《万有引力与航天》测试题含答案
(物理)物理万有引力与航天练习题20篇含解析
(物理)物理万有引力与航天练习题20篇含解析一、高中物理精讲专题测试万有引力与航天1.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到:(2)根据万有引力等于重力:,则:,,代入数据得2.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
这颗卫星是地球同步卫星,其运行周期与地球的自转周期T 相同。
已知地球的 半径为R ,地球表面的重力加速度为g ,求该卫星的轨道半径r 。
【答案】22324R gTr π= 【解析】 【分析】根据万有引力充当向心力即可求出轨道半径大小。
【详解】质量为m 的北斗地球同步卫星绕地球做匀速圆周运动,根据牛顿第二定律有:2224Mm G m r r Tπ=; 在地球表面:112Mm Gm g R= 联立解得:222332244GMT R gTr ππ==3.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr = 将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算4.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π;2324rT Rπ【解析】 【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R= 对于嫦娥三号由万有引力等于向心力:2224GMm m rr T π=联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R== 可得月球的第一宇宙速度:2324r v gR T Rπ==5.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL=同理对星2M ,有:212222M M G M R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,;()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.6.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用7.设想若干年后宇航员登上了火星,他在火星表面将质量为m 的物体挂在竖直的轻质弹簧下端,静止时弹簧的伸长量为x ,已知弹簧的劲度系数为k ,火星的半径为R ,万有引力常量为G ,忽略火星自转的影响。
高中物理万有引力与航天题20套(带答案)
高中物理万有引力与航天题20套(带答案)一、高中物理精讲专题测试万有引力与航天1.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R = 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)【答案】【解析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为w1,w2.根据题意有w1=w2 ① (1分)r1+r2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分)G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解3.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P点,远地点为同步圆轨道Ⅲ上的Q点.到达远地点Q时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G,地球质量为M,地球半径为R,飞船质量为m,同步轨道距地面高度为h.当卫星距离地心的距离为r时,地球与卫星组成的系统的引力势能为p GMmEr=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.4.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT+=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=5.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)2324GMTh R π= 【解析】【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:2324GMTh R π=-6.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.7.一名宇航员抵达一半径为R 的星球表面后,为了测定该星球的质量,做下实验:将一个小球从该星球表面某位置以初速度v 竖直向上抛出,小球在空中运动一间后又落回原抛出位置,测得小球在空中运动的时间为t ,已知万有引力恒量为G ,不计阻力,试根据题中所提供的条件和测量结果,求:(1)该星球表面的“重力”加速度g 的大小; (2)该星球的质量M ;(3)如果在该星球上发射一颗围绕该星球做匀速圆周运动的卫星,则该卫星运行周期T 为多大?【答案】(1)2v g t =(2)22vR M Gt=(3)2T π=【解析】 【详解】(1)由运动学公式得:2vt g=解得该星球表面的“重力”加速度的大小 2v g t=(2)质量为m 的物体在该星球表面上受到的万有引力近似等于物体受到的重力,则对该星球表面上的物体,由牛顿第二定律和万有引力定律得:mg =2mM GR解得该星球的质量为 22vR M Gt= (3)当某个质量为m′的卫星做匀速圆周运动的半径等于该星球的半径R 时,该卫星运行的周期T 最小,则由牛顿第二定律和万有引力定律2224m M m RG R Tπ''=解得该卫星运行的最小周期 22Rt T vπ= 【点睛】重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.本题要求学生掌握两种等式:一是物体所受重力等于其吸引力;二是物体做匀速圆周运动其向心力由万有引力提供.8.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr =将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算9.“嫦娥四号”卫星从地球经地一月转移轨道,在月球附近制动后进入环月轨道,然后以大小为v 的速度绕月球表面做匀速圆周运动,测出其绕月球运动的周期为T ,已知引力常量G ,月球的半径R 未知,求: (1)月球表面的重力加速度大小;(2)月球的平均密度。
第六章《万有引力与航天》测试题(含详细解答)
《万有引力与航天》测试题一、选择题(每小题4分,全对得4分,部分对的得2分,有错的得0分,共48分。
)1.第一次通过实验比较准确的测出引力常量的科学家是( )A . 牛顿B . 伽利略C .胡克D . 卡文迪许2.如图1所示a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是( )A .b 、c 的线速度大小相等,且大于a 的线速度;B .b 、c 的向心加速度大小相等,且大于a 的向心加速度;C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的c ;D .a 卫星由于某种原因,轨道半径变小,其线速度将变大3.宇宙飞船为了要与“和平号“轨道空间站对接,应该:( ) A.在离地球较低的轨道上加速 B.在离地球较高的轨道上加速C.在与空间站同一高度轨道上加速D.不论什么轨道,只要加速就行4、 发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图2所示。
则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:( )A .卫星在轨道3上的速率大于在轨道1上的速率。
B .卫星在轨道3上的角速度小于在轨道1上的角速度。
C .卫星在轨道1上经过Q 点时的速度大于它在轨道2上经过Q 点时的速度。
D .卫星在轨道2上经过P 点时的加速度等于它在轨道3ba c 地球图1上经过P 点时的加速度5、 宇航员在围绕地球做匀速圆周运动的空间站中会处于完全失重中,下列说法中正确的是( )A.宇航员仍受重力的作用B.宇航员受力平衡C.宇航员受的重力正好充当向心力D.宇航员不受任何作用力6.某星球质量为地球质量的9倍,半径为地球半径的一半,在该星球表面从某一高度以10 m/s 的初速度竖直向上抛出一物体,从抛出到落回原地需要的时间为(g 地=10 m/s 2)( ) A .1sB .91s C .181s D .361s 7.假如地球自转速度增大,关于物体重力,下列说法正确的是( )A 放在赤道地面上的万有引力不变B 放在两极地面上的物体的重力不变C 放在赤道地面上物体的重力减小D 放在两极地面上的物体的重力增加 8、设想把质量为m 的物体放在地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( )A.零B.无穷大C.2GMm R D.无法确定9.对于质量m 1和质量为m 2的两个物体间的万有引力的表达式122m m F Gr ,下列说法正确的是( )和m 2所受引力总是大小相等的 B 当两物体间的距离r 趋于零时,万有引力无穷大 C.当有第三个物体m 3放入之间时,m 1和m 2间的万有引力将增大 D.所受的引力性质可能相同,也可能不同10地球赤道上的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上物体“飘” 起来,则地球的转速应为原来转速的( )A ga 倍 Bg aa+倍 Cg aa-倍 Dga倍11.关于地球同步通讯卫星,下列说法中正确的是()A.它一定在赤道上空运行B.各国发射的这种卫星轨道半径都一样C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度介于第一和第二宇宙速度之间12.由于地球的自转,地球表面上各点均做匀速圆周运动,所以()A.地球表面各处具有相同大小的线速度B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心二.填空题(每题6分,共12分。
