(完整版)不等式与不等式组小结与解含参数问题题型归纳

合集下载

(完整版)第九章不等式和不等式组知识点归纳

(完整版)第九章不等式和不等式组知识点归纳

第九章 不等式与不等式组一、知识结构图 二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。

不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。

3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。

4、解不等式:求不等式的解集的过程,叫做解不等式。

5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。

规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。

⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。

用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x >a 或x <a 的形式。

初中数学知识归纳解参数不等式的问题

初中数学知识归纳解参数不等式的问题

初中数学知识归纳解参数不等式的问题不等式是数学中常见的一个概念,而解参数不等式就是指含有参数的不等式。

在初中数学中,解参数不等式是一个重要的知识点,它要求我们找到一组参数的取值范围,使得不等式成立。

接下来,本文将对初中数学知识中解参数不等式的问题进行归纳总结。

一、一元一次不等式的参数解我们首先来看一元一次不等式的参数解。

一元一次不等式的一般形式为ax + b > 0(或<、≥、≤),其中a和b为常数。

当a>0时,不等式解集为x > -b/a(或<、≥、≤);当a<0时,不等式解集为x<-b/a(或>、≤、≥)。

如果将a和b看作参数,那么我们需要找到一组参数的取值范围,使得不等式成立。

举个例子,假设我们要解不等式2x + k > 0,其中k是参数。

根据一元一次不等式的参数解原则,我们可知当2>0时,不等式解集为x > -k/2;当2<0时,不等式解集为x < -k/2。

根据此原则,我们可以通过设定k的范围来找到使不等式成立的参数取值范围。

二、一元二次不等式的参数解接下来我们来看一元二次不等式的参数解。

一元二次不等式的一般形式为ax² + bx + c > 0(或<、≥、≤),其中a、b和c为常数,且a≠0。

解一元二次不等式需要通过判断二次函数的图像与x轴的关系来确定解集。

若a>0,则二次函数开口向上,解集为x < x1 或 x > x2;若a<0,则二次函数开口向下,解集为 x1 < x < x2。

其中,x1和x2可以通过求解二次方程ax² + bx + c = 0得到。

如果将a、b和c看作参数,我们同样需要找到一组参数的取值范围,使得不等式成立。

举个例子,假设我们要解不等式(x - p)(x - q) > 0,其中p和q是参数。

根据一元二次不等式的参数解原则,我们需要找到使(x - p)(x - q) > 0成立的参数范围。

不等式及不等式组知识总结,试题和答案

不等式及不等式组知识总结,试题和答案

初中精品数学精选精讲学科:数学任课教师:授课时间:年月年级课时教学课题不等式与不等式组教学目标〔知识点、考点、能力、方法〕知识点:不等式及性质,一元一次不等式,一元一次不等式组。

考点:不等式的解集,一元一次不等式及一元一次不等式组的解法,列一元一次不等式组解实际问题。

能力:能判断及解不等式组及不等式组,通过具体实例建立不等式,探索不等式的根本性质。

方法:了解一般不等式的解、解集以及解不等式的概念;然后具体研究一元一次不等式、一元一次不等式组的解、解集、难点重点一元一次不等式及一元一次不等式组的解法.实际问题与一元一次不等式〔组〕课堂教学过程课前检查作业完成情况:优□良□中□差□建议______________________________________________一、知识点大集锦不等式与不等式组1.熟悉知识体系2.不等式与不等式组的概念不等式:用“大于号〞、“小于号〞、“不等号〞、“大于等于〞或“小于等于〞连接并具有大小关系的式子,叫做不等式。

不等式组:几个不等式联立起来,叫做不等式组.〔注意:当有A<B<V类形式的不等式也算不等式组,叫做“连不等式〞。

解连不等式可把它拆成不等式组来求解。

3.一元一次不等式:只含有一个未知数,并且未知数的最高次数是一次,这样的不等式,叫做一元一次不等式. 4.不等式的根本性质:性质l:不等式的两边都加上(或减去)同一个数〔或式子〕,不等号的方向不变;性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变2.5.解不等式组解不等式组,可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出来。

〔1〕 求出不等式组中每个不等式的解集〔2〕 借助数轴找出各解集的公共局部〔3〕 写出不等式组的解集求公共局部的规律:大大取大,小小取小,大小小大取中间,大大小小无解.以两条不等式组成的不等式组为例,①假设两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小〞②假设两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大〞③假设两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。

不等式知识点及题型总结

不等式知识点及题型总结

不等式一、知识点:1. 实数的性质:0>-⇔>b a b a ;0<-⇔<b a b a ;0=-⇔=b a b a .2. 不等式的性质:性 质内 容对称性 a b b a >⇔<,a b b a <⇔>. 传递性 a b >且b c a c >⇒>.加法性质 a b a c b c >⇒+>+;a b >且c d a c b d >⇒+>+.乘法性质 ,0a b c ac bc >>⇒>;0a b >>,且00c d ac bd >>⇒>>. 乘方、开方性质 0,n n a b n N a b *>>∈⇒>;0,n n a b n N a b *>>∈⇒>.倒数性质 11,0a b ab a b>>⇒<.3. 常用基本不等式:条 件结 论 等号成立的条件a R ∈20a ≥ 0a = ,a R b R ∈∈ 222a b ab +≥,2()2a b ab +≤,222()22a b a b ++≥ a b =0,0>>b a基本不等式: 2a b ab +≥常见变式:2≥+b a a b ; 21≥+aa ab =0,0>>b a2211222b a b a ab b a +≤+≤≤+ a b =4.利用重要不等式求最值的两个命题:命题1:已知a ,b 都是正数,若ab 是实值P ,则当a=b=时,和a +b 有最小值2.命题2:已知a ,b 都是正数,若a +b 是实值S ,则当a=b=2s时,积ab 有最大值42s .注意:运用重要不等式求值时,要注意三个条件:一“正”二“定”三“等”,即各项均为正数,和或积为定值,取最值时等号能成立,以上三个条件缺一不可.5.一元二次不等式的解法:设a>0,x 1x 2是方程ax 2+bx+c=0的两个实根,且x 1≤x 2,则有结论:ax 2+bx+c>0⇔2040a ab ac >⎧=⎨-<⎩或检验;ax 2+bx+c<0⇔2040a ab ac <⎧=⎨-<⎩或检验 6. 绝对值不等式(1)|x |<a (a >0)的解集为:{x |-a <x <a}; |x |>a (a >0)的解集为:{x |x >a 或x <-a}。

