棱台的体积;LW :直线与平面垂直.【专题】5F :空间位置关系与距离;5G :空间角;5Q :立体几何.【分析】(1)要证CF ⊥平面MDF ,只需证CF ⊥MD ,且CF ⊥MF 即可;由PD ⊥平面ABCD ,得出平面PCD ⊥平面ABCD ,即证MD ⊥平面PCD ,得CF ⊥MD ;(2)求出△CDE 的面积S△CDE,对应三棱锥的高MD ,计算它的体积V M﹣CDE.【解答】解:(1)证明:∵PD ⊥平面ABCD ,PD ⊂平面PCD ,∴平面PCD ⊥平面ABCD ;又平面PCD ∩平面ABCD=CD ,MD ⊂平面ABCD ,MD ⊥CD ,∴MD ⊥平面PCD ,CF ⊂平面PCD ,∴CF ⊥MD ;又CF ⊥MF ,MD 、MF ⊂平面MDF ,MD ∩MF=M ,∴CF ⊥平面MDF ;(2)∵CF ⊥平面MDF ,∴CF ⊥DF ,又∵Rt △PCD 中,DC=1,PC=2,∴∠P=30°,∠PCD=60°,∴∠CDF=30°,CF=CD=;∵EF ∥DC ,∴∴DE==,即,;=,,∴PE=∴S△CDE=CD•DE=MD===×=,.∴V M﹣CDE =S△CDE•MD=×【点评】本题考查了空间中的垂直关系的应用问题,解题时应结合图形,明确线线垂直、线面垂直以及面面垂直的相互转化关系是什么,几何体的体积计算公式是什么,是中档题.19.(14分)设各项均为正数的数列{a n }的前n 项和为S n 满足S n 2﹣(n 2+n ﹣3)S n ﹣3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有++…+<.【考点】8H :数列递推式;8K :数列与不等式的综合.【专题】54:等差数列与等比数列;55:点列、递归数列与数学归纳法.【分析】(1)本题可以用n=1代入题中条件,利用S 1=a 1求出a 1的值;(2)利用a n 与S n 的关系,将条件转化为a n 的方程,从而求出a n ;(3)利用放缩法,将所求的每一个因式进行裂项求和,即可得到本题结论.【解答】解:(1)令n=1得:∴(S 1+3)(S 1﹣2)=0.∵S 1>0,∴S 1=2,即a 1=2.(2)由.∵a n >0(n ∈N *),∴S n >0.∴.,得:,即.∴当n ≥2时,又∵a 1=2=2×1,∴.==<=<;(3)由(2)可知n ∈N *,当n=1时,显然有当n ≥2时,<+,=(),=﹣<.所以,对一切正整数n ,有【点评】本题考查了数列的通项与前n 项和的关系、裂项求和法,还用到了放缩法,计算量较大,有一定的思维难度,属于难题.20.(14分)已知椭圆C :+=1(a >b >0)的右焦点为(,0),离心率为.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【考点】J3:轨迹方程;K3:椭圆的标准方程.【专题】5D :圆锥曲线的定义、性质与方程.【分析】(1)根据焦点坐标和离心率求得a 和b ,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k 的一元二次方程,利用韦达定理表示出k 1•k 2,进而取得x 0和y 0的关系式,即P 点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A 、B 两点分别位于椭圆长轴与短轴的端点,P 的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P (x 0,y 0)的切线为y=k (x ﹣x 0)+y 0,+=+=1,4x 2+9[k 2x 2+﹣2kx 0x ++2ky 0x ﹣2ky 0x 0]=36整理得(9k 2+4)x 2+18k (y 0﹣kx 0)x +9[(y 0﹣kx 0)2﹣4]=0,∴△=[18k (y 0﹣kx 0)]2﹣4(9k 2+4)×9[(y 0﹣kx 0)2﹣4]=0,整理得(x 02﹣9)k 2﹣2x 0×y 0×k +(y 02﹣4)=0,∴﹣1=k 1•k 2=∴x 02+y 02=13.=﹣1,把点(±3,±2)代入亦成立,∴点P 的轨迹方程为:x 2+y 2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x 和y 关系.21.(14分)已知函数f (x )=x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈(0,)∪(,1),使得f (x 0)=f ().【考点】6B :利用导数研究函数的单调性;6E :利用导数研究函数的最值.【专题】51:函数的性质及应用;53:导数的综合应用.【分析】对第(1)问,先求导,再通过一元二次方程的实根讨论单调性;对第(2)问,可将f (x 0)=f ()转化为f (x 0)﹣f ()=0,即将“函数问题”化为“方程是否有实根问题”处理.【解答】解:(1)由f (x )得f′(x )=x 2+2x +a ,令f′(x )=0,即x 2+2x +a=0,判别式△=4﹣4a ,①当△≤0即a ≥1时,f′(x )≥0,则f (x )在(﹣∞,+∞)上为增函数.②当△>0即a <1时,方程f′(x )=0的两根为当x ∈(﹣∞,﹣1﹣当当,即,)时,f′(x )>0,则f (x )为增函数;时,f′(x )<0,则f (x )为减函数;,+∞)时,f′(x )>0,则f (x )为增函数.综合①、②知,a ≥1时,f (x )的单调递增区间为(﹣∞,+∞),a <1时,f (x )的单调递增区间为(﹣∞,f (x )的单调递减区间为和.,+∞),(2)∵==21===∴若存在∪.,使得∪,即内必有实数解.,则关于x 的方程4x 2+14x +7+12a=0在∵a <0,∴△=142﹣16(7+12a )=4(21﹣48a )>0,方程4x 2+14x +7+12a=0的两根为∵x 0>0,∴依题意有即得∴当得当得,且,且∪成立;∪成立.∪{}时,不存在∪,使.时,存在唯一的∪,使,,且,,∴49<21﹣48a <121,且21﹣48a ≠81,,即,【点评】1.求含参数的函数的单调区间时,导函数的符号往往难以确定,如果受到参数的影响,应对参数进行讨论,讨论的标准要根据导函数解析式的特征而定.如本题中导函数为一元二次函数,就有必要考虑对应方程中的判别式△.2.对于存在性问题,一般先假设所判断的问题成立,再由假设去推导,若求得符合题意的结果,则存在;若得出矛盾,则不存在.22。