(完整word版)万有引力与航天试题全集(含详细答案)
万有引力与航天试题全集(含答案)一、选择题:本大题共。
1、地球绕太阳运动的轨道是一椭圆,当地球从近日点向远日点运动时,地球运动的速度大小(地球运动中受到太阳的引力方向在地球与太阳的连线上,并且可认为这时地球只受到太阳的吸引力)()A。
不断变大B。
逐渐减小 C.大小不变 D。
没有具体数值,无法判断2、对于开普勒第三定律的表达式=k的理解正确的是A.k与a3成正比B.k与T2成反比C.k值是与a和T无关的值D.k值只与中心天体有关3、苹果落向地球,而不是地球向上运动碰到苹果,下列论述中正确的是A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果的引力大造成的B.由于地球对苹果有引力,而苹果对地球没有引力而造成的C。
苹果对地球的作用力和地球对苹果的作用力是相等的,由于地球质量极大,不可能产生明显的加速度D.以上说法都正确4、某球状行星具有均匀的密度ρ,若在赤道上随行星一起转动的物体对行星表面的压力恰好为零,则该行星自转周期为(万有引力常量为G)A. B.C。
D.5、关于开普勒第三定律的公式=k,下列说法中正确的是A。
公式只适用于绕太阳做椭圆轨道运行的行星 B.公式适用于所有围绕星球运行的行星(或卫星)C。
式中的k值,对所有行星(或卫星)都相等D。
式中的k值,对围绕不同星球运行的行星(或卫星)都相同6、根据观测,某行星外围有一模糊不清的环,为了判断该环是连续物还是卫星群,测出了环中各层的线速度v的大小与该层至行星中心的距离R。
则以下判断中正确的是A。
若v与R成正比,则环是连续物B。
若v与R成反比,则环是连续物C。
若v2与R成反比,则环是卫星群D。
若v2与R成正比,则环是卫星群7、关于太阳系中各行星的轨道,以下说法正确的是A。
所有行星绕太阳运动的轨道都是椭圆 B.有的行星绕太阳运动的轨道是圆C。
不同行星绕太阳运动的椭圆轨道的半长轴是不同的D。
不同的行星绕太阳运动的轨道各不相同8、类似于太阳与行星间的引力,地球和月球有相当大的万有引力,为什么它们不靠在一起,其原因是A。
万有引力与航天试题附答案
万有引力与航天单元测试题一、选择题1.关于日心说被人们接受的原因就是 ( )A.太阳总就是从东面升起,从西面落下B.若以地球为中心来研究的运动有很多无法解决的问题C.若以太阳为中心许多问题都可以解决,对行星的描述也变得简单D.地球就是围绕太阳运转的2.有关开普勒关于行星运动的描述,下列说法中正确的就是( )A.所有的行星绕太阳运动的轨道都就是椭圆,太阳处在椭圆的一个焦点上B.所有的行星绕太阳运动的轨道都就是圆,太阳处在圆心上C.所有的行星轨道的半长轴的三次方跟公转周期的二次方的比值都相等D.不同的行星绕太阳运动的椭圆轨道就是不同的3.关于万有引力定律的适用范围,下列说法中正确的就是( )A.只适用于天体,不适用于地面物体B.只适用于球形物体,不适用于其她形状的物体C.只适用于质点,不适用于实际物体D.适用于自然界中任意两个物体之间4.已知万有引力常量G,要计算地球的质量还需要知道某些数据,现在给出下列各组数据,可以计算出地球质量的就是( )A.地球公转的周期及半径B.月球绕地球运行的周期与运行的半径C.人造卫星绕地球运行的周期与速率D.地球半径与同步卫星离地面的高度5.人造地球卫星由于受大气阻力,轨道半径逐渐变小,则线速度与周期变化情况就是( )A.速度减小,周期增大,动能减小B.速度减小,周期减小,动能减小C.速度增大,周期增大,动能增大D.速度增大,周期减小,动能增大6.一个行星,其半径比地球的半径大2倍,质量就是地球的25倍,则它表面的重力加速度就是地球表面重力加速度的( )A.6倍B.4倍C.25/9倍D.12倍7.假如一个做圆周运动的人造卫星的轨道半径增大到原来的2倍仍做圆周运动,则( )A.根据公式v=ωr可知,卫星运动的线速度将增加到原来的2倍B.根据公式F=mv2/r可知,卫星所需向心力减小到原来的1/2C.根据公式F=GMm/r2可知,地球提供的向心力将减小到原来的1/4D.根据上述B与C中给出的公式,8.假设在质量与地球质量相同,半径为地球半径两倍的天体上进行运动比赛,那么与在地球上的比赛成绩相比,下列说法正确的就是()A.跳高运动员的成绩会更好B.用弹簧秤称体重时,体重数值变得更大C.从相同高度由静止降落的棒球落地的时间会更短些D.用手投出的篮球,水平方向的分速度变化更慢9.在地球大气层外有很多太空垃圾绕地球做匀速圆周运动,每到太阳活动期,由于受太阳的影响,地球大气层的厚度开始增加,使得部分垃圾进入大气层.开始做靠近地球的近心运动,产生这一结果的初始原因就是( )A.由于太空垃圾受到地球引力减小而导致做近心运动B.由于太空垃圾受到地球引力增大而导致做近心运动C.由于太空垃圾受到空气阻力而导致做近心运动D.地球引力提供了太空垃圾做匀速圆周运动所需的向心力,故产生向心运动的结果与空气阻力无关10.“东方一号”人造地球卫星A与“华卫二号”人造卫星B,它们的质量之比为m A:m B=1:2,它们的轨道半径之比为2:1,则下面的结论中正确的就是( )A.它们受到地球的引力之比为F A:F B=1:1B.它们的运行速度大小之比为v A:v B=1:22:1C.它们的运行周期之比为T A:T B=23:1D.它们的运行角速度之比为ωA:ωB=211.西昌卫星发射中心的火箭发射架上,有一待发射的卫星,它随地球自转的线速度为v1、加速度为a1;发射升空后在近地轨道上做匀速圆周运动,线速度为v2、加速度为a2;实施变轨后,使其在同步卫星轨道上做匀速圆周运动,运动的线速度为v3、加速度为a3。
高一物理万有引力与航天试题答案及解析
高一物理万有引力与航天试题答案及解析1.把太阳系各行星的运动近似看做匀速圆周运动,则离太阳越远的行星A.周期越大B.线速度越小C.角速度越大D.加速度越小【答案】A【解析】设太阳的质量为M,行星的质量为m,轨道半径为r.行星绕太阳做圆周运动,万有引力提供向心力,则由牛顿第二定律得:G=m,G=mω2r,G=ma,解得:v=,ω=,a=,周期T==2π,可知,行星离太远越近,轨道半径r越小,则周期T越小,线速度、角速度、向心加速度越大,故BCD错误;故选:A.2.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示。
则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度小于在轨道1上的角速度C.卫星在轨道1上运动一周的时间小于于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度【答案】BCD【解析】根据公式,解得,即轨道半径越大,线速度越小,A错误;根据公式可得,即轨道半径越大,角速度越小,故B正确;根据开普勒第三定律可得轨道半径或半长轴越大,运动周期越大,故卫星在轨道1上运动一周的时间小于它在轨道2上运动一周的时间,故C正确;在轨道2和3上经过P点时卫星到地球的距离相等,根据,可得,半径相同,即加速度相等,D正确。
3.关于第一宇宙速度,下列说法正确的是A.它是人造地球卫星绕地球飞行的最小速度B.它是同步卫星的运行速度C.它是使卫星进入近地圆轨道的最大发射速度D.它是人造卫星在圆形轨道的最大运行速度【答案】D【解析】第一宇宙速度又称为环绕速度,是指在地球上发射的物体绕地球飞行作圆周运动所需的最小发射速度,为环绕地球运动的卫星的最大速度,即近地卫星的环绕速度,同步卫星轨道要比近地卫星的大,所以运行速度小于该速度,故D正确。
高中物理万有引力与航天题20套(带答案)含解析
高中物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.3.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) 02v R h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度02R v g R v h=='4.我国预计于2022年建成自己的空间站。
万有引力与航天(题答)
万有引力与航天1、假设太阳系中天体的密度不变,天体直径和天体之间距离都缩小到原来的一半,地球绕太阳公转近似为匀速圆周运动,则下列物理量变化正确的是( )A.地球的向心力变为缩小前的一半B.地球的向心力变为缩小前的1/16C.地球绕太阳公转周期与缩小前的相同D.地球绕太阳公转周期变为缩小前的一半答案:2、如图所示,从地面上A 点发射一枚远程弹道导弹,仅在引力作用下,沿ACB 椭圆轨道飞行击中地面目标B ,C 为轨道的远地点,距地面高度为h .已知地球半径为R ,地球质量为M ,引力常量为G .设距地面高度为h 的圆轨道上卫星运动周期为T 0.下列结论正确的是( )A .导弹在CB .导弹在C 点的加速度等于2()GMR h +C .地球球心为导弹椭圆轨道的一个焦点D .导弹从A 点运动到B 点的时间一定小于T 0答案:3、2009年被确定为国际天文年,以此纪念伽利略首次用望远镜观测星空400周年。