完整版的不等式知识点和基本题型

完整版的不等式知识点和基本题型

完整版的不等式知识点和基本题型不等式是数学中一种重要的关系符号,它用来描述数值之间的大小关系。

以下是不等式的基本知识点和常见题型:1. 不等式基本概念- 不等式是指在两个数之间用不同的关系符号来表示大小关系,比如大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。

- 不等式的解集是使不等式成立的所有实数的集合。

2. 不等式的性质- 若 a > b,则 b < a。

- 若 a > b 且 b > c,则 a > c。

- 若 a > b 且 a > 0,则 ac > bc(c > 0)。

- 若 a > b 且 c < 0,则 ac < bc(c < 0)。

- 若 a > b 且c ≠ 0,则 ac > bc。

3. 不等式的解法- 在不等式两边同时加(减)相同的数,不等式的方向不变。

- 在不等式两边同时乘(除)正数,不等式的方向不变。

- 在不等式两边同时乘(除)负数,不等式的方向反向。

- 若不等式两边有平方根,应考虑正负情况。

4. 不等式的常见题型4.1. 一元一次不等式- 形如 ax + b > c 或 ax + b < c 的不等式,其中 a、b、c 为常数,x 为变量。

- 解法类似一元一次方程,通过移项和化简来求解。

4.2. 一元一次绝对值不等式- 形如 |ax + b| > c 或 |ax + b| < c 的不等式,其中 a、b、c 为常数,x 为变量。

- 需要根据绝对值的定义来分情况讨论和求解。

4.3. 二元一次不等式- 形如 ax + by > c 或 ax + by < c 的不等式,其中 a、b、c 为常数,x、y 为变量。

- 解法类似于解一元一次不等式,通过移项和化简来求解。

4.4. 二次不等式- 形如 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0 的不等式,其中 a、b、c 为常数,x 为变量。

(完整版)不等式与不等式组小结与解含参数问题题型归纳

(完整版)不等式与不等式组小结与解含参数问题题型归纳

第九章不等式与不等式知识点归纳-不等式及其解隼和不等式的性质用不等号表示大小关系的式子叫做不等式。

常见不等号有:“<”“>” y”“ H J含有未知数的不等式的所有解组成这个不等式的解集,解不等式就是求不等式的注:①在数轴上表示不等式解集时,有等号用实心点,无等号用空心圈。

©方向:大于向右画,小于向左画。

不等式的三个性质:①不等式两边同时加(或减)同一数或式子,不等号不变:②不等式两边同时乘(或除)同…正数,不等号不变:③不等式两边同时乘(或除)同一负数,不等号改变。

作差法比较a与b的大小:若a-b > 0则a>b;若a-b < 0 ;则Xb;若a-b=O,则a=b©例1、卜•列式子中哪些是不等式?①Oa+b=b+a; @a<b —5:③一3>—5;④xHl :⑤2x・3。

例2、若avbvo, mVO.用不等号填空。

a h a + i h + i 2 7① a—b __ 0:②a—5 b—5; ③一_ — _ :④___ = : ⑤G”_________ /?/«"— 1 2 3 2bnio⑥ab 0;⑦a+m b+m:⑧a? ____ b?;⑨am例3.①由ax < a ,可得X > 1可得a ______ :②由ax < a .可得*1可得《③ 由加x-2<2;v-w可得x>-l,那么"I 例取不等式5(»・+ 2)<28-2工的非负整数解是二、一元一次不等式及其实际问题一元一次不等式的探念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式(即分母中不含未知数),这样的不等式叫做一元一次不等式。

解一元一次不等式的一般步骤:(1)去分母(两边每一项同乘分母的最小公倍数)(2)去括号(括号里每一项都棘括号前面的系数)(3〉移项(变号后移项)(4)合并同类项(5)将X项系数化为1 (系数为员数要变号)。

(完整版)不等式常见题型分析

(完整版)不等式常见题型分析

不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系; 不等式的主要性质:(1) 对称性: a b b a(2) 传达性: a b, b c a c(3) 加法法规: a ba cbc ; a b,c da c bd ( 同向可加 )(4) 乘法法规: ab, c 0 ac bc ;a b, c 0 ac bca b 0, c dacbd ( 同向同正可乘 )(5)倒 数 法 则 :a b, ab1 1(6)乘 方 法 则 :baa b 0a nb n (n N * 且 n 1)(7) 开方法规: abnanb (n N * 且 n 1)2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式 (二)解不等式1、一元二次不等式的解法一元二次不等式 ax 2 bx c 0或 ax 2 bx c 0 a 0 的解集:设相应的一元二次方程ax 2 bx c0 a 0 的两根为 x 1、 x 2 且 x 1x 2 ,b 2 4ac ,则不等式的解的各种情况以下表:y ax 2bxcy ax 2bx cyax 2 bx c二次函数y ax 2bx c( a 0 )的图象一元二次方程有两相异实根有两相等实根ax 2bx cx 1 x 2b a 0 的根 x 1 , x 2 ( x 1 x 2 )无实根2aax 2bx c 0x xb(a 0)的解集 x x x 1或x x 2R2aax 2 bx c 0x x 1 x x 2(a0)的解集2、分式不等式的解法 :分式不等式的一般解题思路是先移项使右边为 0,再通分并将分子分母分解因式, 并使每一个因式中最高次项的系数为正 ,最后用标根法求解。