广东高考数学文科试卷含答案(WORD版)

广东高考数学文科试卷含答案(WORD版)

2014年普通高等学校招生全国统一考试(广东卷)数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A iB iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.x x212- B.x x sin 3 C.1cos 2+x D.xx 22+ 答案:A111:()2,(),()22(),222(),A .x xxx x xf x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.二、填空题(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为 2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长三、解答题16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且532()122f π= (1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336cos sin 333cos 31cos ,()336f A A A f x x f f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴+-=++-+=++-+-===∴=∴-=解由得1sin()3sin()3cos 3 1.6323πππθθθ-+=-==⨯=17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为 (2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)50413210201(121123412100)2012522012.6+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0{}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式 (3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3),()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)(n k k n n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又当时1)1111111()()11111141223(1)444444111111().11434331(1)44n n n n n +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-22220022222520.:1(0)(5,0),.3(1);(2)(,),,.55:(1)5,,3,954,31.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为离心率为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a R f x a x f x f =+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为323200003322000200000020000200111111(2)()()1()()()12332221111()()()3222111111()()()()()3224222111()()23612211()(4122f x f x x ax a x x a x x x x x x a x x x x x a x x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-+00020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,721484x a x f x f x x a a a a a a ax x a a ++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-<若存在使得必须在上有解方程的两根为只能是依题意即0000025711,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)()(1212422a a a a x a a x f x f a x f x f ∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1).2。