从伽利略的“窥天”创举,到20世纪发射太空望远镜——天文卫星,天文学发生了巨大飞跃。
2009年5月14日,欧洲航天局又发射了两颗天文卫星,它们飞往距离地球约160万公里的第二拉格朗日点(图中L 2)。
L 2点处在太阳与地球连线的外侧,在太阳和地球的引力共同作用下,卫星在该点能与地球一起绕太阳运动(视为圆周运动),且时刻保持背对太阳和地球的姿势,不受太阳的干扰而进行天文观测。
不考虑其它星球影响,下列关于工作在L 2点的天文卫星的说法中正确的是( )A .它离地球的距离比地球同步卫星离地球的距离小B .它绕太阳运行的角速度比地球运行的角速度大C .它绕太阳运行的线速度与地球运行的线速度大小相等D .它绕太阳运行的向心加速度比地球的向心加速度大 答案:4、宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G .关于四星系统,下列说法错误..的是 ( ) A .四颗星围绕正方形对角线的交点做匀速圆周运动 B .四颗星的轨道半径均为a/2 C .四颗星表面的重力加速度均为2mG R D .四颗星的周期均为2π答案:5、据美国媒体报道,美国和俄罗斯的两颗通信卫星11日在西伯利亚上空相撞。
人教版高中物理必修二第七章《万有引力与宇宙航行》测试卷(包含答案解析)
一、选择题1.2020年10月22日,俄“联盟MS-16”载人飞船已从国际空间站返回地球,在哈萨克斯坦着陆。
若载人飞船绕地球做圆周运动的周期为090min T =,地球半径为R 、表面的重力加速度为g ,则下列说法正确的是( )A .飞船返回地球时受到的万有引力随飞船到地心的距离反比例增加B .飞船在轨运行速度一定大于7.9km/sC .飞船离地高度大于地球同步卫星离地高度D .该飞船所在圆轨道处的重力加速度为4234016πR g T 2.甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道。
以下判断正确的是( )A .甲的角速度小于乙的角速度B .甲的加速度大于乙的加速度C .乙的速度大于第一宇宙速度D .甲在运行时能经过北京的正上方 3.设两个行星A 和B 各有一个卫星a 和b ,且两卫星的圆轨道均很贴近行星表面。
若两行星的质量比M A :M B =p ,两行星的半径比R A :R B =q ,那么这两个卫星的运行周期之比T a :T b 应为( )A .12q p ⋅ B .12q q p ⎛⎫⋅ ⎪⎝⎭ C .12p p q ⎛⎫⋅ ⎪⎝⎭ D .12()p q ⋅ 4.如图所示,甲、乙为两颗轨道在同一平面内的地球人造卫星,其中甲卫星的轨道为圆形,乙卫星的轨道为椭圆形,M 、N 分别为椭圆轨道的近地点和远地点,P 点为两轨道的一个交点,圆形轨道的直径与椭圆轨道的长轴相等。
以下说法正确的是( )A .卫星乙在M 点的线速度小于在N 点的线速度B .卫星甲在P 点的线速度小于卫星乙在N 点的线速度C .卫星甲的周期等于卫星乙的周期D .卫星甲在P 点的加速度大于卫星乙在P 点的加速度5.如图所示为一质量为M 的球形物体,质量分布均匀,半径为R ,在距球心2R 处有一质量为m 的质点。
若将球体挖去一个半径为2R 的小球,两球心和质点在同一直线上,且挖去的球的球心在原来球心和质点连线外,两球表面相切。
物理万有引力与航天题20套(带答案)及解析
物理万有引力与航天题20套(带答案)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.(1)求卫星B的运行周期.(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)32()2BRhTgRp+= (2)23()tgRR hω=-+【解析】【详解】(1)由万有引力定律和向心力公式得()()2224BMmG m R hTR hπ=++①,2MmG mgR=②联立①②解得:()322BR hTR gπ+=③(2)由题意得()02Btωωπ-=④,由③得()23BgRR hω=+⑤代入④得()23tR gR hω=-+2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡上另一点Q,斜面的倾角为α,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度;(2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;;(4)2【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:v ===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.3.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.4.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
高中物理《万有引力与航天》练习题(附答案解析)
高中物理《万有引力与航天》练习题(附答案解析)学校:___________姓名:___________班级:_________一、单选题1.如图所示,两球间的距离为r ,两球的质量分布均匀,质量大小分别为m 1、m 2,半径大小分别为r 1、r 2,则两球间的万有引力大小为( )A .122m m Gr B .2212221m m G r r r ++C .12212()m m G r r +D .12212()m m Gr r r ++2.2021年5月15日,我国首次火星探测任务天问一号探测器在火星乌托邦平原南部预选着陆区成功软着陆。
用h 表示着陆器与火星表面的距离,用F 表示它所受的火星引力大小,则在着陆器从火星上空向火星表面软着陆的过程中,能够描述F 随h 变化关系的大致图像是( )A .B .C .D .3.发现万有引力定律和测出引力常量的科学家分别是( ) A .牛顿、卡文迪许 B .开普勒、卡文迪许 C .开普勒、库仑D .牛顿、库仑4.经典力学有一定的局限性。
当物体以下列速度运动时,经典力学不再适用的是( ) A .32.910m/s -⨯ B .02.910m/s ⨯ C .42.910m/s ⨯ D .82.910m/s ⨯5.有a 、b 、c 、d 四颗地球卫星,a 还未发射,在地球赤道上随地球一起转动,b 在近地轨道做匀速圆周运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图所示。
关于这四颗卫星,下列说法正确的是( )A .a 的向心加速度等于重力加速度g B .c 在4 h 内转过的圆心角是6C .在相同时间内,这四颗卫星中b 转过的弧长最长D .d 做圆周运动的周期有可能是20小时6.2019年10月28日发生了天王星冲日现象,即太阳、地球、天王星处于同一直线,此时是观察天王星的最佳时间。
已知日地距离为0R ,天王星和地球的公转周期分别为T 和0T ,则天王星与太阳的距离为( )A 0B 0C 0D 07.如图所示,两颗人造卫星绕地球逆时针运动,卫星1、卫星2分别沿圆轨道、椭圆轨道运动,圆的半径与椭圆的半长轴相等,两轨道相交于A 、B 两点,某时刻两卫星与地球在同一直线上,如图所示,下列说法中正确的是( )A .两卫星在图示位置的速度v 1<v 2B .两卫星在A 处的加速度大小不相等C .两颗卫星可能在A 或B 点处相遇D .两卫星永远不可能相遇8.我们的银河系的恒星中大约四分之一是双星。
万有引力与航天小测(答案版)
万有引力与航天1. 飞船围绕太阳在近似圆周的轨道上运动,若其轨道半径是地球轨道半径的9倍,则宇宙飞船绕太阳运行的周期是( )A. 3年B. 9年C. 27年D. 81年2. 我国发射的神州五号载人宇宙飞船的周期约为90min ,如果把它绕地球的运动看作是匀速圆周运动,飞船的运动和人造地球同步卫星的运动相比,下列判断中正确的是A. 飞船的轨道半径大于同步卫星的轨道半径B. 飞船的运行速度小于同步卫星的运行速度C. 飞船运动的向心加速度大于同步卫星运动的向心加速度D. 飞船运动的角速度小于同步卫星运动的角速度3. 一星球半径和地球半径相同,它的表面重力加速度是地球表面重力加速度的2倍,则该星球质量是地球质量的(忽略地球、星球的自转)( )A. 2倍B. 4倍C. 8倍D. 16倍4. “嫦娥三号”从距月面高度为100km 的环月圆轨道Ⅰ上的P 点实施变轨,进入近月点为15km 的椭圆轨道Ⅱ,由近月点Q 成功落月,如图所示.关于“嫦娥三号”,下列说法正确的是( )A. 沿轨道Ⅱ运行的周期大于沿轨道Ⅰ运行的周期B. 沿轨道Ⅰ运动至P 点时,需制动减速才能进入轨道ⅡC. 沿轨道Ⅱ运行时,在P 点的加速度大于在Q 点的加速度D. 在轨道Ⅱ上由P 点运行到Q 点的过程中,万有引力对其做正功,它的动能增加,重力势能减小,机械能不变5.2016年9月15日在酒泉卫星发射中心发射成功的“天宫二号”,是继“天宫一号”后我国自主研发的第二个空间实验室,也是我国第一个真正意义的空间实验室。
