计组实验一

合集下载

计算机组成原理实验(接线、实验步骤)

计算机组成原理实验(接线、实验步骤)

计算机组成原理实验(接线、实验步骤)实验⼀运算器[实验⽬的]1.掌握算术逻辑运算加、减、乘、与的⼯作原理;2.熟悉简单运算器的数据传送通路;3.验证实验台运算器的8位加、减、与、直通功能;4.验证实验台4位乘4位功能。

[接线]功能开关:DB=0 DZ=0 DP=1 IR/DBUS=DBUS接线:LRW:GND(接地)IAR-BUS# 、M1、M2、RS-BUS#:接+5V控制开关:K0:SW-BUS# K1:ALU-BUSK2:S0 K3:S1 K4:S2K5:LDDR1 K6:LDDR2[实验步骤]⼀、(81)H与(82)H运算1.K0=0:SW开关与数据总线接通K1=0:ALU输出与数据总线断开2.开电源,按CLR#复位3.置数(81)H:在SW7—SW0输⼊10000001→LDDR2=1,LDDR1=0→按QD:数据送DR2置数(82)H:在SW7—SW0输⼊10000010→LDDR2=0,LDDR1=1→按QD:数据送DR1 4.K0=1:SW开关与数据总线断开K1=1:ALU输出与数据总线接通5. S2S1S0=010:运算器做加法(观察结果在显⽰灯的显⽰与进位结果C的显⽰)6.改变S2S1S0的值,对同⼀组数做不同的运算,观察显⽰灯的结果。

⼆、乘法、减法、直通等运算1.K0K1=002.按CLR#复位3.分别给DR1和DR2置数4.K0K1=115. S2S1S0取不同的值,执⾏不同的运算[思考]M1、M2控制信号的作⽤是什么?运算器运算类型选择表选择操作S2 S1 S00 0 0 A&B0 0 1 A&A(直通)0 1 0 A+B0 1 1 A-B1 0 0 A(低位)ΧB(低位)完成以下表格ALU-BUS SW-BUS# 存储器内容S2S1S0 DBUS C输⼊时:计算时:DR1:01100011DR2:10110100(与)DR1:10110100DR2:01100011(直通)DR1:01100011DR2:01100011(加)DR1:01001100DR2:10110011(减)DR1:11111111DR2:11111111(乘)实验⼆双端⼝存储器[实验⽬的]1.了解双端⼝存储器的读写;2.了解双端⼝存储器的读写并⾏读写及产⽣冲突的情况。

计算机组成的实验

计算机组成的实验

、`` OP]、]][、实验一运算器──算术逻辑运算器实验一实验目的(1) 掌握算术逻辑运算单元(ALU)的工作原理;(2) 熟悉简单运算器的数据传送通路;(3) 验证4位运算功能发生器功能(74181)的组合功能。

二实验设备TDN-CM++计算机组成原理教学实验系统一台,排线若干。

三实验原理图 1 运算器数据通路实验中所用到的运算器数据通路如图1所示。

其中运算器由两片74181以并/串形式构成8位字长的ALU。

运算器的输出经过一个三态门(74245)和数据总线相连,运算器的两个数据输入端分别由两个锁存器(74373)锁存,锁存器的输入连接至数据总线,数据开关INPUT DEVICE用来给出参与运算的数据,并经过一个三态门(74245)和数据总线相连,数据显示灯“BUS UNIT”已和数据总线相连,用来显示数据总线内容。

图中已将用户需要连接的控制信号用圆圈标明(其他实验相同,不再说明),其中除T4为脉冲信号,其它均为电平信号。

由于实验电路中的时序信号均已连至W/R UNIT 的相应时序信号引出端,因此,在进行实验时,只需将W/R UNIT的T4接至STATE UNIT 的微动开关KK2的输出端,按动微动开关,即可获得实验所需的单脉冲,而S3,S2,S1,S0,C n,LDDR1,LDDR2,ALU-B,SW-B各电平控制信号用SWITCH UNIT中的二进制数据开关来模拟,其中C n,ALU-B,SW-B为低电平控制有效,LDDR1,LDDR2为高电平有效。

四实验步骤(1)按图2连接实验线路,仔细查线无误后,接通电源。

(2)用二进制数码开关向DR1和DR2寄存器置数。

具体操作步骤如::校验DR1和DR2中存放的数据是否正确,具体操作为:关闭数据输入三态门(SW-B=1),打开ALU输出三态门(ALU-B=0),当置S3,S2,S1,S0,M为11111时,总线指示灯显示DR1中的数,而置成10101时,总线指示灯显示DR2中的数。

计算机组成原理实验报告

计算机组成原理实验报告

实验1 通用寄存器实验一、实验目的1.熟悉通用寄存器的数据通路。

2.了解通用寄存器的构成和运用。

二、实验要求掌握通用寄存器R3~R0的读写操作。

三、实验原理实验中所用的通用寄存器数据通路如下图所示。

由四片8位字长的74LS574组成R1 R0(CX)、R3 R2(DX)通用寄存器组。

图中X2 X1 X0定义输出选通使能,SI、XP控制位为源选通控制。

RWR为寄存器数据写入使能,DI、OP为目的寄存器写选通。

DRCK信号为寄存器组打入脉冲,上升沿有效。

准双向I/O输入输出端口用于置数操作,经2片74LS245三态门与数据总线相连。

图2-3-3 通用寄存器数据通路四、实验容1.实验连线K23~K0置“1”,灭M23~M0控位显示灯。

然后按下表要求“搭接”部件控制电路。

2.寄存器的读写操作①目的通路当RWR=0时,由DI、OP编码产生目的寄存器地址,详见下表。

通用寄存器“手动/搭接”目的编码②通用寄存器的写入通过“I/O输入输出单元”向R0、R1寄存器分别置数11h、22h,操作步骤如下:通过“I/O输入输出单元”向R2、R3寄存器分别置数33h、44h,操作步骤如下:③源通路当X2~X0=001时,由SI、XP编码产生源寄存器,详见下表。