2014年全国高考文科数学试题及答案-广东卷

2014年全国高考文科数学试题及答案-广东卷

2014年普通高等学校招生全国统一考试(广东卷)数学 (文科)一、选择题1、 已知集合{}{}2,3,4,0,2,3,5,()M N M N === 则A 、 {}0,2B 、 {}2,3C 、 {}3,4D 、{}3,52、 已知复数z 满足(34)25i z -=,则z =() A 、34i --B 、34i -+C 、34i -D 、34i +3、 已知向量(1,2),(3,1)a b =,则b a -=()A 、(-2,1)B 、(2,-1)C 、(2,0)D 、(4,3)4、 若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于()A 、7B 、8C 、10D 、115、 下列函数为奇函数的是( )A 、xx212-B 、x x sin 3C 、1cos 2+xD 、xx 22+6、 为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A 、50B 、40C 、25D 、207、 在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,则“a b ≤”是“sin sin A B ≤”的( )A 、充分必要条件B 、充分非必要条件C 、必要非充分条件D 、非充分非必要条件8、 若实数k 满足05k <<,则曲线221165x y k-=-与曲线221165x y k -=-的( )A 、实半轴长相等B 、虚半轴长相等C 、离心率相等D 、焦距相等9、 若空间中四条两两不同的直线1234,,,l l l l ,满足122334,//,l l l l l l ⊥⊥,则下列结论一定正确的是()A 、14l l ⊥B 、14//l lC 、1l 与4l 既不垂直也不平行D 、 1l 与4l 的位置关系不确定10、 对任意复数12,ωω,定义1212*ωωωω=,其中2ω是2ω的共轭复数,对任意复数123,,z z z ,有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A 、1B 、2C 、3D 、4 二、填空题(一)必做题(11-13)11、 曲线53x y e =-+在点(0,-2)处的切线方程为______________________12、 从字母a,b,c,d,e 中任取两个不同字母,则取到字母a 的概率为__________________ 13、 等比数列{}n a 的各项均为正数,且154a a =,则2122232425l o g +l o g +l og +l o g+l o g =a a a a a________、14、 (坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cossin ρθθ=与cos =1ρθ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 交点的直角坐标为____________________15、 (几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上,且2EB AE =,AC与DE 交于点F ,则CDF AEF ∆∆的周长的周长=____________三、解答题16、(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且5()12f π=(1) 求A 的值;(2) 若()()(0,)2f f πθθθ--=∈,求()6f πθ-17、 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差。

Do_2014广东高考数学文科试卷含答案(WORD版)

Do_2014广东高考数学文科试卷含答案(WORD版)

20. 已知椭圆C的:一ax22个焦by22点为1(离a 心b率为0)
( 5, 0),
5.
3
21(.1已)求知椭函圆数C的f标(x准) 方1程x3 ;x2 ax 1(a R).
(2)若动点P为(椭x0,圆y0外)3 一点且C点到椭圆, 的两P条切线相C 互垂直求点的轨迹方, 程 P
.
(1)求函数f的(x单) 调区间 ;
2x
1 2x
B. x3 sin x
C. 2cosx 1
D. x2 2x
答案:A
提示设: 则f 的(x)定义2x域 为1 且, f (x) 2x
f (x)为奇函数,故选 A.
R,
f (x) 2x
1 2 x
1 2x
2x
f (x),
6. 为了解1名00学0生的学习情况采用,系统抽样的方法从中抽, 取容量为的样本40
(2)由S得n2 (n2 n 3)Sn 3(n2 n) 0, : (Sn 3) Sn (n2 n) 0,
an 0(n N ), Sn 0,从而Sn 3 0, Sn n2 n,
当n时 2 , an Sn Sn1 n2 n (n 1)2 (n 1) 2n,
20
故这名20工人年龄的方差为
:
1 20
(11)2
3
(2)2
3
(1)2
5
02
4
12
3
22
102
1 (12112 3 4 12 100) 20
1 252 20
12.6
18. 如图四2, 边形为A矩B形CD平面 , PD ABCD,
AB 1, BC PC 2.作如图折3 叠折: 痕 EF / /DC,
3