“天宫二号”绕地球做匀速圆周运动,其运行周期为T 1,线速度为v ,离地高度为h ;地球半径为R ,自转周期为T 2,万有引力常量为G ,则下列说法正确的是( )A. “天宫二号”的线速度大于地球的第一宇宙速度B. “天宫二号”的向心加速度为C. 地球的质量为D. 静止于地球赤道上物体的重力加速度为v 2(R+ℎ)R 2−4π2R T 226. 假设火星和地球都是球体.火星的质量为M 火星,地球的质量为M 地球,两者质量之比为p ;火星的半径为R 火,地球的半径为R 地,两者半径之比为q .求它们表面处的重力加速度之比.7. 中国自行研制,具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A、远地点为B的椭圆轨道上,A点距地面的高度为h1,飞船飞行五周后进行变轨,进入预定圆轨道,如图所示,设飞船在预定圆轨道上飞行n圈所用时间为t,若已知地球表面重力加速度为g,地球半径为R,求:(1)地球的平均密度是多少;(2)飞船经过椭圆轨道近地点A时的加速度大小;(3)椭圆轨道远地点B距地面的高度.8. 宇航员站在某一星球表面上H高处的位置,沿水平方向以初速度v0水平抛出一个小球,小球落在星球表面,测得水平位移为x,已知该星球的半径为R,万有引力常量为G,求该星球:(1)表面的重力加速度g;(2)该星球的密度ρ;(3)该星球的第一宇宙速度v.1.C2.C3.A4.BD5.BD6. pq27.(1)3g4πGR(2)gR2(R+ℎ1)2(3)√gR2t24π2n23−R8.(1);(2);(3)。
万有引力与航天试题附答案
一、选择题1.关于日心说被人们接受的原因是( )A.太阳总是从东面升起,从西面落下B.若以地球为中心来研究的运动有很多无法解决的问题C.若以太阳为中心许多问题都可以解决,对行星的描述也变得简单D.地球是围绕太阳运转的2.有关开普勒关于行星运动的描述,下列说法中正确的是( )A.所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上B.所有的行星绕太阳运动的轨道都是圆,太阳处在圆心上C.所有的行星轨道的半长轴的三次方跟公转周期的二次方的比值都相等D.不同的行星绕太阳运动的椭圆轨道是不同的3.关于万有引力定律的适用范围,下列说法中正确的是( )A.只适用于天体,不适用于地面物体B.只适用于球形物体,不适用于其他形状的物体C.只适用于质点,不适用于实际物体D.适用于自然界中任意两个物体之间4.已知万有引力常量G,要计算地球的质量还需要知道某些数据,现在给出下列各组数据,可以计算出地球质量的是( )A.地球公转的周期及半径B.月球绕地球运行的周期和运行的半径C.人造卫星绕地球运行的周期和速率D.地球半径和同步卫星离地面的高度5.人造地球卫星由于受大气阻力,轨道半径逐渐变小,则线速度和周期变化情况是( )A.速度减小,周期增大,动能减小B.速度减小,周期减小,动能减小C.速度增大,周期增大,动能增大D.速度增大,周期减小,动能增大6.一个行星,其半径比地球的半径大2倍,质量是地球的25倍,则它表面的重力加速度是地球表面重力加速度的( )A.6倍B.4倍C.25/9倍D.12倍7.假如一个做圆周运动的人造卫星的轨道半径增大到原来的2倍仍做圆周运动,则( )A.根据公式v=ωr可知,卫星运动的线速度将增加到原来的2倍B.根据公式F=mv2/r可知,卫星所需向心力减小到原来的1/2C.根据公式F=GMm/r2可知,地球提供的向心力将减小到原来的1/4D.根据上述B和C/28.假设在质量与地球质量相同,半径为地球半径两倍的天体上进行运动比赛,那么与在地球上的比赛成绩相比,下列说法正确的是()A.跳高运动员的成绩会更好B.用弹簧秤称体重时,体重数值变得更大C.从相同高度由静止降落的棒球落地的时间会更短些D.用手投出的篮球,水平方向的分速度变化更慢9.在地球大气层外有很多太空垃圾绕地球做匀速圆周运动,每到太阳活动期,由于受太阳的影响,地球大气层的厚度开始增加,使得部分垃圾进入大气层.开始做靠近地球的近心运动,产生这一结果的初始原因是()A.由于太空垃圾受到地球引力减小而导致做近心运动B.由于太空垃圾受到地球引力增大而导致做近心运动C.由于太空垃圾受到空气阻力而导致做近心运动D.地球引力提供了太空垃圾做匀速圆周运动所需的向心力,故产生向心运动的结果与空气阻力无关10.“东方一号”人造地球卫星A和“华卫二号”人造卫星B,它们的质量之比为m A:m B=1:2,它们的轨道半径之比为2:1,则下面的结论中正确的是()A.它们受到地球的引力之比为F A:F B=1:1B.它们的运行速度大小之比为v A:v B=1:22:1C.它们的运行周期之比为T A:T B=23:1D.它们的运行角速度之比为ωA:ωB=211.西昌卫星发射中心的火箭发射架上,有一待发射的卫星,它随地球自转的线速度为v1、加速度为a1;发射升空后在近地轨道上做匀速圆周运动,线速度为v2、加速度为a2;实施变轨后,使其在同步卫星轨道上做匀速圆周运动,运动的线速度为v3、加速度为a3。
高中物理万有引力与航天(解析版)
A.核心舱进入轨道后所受地球的万有引力大小约为它在地面时的 倍
【答案】BC
14.2016年8月16日1时40分,我国在酒泉卫星发射中心成功将世界首颗量子卫星“墨子号”发射升空,在距离地面h高度的轨道上运行。设火箭在点火后时间t内竖直向上匀加速飞行,速度增大到v,起飞质量为m,忽略时间t内火箭的质量变化,不考虑空气阻力,重力加速度为g,引力常量为G,地球半径为R,下列说法正确的是()。
A.M与N的密度相等
B.Q的质量是P的3倍
C.Q下落过程中的最大动能是P的4倍
D.Q下落过程中弹簧的最大压缩量是P的4倍
【答案】AC
【解析】A、由a–x图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有: ,变形式为: ,该图象的斜率为 ,纵轴截距为重力加速度 。根据图象的纵轴截距可知,两星球表面的重力加速度之比为: ;又因为在某星球表面上的物体,所受重力和万有引力相等,即: ,即该星球的质量 。又因为: ,联立得 。故两星球的密度之比为: ,故A正确;B、当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡, ,即: ;结合a–x图象可知,当物体P和物体Q分别处于平衡位置时,弹簧的压缩量之比为: ,故物体P和物体Q的质量之比为: ,故B错误;C、物体P和物体Q分别处于各自的平衡位置(a=0)时,它们的动能最大;根据 ,结合a–x图象面积的物理意义可知:物体P的最大速度满足 ,物体Q的最大速度满足: ,则两物体的最大动能之比: ,C正确;D、物体P和物体Q分别在弹簧上做简谐运动,由平衡位置(a=0)可知,物体P和Q振动的振幅A分别为 和 ,即物体P所在弹簧最大压缩量为2 ,物体Q所在弹簧最大压缩量为4 ,则Q下落过程中,弹簧最大压缩量时P物体最大压缩量的2倍,D错误;故本题选AC。
高中物理万有引力与航天练习题及答案及解析
高中物理万有引力与航天练习题及答案及解析1. 有两个质量分别为$m_1$ 和$m_2$ 的物体,它们的质心距离为$r$,求它们之间的引力大小。
答案:$F = G \frac{m_1 m_2}{r^2}$。
2. 一个质量为$m$ 的物体在距离地球表面高度为$h$ 的地方,求它所受的重力大小。
答案:$F = \frac{G M m}{(R+h)^2}$,其中$M$ 是地球的质量,$R$ 是地球的半径。
3. 地球的质量为$M$,半径为$R$,一个质量为$m$ 的物体在距离地心距离为$r$ 的地方,求它所受的重力大小。
答案:$F = \frac{G M m}{r^2}$。
4. 两个质量分别为$m_1$ 和$m_2$ 的物体,它们的距离为$r$,求它们之间的引力大小,如果它们的距离变为原来的$2r$,它们之间的引力会发生什么变化?答案:$F_1 = G \frac{m_1 m_2}{r^2}$,$F_2 = G \frac{m_1 m_2}{(2r)^2} = \frac{1}{4} F_1$。
引力大小变为原来的$\frac{1}{4}$。
5. 一个质量为$m$ 的物体在距离地球表面高度为$h$ 的地方,它的速度为$v$,求它的动能和势能。
答案:动能$K = \frac{1}{2} m v^2$,势能$U = -\frac{G M m}{R+h}$。
6. 一个质量为$m$ 的物体以速度$v$ 从地球表面垂直向上发射,求它的最大高度和离开地球的速度。
答案:最大高度$h = \frac{R}{1+\frac{v^2}{2gR}}$,离开地球的速度$v' = v \sqrt{\frac{2R}{R+h}}$,其中$g$ 是重力加速度,$R$ 是地球的半径。
7. 如果地球的质量和半径各增加一倍,一个质量为$m$ 的物体在距离地球表面高度为$h$ 的地方,它所受的重力会发生什么变化?答案:重力大小不变。
8. 如果地球的质量和半径各增加一倍,一个质量为$m$ 的物体在距离地心距离为$r$ 的地方,它所受的重力会发生什么变化?答案:重力大小变为原来的$\frac{1}{4}$。
万有引力与航天习题(含答案)