通用寄存器“手动/搭接”源编码④通用寄存器的读出五、实验心得通过这个实验让我清晰的了解了通用寄存器的构成以及通用寄存器是如何运用的,并且熟悉了通用寄存器的数据通路,而且还深刻的掌握了通用寄存器R3~R0的读写操作。

实验2 运算器实验一、实验目的掌握八位运算器的数据传输格式,验证运算功能发生器及进位控制的组合功能。

二、实验要求完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运用。

三、实验原理实验中所用的运算器数据通路如图2-3-1所示。

ALU运算器由CPLD描述。

运算器的输出FUN经过74LS245三态门与数据总线相连,运算源寄存器A和暂存器B的数据输入端分别由2个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。

《计算机组成原理》实验一报告模板

《计算机组成原理》实验一报告模板

《计算机组成原理》实验报告学院:信息学院专业:班级学号:学生姓名:实验日期:指导老师:成绩评定:五邑大学信息学院计算机组成原理实验室实验一一、实验名称:运算器实验二、实验目的:1、掌握运算器的组成及工作原理;2、熟悉ALU执行算术运算与逻辑运算的具体实现过程;3、掌握ALU 算术与逻辑运算的控制方法4、了解多片ALU的组合扩展功能和进位链的实现三、实验内容:1、两16位操作数的算术运算及进位影响2、两16位操作数的逻辑运算及进位影响3、不同控制组合下的算术与逻辑运算的输出结果四、实验设备:EL-JY-II型计算机原理实验系统五、实验步骤:1、在系统断电的情况下,按实验指导书接线图完成本次实验的接线;2、系统上电,拨动清零开关,系统清零;3、从数据输入开关电路输入第一个16位数据,开放数据总线,使数据进入暂存寄存器1;4、从数据输入开关电路输入第二个16位数据,开放数据总线,使数据进入暂存寄存器2;5、关闭数据输入开关,开启ALU输出,检查两个16位数据正确与否,有错通过步骤3改正;6、设置方式控制M=0,拨动功能选择端S3,S2,S1,S0 进行算术运算,记录ALU输出结果;7、重复步骤6,直到S3,S2,S1,S0所有组合(16种)被完成;8、设置方式控制M=1,拨动功能选择端S3,S2,S1,S0 进行逻辑运算,记录ALU输出结果;9、重复步骤6,直到S3,S2,S1,S0所有组合(16种)被完成;10、对实验结果进行检查,如有错误,找出原因,重做实验,直到正确为止。

六、实验结果整个实验记录的实验结果如下:七、分析讨论M是算术与逻辑运算的选择端决定了ALU 进行那类运算,S0, S1,S2,S3是功能选择控制端,决定是做加、减、逻辑与、逻辑或、逻辑异或等运算,表一的实验结果与手工验算完全一致,从而验正了整个ALU的算术/逻辑运算功能和进位处理功能。

灵活运用S0,S1,S2,S3的不同组合可以实现许多其它功能,如本ALU虽然没有求补功能但可以通过取反加1完成求补运算,向左移位的实现可采用自身相加(A+A=2A),此外选择M=1,S3S2S1S0=1111或S3S2S1S0=1010将操作数A或B可以直接送到ALU的输出,这样可以直接验证输入数据是否正确。

计组实验报告

计组实验报告

计算机组成原理实验报告实验一寄存器组成实验一、实验目的(1)熟悉D触发器的功能及使用方法。

(2)掌握寄存器文件的逻辑组成及使用方法。

二、实验内容(1)掌握Quartus II的使用方法,能够进行数字电路的设计及仿真。

(2)验证Quartus II所提供D触发器的功能及使用方法。

(3)设计具有1个读端口、1个写端口的寄存器文件,并进行存取操作仿真/验证。

三、实验原理及方案Quartus II提供了多种类型的触发器模块,如D触发器、T触发器等。

固定特性的触发器模块有不同的型号,参数化的触发器模块有lpm_ff、lpm_dff、lpm_tff等。

D触发器常来构建寄存器。

本次实验我们用Quartus II中提供的8为D触发器模块,实现了一个8×8bits 的寄存器组,因此,操作地址均为3位,数据均为8位。

由于要求读写端口分离,因此,读操作的相关引脚有地址raddr[2..0]、数据输出q[7..0],写操作的相关引脚有地址waddr[2..0]、数据输入data[7..0]、写使能wen。

其中,省略读使能信号可以简化控制,即数据输出不受限制。

寄存器文件通过写地址waddr[2..0]、写使能wen信号来实现触发器的写入控制,通过读地址raddr[2..0]信号来控制触发器的数据输出选择。

其连接电路原理如图所示。

寄存器文件的组成则由此,可在Quartus II中连接原理图:四、实验结果仿真波形如下:五、小结通过此次实验,我们学会了Quartus II的原理图的构造方法,以及仿真方法,并且使用lpm_dff作为三态门,控制数据的输入,并且在输出时,用lpm_mux选择每个寄存器的数据输出。

最后,在本次实验中,我们重新巩固了课堂学习的内容,也对寄存器加深了了解,相信我们会通过实验在计组的学习道路上越走越远。

实验二运算器组成实验一、实验目的(1)熟悉加/减法器的功能及使用方法。

(2)掌握算术逻辑部件(ALU)的功能及其逻辑组成。

计组实验报告

计组实验报告

计算机组成原理实验报告成评语:绩教师:年月日班级:学号:姓名:地点:时间:实验一ROM存储器实验一.实验目的1、掌握FPGA中lpm_ROM的设置,作为只读存储器ROM的工作特性和配置方法。