2014广东高考(文数)【含答案--全WORD--精心排版】

2014广东高考(文数)【含答案--全WORD--精心排版】

2014年普通高等学校招生全国统一考试(广东卷)数 学(文科)参考公式:一组数据12,,,n x x x 的方差2222121[()()()]n s x x x x x x n=-+-++-,其中x 表示平均数.一、选择题:1.已知集合{2,3,4}M =,{0,2,3,5}N =,则MN =( )A .{3,5}B .{3,4}C .{2,3}D .{0,2} 2.已知复数z 满足(34)25i z -=,则z =( )A .34i +B .34i -C .34i -+D .34i -- 3.已知向量(1,2)=a ,(3,1)=b ,则-=b a ( )A .(4,3)B .(2,0)C .(2,1)-D .(2,1)-4.若变量,x y 满足约束条件280403x y x y +⎧⎪⎨⎪⎩≤≤≤≤≤,则2z x y =+的最大值等于( )A .11B .10C .8D .7 5.下列函数为奇函数的是( )A .22x x +B .2cos 1x +C .3sin x xD .122xx-6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .20B .25C .40D .50 7.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,则“a b ≤ ”是“sin sin A B ≤”的( ) A .充分必要条件 B .充分非必要条件 C .必要非充分条件 D .非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k-=-与曲线221165x y k -=-的( ) A .焦距相等 B .离心率相等 C .虚半轴长相等 D .实半轴长相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( ) A .14l l ⊥ B .14//l l C .1l 与4l 既不垂直也不平行 D .1l 与4l 的位置关系不确定 10.对任意复数12,ωω,定义1212*ωωωω=,其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题:①1231323()()()***z z z z z z z +=+; ②1231213()()()***z z z z z z z +=+; ③123123()()****z z z z z z =; ④1221**z z z z =. 则真命题的个数是( )图1AFE D CB(一)必做题(11 ~ 13题)11.曲线53x y e =-+在点(0,2)-处的切线方程为______________.12.从字母,,,,a b c d e 中任取两个不同字母,则取到字母a 的概率为_______.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a _______. (二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为22cos sin ρθθ=与cos 1ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 交点的直角坐 标为 . 15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆∆的周长的周长= . 三、解答题:16.(本小题满分12分)已知函数()sin()3f x A x π=+,x ∈R,且5()122f π=.(1)求A 的值;(2)若()()f f θθ--)2,0(πθ∈,求()6f πθ-.17.(本小题满分13分)某车间20名工人年龄数据如下表: (1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.图3PA B CEDFMPA B CD图218.(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==.作如图3折叠:折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF CF ⊥.(1)证明:CF ⊥平面MDF ;(2)求三棱锥M CDE -的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足222(3)3()0n n S n n S n n -+--+=,*n ∈N .(1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有11221111(1)(1)(1)3n n a a a a a a +++<+++.20.(本小题满分14分)已知椭圆2222:1x y C a b +=(0)a b >>的一个焦点为(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.21.(本小题满分14分)已知函数321()13f x x x ax =+++()a ∈R . (1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()()2f x f =.2014年普通高等学校招生全国统一考试(广东卷)数 学(文科)参考答案二、填空题:本大题共小题,考生作答小题,每小题分,满分分.11.520x y ++= 12.2513.5 14.(1,2) 15.3 2.A 解析:2525(34)25(34)=3 4.34(34)(34)25i i z i i i i ++===+--+ 4.B 解析:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10.111()2,(),()5D 22(),22 2().x xx x x x f x f x R f x f x f x --=--=-=-=-∴解析:设则的定义域为且 为奇函数.100025.4B 06 =解析:分段的间隔为. ,,,sin ,sin ,sin sin .sin sin 7 A a ba b A B a b A B A B=∴≤⇔≤解析:由正弦定理知都为正数.05,50,160,16(5)21(16)58 ,A k k k k k k <<∴->->+-=-=-+解析:从而两曲线均为双曲线, 又故两双曲.线的焦距相等.123123132313231231231231213121312312312312312310 C ()()()()()();()()()()()()();(),()()(),z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====.