解分式不等式时, 一般不能够去分母,但分母恒为正或恒为负时可去分母。

f (x)f ( x) f ( x) g(x) 0f ( x) g(x) 0;g(x)g ( x)g( x)3、不等式的恒成立问题:常应用函数方程思想和“分别变量法”转变成最值问题若不等式 f x A 在区间 D 上恒成立 , 则等价于在区间 D 上 f x minA若不等式 fxB 在区间 D 上恒成立 , 则等价于在区间 D 上 fxmaxB(三)线性规划1、用二元一次不等式(组)表示平面地域二元一次不等式 Ax +By +C > 0 在平面直角坐标系中表示直线 Ax +By +C =0 某一侧所有点组成的平面地域 . (虚线表示地域不包括界线直线) 2、二元一次不等式表示哪个平面地域的判断方法由于对在直线 Ax +By +C =0 同一侧的所有点 ( x, y ) ,把它的坐标(x, y ) 代入 Ax +By +C ,所得到实数的符号都相同, 所以 只需在此直线的某一侧取一特别点 ( x 0, y 0) ,从 Ax 0+By 0+C 的正负即可判断 Ax +By +C > 0 表示直线哪一侧的平面地域 . (特别地,当 C ≠ 0 时,常把 原点 作为此特别点) 3、线性规划的有关看法:①线性拘束条件 :在上述问题中,不等式组是一组变量x 、y 的拘束条件,这组拘束条件都是关于 x 、 y 的一次不等式,故又称线性拘束条件.②线性目标函数 :关于 x 、 y 的一次式 z=ax+by 是欲达到最大值或最小值所涉及的变量x 、 y 的解析式,叫线性目标函数.③线性规划问题 :一般地,求线性目标函数在线性拘束条件下的最大值或最小值的问题, 统称为线性规划问题.④可行解、可行域和最优解 : 满足线性拘束条件的解(x,y )叫可行解.由所有可行解组成的会集叫做可行域.使目标函数获取最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性拘束条件下的最优解的步骤:( 1)搜寻线性拘束条件,列出线性目标函数; ( 2)由二元一次不等式表示的平面地域做出可行域;( 3)依照线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优 解(四)基本不等式ab ab21.若 a,b ∈ R ,则 a 2+b 2≥ 2ab,当且仅当 a=b 时取等号 .ab b 时取 " " 号).2.若是 a,b 是正数,那么ab(当且仅当 a2变形: 有 :a+b ≥ 2 ab ;ab ≤a b2,当且仅当 a=b 时取等号 .23.若是 a,b ∈ R+,a ·b=P (定值 ),当且仅当 a=b 时 ,a+b 有最小值 2 P ;若是 a,b ∈ R+,且 a+b=S (定值 ),当且仅当 a=b 时 ,ab 有最大值S 2.4注:( 1)当两个正数的积为定值时,能够求它们和的最小值,当两个正数的和为定值时,能够求它们的积的最小值,正所谓“积定和最小,和定积最大”.( 2)求最值的重要条件“一正,二定,三取等”4. 常用不等式 有:(1) a 2 b 2a bab2( 依照目标不等式左右的运算结构2211a b采纳 ) ;( 2) a 、b 、 c R , a 2 b 2 c 2 ab bc ca (当且仅当 ab c 时,取等号);( 3)若 a b 0, m 0 ,则bb m(糖水的浓度问题)。

(完整)第九章不等式与不等式组知识点+例题+练习,推荐文档

(完整)第九章不等式与不等式组知识点+例题+练习,推荐文档
4.下列说法错误的是( )
D、 m > n 22
A、1 不是 x≥2 的解
B、0 是 x<1 的一个解
C、不等式 x+3>3 的解是 x>0 D、x=6 是 x-7<0 的解集
5.下列数值:-2,-1.5,-1,0,1.5,2 能使不等式 x+3>2 成立的数有
( )个.
A、2
B、3
C、4
D、5
6.不等式 x-2>3 的解集是( )
(3) 2x-4≥0
(4)- 1 x+2>5 3
3.已知有理数 m、n 的位置在数轴上如图所示,用不等号填空. (1)n-m ____0; (2)m+n _____0; (3)m-n ____0; (4)n+1 ____0; (5)mn ____0; (6)m-1____0.
4.已知不等式
n £­1
第4页共6页
________. 12.三个连续正整数的和不大于 12,符合条件的正整数共有________组. 13.如果 a<-2,那么 a 与 1 的大小关系是___________.
a 14.由 x>y,得 ax≤ay,则 a ______0 三、解答题 1.根据下列的数量关系,列出不等式 (1)x 与 1 的和是正数
0 m1
数解是方程 3x- 3 ax=6 的解,求 a 的值. 2
5x-2<6x+1 的最小正整
第5页共6页
5.试写出四个不等式,使它们的解集分别满足下列条件: (1) x=2 是不等式的一个解;
(2) -2,-1,0 都是不等式的解;
(3) 不等式的正整数解只有 1,2,3;
(4) 不等式的整数解只有-2,-1,0,1.
x+3>0.
6.不等式 6-x≤0 的解集是__________.

不等式知识点及题型总结

不等式知识点及题型总结

不等式一、知识点:1. 实数的性质:0>-⇔>b a b a ;0<-⇔<b a b a ;0=-⇔=b a b a .2. 不等式的性质:3. 常用基本不等式:4.利用重要不等式求最值的两个命题:命题1:已知a ,b 都是正数,若ab 是实值P ,则当a=b=时,和a +b 有最小值2.命题2:已知a ,b 都是正数,若a +b 是实值S ,则当a=b=2s时,积ab 有最大值42s .注意:运用重要不等式求值时,要注意三个条件:一“正”二“定”三“等”,即各项均为正数,和或积为定值,取最值时等号能成立,以上三个条件缺一不可.5.一元二次不等式的解法:设a>0,x 1x 2是方程ax 2+bx+c=0的两个实根,且x 1≤x 2,则有结论:ax 2+bx+c>0⇔20040a ab ac >⎧=⎨-<⎩或检验;ax 2+bx+c<0⇔2040a ab ac <⎧=⎨-<⎩或检验 6. 绝对值不等式(1)|x |<a (a >0)的解集为:{x |-a <x <a}; |x |>a (a >0)的解集为:{x |x >a 或x <-a}。

(2)|b ||a ||b a |||b ||a ||+≤±≤-7. 不等式证明方法:基本方法:比较法、综合法、分析法、反证法 辅助方法:换元法(三角换元、均值换元等)、放缩法、构造法、判别式法特别提醒:不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,最常用的思路是用分析法探求证明途径,再用综合法加以叙述。

我们在利用不等式的性质或基本不等式时要注意等号、不等号成立的条件。

例:解下列不等式:(1) 27120x x -+>; (2) 2230x x --+≥;(3)2210x x -+<;(4)2220x x -+<.解:(1)方程27120x x -+=的解为123,4x x ==.根据2712y x x =-+的图象,可得原不等式27120x x -+>的解集是{|34}x x x <>或.(2)不等式两边同乘以1-,原不等式可化为2230x x +-≤.方程2230x x +-=的解为123,1x x =-=.根据223y x x =+-的图象,可得原不等式2230x x --+≥的解集是{|31}x x -≤≤.(3)方程2210x x -+=有两个相同的解121x x ==.根据221y x x =-+的图象,可得原不等式2210x x -+<的解集为∅.(4)因为0∆<,所以方程2220x x -+=无实数解,根据222y x x =-+的图象,可得原不等式2220x x -+<的解集为∅.练习1. (1)解不等式073<+-x x ;(若改为307x x -≤+呢?) (2)解不等式2317x x -<+;解:(1)原不等式⎩⎨⎧>-<+⎩⎨⎧<->+⇔03,0703,07x x x x 或{|73}x x ∴-<<(该题后的答案:{|73}x x -<≤).(2)1007x x -<+即{|710}x x ∴-<<.8、最值定理设x 、y 都为正数,则有⑴ 若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵ 若xy p =(积为定值),则当x y =时,和x y +取得最小值 即:“积定,和有最小值;和定,积有最大值” 注意:一正、二定、三相等几种常见解不等式的解法 重难点归纳解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题(1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法(2)掌握用零点分段法解高次不等式和分式不等式,特别要注意因式的处理方法(3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法 (4)掌握含绝对值不等式的几种基本类型的解法(5)在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式 (6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论典型题例示范讲解例1:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况.当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.不等式左右两边都是含有x 的代数式,必须先把它们移到一边,使另一边为0再解.例:解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或 解下列分式不等式:例:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x (1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