1-4-1 万有引力与航天43个必须掌握的习题模型1.若人造卫星绕地球做匀速圆周运动,则下列说法中正确的是( )A .卫星的轨道半径越大,它的运行速度越大B .卫星的轨道半径越大,它的运行速度越小C .卫星的质量一定时,轨道半径越大,它需要的向心力越大D .卫星的质量一定时,轨道半径越大,它需要的向心力越小2.甲、乙两颗人造地球卫星,质量相等,它们的轨道都是圆,若甲的运动周期比乙小,则( )A .甲距地面的高度比乙小B .甲的加速度一定比乙小C .甲的加速度一定比乙大D .甲的速度一定比乙大 3根据以上信息,关于地球及地球的两个邻居金星和火星(行星的运动可看作圆周运动),下列判断正 确的是( )A .金星运行的线速度最小,火星运行的线速度最大B .金星公转的向心加速度大于地球公转的向心加速度C .金星的公转周期一定比地球的公转周期小D .金星的主要大气成分是由CO 2组成的,所以可以判断气压一定很大4.如图1-4-1所示,在同一轨道平面上,有绕地球做匀速圆周运动的卫星A 、B 、C 某时刻在同一条直线上,则( )A.经过一段时间,它们将同时回到原位置B.卫星C 受到的向心力最小C.卫星B 的周期比C 小D.卫星A 的角速度最大5.某天体半径是地球半径的K 倍,密度是地球的P 倍,则该天体表面的重力加速度是地球表面重力加速度的( )A .2P K 倍B .PK倍 C .KP 倍 D .K P 2倍6.A 、B 两颗行星,质量之比p M M BA =,半径之比q R RB A =,则两行星表面的重力加速度之比为( )A. qp B. 2pq C. 2qpD.pq7.人造卫星离地球表面距离等于地球半径R ,卫星以速度v 沿圆轨道运动,设地面上的重力加速度为g ,则( )A. gR v 4=B. gR v 2=C. gR v =D. 2gR v =8.已知地球半径为R ,地面重力加速度为g . 假设地球的自转加快,则赤道上的物体就可能克服地球引力而飘浮起来,则此时地球的自转周期为( )A.g R B. g R π2 C. Rgπ2 D. gRπ21 9.组成星球的物质是靠引力吸引在一起的,这样的星球有一个最大的自转速率.如果超过了该速率,星球的万有引力将不足以维持其赤道附近的物体做圆周运动.由此能得到半径为R 、密度为ρ、质量为M 且均匀分布的星球的最小自转周期T .下列表达式中正确的是( )A .T =2πGM R /3B .T =2πGM R /33C .T =ρπG /D .T =ρπG /310.若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为T ,引力常数为G ,那么该行星的平均密度为( )A. π32GTB. 23GT πC. π42GT D. 24GT π 11.地球公转的轨道半径是R 1,周期是T 1,月球绕地球运转的轨道半径是R 2,周期是T 2,则太阳质量与地球质量之比是 ( )A.22322131T R T R B.21322231T R T R C.21222221T R T R D.32223121T R T R12.地球表面重力加速度g 地、地球的半径R 地,地球的质量M 地,某飞船飞到火星上测得火星表面的重力加速度g 火、火星的半径R 火、由此可得火星的质量为( )A.地地地火火M R g R g 22B.地火火地地M R g R g 22C.地地地火火M R g R g 22 D.地地地火火M R g R g13.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k ,则地球与此天体的质量之比为 ( )A. 1B. kC. k 2D. 1/ k14.某星球的质量约为地球的9倍,半径约为地球的一半,若从地球上高h 处平抛一物体,射程为60m ,则在该星球上,从同样高度以同样的初速度平抛同一物体,射程应为 A .10m B .15m C .90m D .360m 15以下说法正确的是( )A 、第一宇宙速度是物体在地面附近绕地球做匀速圆周运的速度B 、第一宇宙速度是使物体成为一颗人造卫星理论上最小发射速度C 、在地面附近发射卫星,如果发射速度大于7.9km/s ,而小于11.2km/s ,它绕地球运行的轨迹就是椭圆D 、紫金山天文台发现的“吴健雄星”直径为32km ,密度与地球相同,则该小行星的第一宇宙速度大小约为20m/s16土星外层上有一个环。
高中物理必修二第六章万有引力与航天测试(附答案)
2019年人教版新课标高中物理单元专题卷万有引力与航天第Ⅰ卷(选择题,共48分)一、选择题(本题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。
全部选对的得4分,选对但不全的得2分,有选错的得0分)1.人类对天体运动的认识,经历了一个漫长的发展过程,以下说法正确的是( ) A .亚里士多德提出了日心说,迈出了人类认识宇宙历程中最艰难而重要的一步 B .第谷通过观察提出行星绕太阳运动的轨道是椭圆C .牛顿在前人研究的基础上发现和总结出万有引力定律,并测出了万有引力常量D .海王星的发现验证了万有引力定律的正确性,显示了理论对实践的巨大指导作用 2.下列说法不正确的是( )A .绝对时空观认为空间和时间是独立于物体及其运动而存在的B .相对论时空观认为物体的长度会因物体的速度不同而不同C .牛顿力学只适用于宏观物体、低速运动问题,不适用于高速运动的问题D .当物体的运动速度远小于光速时,相对论和牛顿力学的结论仍有很大的区别3.长期以来“卡戎星(Charon )”被认为是冥王星唯一的卫星,它的公转轨道半径119600 km r =,公转周期1 6.39T =天。
2006年3月,天文学家又发现冥王星的两颗小卫星,其中一颗的公转轨道半径248000 km r =,则它的公转周期2T 最接近于( ) A .15天 B .25天 C .35天D .45天4.如图为“嫦娥一号”卫星撞月的模拟图,卫星从控制点开始沿撞月轨道在撞击点成功撞月。
假设卫星绕月球做圆周运动的轨道半径为R ,周期为T ,引力常量为G ,根据以上信息,可以求出( )A .月球的质量B .地球的质量C .“嫦娥一号”卫星的质量D .月球对“嫦娥一号”卫星的引力5.星球上的物体脱离星球引力所需要的最小速度称为第二宇宙速度。
某星球的第二宇宙速度2v 与第一宇宙速度1v 的关系是212v v =,已知该星球的半径为r ,它表面的重力加速度为地球重力加速度g 的16。
2023《 万有引力与航天》单元测试题(解析版)
万有引力与航天测试题一、单选题(每小题只有一个正确答案)1.物理学发展历史中,在前人研究基础上经过多年的尝试性计算,首先发表行星运动的三个定律的科学家是()A.哥白尼B.第谷C.伽利略D.开普勒2.通过一个加速装置对电子加一很大的恒力,使电子从静止开始加速,则对这个加速过程,下列描述正确的是()A.根据牛顿第二定律,电子将不断做匀加速直线运动B.电子先做匀加速直线运动,后以光速做匀速直线运动C.电子开始近似于匀加速直线运动,后来质量增大,牛顿运动定律不再适用D.电子是微观粒子,整个加速过程根本就不能用牛顿运动定律解释3.卫星绕某一行星的运动轨道可近似看成是圆轨道,观察发现每经过时间t,卫星运动所通过的弧长为L,该弧长对应的圆心角为θ弧度,如图所示.已知万有引力常量为G,由此可计算出太阳的质量为()A.M=B.M=C.D.4.宇宙中有这样一种三星系统,系统由两个质量为m的小星体和一个质量为M的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r.关于该三星系统的说法中正确的是( )①在稳定运行情况下,大星体提供两小星体做圆周运动的向心力②在稳定运行情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧③小星体运行的周期为T=④大星体运行的周期为T=A.①③ B.②③ C.①④ D.②④5.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k,则地球与此天体的质量之比为()A. 1B.k2C.k D.6.我国绕月探测工程的预先研究和工程实施已取得重要进展.设地球、月球的质量分别为m1、m2,半径分别为R1、R2,人造地球卫星的第一宇宙速度为v,对应的环绕周期为T,则环绕月球表面附近圆轨道飞行的探测器的速度和周期分别为()A.v,T B.v,TC.v,T D.v,T7.土星周围有美丽壮观的“光环”,组成环的颗粒是大小不等、线度从1 μm到10 m的岩石、尘埃,类似于卫星,它们与土星中心的距离从7.3×104km延伸到1.4×105km.已知环的外缘颗粒绕土星做圆周运动的周期约为14 h,引力常量为6.67×10-11N·m2/kg2,则土星的质量约为(估算时不考虑环中颗粒间的相互作用)()A. 9.0×1016kg B. 6.4×1017kg C. 9.0×1025kg D. 6.4×1026kg8.一艘宇宙飞船绕一个不知名的行星表面飞行,要测定该行星的密度,仅仅需要()A.测定飞船的运行周期B.测定飞船的环绕半径C.测定行星的体积D.测定飞船的运行速度9.甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是()A.乙的周期大于甲的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方10.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知,冥王星绕O点运动的().A.轨道半径约为卡戎的B.角速度大小约为卡戎的C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍11.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.火星与木星公转周期相等B.火星和木星绕太阳运行速度的大小始终不变C.太阳位于木星运行椭圆轨道的某焦点上D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积12.某星球的半径为R,在其表面上方高度为aR的位置,以初速度v0水平抛出一个金属小球,水平射程为bR,a,b均为数值极小的常数,则这个星球的第一宇宙速度为()A.v0B.v0C.v0D.v013.关于我国发射的“亚洲一号”地球同步通讯卫星的说法,正确的是()A.若其质量加倍,则轨道半径也要加倍B.它在北京上空运行,故可用于我国的电视广播C.它以第一宇宙速度运行D.它运行的角速度与地球自转角速度相同14.人造卫星环绕地球运行的速率v=,其中g为地面处的重力加速度,R为地球半径,r为卫星离地球中心的距离.