2、用文本编辑器编辑mif文件配置ROM,学习将程序代码以mif格式文件加载于lpm_ROM中;3、在初始化存储器编辑窗口编辑mif文件配置ROM;4、验证FPGA中mega_lpm_ROM的功能。

二.实验原理ALTERA的FPGA中有许多可调用的LPM (Library Parameterized Modules)参数化的模块库,可构成如lpm_rom、lpm_ram_io、lpm_fifo、lpm_ram_dq的存储器结构。

CPU中的重要部件,如RAM、ROM可直接调用他们构成,因此在FPGA中利用嵌入式阵列块EAB可以构成各种结构的存储器,lpm_ROM是其中的一种。

lpm_ROM有5组信号:地址信号address[ ]、数据信号q[ ]、时钟信号inclock、outclock、允许信号memenable,其参数都是可以设定的。

由于ROM是只读存储器,所以它的数据口是单向的输出端口,ROM中的数据是在对FPGA 现场配置时,通过配置文件一起写入存储单元的。

图3-1-1中的lpm_ROM有3组信号:inclk——输入时钟脉冲;q[23..0]——lpm_ROM的24位数据输出端;a[5..0]——lpm_ROM的6位读出地址。

实验中主要应掌握以下三方面的内容:(1)lpm_ROM的参数设置;(2)lpm_ROM中数据的写入,即LPM_FILE初始化文件的编写;(3)lpm_ROM的实际应用,在GW48_CP+实验台上的调试方法。

三.实验步骤(1)用图形编辑,进入mega_lpm元件库,调用lpm_rom元件,设置地址总线宽度address[]和数据总线宽度q[],分别为6位和24位,并添加输入输出引脚,设置如下图工程。

计算机组成原理实验1-汇编语言实验

计算机组成原理实验1-汇编语言实验

微处理器与接口技术实验指导实验一监控程序与汇编语言程序设计实验一、实验要求1、实验之前认真预习,明确实验的目的和具体实验内容,设计好主要的待实验的程序,做好实验之前的必要准备。

2、想好实验的操作步骤,明确通过实验到底可以学习哪些知识,想一想怎么样有意识地提高教学实验的真正效果。

3、在教学实验过程中,要爱护教学实验设备,认真记录和仔细分析遇到的现象与问题,找出解决问题的办法,有意识地提高自己创新思维能力。

4、实验之后认真写出实验报告,重点在于预习时准备的内容,实验数据,实验过程、遇到的现象和解决问题的办法,自己的收获体会,对改进教学实验安排的建议等。

善于总结和发现问题,写好实验报告是培养实际工作能力非常重要的一个环节,应给以足够的重视。

二、实验目的【1】学习和了解TEC-XP16教学实验系统监控命令的用法;【2】学习和了解TEC-XP16教学实验系统的指令系统;【3】学习简单的TEC-XP16教学实验系统汇编程序设计。

三、实验注意事项(一)实验箱检查【1】连接电源线和通讯线前TEC-XP16实验系统的电源开关一定要处于断开状态,否则可能会对TEC-XP16实验系统上的芯片和PC机的串口造成损害。

【2】五位控制开关的功能示意图如下:【3】几种常用的工作方式【开关拨到上方表示为1,拨到下方为0】(二)软件操作注意事项【1】用户在选择串口时,选定的是PC机的串口1或串口2,而不是TEC-XP16实验系统上的串口。

即选定的是用户实验时通讯线接的PC机的端口;【2】如果在运行到第五步时没有出现应该出现的界面,用户需要检查是不是打开了两个软件界面,若是,关掉其中一个再试;【3】有时若TEC-XP16实验系统不通讯,也可以重新启动软件或是重新启动PC再试;【4】在打开该应用软件时,其它的同样会用到该串口的应用软件要先关掉。

(三)联机通讯失败自检如果上述的硬件和软件的操作都正确,联机却依旧失败,可以进行如下测试:【1】测试PC机的串口是否能正常工作,或是换一台PC或换同一台PC的另一个串口再试,在换串口时要将TEC-XP16实验系统断电,换完后重新启动实验系统和软件;【2】检查机器上的元器件插接是否正确(建议用户对照能够正常通讯的实验系统进行详细检查),有没有被学生动过,尤其是扩展内存和扩展I/O接口时,芯片方向是否插对,片选信号有没有连接;【3】检查相应的短路子是否连接正确;【4】建议教师预留一台运行正常的TEC-XP16实验系统备用,机器出问题后可以对照检查。

计组实验报告(共10篇)

计组实验报告(共10篇)

计组实验报告(共10篇)计组实验报告计算机组成原理实验报告一一、算术逻辑运算器1. 实验目的与要求:目的:①掌握算术逻辑运算器单元ALU(74LS181)的工作原理。

②掌握简单运算器的数据传输通道。

③验算由74LS181等组合逻辑电路组成的运输功能发生器运输功能。

④能够按给定数据,完成实验指定的算术/逻辑运算。

要求:完成实验接线和所有练习题操作。

实验前,要求做好实验预习,掌握运算器的数据传送通道和ALU 的特性,并熟悉本实验中所用的模拟开关的作用和使用方法。

实验过程中,要认真进行实验操作,仔细思考实验有关的内容,把自己想得不太明白的问题通过实验去理解清楚,争取得到最好的实验结果,达到预期的实验教学目的。

实验完成后,要求每个学生写出实验报告。

2. 实验方案:1.两片74LS181(每片4位)以并/串联形式构成字长为8为的运算器。

2.8为运算器的输出经过一个输入双向三态门(74LS245)与数据总线相连,运算器的两个数据输入端分别与两个8位寄存器(74LS273)DR1和DR2的输出端相连,DR1和DR2寄存器是用于保存参加运算的数据和运算的结果。