人教版七年级数学下册第九章 不等式与不等式组知识点及题型总结讲义

人教版七年级数学下册第九章 不等式与不等式组知识点及题型总结讲义

①已知不等式组 xx>>3a的解集为 x>3,则 a 的取值范围是
②已知不等式组 xx>>3a的解集为 x>a,则 a 的取值范围
x>a
③已知不等式组 x<3 无解,则 a 的取值范围
.
x>a
④已知不等式组 x<3 有解,则 a 的取值范围
.
. .
变式:1、不等式组
x 9<5x x>m 1
1
的解集是
① 3x 2 5x 6
3 2x 2 x
x 3(x 2) 4

1 2x 3
x
1
③⑥-2<1-
1 5
x< 3 5
2x - 7<(3 x -1)

4 3
x
3
1-
2 3
x
2x -1 - 5x 1 1 3、解不等式组 3 2 并写出该不等式组的最大整数解.
5x -1<(3 x 1)
C. x>0
D.x≥1
3、若不等式 x-3(x-2)≤a 的解集为 x≥-1,则 a=( )
4.若(m - 2)x2m1 -1>5是关于 x 的一元一次不等式,则该不等式的解集为
.
2、一元一次不等式的特殊解
练习:1、求 x+3<6 的所有正整数解.
2、求 10-4(x-3)≥2(x-1)的非负整数解,并在数轴上表示出来.
考点二、不等式基本性质
1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向不变,则这个数是正数.
基本训练:若 a>b,ac>bc,则 c
0.
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

七年级数学下册第九章不等式与不等式组知识点归纳总结(精华版)(带答案)

七年级数学下册第九章不等式与不等式组知识点归纳总结(精华版)(带答案)