下列说法正确的是()A.从公式可见,环绕速度与轨道半径成反比B.从公式可见,环绕速度与轨道半径的平方根成反比C.从公式可见,把人造卫星发射到越远的地方越容易D.以上答案都不对15.如图所示,A为地球赤道上的物体,B为地球同步卫星,C为地球表面上北纬60°的物体.已知A、B的质量相同.则下列关于A、B和C三个物体的说法中,正确的是()A.A物体受到的万有引力小于B物体受到的万有引力B.B物体的向心加速度小于A物体的向心加速度C.A、B两物体的轨道半径的三次方与周期的二次方的比值相同D.A和B线速度的比值比C和B线速度的比值大,都小于1二、多选题(每小题至少有两个正确答案)16.(多选)2013年12月2日,我国探月卫星“嫦娥三号”在西昌卫星发射中心成功发射升空,飞行轨道示意图如图所示.“嫦娥三号”从地面发射后奔向月球,先在轨道∶上运行,在P点从圆形轨道∶进入椭圆轨道∶,Q为轨道∶上的近月点,则“嫦娥三号”在轨道∶上()“嫦娥三号”飞行轨道示意图A.运行的周期小于在轨道∶上运行的周期B.从P到Q的过程中速率不断增大C.经过P的速度小于在轨道∶上经过P的速度D.经过P的加速度小于在轨道∶上经过P的加速度17.(多选)假如地球自转角速度增大,关于物体所受的重力,下列说法正确的是()A.放在赤道地面上的物体的万有引力不变B.放在两极地面上的物体的重力不变C.放在赤道地面上的物体的重力减小D.放在两极地面上的物体的重力增加18.(多选)“嫦娥一号”探月卫星发动机关闭,轨道控制结束,卫星进入地月转移轨道,图中MN之间的一段曲线表示转移轨道的一部分,P是轨道上的一点,直线AB过P点且和两边轨道相切,下列说法中正确的是()A.卫星在此段轨道上,动能不变B.卫星经过P点时动能最小C.卫星经过P点时速度方向由P指向BD.卫星经过P点时加速度为019.2016年中国将发射“天宫二号”空间实验室,并发射“神舟十一号”载人飞船和“天舟一号”货运飞船,与“天宫二号”交会对接.“天宫二号”预计由“长征二号F”改进型无人运载火箭或“长征七号”运载火箭从酒泉卫星发射中心发射升空,由长征运载火箭将飞船送入近地点为A、远地点为B的椭圆轨道上,B点距离地面的高度为h,地球的中心位于椭圆的一个焦点上.“天宫二号”飞行几周后进行变轨进人预定圆轨道,如图所示.已知“天宫二号”在预定圆轨道上飞行n圈所用时间为t,引力常量为G,地球半径为R.则下列说法正确的是()A. “天宫二号”从B点沿椭圆轨道向A点运行的过程中,引力为动力B. “天宫二号”在椭圆轨道的B点的向心加速度大于在预定圆轨道上B点的向心加速度C. “天宫二号”在椭圆轨道的B点的速度大于在预定圆轨道上B点的速度D.根据题目所给信息,可以计算出地球质量20.(多选)在中国航天骄人的业绩中有这些记载:“天宫一号”在离地面343 km的圆形轨道上飞行;“嫦娥一号”在距月球表面高度为200 km的圆形轨道上飞行;“北斗”卫星导航系统由“同步卫星”(地球静止轨道卫星,在赤道平面,距赤道的高度约为 36 000千米)和“倾斜同步卫星”(周期与地球自转周期相等,但不定点于某地上空)等组成.则以下分析正确的是()A.设“天宫一号”绕地球运动的周期为T,用G表示引力常量,则用表达式求得的地球平均密度比真实值要小B. “天宫一号”的飞行速度比“同步卫星”的飞行速度要小C. “同步卫星”和“倾斜同步卫星”同周期、同轨道半径,但两者的轨道平面不在同一平面内D. “嫦娥一号”与地球的距离比“同步卫星”与地球的距离小三、填空题21.已知地球半径为R,质量为M,自转周期为T.一个质量为m的物体放在赤道处的海平面上,则物体受到的万有引力F=______,重力G=______.22.对太阳系的行星,由公式=,F=,=k可以得到F=________,这个公式表明太阳对不同行星的引力,与________成正比,与________成反比.23.地球赤道上的物体A,近地卫星B(轨道半径等于地球半径),同步卫星C,若用TA、TB、TC;v A、v B、v C;分别表示三者周期,线速度,则满足________,________.24.据报道,美国计划2021年开始每年送15 000名游客上太空旅游.如图所示,当航天器围绕地球做椭圆运行时,近地点A的速率________(填“大于”“小于”或“等于”)远地点B的速率.25.如图所示是某行星围绕太阳运行的示意图,则行星在A点的速率________在B点的速率.四、计算题26.假设几年后,你作为航天员登上了月球表面,如果你已知月球半径R,那么你用一个弹簧测力计和一个已知质量的砝码m,能否测出月球的质量M?怎样测定?27.宇宙中两个相距较近的天体称为“双星”,它们以两者连线上的某一点为圆心做匀速圆周运动,但两者不会因万有引力的作用而吸引到一起.设两者的质量分别为m1和m2,两者相距为L.求:(1)双星的轨道半径之比;(2)双星的线速度之比;(3)双星的角速度.答案解析1.【答案】D【解析】哥白尼提出了日心说,第谷对行星进行了大量的观察和记录,开普勒在第谷的观察记录的基础上提出了行星运动的三个定律,选项D正确,A、B、C错误.2.【答案】C【解析】电子在加速装置中由静止开始加速,开始阶段速度较低,远低于光速,此时牛顿运动定律基本适用,可以认为在它被加速的最初阶段,它做匀加速直线运动.随着电子的速度越来越大,接近光速时,相对论效应越来越大,质量加大,它不再做匀加速直线运动,牛顿运动定律不再适用.3.【答案】B【解析】线速度为v=∶角速度为ω=∶根据线速度和角速度的关系公式,有v=ωr∶卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律,有G=mvω∶联立解得M=,故选项B正确.4.【答案】B【解析】三星应该在同一直线上,并且两小星体在大星体相对的两侧,只有这样才能使某一小星体受到大星体和另一小星体的引力的合力提供向心力.由G+G=mr2,解得小星体的周期T=,所以选项B正确.5.【答案】C【解析】在地球上:h=某天体上;h′=因为=k所以=k根据G=mg,G=mg′可知=又因为=k联立得:=k6.【答案】A【解析】由向心力公式=,=,两式联立,得v2=v;由T2=,T=,两式联立,得T2=T,故A项正确.7.【答案】D【解析】环的外缘颗粒绕土星做圆周运动,根据万有引力提供向心力,列出等式:G=mR()2M=,其中R为轨道半径,大小为1.4×105km,T为周期,约为14 h.代入数据得:M≈6.4×1026kg.8.【答案】A【解析】取飞船为研究对象,由G=mR及M=πR3ρ,知ρ=,故选A.9.【答案】C【解析】人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、地球质量为M,有:G=m=mω2r=m()2r=ma解得:v=∶T=2π∶a=∶由∶∶∶式可以知道,人造卫星的轨道半径越大,线速度越小、周期越大、加速度越小,由于甲卫星的高度大,轨道半径大,故甲卫星的线速度小、周期大,加速度小;第一宇宙速度是近地圆轨道的环绕速度,也是圆轨道运行的最大速度;则C正确;甲只能在赤道上空,则D错误,故选C.10.【答案】A【解析】设冥王星和卡戎的质量分别为m1和m2,轨道半径分别为r1和r2,它们之间的距离为L.冥王星和卡戎绕它们连线上的某点做匀速圆周运动,转动周期和角速度相同,选项B错误;对于冥王星有=m1ω2r1,对于卡戎有=m2ω2r2,可知m1ω2r1=m2ω2r2,故==,选项A正确;又线速度v=ωr,故线速度大小之比==,选项C错误;因两星的向心力均由它们之间的万有引力提供,故大小相等,选项D错误.11.【答案】C【解析】根据开普勒第三定律,=k,k为常量,火星与木星公转的半径不等,所以火星与木星公转周期不相等,故A错误;开普勒第二定律:对每一个行星而言,太阳与行星的连线在相同时间内扫过的面积相等.行星在此椭圆轨道上运动的速度大小不断变化,故B错误;相同时间内,太阳行星的连线在相同时间内扫过的面积相等是对同一个行星而言,故D错误;开普勒第一定律的内容为所有行星分别沿不同大小的椭圆轨道绕太阳运动,太阳处于椭圆的一个焦点上,故C正确.12.【答案】A【解析】设该星球表面重力加速度为g,小球落地时间为t,抛出的金属小球做平抛运动,根据平抛运动规律得aR=gt2,bR=v0t,联立以上两式解得g=,第一宇宙速度即为该星球地表卫星线速度,根据地表卫星重力充当向心力得mg=m,所以第一宇宙速度v===v0,故选项A正确.13.【答案】D【解析】由G=m得r=,可知轨道半径与卫星质量无关,A错.同步卫星的轨道平面必须与赤道平面重合,即在赤道上空运行,不能在北京上空运行,B错.第一宇宙速度是卫星在最低圆轨道上运行的速度,而同步卫星在高轨道上运行,其运行速度小于第一宇宙速度,C错.所谓“同步”就是卫星保持与地面赤道上某一点相对静止,所以同步卫星的角速度与地球自转角速度相同,D对.14.【答案】B【解析】由于g是地球表面处的重力加速度,R是地球半径,都是定值,根据v=可得环绕速度与轨道半径的平方根成反比,B正确,A、D错误;虽然r越大,v越小,但把卫星发射到越远的地方火箭会有更多的动能转化为重力势能,需要的发射速度就越大,C错误.15.【答案】D【解析】根据万有引力定律F=G,且A、B的质量相同,可知,间距越大的,引力越小,因此A物体受到的万有引力大于B物体受到的万有引力,故A错误;由an=ω2r,因A与B的角速度相同,当半径越大时,则向心加速度越大,故B错误;A在地球表面,不是环绕地球做匀速圆周运动,因此不满足开普勒第三定律,故C错误;根据v=ωr,可知,B点线速度最大,而C的线速度最小,因此A与B的线速度之比,C与B的线速度之比,均小于1,再根据同步卫星轨道半径约是地球半径的5.7倍,则=,C为地球表面上北纬60°的物体,那C轨道半径为地球半径的一半,则=,因此=,故D正确.16.