寄存器的输入端于数据总线相连。

3.8位数据D7~D0(在“INPUT DEVICE”中)用来产生参与运算的数据,并经过一个输出三态门(74LS245)与数据总线相连。

数据显示灯(BUS UNIT)已与数据总线相连,用来显示数据总线上所内容。

4.S3、S2、S1、S0是运算选择控制端,由它们决定运算器执行哪一种运算(16种算术运算或16种逻辑运算)。

5.M是算术/逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算。

6.Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。

逻辑运算与进位无关。

7.ALU-B是输出三态门的控制端,控制运算器的运算结果是否送到数据总线BUS上。

低电平有效。

计算机组成原理实验一报告

计算机组成原理实验一报告

实验(一)基础汇编语言程序设计1、实验目的1.学习和了解TEC-XP教学实验系统监控命令的用法;2.学习和了解TEC-XP教学实验系统的指令系统;3.学习简单的TEC-XP教学实验系统汇编程序设计。

2、实验内容1、学习联机使用TEC-XP教学实验系统和仿真终端软件PCEC。

2、使用监控程序R命令显示修改寄存器的内容,D命令显示寄存器的内容,E命令修改存储器的内容。

3、使用A命令写一段小程序,U命令反汇编刚输入的程序,使用G命令连续运行该程序,用T,P命令单步运行并观察程序单步执行情况。

3、实验步骤1.用R命令查看寄存器内容或修改寄存器的内容。

2.用D命令显示存储器内容。

3.用E命令修改存储器内容。

4.用D命令显示这几个单元的内容。

5.用A命令键入一段汇编源程序1)在命令行提示符状态下输入:2)用U命令反汇编刚输入的程序3)用G命令运行前面刚键入的源程序4)用P或T命令,单步执行这段程序,观察指令执行结果6.举例编写汇编程序,用“A”命令输入,运行并观察结果1)例1:设计一个小程序,从键盘上接收一个字符并在屏幕上输出显示该字符。

1>在命令行提示符状态下输入:2>用“G”命令运行程序在命令行提示符状态下输入:G 2000执行上面输入的程序。

光标闪烁等待输入,用户从键盘键入字符后,屏幕会显示该字符。

2)例2:设计一个小程序,用次数控制在终端屏幕上输出‘0’到‘9’十个数字符。

1>在命令行提示符状态下输入:2>用“G”命令运行程序在命令行提示符状态下输入:G 2020:例二【思考题】类似的,若要求在终端屏幕上输出“A”“Z”共26个英文字母,应如何修改例一中给出的程序,请验证之。

3)例3:从键盘上连续打入多个属于‘0’到‘9’的数字符并在屏幕上显示,遇数字符结束输入过程。

1>在命令行提示符状态下输入:2>在命令行提示符状态下输入:G 2040光标闪烁等待键盘输入,若输入0~9十个数字符,则在屏幕上回显;若输入非数字符,则屏幕不再显示该字符,出现命令提示符,等待新命令。

计算机组成实验

计算机组成实验
2配置2732芯片
(1)令存储芯片有效,读出80H的内容,如图所示:
(2)向09H地址写入数据F0H,如图所示:
(3)向FEH地址写入数据5BH,并对数据进行擦除,如图所示:
(3)若要求Y3有效,则需要令/OC1, A3为0 0,所得结果如下图所示:
译码器有效图1-3
实验二:存储芯片实验
实验环境
EC_PC_VSeries V1.0.0.7计算机组成原理实验系统
实验要求
配置6116芯片
配置2732芯片
实验内容:1.通过对6116配置,令存储芯片有效,向09H地址写入数据F0H;向FEH地址写入数据5BH;读出100H的内容。
2.依据熟悉的74LS138译码器,学习使用74LS244或74LS374。对其中一个进行三次以上配置实验总结其功能性说明。
实验步骤:(要求配图及说明性文字)
1.74LS138译码器的有效图示。
(1)要求译码器有效,就要把/G2A和/G2B都设置为0。如下图所示:
译码器有效图1-1
(2)在译码器有效的情况下,令CBA=100,发现此时/Y4有效,即为下图所示:
译码器有效图1-2
(3)若要求/Y6有效,则需要令CBA=110,所得结果如下图所示:
译码器有效图1-3
2. 74LS244译码器的有效图示。
(1)要求译码器有效,如图所示:
译码器有效图1-1
(2)在译码器有效的情况下,令/OC1, A1, A2为0 0 0,发现此时Y1,Y2有效,即为下图所示:
译码器有效图1-2
计算机组成原理实验报告
班级:
学号:
姓名:
实验一:译码器实验
实验环境
EC_PC_VSeries V1.0.0.7计算机组成原理实验系统

计算机组成原理实验指导

计算机组成原理实验指导

《计算机组成原理》实验指导实验一监控程序与汇编语言程序设计实验教学机的监控程序是用教学机的汇编语言实现的,运行在教学机的硬件系统之上。

它的主要功能是支持把计算机终端或PC机仿真终端接入教学机系统,使用这样的设备执行输入/输出操作,运行教学机的有关程序,以更方便直观的形式支持教学机上的各项实验功能,提供教学机汇编语言的可用子程序。