七年级数学下册第九章不等式与不等式组知识点归纳总结(精华版) 单选题1、若不等式组{x+m>2n−x>−4的解集为1<x<2,则(m+n)2022的值为()A.−1B.0C.1D.2答案:C分析:先解不等式组,再根据不等式组的解集确定m、n的值,代入原式计算即可.{x+m>2①n−x>−4②解①得x>2−m解②得x<n+4∵解集为1<x<2∴2−m=1,n+4=2∴m=1,n=−2∴(m+n)2022=(1−2)2022=1故选:C.小提示:本题考查了解一元一次不等式组、解一元一次方程、代入求值,熟练掌握知识点是解题的关键.2、若m>n,则下列各式中正确的是()A.m2>n2B.m+1>n−1C.m2+1>n2−1D.m−1>n+1答案:B分析:根据m>n,可以取满足条件的特殊值m=−2,n=−3进行判断.解:m>n,当m=−2,n=−3时,A、m2=4,n2=9,m2<n2,故该选项错误,不符合题意;B、∵m>n,∴m+1>n+1,又∵n+1>n−1,∴m+1>n−1,故该选项正确,符合题意;C、m2+1=5,n2−1=8,m2+1<n2−1,故该选项错误,不符合题意;D、m−1=−3,n+1=−2,m−1<n+1,故该选项错误,不符合题意.故选B.小提示:本题考查了不等式,可以采用特殊值的方法进行判断.3、椰树牌椰子汁外包装标明:净含量为330±5g,表明了这瓶椰子汁的净含量x的范围是()A.315<x<330B.325≤x<330C.315<x≤325D.325≤x≤335答案:D分析:根据不等式的定义可得答案.解:这瓶椰子汁的净含量x的范围是:330−5≤x≤330+5,即325≤x≤335,故选:D.小提示:本题考查了不等式的定义,正确理解330±5g的意义是解题关键.4、不等式﹣2x+4<0的解集是()A.x>1B.x>﹣2C.x<2D.x>22答案:D分析:首先通过移项得到-2x<-4,然后利用不等式性质进一步化简即可得出答案.解:移项可得:−2x<−4,两边同时除以-2可得:x>2,∴原不等式的解集为:x>2,故选:D.小提示:本题主要考查了解一元一次不等式,熟练掌握相关方法是解题关键.5、不等式4x+1>x+7的解集在数轴上表示正确的是()A.B.C.D.答案:A分析:先将不等式移项、合并同类项、系数化为1求得其解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可判断答案.解:解不等式:4x+1>x+7,移项得:4x−x>7−1合并同类项得:3x>6系数化为1得:x>2,数轴上表示如图所示,故选:A.小提示:本题主要考查解一元一次不等式及再数轴上表示不等式解集的能力,掌握“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则是解题的关键.6、若0<x<1,则下列选项正确的是()A.x<1x <x2B.x<x2<1xC.x2<x<1xD.1x<x<x2答案:C分析:利用不等式的基本性质,分别求得x、x2及1x的取值范围,然后比较,即可做出选择.解:∵0<x<1,∴0<x2<x(不等式两边同时乘以同一个大于0的数x,不等号方向不变);0<1<1x(不等式两边同时除以同一个大于0的数x,不等号方向不变);∴x2<x<1x.故选:C.小提示:考查了有理数大小比较,解答此题的关键是熟知不等式的基本性质:基本性质1:不等式两边同时加或减去同一个数或式子,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于0的数或式子,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于0的数或式子,不等号方向改变.7、若a<b,则下列式子中,错误..的是()A.2a<2b B.a−2<b−2C.1−a>1−b D.−12a<−12b答案:D分析:利用不等式的基本性质逐一判断即可.解:A. 若a<b,则2a<2b正确,故A不符合题意;B. 若a<b,则a−2<b−2正确,故B不符合题意;C. 若a<b,则−a>−b,1−a>1−b正确,故C不符合题意;D. 若a<b d,则−12a>−12b,所以D错误,故D符合题意,故选:D.小提示:本题考查不等式的性质,掌握相关知识是解题关键.8、已知非负数 x,y,z 满足.3−x2=y+23=z+54.,设W=3x−2y+z,则 W 的最大值与最小值的和为()A.−2B.−4C.−6D.−8答案:C分析:首先设3−x2=y+23=z+54=k,求得x=−2k+3,y=3k−2,z=4k−5,又由x,y,z均为非负实数,即可求得k的取值范围,则可求得W的取值范围.解:设3−x2=y+23=z+54=k,则x=−2k+3,y=3k−2,z=4k−5,∵x,y,z均为非负实数,∴{−2k+3⩾03k−2⩾04k−5⩾0,解得54⩽k⩽32,于是W=3x−2y+z=3(−2k+3)−2(3k−2)+(4k−5)=−8k+8,∴−8×32+8⩽−8k+8⩽−8×54+8,即−4⩽W⩽−2.∴W的最大值是−2,最小值是−4,∴W的最大值与最小值的和为−6,故选:C.小提示:此题考查了最值问题.解此题的关键是设比例式:3−x2=y+23=z+54=k,根据已知求得k的取值范围.此题难度适中,注意仔细分析求解.9、给出下列各式:①−3<0;②a+b;③x=5;④x2−xy+y2;⑤x+2>y−7;⑥a≠3.其中不等式的个数是()A.5B.2C.3D.4答案:C分析:运用不等式的定义进行判断.解:①−3<0是不等式;②a+b是代数式,不是不等式;③x=5是等式,④x2−xy+y2是代数式,没有不等关系,所以不是不等式,⑤x+2>y−7是不等式,⑥a≠3是不等式.不等式有①⑤⑥,共3个.故选:C.小提示:本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>,<,≤,≥,≠.10、如果a>b,那么下列结论一定正确的是()A.a+3<b+3B.a-3<b-3C.3a>3b D.-3a>-3b答案:C分析:根据不等式的基本性质即可解决.解:A.∵a >b ,∴a +3>b +3,原变形错误,故本选项不符合题意;B. ∵a >b ,∴a -3>b -3,原变形错误,故本选项不符合题意;C. ∵a >b ,∴3a >3b ,原变形正确,故本选项符合题意;D. ∵a >b ,∴-3a <-3b ,原变形错误,故本选项不符合题意;故选:C小提示:本题主要考查不等式的性质.需利用不等式的性质对根据已知得到的不等式进行变形,从而找到最后的答案.填空题11、“寒辞去冬雪,暖带入春风”,随着新春佳节的临近,家家户户都在准备年货,腊肉香肠几乎是川渝地区必备的年货之一.某超市购进一批川味香肠和广味香肠进行销售,试销期间,两种香肠各销售100千克,销售总额为12000元,利润率为20%.正式销售时,超市决定将两种香肠混装成礼盒的形式促销(每个礼盒的成本为混装香肠的成本之和),其中A 礼盒混装2千克广味香肠,2千克川味香肠;B 礼盒混装1千克广味香肠,3千克川味香肠,两种礼盒的数量之和不超过180个.超市工作人员在对这批礼盒进行成本核算时将两种香肠的成本刚好弄反,这样核算出的成本比实际成本少了500元,则超市混装A 、B 两种礼盒的总成本最多为______元.答案:36250分析:设每千克川味香肠的成本为x 元,每千克广味香肠的成本为y 元,先根据利润率的计算公式可得x +y =100,从而可分别求出每个A,B 礼盒的实际成本和核算出的成本,再设A 礼盒的数量为a 个,B 礼盒的数量为b 个,根据“核算出的成本比实际成本少了500元”可得x −y =250b ,从而可得x =125b +50,然后结合a +b ≤180求出超市混装A,B 两种礼盒的总成本的最大值即可得.解:设每千克川味香肠的成本为x 元,每千克广味香肠的成本为y 元,由题意得:100×(1+20%)(x +y)=12000,即x +y =100,则每个A 礼盒的实际成本和核算出的成本均为2x +2y =200(元),每个B 礼盒的实际成本为3x +y =2x +100(元),核算出的成本为x +3y =2y +100(元),设A 礼盒的数量为a 个,B 礼盒的数量为b 个,由题意得:{a +b ≤180200a +(2x +100)b −200a −(2y +100)b =500,即{a +b ≤180x −y =250b , 联立{x −y =250b x +y =100,解得x =125b +50, 则超市混装A,B 两种礼盒的总成本为200a +(2x +100)b =200a +2xb +100b=200a +2b ⋅(125b +50)+100b =200(a +b)+250≤36250,即超市混装A,B 两种礼盒的总成本最多为36250元,所以答案是:36250.小提示:本题考查了列代数式、二元一次方程组的应用等知识点,通过设立未知数,正确找出等量关系是解题关键.12、已知关于x 的不等式组{x −1>2x ≤m无解,则m 的取值范围是____. 答案:m ≤3分析:先计算第一个不等式,得到x >3,不等式组无解,即两个不等式没有公共解集,据此解题.解:由不等式组可得{x >3x ⩽m, 因为不等式组无解,根据大大小小找不到的原则可知m ⩽3,所以答案是:m ≤3.小提示:本题考查由一元一次不等式组的解集求参数,是重要考点,难度较易,掌握相关知识是解题关键.13、若m >n ,则﹣2m ________﹣2n (填>,<)答案:<分析:根据不等式的性质进行求解即可.解:∵m >n∴−2m <−2n所以答案是:<.小提示:本题考查了不等式的性质.解题的关键在于明确不等式两边同时乘以一个负数,不等号的方向改变.14、已知关于x 的不等式组{2x −1<4x −m >0的整数解有且只有2个,则m 的取值范围是__________. 答案:0≤m <1分析:首先解每个不等式,然后根据不等式组的整数的个数,确定整数解,从而确定m 的范围.解: {2x −1<4①x −m >0②, 解①得x <52,解②得x >m ,则不等式组的解集是m <x <52. 不等式组有2个整数解,则整数解是1,2.则0≤m <1.故答案是:0≤m <1.小提示:此题考查的是一元一次不等式组的解法和一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15、不等式组{x −2>1x+12<3 的解集是________. 答案:3<x <5分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.解:由x −2>1,得:x >3,由x+12<3,得:x <5,则不等式组的解集为3<x <5,所以答案是:3<x <5.小提示:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.解答题16、(1)已知不等式组{x −3(x −b)≤4a+2x 3>x −1 的解集为1≤x <2,求a 、b 的值. (2)已知关于x 的不等式组{x ≥a −3x ≤15−5a无解,试化简|a +1|-|3-a |. 答案:(1)a =-1,b =2;(2)4.分析:(1)先解出含参数的不等式的解集,再根据已知的解集求出a 、b 的值;(2)根据不等式无解得a -3>15-5a ,即可求出a 的取值范围,再根据绝对值的运算法则进行化简.(1){x −3(x −b)≤4①a+2x 3>x −1② 由①,得x ≥3b 2-2, 由②,得x <3+a ,所以不等式组的解集为3b 2-2≤x <3+a ,因为已知不等式组的解集委1≤x <2,所以3b 2-2=1,3+a =2, 所以a =-1,b =2.(2)∵关于x 的不等式组{x ≥a −3x ≤15−5a无解, ∴a -3>15-5a∴a >3,原式=a +1-(a -3)=4.小提示:此题主要考查了根据不等式的解集情况求番薯,化简绝对值,解题的关键是熟知不等式的解法. 17、x+35的值能否同时大于2x +3和1−x 的值?说明理由.答案:不能,见解析分析:根据题意列出不等式组,然后分别求出两个不等式的解集,再求公共部分即可.解:不能.理由如下:{x+35>2x +3①x+35>1−x② ,由①得:x<−43,由②得:x>13,∴不等式组无解,因此不能同时大于2x+3和1−x的值.小提示:本题考查的是根据题意列不等式组并求解,熟练掌握“同大取大,同小取小,大小小大取中间,小小大大无解”.18、解不等式组:{5x+2≥3(x-1)①12x-1≤7-32x②,并把解集在数轴上表示出来.答案:-2.5≤x≤4,数轴上表示见解析分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.解:解不等式①,得:x≥-2.5,解不等式②,得:x≤4,则不等式组的解集为-2.5≤x≤4,将不等式组的解集表示在数轴上如下:小提示:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