【答案】ABC【解析】根据开普勒第三定律=k,可判断嫦娥三号卫星在轨道∶上的运行周期小于在轨道∶上的运行周期,A正确;因为P点是远地点,Q点是近地点,故从P点到Q点的过程中速率不断增大,B正确;根据卫星变轨特点可知,卫星在P点从圆形轨道∶进入椭圆轨道∶要减速,C正确;根据牛顿第二定律和万有引力定律可判断在P点,卫星的加速度是相同的,D错误.17.【答案】ABC【解析】地球自转角速度增大,物体受到的万有引力不变,选项A正确;在两极,物体受到的万有引力等于其重力,则其重力不变,选项B正确,D错误;而对放在赤道地面上的物体,F万=G重+mω2R,由于ω增大,则G重减小,选项C正确.18.【答案】BCD19.【答案】AD【解析】“天宫二号”从B点沿椭圆轨道向A点运行的过程中,速度是变大的,故受到的地球引力为动力,所以A正确;在B点“天宫二号”产生的加速度都是由万有引力产生的,因为同在B点万有引力大小相等,故不管在哪个轨道上运动,在B点时万有引力产生的加速度大小相等,故B错误;“天宫二号”在椭圆轨道的B点的加速后做离心运动才能进入预定圆轨道,故“天宫二号”在椭圆轨道的B点的速度小于在预定圆轨道的B点的速度,故C错误;“天宫二号”在预定圆轨道上飞行n 圈所用时间为t,故周期为T=,根据万有引力提供向心力G=m,得地球的质量M==,故D正确.20.【答案】AC【解析】设地球轨道半径为R,“天宫一号”的轨道半径为r,运行周期为T,地球密度为ρ,则有=m()2r,M=ρ·,解得ρ=,A正确;轨道半径小,运动速度大,B错误;“同步卫星”和“倾斜同步卫星”周期相同,则轨道半径相同,轨道平面不同,C正确;“嫦娥一号”绕月球运动,与地球距离大于同步卫星与地球距离,D错误.21.【答案】-【解析】根据万有引力定律的计算公式,得F万=.物体的重力等于万有引力减去向心力,即mg=F万-F向=-.22.【答案】行星的质量行星和太阳间距离的二次方【解析】=k与F=得F=,再与=k联立消去T可以得到F=,这个公式表明太阳对不同行星的引力与行星的质量成正比,与行星和太阳间距离的二次方成反比.23.【答案】TA=TC>TB v B>v C>v A【解析】卫星A为同步卫星,周期与C物体周期相等,根据卫星绕地球做圆周运动,万有引力提供向心力得周期T=2π,所以TA=TC>TB;AC比较,角速度相等,由v=ωr,可知v A<v C;BC比较,同为卫星,由人造卫星的速度公式v=,可知v B>v C,故TA=TC>TB,v B>v C>v A.24.【答案】大于【解析】25.【答案】大于【解析】26.【答案】将砝码挂在弹簧测力计上,测出弹簧测力计的读数F,由F=mg月,得g月=①在月球表面,砝码的重力应等于月球的引力,mg月=G,则M=,②将①代入②,解得M==.故能测出月球的质量,用弹簧测力计测出砝码的重力F,依据表达式M=求出月球质量.【解析】将砝码挂在弹簧测力计上,测出弹簧测力计的读数F,由F=mg月,得g月=①在月球表面,砝码的重力应等于月球的引力,mg月=G,则M=,②将①代入②,解得M==.故能测出月球的质量,用弹簧测力计测出砝码的重力F,依据表达式M=求出月球质量.27.【答案】(1)(2)(3)【解析】这两颗星必须各自以一定的速度绕某一中心转动才不至于因万有引力而被吸引在一起,从而保持两星间距离L不变,且两者做匀速圆周运动的角速度ω必须相同.如图所示,两者轨迹圆的圆心为O,圆半径分别为R1和R2.由万有引力提供向心力,有G=m1ω2R1①G=m2ω2R2②(1)由,得=.(2)因为v=ωR,所以==.(3)由几何关系知R1+R2=L③联立①②③式解得ω=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《万有引力与航天》单元测试一、选择题1.星球上的物体脱离星球引力所需的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系就是v 2=2v 1、已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的16,不计其她星球的影响,则该星球的第二宇宙速度为( ) A 、gr B 、 16gr C 、13gr D 、13gr解析:由题意v 1=g ′r = 16gr ,v 2=2v 1= 13gr ,所以C 项正确.答案:C2.太阳能电池就是将太阳能通过特殊的半导体材料转化为电能,在能量的利用中,它有许多优点,但也存在着一些问题,如受到季节、昼夜及阴晴等气象条件的限制.为了能尽量地解决这些问题,可设想把太阳能电池送到太空中并通过一定的方式让地面上的固定接收站接收电能,太阳能电池应该置于( )A.地球的同步卫星轨道B.地球大气层上的任一处C.地球与月亮的引力平衡点D.地球与太阳的引力平衡点解析:太阳能电池必须与地面固定接收站相对静止,即与地球的自转同步.答案:A3.据媒体报道,“嫦娥”一号卫星绕月工作轨道为圆轨道,轨道距月球表面的高度为200 km,运行周期为127 min 、若要求出月球的质量,除上述信息外,只需要再知道( )A.引力常量与“嫦娥”一号的质量B.引力常量与月球对“嫦娥”一号的吸引力C.引力常量与地球表面的重力加速度D.引力常量与月球表面的重力加速度解析:对“嫦娥”一号有G Mm(R +h )2=m 4π2T 2(R +h ),月球的质量为M =4π2GT 2(R +h )3,在月球表面g =G MR2,故选项D 正确.答案:D4.地球同步卫星轨道半径约为地球半径的6、6倍,设月球密度与地球相同,则绕月心在月球表面附近做圆周运动的探月探测器的运行周期约为( )A.1 hB.1、4 hC.6、6 hD.24 h解析:因月球密度与地球的相同,根据ρ=m4πR 3/3,可知m 地m 月=R 3地R 3月,又Gm 地m 卫(6、6R 地)2=m 卫4π2T 2卫×6、6R 地,Gm 月m 探R 2月=m 探4π2T 2探R 月,已知T 卫=24 h,联立解得T 探≈1、4 h 、答案:B 5、图1在同一轨道平面上绕地球做匀速圆周运动的卫星A 、B 、C ,某时刻恰好在同一过地心的直线上,如图1所示,当卫星B 经过一个周期时( )A.各卫星角速度相等,因而三星仍在一直线上B.A 超前于B ,C 落后于BC.A 超前于B ,C 超前于BD.A 、C 都落后于B解析:由G Mmr2=mrω2,可知,ω=GMr 3可见选项A 错误;由T =2π/ω,即T ∝r 3可知,选项B 正确,选项C 、D 错误.答案:B6.由于地球的自转,使得静止在地面的物体绕地轴做匀速圆周运动.对于这些做匀速圆周运动的物体,以下说法正确的就是( )A.向心力都指向地心B.速度等于第一宇宙速度C.加速度等于重力加速度D.周期与地球自转的周期相等 解析:图6本题重点考查了地球上的物体做匀速圆周运动的知识.由于地球上的物体随着地球的自转做圆周运动,则其周期与地球的自转周期相同,D正确,不同纬度处的物体的轨道平面就是不相同的,如图6,m处的物体的向心力指向O′点,选项A错误;由于第一宇宙速度就是围绕地球运行时,轨道半径最小时的速度,即在地表处围绕地球运行的卫星的速度,则选项B错误;由图1可知,向心力只就是万有引力的一个分量,另一个分量就是重力,因此加速度不等于重力加速度,选项C错误.答案:D7、图3“嫦娥”一号探月卫星沿地月转移轨道到达月球,在距月球表面200 km的P点进行第一次“刹车制动”后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,如图3所示.之后,卫星在P点经过几次“刹车制动”,最终在距月球表面200 km的圆形轨道Ⅲ上绕月球做匀速圆周运动.用T1、T2、T3分别表示卫星在椭圆轨道Ⅰ、Ⅱ与圆形轨道Ⅲ的周期,用a1、a2、a3分别表示卫星沿三个轨道运动到P点的加速度,则下面说法正确的就是()A.T1>T2>T3B.T1<T2<T3C.a1>a2>a3D.a1<a2<a3解析:卫星沿椭圆轨道运动时,周期的平方与半长轴的立方成正比,故T1>T2>T3,A项正确,B项错误.不管沿哪一轨道运动到P点,卫星所受月球的引力都相等,由牛顿第二定律得a1=a2=a3,故CD项均错误.答案:A8未发射的卫星放在地球赤道上随地球自转时的线速度为v1、加速度为a1;发射升空后在近地轨道上做匀速圆周运动时的线速度为v2、加速度为a2;实施变轨后,使其在同步卫星轨道上做匀速圆周运动,运动的线速度为v3、加速度为a3。