监控程序提供类似PC机DOS系统下的Debug程序的功能,支持A、U、G、P、T、R、D和E共8个监控命令。

监控命令的格式为:单字母的命令名后跟回车,或命令名后跟一个地址参数,或寄存器名(编号)参数。

当有些命令运行时需要参数,但命令名后又不跟参数时,监控程序会从内存指定单元取一个默认的地址参数值,通常为该命令前一次运行后所接收地址。

TEC—2机从终端接收地址、指令,数值时,均用最多4位的16进制数输入与显示,并且不能(或说不必)用跟字符h加以标志。

⑴单条汇编命令A格式:A[adr]这里的[adr]表示此处的地址参数adr为任选项(但选择范围必须为0800H—0FFFH)。

无此参数时,系统将取默认值。

该规则下同。

功能:完成单条指令的汇编操作,把产生出来的TEC—2机的执行代码放入对应的内存单元中。

命令名后的地址是头一条汇编语句的执行码的内存单元地址。

每条语句汇编完成之后,系统将相应修改地址值,以便正确处理下条汇编语句。

在应该输入汇编语句时,不给出汇编语句而直接回车,则结束A命令的运行过程。

若汇编中发现语法错误,用ˆ指明出错位置后请求重新给出正确语句。

要说明,这里的单条汇编功能不很完善,例如不支持语句标号,也不能使用伪指令等。

遇到这些问题,要求使用者直接使用机器码,并通过E命令将其送入相应内存单元。

⑵反汇编命令U格式:U[adr]功能:每次从指定的(或默认的)地址反汇编15条命令,并将结果显示在终端屏幕上。

反汇编完成之后,已将该命令的默认地址修改好。

接下来再键入不带参数的U命令,保证接着从上一次反汇编的最后一条语句之后继续反汇编。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告计算机组成原理实验报告姓名:专业:计算机科学与技术学号:计算机组成原理实验(⼀)实验题⽬:时标系统的设置和组合成绩:⼀、实验⽬的1、了解时标系统的作⽤2、会设计、组装简单的时标发⽣器⼆、实验内容参照时标系统的设计⽅法,⽤组合逻辑⽅法设计⼀个简单的节拍脉冲发⽣器,产⽣图1-6所⽰的节拍脉冲,并⽤单脉冲验证设计的正确性。

在实验报告中画出完整电路,写出1W 、0W 和1N 的表达式。

图1-6 简单的节拍脉冲发⽣器⼀周期的波形设计提⽰:1、由波形图求出节拍脉冲1W 和0W 的表达式,进⽽组合成1N 的表达式。

2、注意节拍电平1T 和0T 的翻转时刻应在0M 下降沿与M 的上升沿同时出现的时刻。

3、注意D 触发器的触发翻转要求。

三、实验仪器及器材1、计算机组成原理实验台和+5V 直流稳压电源2、集成电路由附录A “集成电路清单”内选⽤四、实验电路原理(实验电路原理图)时标系统主要由时钟脉冲发⽣器、启停电路和节拍脉冲发⽣器三部分组成成,结构如图1-1所⽰。

图1-1 时标系统组成1、时钟脉冲发⽣器主要由振荡电路、分频电路组成,其作⽤是产⽣⼀定频率的时钟脉冲,作为计算机中基准时钟信号。

如图1-2所⽰。

图1-2 时钟脉冲发⽣器组成2、启停电路计算机是靠⾮常严格的节拍脉冲,按时间的先后次序⼀步⼀步地控制各部件⼯作的,所以,机器启停的标志是有⽆节拍脉冲,⽽控制节拍脉冲按⼀定的时序发⽣和停⽌,不能简单地⽤电源开关来实现。

如图1-3所⽰。

图1-3 简单的启停电路为了使机器可靠地⼯作,要求启停电路在机器启动或停机时,保证每次从规定的第⼀个脉冲开始启动,到最后⼀个脉冲结束才停机,并且必须保证第⼀个和最后⼀个脉冲的波形完整。

如图1-4所⽰。

图1-4 利⽤维持阻塞原理的启停电路3、节拍脉冲发⽣器节拍脉冲发⽣器的作⽤是产⽣⼀序列的节拍电平和⼯作脉冲。

节拍电平是保证计算机微操作的时序性,⼯作脉冲是各寄存器数据的打⼊脉冲。

计算机组成原理实验指导 (1)

计算机组成原理实验指导 (1)

计算机组成原理实验指导实验一运算器部件实验一、实验目的⒈掌握简单运算器的数据传输方式。

⒉验证运算功能发生器(74LS181)及进位控制的组合功能。

二、实验要求完成不带进位及带进位算术运算实验、逻辑运算实验,了解算术逻辑运算单元的运用。

三、实验原理实验中所用的运算器数据通路如图7-1-1所示。

其中运算器由两片74LS181以并/串形式构成8位字长的ALU。

运算器的输出经过一个三态门(74LS245)以8芯扁平线方式和数据总线相连,运算器的2个数据输入端分别由二个锁存器(74LS273)锁存,锁存器的输入亦以8芯扁平线方式与数据总线相连,数据开关(INPUT DEVICE)用来给出参与运算的数据,经一三态门(74LS245)以8芯扁平线方式和数据总线相连,数据显示灯(BUS UNIT)已和数据总线相连,用来显示数据总线内容。

图7-1-1运算器电原理图图7-1-1中T2、T4为时序电路产生的节拍脉冲信号,通过连接时序启停单元时钟信号“”来获得,剩余均为电平控制信号。

进行实验时,首先按动位于本实验装置右中侧的复位按钮使系统进入初始待令状态,在LED显示器闪动位出现“P.”的状态下,按【增址】命令键使LED显示器自左向右第4位切换到提示符“L”,表示本装置已进入手动单元实验状态,在该状态下按动【单步】命令键,即可获得实验所需的单脉冲信号,而LDDR1、LDDR2、ALU-B、SW-B、S3、S2、S1、S0、CN、M各电平控制信号用位于LED显示器上方的26位二进制开关来模拟,均为高电平有效。