不等式(组)的知识点

不等式(组)的知识点

不等式与不等式组知识点总结一、知识导航图二、课标要求一元一次不等式(组)的应用一元一次不等式(组)的解法一元一次不等式(组)解集的含义一元一次不等式(组)的概念不等式的性质一元一次不等式和一元一次不等式组三、知识梳理考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。

常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

不等式的解集可以在数轴上直观的表示出来,具体表示方法是:①确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;②确定方向:大向右,小向左。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

考点二、不等式基本性质(3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

如果a>b,那么a+c>b+c,a-c>b-c.2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

如果a >b ,并且c >0,那么a c >b c3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

如果a >b ,并且c <0,那么a c <b c4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式 (6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为1说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!) 移 项,得 23663-+≤-x x (移项要变号)合并同类项,得 73≤-x (计算要正确) 系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了)考点四、一元一次不等式组 (8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

人教版七年级数学下册第九章不等式与不等式组知识点及题型总结讲义

人教版七年级数学下册第九章不等式与不等式组知识点及题型总结讲义

一元一次不等式与一元一次不等式组一、不等式考点一、不等式的概念不等式:用不等号表示不等关系的式子,叫做不等式。

不等号包括.题型一会判断不等式下列代数式属于不等式的有 .22①-X > 5 ② 2x-y V 0 ③2 5 3 ④-3 V 0 ⑤ x=3 ⑥ x xy y⑦x工5⑧ x2-3x 2>0 ⑨ x y 0题型二会列不等式根据下列要求列出不等式①.a是非负数可表示为 .―②.m的5倍不大于3可表示为③.x与17的和比它的2倍小可表示为.④.x和y的差是正数可表示为3⑤.x的-与12的差最少是6可表示为.5考点二、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向不变,则这个数是正数基本训练:若a>b, ac>be,则c 0.3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向改变,则这个数是负数。

基本训练:若a>b, ae V be,贝U e 0.4、如果不等式两边同乘以0,那么不等号变成等号,不等式变成等式。

练习:1、指出下列各题中不等式的变形依据①.由3a>2得a> 3理由: _________________________________ _______________________________a>-7 理由:5③ .由-5a<1得a>④ .由4a>3a+1得a>1理由:-) C. x+3 > y+3 D.-3x > -3y))))()式的解。

练习:1、判断下列说法正确的是( )A. x=2是不等式x+3v 2的解B.x =3是不等式3x v 7的解。

C.不等式3x v 7的解是x v 2D.x=3是不等式3x> 9的解2.下列说法错误的是( )A.不等式x v 2的正整数解只有一个B. -2是不等式2x-1 v 0的一个解C.不等式-3x > 9的解集是x >-3D.不等式x v 10的整数解有无数个不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

(完整版)不等式知识点归纳大全

(完整版)不等式知识点归纳大全

《不等式》知识点归纳一.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(2)解分式不等式()()()0≠>a a x g x f 的一般解题思路是什么?(移项通分,分子分母分解因式,x 的系数变为正值,标根及奇穿过偶弹回);(3)含有两个绝对值的不等式如何去绝对值?(一般是分类讨论、平方转化或换元转化);(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.二、 利用重要不等式ab b a 2≥+ 以及变式2()2a b ab +≤等求函数的最值时,务必注意a ,b +∈R (或a ,b 非负),且“等号成立”时的条件是积ab 或和a +b 其中之一应是定值(一正二定三等四同时).三、.2211a b a b+≥≥≥+(根据目标不等式左右的运算结构选用) a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号)四、含立方的几个重要不等式(a 、b 、c 为正数):(,);五、最值定理(积定和最小) ①,则当时和有最小值(和定积最大)②若和,则当是积有最大值. 【推广】:③已知,,,,+∈R y x b a 若1=+by ax ,则有则y x 11+的最小值为:3333a b c abc++≥0ab c ++>等式即可成立时取等或0=++==c b a c b a 3a b c ++⇒3()3a b c abc ++≤3333a b c ++≤,0,x y x y >+≥由()xy P =定值x y =x y +,0,x y x y >+≥由()x y S +=定值x y =xy 214s 21111()()by ax ax by a b a b xy x y x y +=++=+++++=+≥④等式到不等式的转化:已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________. 4)2()2(82)2(822y x y x y x y x xy +≤+-=⋅⇒+-=即0)42)(82(08)2(4)2(2≥-+++⇒≥-+++y x y x y x y x 解得4282≥+-≤+y x y x (舍)或故x +2y 的最小值是4 如果求xy 的最大值,则xy xy y x y x xy 22282)2(82≥-=+⇒+-=, 然后解关于xy 的一元二次不等式,求xy 的范围,进而得到xy 的最大值六、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法和放缩法(注意:对“整式、分式、绝对值不等式”的放缩途径, “配方、函数单调性等”对放缩的影响).七、含绝对值不等式的性质:a b 、同号或有0⇔||||||a b a b +=+≥||||||||a b a b -=-;a b 、异号或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.八、不等式中的函数思想不等式恒成立问题“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。

人教版七年级数学下册 第九章 不等式与不等式组 知识点总结及典型例题 (25张PPT)

人教版七年级数学下册 第九章  不等式与不等式组  知识点总结及典型例题 (25张PPT)