①*===*+*,故①是真命题 ②**+*,②对 ③左边=*=右边*解析:左12122121,;,,,z z z z z z z z ≠==≠边右边③错 ④左边=*右边=*左边右边故④不是真命题. 综上,只有①②是真命题.''5,5,25,50.121x x y e y y x x y ==-∴=-∴+=-++=解析:所求切线方程为即.142542.15201C P C ===解析:.212223242525242322212152log log log log log ,log log log log log ,25log ()5log 410,13 5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=解析:设 则 .22212122cos sin 2cos =sin ,2,1,,(1,2).14C y x C x C C ρθθρθρθ===∴解析:由得()故的直角坐标方程为: 的直角坐标方程为:交点的直角坐标为.,5 3.1CDF CD EB AECDFAEF AEF AE AE∆+∆∆∴===∆的周长解析:显然的周长.16.解:(1)553()sin()sin 121234f A A ππππ=+==,解得 3.A = (2)由(1)得()3sin()3f x x π=+,所以()()3sin()3sin()3sin()3sin()3333f f ππππθθθθθθ--=+--+=++-3(sin coscos sin )3(sin cos cos sin )3333ππππθθθθ=++-6sin cos 3sin 3πθθ===所以sin θ=(0,)2πθ∈,所以cos θ==.所以()3sin()3sin()3cos 36632f ππππθθθθ-=-+=-===17.解:(1)这20名工人年龄的众数为30,极差为40-19=21(2)茎叶图如图所示: (3)年龄的平均数为(1928329330531432340)3020x +⨯+⨯+⨯+⨯+⨯+==所以这20名工人年龄的方差为222222221(1930)3(2830)3(2930)5(3030)4(3130)3(3230)(4030)20s ⎡⎤=-+⨯-+⨯-+⨯-+⨯-+⨯-+-⎣⎦1252(1211230412100)12.62020=++++++== 18.(1)证明:因为PD ⊥平面ABCD ,AD ⊂平面ABCD ,所以PD AD ⊥. 因为在矩形ABCD 中CD AD ⊥,又CD PD D =,所以AD ⊥平面PCD .因为CF ⊂平面PCD ,所以AD CF ⊥.因为MF CF ⊥,MF AD M =,所以CF ⊥平面ADF . (2)解:因为CF ⊥平面ADF ,DF ⊂平面ADF ,所以CF DF ⊥. 因为1AB CD ==,2BC PC ==,所以60PCD ∠=,30CDF ∠=, 所以111242CF CD PC ===,PD .因为EF ∥DC,所以14DE PD ==34PE PD ==.所以4EM PE ==,2MD ==,128CDE S CD DE ∆=⋅=,因为MD ⊥平面CDE ,所以三棱锥M CDE -的体积11338216M CDE CDE V S MD -∆=⋅=⨯=. 19.解:(1)由222(3)3()0n n S n n S n n -+--+=,得2(3)()0n n S S n n ⎡⎤+-+=⎣⎦.因为{}n a 是正项数列,所以0n a >,0n S >,所以2n S n n =+. 当1n =时,112a S ==.(2)当2n ≥时,221[(1)(1)]2n n n a S S n n n n n -=-=+--+-=;当1n =时,2a =,满足上式, 所以数列{}a 的通项公式为2a n =,*n ∈N1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0(3)因为111111()(1)2(21)(21)(21)22121n n a a n n n n n n =<=-++-+-+ 所以11221111111111111()()()(1)(1)(1)2323525722121n n a a a a a a n n +++<+-+-++-+++⨯-+ 1111111()623213423n n =+-=-<++ 20.解:(1)依题意得c =3c e a ==,所以3a =,2224b a c =-=,所以椭圆C 的标准方程为22194x y +=. (2)当过点P 的两条切线12,l l 的斜率均存在时,设12,l l 的斜率分别为12,k k ,设切线方程为00()y y k x x -=-,联立2200194()x y y y k x x ⎧+=⎪⎨⎪-=-⎩,得2220000(49)18()9()360k x k y kx x y kx ++-+--=, 所以22220000(18)()4(49)[9()36]0k y kx k y kx ∆=--+--=,整理得2200()49y kx k -=+,即2220000(9)240x k x y k y --+-=,因为12l l ⊥,所以201220419y k k x -==--,整理得220013x y +=; 当过点P 的两条切线12,l l 一条斜率不存在,一条斜率为0时,P 为(3,2)±或(3,2)-±,均满足220013x y +=. 综上所述,点P 的轨迹方程为2213x y +=.21.解:(1)2()2f x x x a '=++,x ∈R .令220x x a ++=,44a ∆=-. ① 当1a ≥时,0∆≤,()0f x '≥,所以()f x 在(,)-∞+∞上是增函数;② 当1a <时,0∆>,方程220x x a ++=的两个根为11x =-21x =-所以(),()f x f x '随x 的变化情况如下表:所以()f x 在1(),x -∞和2(,)x +∞上是增函数,在12(,)x x 上是减函数.综上所述,当1a ≥时,()f x 的单调递增区间为(,)-∞+∞,没有单调递减区间; 当1a <时,()f x 的单调递增区间为1(),x -∞和2(,)x +∞,单调递减区间为12(,)x x .令323211111117()()()1(1)2324423224g x f x f x x ax a x x ax a =-=+++-+++=++--, 原问题转化为方程()0g x =在11(0,)(,1)22上有解.因为1()()()()2g x f x f f x ''''=-=,所以函数()y g x =与()y f x =的单调性相同.由(1)得当0a <时,()g x 在1(),x -∞和2(,)x +∞上是增函数,在12(,)x x 上是减函数,其中112x =-<-,210x =->,17(0)224g a =--,1()02g =,125(1)224g a =+.