四、实验连线图7-1-2实验连线示意图按图7-1-2所示,连接实验电路:①总线接口连接:用8芯扁平线连接图7-1-2中所有标明“”或“”图案的总线接口。

②控制线与时钟信号“”连接:用双头实验导线连接图7-1-2中所有标明“”或“”图案的插孔(注:Dais-CMH的时钟信号已作内部连接)。

五、实验系统工作状态设定在闪动的“P.”状态下按动【增址】命令键,使LED显示器自左向右第4位显示提示符“L”,表示本装置已进入手动单元实验状态。

计组第一次实验报告总结

计组第一次实验报告总结
CLOCK
(1) R?的写入
写入R0:
置数据:
K23
K22
K21
K20
K19
K18
K17
K16
0
1
0
1
0
1
0
1
置控制信号:
K11(RRD)
K10(RWR)
K1(SB)
K0(SA)
1
0
0
0
给出CLOCK脉冲上升沿。
写入R1:
置数据:
K23
K22
K21
K20
K19
K18
K17
K16
0
1
0
1
0
1
0
1
置控制信号:
2、µPC预置数据实验
用二进制开关K23~K16将数据送到数据总线(DBUS),置数据??H
K23
K22
K21
K20
K19
K18
K17
K16
0
1
0
1
0
1
0
1
设置控制信号为:
K3(EMRD)
K2(EMWR)
K1(EMEN)
K0(IREN)
0
1
0
0
按住CLOCK键,CLOCK由高变低,这时µPC的黄色预置指示灯亮,表明µPC被预置数。放开CLOCK键,CLOCK产生下降沿,数据??H被写入µPC寄存器。
2、寄存器组的数据读出与CLOCK脉冲是否有关系?由此说明寄存器的数据打入与读出在控制上的差别。
答:寄存器组的数据读出与CLOCK脉冲无关。寄存器输入需要CLOCK提供上升沿信号,而读出不需要,因为OC始终接地为低电平有效。
3、总结寄存器部分实验有多少个控制信号,并写出其作用。

计算机组成原理实验项目及实验报告

计算机组成原理实验项目及实验报告

计算机组成原理实验项目实验一运算器组成(2学时)验证性实验内容:使用181四位算术逻辑芯片实现八位算术逻辑运算实验。

基本要求:1、掌握简单运算器的数据传送通路;2、验证运算功能发生器(74LS181)的组合功能。

实验二存储器原理(2学时)验证性实验内容:通过总线系统验证存储器的存储功能。

基本要求:1、掌握静态随机存储器RAM工作特性及数据的读写方法;2、掌握存储器读/写电路的设计方法。

实验三寄存器实验(2学时)验证性实验内容:使用八位寄存器验证寄存器的存储功能。

基本要求:1、掌握寄存器操作时序。

2、掌握寄存器电路的连接方法。

实验四时序生成电路实验(2学时)设计性实验内容:验证控制器所需要的T1~T4的生成。

基本要求:1、掌握模型机时序特征;2、设计时序生成电路。

3、通过示波器验证T1~T4的状态周期。

实验五微程序控制器(2学时)验证性实验内容:使用模型机验证微指令与微操作的关系,验证微程序执行时序。

基本要求:1、掌握时序产生器的工作原理和组成原理;2、掌握微程序的编制、写入、观察微程序的执行;3、掌握硬布线控制器的组成原理、设计方法;4、了解硬布线控制器和微程序控制器的各自优缺点。

掌握简单运算器的数据传送通路。

三、主要仪器设备计算机、Proteus仿真软件、模型机仿真软件计算机硬件实验室实验报告课程名称:姓名学号班级成绩设备名称及软件环境实验名称实验日期一.实验内容题目及要求二.理论分析或算法分析芯片功能以及芯片真值表三.实现方法(含实现思路、程序流程图、实验电路图和源程序列表等)电路图及相关说明四.实验结果分析(含执行结果验证、输出显示信息、图形、调试过程中所遇的问题及处理方法等)结果真值表,运行态抓图,以及相关的说明五.结论验证了什么?和题目要求对应报告提交日期(注意:内容写不下时可另附页。

)。

《计算机组成原理》实验1寄存器试验,2运算器试验

《计算机组成原理》实验1寄存器试验,2运算器试验

实验指导书课程:计算机组成原理实验教师:班级:第一章系统概述1.1 实验系统组成第二章基础模块实验实验一寄存器实验实验目的:熟悉试验仪各部分功能。

掌握寄存器结构、工作原理及其控制方法。

实验内容:利用实验仪开关区上的开关sk23-sk16提供数据,其它开关做为控制信号,将数据通过DBUS写入OUT 寄存器,并将OUT寄存器的内容送往扩展区通过数码管和发光二极管显示。

实验原理:实验箱用74HC273 来构成寄存器。

(1)74HC273的功能如下:(2)实验箱中74HC273的连接方式:(3)实验逻辑框图12、打开实验仪电源,按CON单元的nRST按键,系统复位;如果EXEC键上方指示灯不亮,请按一次EXEC键,点亮指示灯,表示实验仪在运行状态。