则v1、v2、v3与a1、a2、a3的大小关系就是( )A.v2>v3>v l a2>a3>a lB.v3>v2>v1 a2>a3>a lC.v2>v3=v1 a2=a1>a3D.v2>v3>v l a3>a2>a1答案 A9.在“神舟”七号载人飞船顺利进入环绕轨道后,人们注意到这样一个电视画面,翟志刚放开了手中的飞行手册,绿色的封面与白色的书页在失重的太空中飘浮起来.假设这时宇航员手中有一铅球,下面说法正确的就是()A.宇航员可以毫不费力地拿着铅球B.快速运动的铅球撞到宇航员,宇航员可以毫不费力将其抓住C.快速运动的铅球撞到宇航员,宇航员仍然能感受到很大的撞击力D.投出铅球,宇航员可以观察到铅球做匀速直线运动解析:飞船中的铅球也处于完全失重状态,故宇航员可以毫不费力地拿着铅球,A项正确;宇航员接住快速运动的铅球过程中,铅球的速度发生了较大改变,故根据牛顿第二定律可知宇航员对铅球有较大的力的作用,故B项错,C项正确;投出铅球后,处于完全失重状态下的铅球相对于同状态下的宇航员做匀速直线运动,D项正确.答案:ACD10.2008年9月25日21时10分“神舟”七号载人飞船发射升空,进入预定轨道绕地球自西向东做匀速圆周运动,运行轨道距地面343 km、绕行过程中,宇航员进行了一系列科学实验,实现了我国宇宙航行的首次太空行走.在返回过程中,9月28日17时30分返回舱主降落伞打开,17时38分安全着陆.下列说法正确的就是()A.飞船做圆周运动的圆心与地心重合B.载人飞船轨道高度小于地球同步卫星的轨道高度C.载人飞船绕地球做匀速圆周运动的速度略大于第一宇宙速度7、9 km/sD.在返回舱降落伞打开后至着地前宇航员处于失重状态解析:飞船做圆周运动的向心力由地球对飞船的万有引力提供,故“两心”(轨道圆心与地心)重合,A项正确;根据万有引力提供向心力可知:G Mm(R+h)2=m v2R+h以及G MmR2=mg计算可知:飞船线速度约为7、8 km/s,C项错;卫星离地面高度343 km远小于同步卫星离地高度3、6×104km,B项正确;在返回舱降落伞打开后至着地前,宇航员减速向下运动,加速度方向向上,故处于超重状态,D项错.答案:AB11图2如图2所示,有A 、B 两颗行星绕同一恒星O 做圆周运动,运转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,在某一时刻两行星第一次相遇(即相距最近),则( )A.经过时间t =T 1+T 2两行星将第二次相遇B.经过时间t =T 1T 2T 2-T 1两行星将第二次相遇C.经过时间t =T 1+T 22两行星第一次相距最远D.经过时间t =T 1T 22(T 2-T 1)两行星第一次相距最远解析:根据天体运动知识可知T 2>T 1,第二次相遇经历时间为t ,则有2πT 1t -2πT 2t =2π,解得:t =2π/⎝ ⎛⎭⎪⎫2πT 1-2πT 2=T 1T 2T 2-T 1,所以选项B 正确;从第一次相遇到第一次相距最远所用时间为t ′,两行星转过的角度差为π即2πT 1t ′-2πT 2t ′=π解得:t ′=2π/⎝ ⎛⎭⎪⎫2πT 1-2πT 2=T 1T 22(T 2-T 1),所以选项D 正确.答案:BD12.两颗人造卫星绕地球做匀速圆周运动,它们的质量之比为m A :m B =1:2,轨道半径之比r A :r B =3:1,则下列说法正确的就是( )A.它们的线速度之比为v A :v B =1: 3B.它们的向心加速度之比为a A :a B =1:9C.它们的向心力之比为F A :F B =1:18D.它们的周期之比为T A :T B =3:1 答案:ABC13一行星绕恒星做圆周运动.由天文观测可得,其运行周期为T ,速度为v ,引力常量为G ,则( )A.恒星的质量为v 3T2πGB.行星的质量为4π2v 3GT 2C.行星运动的轨道半径为v T2πD.行星运动的加速度为2πvT解析:考查万有引力定律在天文学上的应用.意在考查学生的分析综合能力.因v =ωr =2πrT ,所以r =v T 2π,C 正确;结合万有引力定律公式GMmr 2=m v 2r ,可解得恒星的质量M =v 3T 2πG ,A 正确;因不知行星与恒星之间的万有引力的大小,所以行星的质量无法计算,B 错误;行星的加速度a =ω2r =4π2T 2×v T 2π=2πvT ,D 正确.答案:ACD14.我国发射的“亚洲一号”通信卫星的质量为m,如果地球半径为R,自转角速度为ω,地球表面重力加速度为g,则“亚洲一号”卫星()A.受到地球的引力为m 3ω4R2gB.受到地球引力为mgC.运行速度v=3ωR2gD.距地面高度为h=3R2gω2-R解析:通信卫星的特点就是卫星的周期与地球自转相同,角速度也相同,由向心力等于万有引力得F=G Mm(R+h)2=mω2(R+h),解之得R+h=3GMω2,h=3GMω2-R,又由公式G MmR2=mg,得GM=R2g,所以v=ω(R+h)=3ωR2g,选项C正确;h=3R2gω2-R,故选项D正确;又由F=mω2(R+h)得F=mω2(R+h)=m3ω4R2g,所以选项A正确,而选项B错误.答案:ACD15为了探测X星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1,总质量为m1、随后登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,此时登陆舱的质量为m2,则()A.X 星球的质量为M =4π2r 31GT 21B.X 星球表面的重力加速度为g x =4π2r 1T 21C.登陆舱在r 1与r 2轨道上运动时的速度大小之比为v 1v 2=m 1r 2m 2r 1 D.登陆舱在半径为r 2轨道上做圆周运动的周期为T 2=T 1r 32r 31解析:本题考查万有引力的应用,意在考查考生综合分析与推理的能力.探测飞船做圆周运动时有G Mm 1r 21=m 1(2πT 1)2r 1,解得M =4π2r 31GT 21,选项A 正确;因为星球半径未知,所以选项B 错误;根据G Mmr 2=m v 2r ,得v =GM r ,所以v 1v 2= r 2r 1,选项C 错;根据开普勒第三定律r 31T 21=r 32T 22得选项D 正确.答案:AD 三、计算题16.(10分)一卫星绕某行星做匀速圆周运动.已知行星表面的重力加速度为g 行,行星的质量M 与卫星的质量m 之比M /m =81,行星的半径R 行与卫星的半径R 卫之比R 行/R 卫=3、6,行星与卫星之间的距离r 与行星的半径R 行之比r /R 行=60、设卫星表面的重力加速度为g 卫,则在行星表面有G Mmr2=mg 卫,经过计算得出:卫星表面的重力加速度为行星表面的重力加速度的三千六百分之一,上述结果就是否正确?若正确,列式证明;若错误,求出正确结果.答案:所得的结果就是错误的.上式中的g 卫并不就是卫星表面的重力加速度,而就是卫星绕行星做匀速圆周运动的向心加速度.正确解法就是:卫星表面 G mR 2卫=g 卫,① 行星表面 G MR 2行=g 行,②由①②得:(R 行R 卫)2m M =g 卫g 行,g 卫=0、16 g 行.所以它们之间的正确关系应为g 卫=0、16 g 行.17.(10分)火星质量就是地球质量的0、1倍,半径就是地球半径的0、5倍,火星被认为就是除地球之外最可能有水(有生命)的星球.在经历了4、8亿公里星际旅行的美国火星探测器“勇气”号成功在火星表面上着陆,据介绍,“勇气”号在进入火星大气层之前的速度大约就是声速的1、6倍,为了保证“勇气”号安全着陆,科学家给它配备了隔热舱、降落伞、减速火箭与气囊等.进入火星大气层后,先后在不同的时刻,探测器上的降落伞打开,气囊开始充气、减速火箭点火.当探测器在着陆前3 s 时,探测器的速度减为零,此时,降落伞的绳子被切断,探测器自由落下,求探测器自由下落的高度.假设地球与火星均为球体,由于火星的气压只有地球的大气压强的1%,则探测器所受阻力可忽略不计.(取地球表面的重力加速度g =10 m/s 2)解析:设地球质量为M 地,火星质量为M 火,地球半径为R 地,火星半径为R 火,地球表面处的重力加速度为g 地,火星表面处的重力加速度为g 火,根据万有引力定律:物体在地球表面上时有G M 地·mR 2地=mg 地,①同理,物体在火星表面上时有 G M 火·mR 2火=mg 火,②由①÷②得:g 火g 地=M 火M 地⎝ ⎛⎭⎪⎫R 地R 火2=110×22=0、4,g 火=0、4×g 地=4 m/s 2,由题意知,探测器在着陆前3 s 时开始做自由落体运动,设探测器自由下落的高度为h ,则h =12g 火t 2=12×4×32 m =18 m 、答案:18 m18.(10分)宇宙中存在一些离其她恒星较远的、由质量相等的三颗星ABC 组成的三星系统,通常可忽略其她星体对它们的引力作用.稳定的三星系统存在的构成形式有四种设想:第一种就是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运动.第二种就是三颗星位于等腰直角三角形的三个顶点上,并以三边中线的交点为圆心做圆周运动.第三种就是三颗星位于等腰直角三角形的三个顶点,并以斜边中心为圆心做圆周运动.第四种就是三颗星位于同一直线上,两颗星围绕中央星在同一圆轨道上运行.(1)试判断稳定的三星系统可能存在的构成形式为________.(填写图形下面的序号)(2)设每个星体的质量均为m 、星体的运动周期为T ,根据您所选择的形式求出星体A 与B 与B 与C 之间的距离应为多少?解析:(1)可能存在的构成形式为AD 、(2)A:设星体间距离为R ,星体距圆心的距离为r 、 F 向心=2F 万·cos30°,F 万=Gm 2R2,F 向心=m ⎝ ⎛⎭⎪⎫2πT 2r ,r =R 2/cos30°=R 3,所以R = 33GmT 24π2、图5D:设星体间距离为R ,F 向心=F 万AB +F 万AC 、F 万AB =Gm 2R 2,F 万AC =Gm 2(2R )2,F 向心=m⎝ ⎛⎭⎪⎫2πT 2R , 所以R = 35GmT 216π2、答案:(1)AD (2) 33GmT 24π2 (3) 35GmT 216π219(12分)晴天晚上,人能瞧见卫星的条件就是卫星被太阳照着且在人的视野之内,一个可瞧成漫反射体的人造地球卫星的圆形轨道与赤道共面,卫星自西向东运动,春分期间太阳垂直射向赤道,赤道上某处的人在日落后8小时时在西边的地平线附近恰能瞧到它,之后极快地变暗而瞧不到了,已知地球的半径R 地=6、4×106 m.地面上的重力加速度为10 m/s 2、估算:(答案要求精确到两位有效数字)(1)卫星轨道离地面的高度; (2)卫星的速度大小.答案:(1)根据题意作出如图9所示图9由题意得∠AOA ′=120°,∠BOA =60°由此得 卫星的轨道半径r =2R 地,①卫星距地面的高度h =R 地=6、4×106 m, ② (2)由万有引力提供向心力得GMm r 2=m v 2r ,③ 由于地球表面的重力加速度g =GMR 2地,④由③④得v =gR 2地r =gR 地2=10×6、4×1062m/s ≈5、6×103 m/s 、。