① 当2102x <<时,即1012<-+<,解得504a -<<, ()g x 在2(0,)x 上是减函数,在21(,)2x 和1(,1)2上是增函数,且1()02g =,要使()0g x =在11(0,)(,1)22上有解,只需(0)0g >,解得712a <-,所以57412a -<<-;② 当212x =时,即54a =-,()g x 在(0,1)2上是减函数,在1(,1)2上是增函数,且1()02g =,所以()0g x =在11(0,)(,1)22上无解;③ 当2112x <<时,即1112<-+,解得534a -<<-,()g x 在(0,1)2和2(1,)2x 上是减函数,在2(,1)x 上是增函数,且1()02g =,要使()0g x =在11(0,)(,1)22上有解,只需(1)0g >,解得2512a >-,所以255124a -<<-;④ 当21x ≥时,即11-,解得3a -≤,()g x 在(0,1)2和(1,1)2上是减函数,且1()02g =,所以()0g x =在11(0,)(,1)22上无解.综上所述,当25557(,)(,)124412a ∈----时,存在011(0,)(,1)22x ∈,使得01()()2f x f =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(广东卷)
数学(文科)
一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}5,3,2,0,4,3,2==N M ,则N M ( )zxxk
A. {}2,0
B. {}3,2
C. {}4,3
D. {}5,3
(2)已知复数z 满足25)43(=-z i ,则=z ( )
A.i 43--
B. i 43+-
C. i 43-
D. i 43+
(3)已知向量(1,2),(3,1)a b ==,则b a -=( )
A. )1,2(-
B. )1,2(-
C. )0,2(
D. )3,4(
(4)若变量y x ,满足约束条件⎪⎩
⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的学科网最大值等于( )
A. 7
B. 8
C. 10
D. 11
5.下列函数为奇函数的是( ) A.x x 2
12- B.x x sin 3 C.1cos 2+x D.x x 22+
6.学科网为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )
A.50
B.40
C.25
D.20
7.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是zxxk “B A sin sin ≤”的( )
A.充分必要条件
B.充分非必要条件
C.必要非充分条件
D.非充分非必要条件
8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线22
1165
x y k -=-的( ) A.实半轴长相等 B.虚半轴长相等 C.离心率相等 D.焦距相等
9.若空间中四条两两不同的学科网直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )
A .14l l ⊥ B.14l l ∥ C.1l 与4l 既不垂直也不平行 D.1l 与4l 的位置关系不确定
10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题:
①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;
③123123()();z z z z z z **=**④1221z z z z *=*;
则真命题的个数是( )
A.1
B.2
C.3
D.4
二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.
(一)必做题(11—13题)
11.曲线53x y e =-+在点()0,2-处的切线方程为________.
12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.
13.等比数列{}n a 的各项均为正数,且154a a =,则
2122232425log +log +log +log +log =a a a a a ________.
(二)选做题(14-15题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,学科网极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 的直角坐标为________
15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长
的周长AEF CDF
三.解答题:本大题共6小题,满分80分
16.(本小题满分12分)
已知函数()sin(),3f x A x x R π=+
∈,学科网且532()122f π= (1) 求A 的值;
(2) 若()()3,(0,
)2f f πθθθ--=∈,求zxxk ()6f π
θ-
17(本小题满分13分)
某车间20名工人年龄数据如下表:
(1) 求这20名工人年龄的众数与极差;
(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3) 求这20名工人年龄的方差. 学科网
18(本小题满分13分)
如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠,折痕EF ∥DC.其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF.
(1) 证明:CF ⊥平面MDF
(2) 求三棱锥M-CDE 的体积.
19.(本小题满分14分)
设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足 ()()
*∈=+--+-N n n n S n n S n n ,033222.zxxk (1)求1a 的值;学科网
(2)求数列{}n a 的通项公式;
(3)证明:对一切正整数n ,有
()()().3
11111112211<+++++n n a a a a a a 20(本小题满分14分) 已知椭圆()01:22
22>>=+b a b
y a x C 的一个焦点为()0,5,离心率为3
5。

(1)求椭圆C 的标准方程; (2)若动点()00,y x P 为椭圆C 外一点,学科网且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.
21.(本小题满分14分)
已知函数321()1()3
f x x x ax a R =+++∈ (1) 求函数()f x 的单调区间;
(2) 当0a <时,试讨论是否存在011(0,)(,1)22x ∈,学科网使得01()()2
f x f =。

相关文档
最新文档