3、利用开关和控制信号将数据通过DBUS写入OUT寄存器,并将OUT寄存器的内容送往扩展区通过数码管和发光二极管显示。

并写出将数据5FH写入OUT寄存器的操作过程。

实验二运算器实验实验目的:了解运算器的组成结构;掌握运算器的工作原理和控制方法。

实验内容:利用实验仪提供的运算器,通过开关提供数据信号,将数据写入寄存器A和寄存器B,并用开关控制ALU的运算方式,验证运算器的功能。

实验原理:(1)实验逻辑框图:信号说明:IN0~IN7:ALU数据输入信号ALU_D0~ALU_D7:ALU数据输出信号:寄存器A写信号,低电平有效。

当T1节拍信号到来,该信号有效时,IN0~IN7数据可以写入寄存器A。

:寄存器B写信号,低电平有效。

当T2节拍信号到来,该信号有效时,IN0~IN7数据可以写入寄存器B。

:ALU计算结果读出信号,当T3节拍信号到来,该信号有效时,ALU计算结果送往ALU_D0~ALU_D7。

S3~S0,CN_I:ALU运算控制信号,控制ALU的运算方法。

T1,T2,T3:三个节拍信号,高电平有效,由con区的uSTEP按键控制,在运行状态时,依次按下uSTEP 键会依次发出T1、T2、T3节拍。

计算机组成实验

计算机组成实验

六、波形图
试验三 算术运算器
一、试验目的
1、了解算术运算器的构成和工作原理。 2、熟悉用Verlog HDL编写算术运算器的 、熟悉用Verlog HDL编写算术运算器的 方法。 3、学会用Verlog HDL编写算术运算器的 、学会用Verlog HDL编写算术运算器的 测试程序 4、掌握测试程序验证算术运算器的方法。
五、测试文件add_test.tst 五、测试文件add_test.tst
module add_test; reg [3:0] add_a,add_b; reg clk; wire [3:0] sum; wire flow; add add(add_a,add_b,sum,flow,clk); initial begin clk=1; add_a=4'b1011; add_b=4'b0101; end always #1 clk=~clk; always@(posedge clk) begin add_a<=add_b+1; add_b<=add_a+1; end endmodule
如果正执行的指令是跳转语句,这时CPU 如果正执行的指令是跳转语句,这时CPU 的状态控制器降会输出load_pc信号, 的状态控制器降会输出load_pc信号, 通过load口进入程序计数器。程序计数 通过load口进入程序计数器。程序计数 器(pc_addr)将装入目标地址(ir_addr) (pc_addr)将装入目标地址(ir_addr) 而不是增2 而不是增2。
六、波形图
试验二 时钟发生器
一、实验目的
1、了解时钟发生器的工作原理。 2、理解时钟发生器的波形图。 3、熟悉Verlog HDL描述的时钟发生器的 、熟悉Verlog HDL描述的时钟发生器的 模块程序。 4、学会用Verlog HDL编写时钟发生器的 、学会用Verlog HDL编写时钟发生器的 测试程序 5、学会用测试模块验证时钟发生器程序模 块正确性的方法。

计算机组成原理实验一报告

计算机组成原理实验一报告

计算机组成原理实验一报告实验报告一课程实验项目指导教师计算机组成原理姓名学号学号2021-5-23 运算器实验(算术运算)同组姓名专业班级计算机科学与技术09 实验时间实验一运算器实验(算术运算)一、实验目的1.掌握算术逻辑运算单元(ALU)的工作原理2.熟悉运算器的数据传送通路和数据传输方式3.验证运算功能发生器(74LS181)的算术运算功能 4.按给定数据,完成指定的算术运算二、实验原理实验中所用的运算器数据通路如图1-1所示。

图1-1 运算器电原理图三、实验设备1.Dais-CMH计算机组成原理实验系统一套 2.若干导线和排线四、实验内容1. 写操作(置数操作)拨动二进制数据开关向DR1和DR2寄存器置数,具体操作步骤如下:注:【单步】键的功能是启动时序电路产生T1~T4四拍单周期脉冲2. 读操作(运算寄存器内容送总线)首先关闭二进制数据开关(数据输入)三态控制端(SW-B=0),存储器控制端CE保持为0,令LDDR1=0、LDDR2=0,然后打开ALU输出三态门(CBA=010),置M、S0、S1、S2、S3为11111,再按【单步】键,数据总线单元显示DR1的内容为___65__H,若把M、S0、S1、S2、S3置为10101,再按【单步】键,数据总线单元显示DR2的内容为__A7___H。

3. 算术运算(验证74LS181的算术运算功能)在给定DR1、DR2的情况下,改变运算器的功能设置即CN、M、S0、S1、S2、S3状态,置CBA=010,按【单步】键,观察运算器的输出,填入下页表格中,并和理论分析进行比较、验证。

表1-1 M=0(算术运算) CN=1无进位 CN=0有进位 DR1 DR2 S3 S2 S1 S0 F理论值F实测值 F理论值 F实测值 65H 65H 65H 65H 65H 65H 65H 65H 65H 65H 65H 65H 65H65H 65HA7H A7H A7H A7H A7H A7H A7H A7H A7H A7H A7H A7H A7H A7H A7H 0 0 0 0 0 0 01 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 10 0 1 1 0 1 1 1 1 0 1 1 1 1 65H E7H 7DH A5H 27H BDH 3FH 8AH 0CH A2H 24H CAH4CH E2H 64H 65H E7H 7DH A5H 27H BDH 3FH 8AH 0CH A2H 24H CAH 4CH E2H 64H 66HE8H 7EH A6H 28H BEH 40H 8BH 0DH A3H 25H CBH 4DH E3H 65H 66H E8H 7EH A6H 28H BEH 40H 8BH 0DH A3H 25H CBH 4DH E3H 65H 4. 完成指定算术运算表达式为完成下面指定运算关系(算术运算表达式),请选择所需操作步骤,并正确控制参数S3S2S1S0M、选择运算器数据通路,将每次操作的结果值填入DR1和DR2。

计算机组成原理实验一

计算机组成原理实验一

三. 实验过程举例(1)
例:实验任务:将数值ACH写入R2寄存器(操作的自然语言表述)。 第一步、 规划实验过程:
1. 由背景知识5知:要选择R2,须使SB、SA分别为高电平和低电平。选 用K1和K0分别控制SB和SA,则K1K0=高电平,低电平。记为K1K0 =10。
2. 要使CK上跳沿时数据总线值打入R2,RWR引脚须低电平。选用K2控 制它,则K2应置于低电平,记为K2=0。
⑥ 放开STEP键,应看到CK灯亮、R2寄存器显示AC。记住看到的实际情况。 ⑦ 关闭实验箱电源。
⑧记录实验过程和现象。若实验现象与预测不符,则分析现象、查找原因、 排除故障、重复实验,直到得到预测结果或确信看到“新规律”。
三. 实验过程举例(3) 从这个例子中可以学到的知识:
1. 在这个实验中,人理解(分析)命令(自然语言形式)的含义,然后产生 控制总线上的信号,所以在这里人是“指令解码器或控制器”。 2. 在本接线形式下,完成这个操作的“机器命令”就是K2K1K0=010。若一 个计算机控制总线有16条,标记为C15~C0,而K2K1K0正好是控制总线的 C2C1C0,则这个操作的机器命令就是:
3.寄存器A的构成
或 门
A
一.背景知识(4)
4.寄存器W的构成
WEN
或 门
W
W7 W6 W5 W4 W3 W2 W1 W0
一.背景知识(5)
5.寄存器组(R0-R3)的构成
SB 0 0 1 1
SA 0 1 0 1
选择 R0 R1 R2 R3
二. 实验任务
1. 将57H写入A寄存器。 2. 将68H写入W寄存器。 3. 将12H写入R0寄存器。
3. 数据由K23~K16提供,据题意将它们置为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
一.实验目的
熟悉存储器和总线的硬件电,掌握静态随机存储器 RAM 工作特性及数据的读写方法。