字母表示:(1)如果a>b,那么a+c>b+c; (2)如果a<b,那么a+c<b+c.
注:不等式的性质1是对不等式的两边同时进行加减,所加或所减的数 (或式子)要相同,不等号的方向不变.
例:填空: (1)已知a>b,则a+1___b+1,根据:________________; (2)已知a<b,则a-3___b-3,根据:________________; (3)已知a>b,则2a___a+b,根据:________________;
故x=3是不等式的解,同理可知,x=π也是不等式的解;把X=0代入不等
知识点 2 不等式的解、解集与解不等式
式的左边,得3x-1=-1<2,所以不等式不成立,故x=0不是不等式的解。 同理可知,x=-2,x= 1 也不是不等式的解。
2
(2)根据不等关系,易知不等式的解集为x>3,在数轴上表示时,要 注意表示3的点上画空心圆圈。 答案:(1)A (2)x>3 如图:
“公共部分”是指解集中同时满足不等式组中每一个不等式的 那部分解集.若组成不等式组的各个不等式的解集没有公共部 分,则这个不等式组无解.
2.特别提醒:数轴是确定一元一次不等式组解集的有效工具,要注意“两定”: (1)定边界点:一般在数轴上只标出原点和边界点即可.定边界点时要注意点
是实心圆点还是空心圆圈,若边界点含于解集则为实心圆点;若边界点 不
第九章 不等式与不等式组 知识点梳理
知识点 1 不等式的概念
1.不等式:用符号“>”“<”(或“≠”)表示大小(或不等)关系的式子.
2.注意:
(1)“>”是大于号,读作“大于”;“<”是小于号,读作“小于”.

不等式与不等式组知识点归纳

不等式与不等式组知识点归纳

不等式与不等式组知识点归纳一、不等式知识概念1.不等式:用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。

2.不等式的解:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4.求不等式的解集的过程,叫做解不等式。

二、一元一次不等式的概念:1.一元一次不等式:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2.解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1三、一元一次不等式组的概念:1.一元一次不等式组:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3.求不等式组的解集的过程,叫做解不等式组。

4.当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

7、不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

7.定理与性质不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

方程与不等式之不等式与不等式组知识点总复习有解析

方程与不等式之不等式与不等式组知识点总复习有解析

方程与不等式之不等式与不等式组知识点总复习有解析一、选择题1.若不等式组236x xx m-<-⎧⎨<⎩无解,那么m的取值范围是()A.m>2 B.m<2 C.m≥2D.m≤2【答案】D【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.【详解】解:236 x xx m-<-⎧⎨<⎩②①由①得,x>2,由②得,x<m,又因为不等式组无解,所以根据“大大小小解不了”原则,m≤2.故选:D.【点睛】此题考查解一元一次不等式组,解题关键在于掌握求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.2.关于 x 的不等式组21231xx a-⎧<⎪⎨⎪-+>⎩恰好只有 4 个整数解,则 a 的取值范围为()A.-2≤a<-1 B.-2<a≤-1 C.-3≤a<-2 D.-3<a≤-2【答案】A【解析】【分析】首先确定不等式组的解集,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解:21231xx a-⎧<⎪⎨⎪-+>⎩①②解不等式组①,得x<72,解不等式组②,得x>a+1,则不等式组的解集是a+1<x<72,因为不等式组只有4个整数解,则这4个解是0,1,2,3.所以可以得到-1⩽ a+1<0,解得−2≤a<−1.故选A.【点睛】本题主要考查了一元一次不等组的整数解.正确解出不等式组的解集,确定a+1的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.不等式的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】【分析】先解不等式,根据解集确定数轴的正确表示方法.【详解】解:不等式2x+1>-3,移项,得2x>-1-3,合并,得2x>-4,化系数为1,得x>-2.故选C.【点睛】本题考查解一元一次不等式,注意不等式的性质的应用.4.不等式组360420xx+≥⎧⎨->⎩的所有整数解的和为()A.1B.1-C.2D.2-【答案】D【解析】【分析】求出不等式组的解集,再把所有整数解相加即可.【详解】360420x x +≥⎧⎨->⎩360x +≥解得2x ≥-420x ->解得2x >∴不等式组的解集为22x -≤<∴不等式组的所有整数解为2,1,0,1--∴不等式组的所有整数解之和为21012--++=-故答案为:D .【点睛】本题考查了解不等式组的问题,掌握解不等式组的方法是解题的关键.5.已知a >b ,则下列不等式中,正确的是( )A .-3a >-3bB .3a ->3b -C .3-a >3-bD .a-3>b-3【答案】D【解析】【分析】由题意可知,根据不等式的性质,看各不等式是加(减)什么数或乘(除)以哪个数得到的,用不用变号即可求解.【详解】A.a >b ,-3a <-3b ,故A 错误;B.a >b ,3a -<3b - ,故B 错误; C.a >b ,3-a <3-b ,故C 错误; D. a >b ,a -3>b -3,故D 正确;故答案为:D.【点睛】本题考查了不等式的性质,熟练掌握该知识点是本题解题的关键.6.解不等式组3422133xx x-≥⎧⎪⎨+>-⎪⎩①②时,不等式①②的解集在同一条数轴上表示正确的是( )A.B.C.D.【答案】D【解析】【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【详解】解不等式①得:1x≤-,解不等式②得:5x<,将两不等式解集表示在数轴上如下:故选:D.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.7.若a b>,则下列不等式中,不成立的是()A.33a b->-B.33a b->-C.33a b>D.22a b-+<-+【答案】A【解析】【分析】根据不等式的性质进行判断即可.【详解】解:A、根据不等式的性质3,不等式的两边乘以(-3),可得-3a<-3b,故A不成立;B、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立; D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.8.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是( )A .1x >-B .3x ≤C .13x -≤≤D .13x -<≤【答案】D【解析】【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【详解】由数轴知,此不等式组的解集为-1<x≤3,故选D .【点睛】 考查解一元一次不等式组,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.如果不等式(2)25a x a ->-的解集是4x <,则不等式251a y ->的解集是( ).A .52y < B .25y < C .52y > D .25y > 【答案】B【解析】【分析】根据不等式的性质得出20a -<,2542a a -=-,解得32a =,则2a=3,再解不等式251a y ->即可.【详解】解:∵不等式(a-2)x >2a-5的解集是x <4,∴20a -<, ∴2542a a -=-, 解得32a =, ∴2a=3, ∴不等式2a-5y >1整理为351y ->, 解得:25y <. 故选:B .【点睛】本题考查了含字母系数的不等式的解法,有一定难度,注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.10.下列不等式变形中,一定正确的是( )A .若ac bc >,则a b >B .若a b >,则22ac bc >C .若22a b c c>,则a b > D .若0a >,0b >,且11a b >,则a b > 【答案】C【解析】【分析】 根据不等式的基本性质分别进行判定即可得出答案.【详解】 A .当c <0,不等号的方向改变.故此选项错误;B .当c=0时,符号为等号,故此选项错误;C .不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D .分母越大,分数值越小,故此选项错误.故选:C .【点睛】此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.11.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )A.3<x<5 B.-5<x<3 C.-3<x<5 D.-5<x<-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.不等式组354xx≤⎧⎨+>⎩的最小整数解为()A.-1 B.0 C.1 D.2【答案】B【解析】【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解求最小值.【详解】解:354xx≤⎧⎨+>⎩①②解①得x≤3,解②得x>-1.则不等式组的解集是-1<x≤3.∴不等式组整数解是0,1,2,3,最小值是0.故选:B.【点睛】本题考查一元一次不等式组的整数解,确定x的范围是本题的关键.13.如果关于x 的分式方程有负数解,且关于y 的不等式组无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.3【答案】B【解析】【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.14.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3【答案】A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A .【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.15.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .【答案】A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】 213312x x +⎧⎨+≥-⎩<①②∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.16.一元一次不等式组2(3)40113x x x +-⎧⎪+⎨>-⎪⎩…的最大整数解是( ) A .1-B .0C .1D .2【答案】C【解析】【分析】解出两个不等式的解,再求出两个不等式的解集,即可求出最大整数解;【详解】()2340113x x x ⎧+-⎪⎨+>-⎪⎩①②… 由①得到:2x+6-4≥0,∴x ≥-1,由②得到:x+1>3x-3,∴x <2,∴-1≤x <2,∴最大整数解是1,故选C .【点睛】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.17.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2【答案】C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a −3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a −3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.18.已知不等式组2010x x -⎧⎨+≥⎩<,其解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】分别解不等式组中的每一个不等式,确定出各不等式解集的公共部分,进而在数轴上表示出来即可.【详解】2010x x -⎧⎨+≥⎩<①②, 解①得:x<2,解②得:x≥-1,故不等式组的解集为:-1≤x<2,故解集在数轴上表示为:.故选D.【点睛】本题考查了解一元一次不等式组,正确掌握解题方法以及解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.19.不等式组10235x x +≤⎧⎨+<⎩的解集在数轴上表示为( ) A . B .C .D .【答案】C【解析】【分析】 先分别解不等式,得到不等式组的解集,再在数轴上表示解集.【详解】因为,不等式组10235x x +≤⎧⎨+<⎩的解集是:x≤-1, 所以,不等式组的解集在数轴上表示为故选C【点睛】本题考核知识点:解不等式组.解题关键点:解不等式.20.关于x的不等式组x15x322x2x a3><+⎧-⎪⎪⎨+⎪+⎪⎩只有4个整数解,则a的取值范围是()A.145a3-≤≤-B.145a3-≤<-C.145a3-<≤-D.145a3-<<-【答案】C【解析】【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解:不等式组的解集是2-3a<x<21,因为不等式组只有4个整数解,则这4个解是20,19,18,17.所以可以得到16≤2-3a<17,解得-5<a≤-143.故选:C.【点睛】此题考查解不等式组,正确解出不等式组的解集,正确确定2-3a的范围,是解决本题的关键.。