了解与实验相关的各控制信号的意义,了解三态门在共享总线上所起的隔离作用,了解锁存器的作用及地址锁存的意义。

二.实验要求
按照实验步骤完成实验项目,实现对存储器的访问。

三.实验原理
实验所用的静态存储器由一片6116(2K×8bit)构成(位于MEM 单元),如图1所示。

6116有三个控制线:CS(片选线)、OE(读线)、WE(写线),其功能如表1所示,当片选有效(CS=0)时,OE=0 时进行读操作,WE=0 时进行写操作,本实验将CS 常接地。

(图一)
由于存储器(MEM)最终是要挂接到CPU 上,所以其还需要一个读写控制逻辑,使得CPU 能控制MEM 的读写,实验中的读写控制逻辑如图2 所示,由于T3 的参与,可以保证MEM 的写脉宽与T3 一致,T3 由时序单元的TS3 给出(时序单元的介绍见第三章3.3 系统实验单元电路中6.时序与操作台单元部分)。

IOM 用来选择是对I/O 还是对MEM 进行读写操作,RD=1 时为读,WR=1 时为写。

(图2)
实验原理图如图3所示,存储器数据线接至数据总线,数据总线上接有8 个LED 灯显示
D7…D0 的内容。

地址线接至地址总线,地址总线上接有8 个LED 灯显示A7…A0 的内容,地址由地址锁存器(74LS273,位于PC&AR 单元)给出。

数据开关(位于IN 单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。

地址寄存器为8 位,接入6116 的地址A7…A0,6116 的高三位地址A10…A8 接地,所以其实际容量为256 字节。

图3 存储器实验原理图
实验箱中所有单元的时序都连接至时序与操作台单元,CLR 都连接至CON 单元的CLR 按钮。

实验时T3 由时序单元给出,其余信号由CON 单元的二进制开关模拟给出,其中IOM 应为低(即MEM 操作),RD、WR 高有效,MR 和MW 低有效,LDAR 高有效。

四,实验步骤
(1) 关闭实验系统电源,按图4连接实验电路,并检查无误,图中将用户需要连接的信号用圆圈标明。

(2) 将时序与操作台单元的开关KK1、KK3 置为运行档、开关KK2 置为‘单步’档(时序单
元的介绍见第三章3.3 系统实验单元电路中6.时序与操作台单元部分)。

(3) 将CON 单元的IOR 开关置为1(使IN 单元无输出),打开电源开关,如果听到有‘嘀’报警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。

(4) 给存储器的00H、01H、02H、03H、04H 地址单元中分别写入数据11H、12H、13H、14H、15H。

由前面的存储器实验原理图(图3)可以看出,由于数据和地址由同一个数据开关给出,
图4 4 实验接线图
因此数据和地址要分时写入,先写地址,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0),数据开关输出地址(IOR=0),然后打开地址寄存器门控信号(LDAR=1),按动ST 产
生T3 脉冲,即将地址打入到AR 中。

再写数据,具体操作步骤为:先关掉存储器的读写(WR=0,RD=0)和地址寄存器门控信号(LDAR=0),数据开关输出要写入的数据,打开输入三态门(IOR=0),然后使存储器处于写状态(WR=1,RD=0,IOM=0),按动ST 产生T3脉冲,即将数据打入到存储器中。

写存储器的流程如图5 所示(以向00 地址单元写入11H 为例):
图5 写存储器流程图
(5) 依次读出第00、01、02、03、04 号单元中的内容,观察上述各单元中的内容是否与前面写入的一致。

同写操作类似,也要先给出地址,然后进行读,地址的给出和前面一样,而在进行读操作时,应先关闭IN 单元的输出(IOR=1),然后使存储器处于读状态(WR=0,RD=1,IOM=0),此时数据总线上的数即为从存储器当前地址中读出的数据内容。

读存储器的流程如图6 所示(以从00 地址单元读出11H 为例):
图6 读存储器流程图
如果实验箱和PC 联机操作,则可通过软件中的数据通路图来观测实验结果(软件使用说明请看第四章),方法是:打开软件,选择联机软件的“【实验】—【存储器实验】”,打开
存储器实验的数据通路图,如图7 所示。

进行上面的手动操作,每按动一次ST 按钮,数
据通路图会有数据的流动,反映当前存储器所做的操作(即使是对存储器进行读,也应按动一次ST 按钮,数据通路图才会有数据流动),或在软件中选择“【调试】—【单周期】”,其作用相当于将时序单元的状态开关置为‘单步’档后按动了一次ST 按钮,数据通路图也会反映当前存储器所做的操作,借助于数据通路图,仔细分析SRAM 的读写过程。

六,实验记录
做实验以往2AH里写入3BH为例,操纵上述流程,在电脑上得到如下的状态:
七.实验总结
在这次实验中,掌握了静态随机存储器 RAM 工作特性及数据的读写方法,了解了与实验相关的各控制信号的意义。

相关文档
最新文档