人教初中数学不等式与不等式组知识点及习题总汇

人教初中数学不等式与不等式组知识点及习题总汇

[键入文字]戴氏教育开县校区年级:初一教师:张苏初中数学七年级知识点总结09不等式与不等式组〔含答案〕【编者按】本章内容要求学生经历建立一元一次不等式〔组〕这样的数学模型并应用它解决实际问题的过程,体会不等式〔组〕的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。

一.知识框架二、知识概念1.用符号“<〞“>〞“≤〞“≥〞表示大小关系的式子叫做不等式。

不等式的解:使不等式成立的未知数的值,叫做不等式的解。

不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

6.不等式:用不等号将两个解析式连结起来所成的式子。

在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.例如2x+2y≥2xy,sinx≤1,ex>0,2x<3,5x≠5等。

不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号“>〞“<〞连接的不等式称为严格不等式,用不小于号〔大于或等于号〕、不大于号〔小于或等于号〕≥〞“≤〞连接的不等式称为非严格不等式,或称广义不等式。

7.解不等式可遵循的一些同解原理[键入文字]年级:初一教师:张苏戴氏教育开县校区主要的有:①不等式F〔x〕<G〔x〕与不等式G〔x〕>F〔x〕同解。

②如果不等式F〔x〕<G〔x〕的定义域被解析式H〔x〕的定义域所包含,那么不等式F〔x〕<G〔x〕与不等式F〔x〕+H〔x〕<G〔x〕+H〔x〕同解。

③如果不等式F〔x〕<G〔x〕的定义域被解析式H〔x〕的定义域所包含,并且H〔x〕>0,那么不等式F(x)<G〔x〕与不等式H〔x〕F〔x〕<H〔x〕G〔x〕同解;如果H〔x〕<0,那么不等式F〔x〕<G〔x〕与不等式H(x)F〔x〕>H〔x〕G〔x〕同解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章不等式与不等式知识点归纳
一、不等式及其解集和不等式的性质
用不等号表示大小关系的式子叫做不等式。

常见不等号有:“<” “>” “≤” “≥” “ ≠ ”。

含有未知数的不等式的所有解组成这个不等式的解集,解不等式就是求不等式的解集。

注:①在数轴上表示不等式解集时,有等号用实心点,无等号用空心圈。

②方向:大于向右画,小于向左画。

不等式的三个性质:①不等式两边同时加(或减)同一数或式子,不等号不变;
②不等式两边同时乘(或除)同一正数,不等号不变;
③不等式两边同时乘(或除)同一负数,不等号改变。

作差法比较a 与b 的大小:若a-b>0,则a>b;若a-b<0;则a<b;若a-b=0, 则a=b。

例1 、下列式子中哪些是不等式?
①0a+b=b+a; ②a<b-5; ③-3>-5;④x≠1 ;⑤2x-3。

例2、若a<b<0,m<0,用不等号填空。

a b a +1 b +122
①a-b 0; ②a-5 b-5; ③--;④;⑤am bm
2 2
3 2
⑥ab 0;⑦a+m b+m;⑧a²b²;⑨am bm。

例3、①由ax <a ,可得x > 1可得a ;②由ax <a ,可得x<1 可得a ;
③由mx - 2 ≤ 2x -m可得x ≥-1 ,那么m 。

例4、不等式5(x + 2) ≤ 28 - 2x 的非负整数解是。

二、一元一次不等式及其实际问题
一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不
等式的两边都是整式(即分母中不含未知数),这样的不等式叫做一元一次不等式。

解一元一次不等式的一般步骤:(1)去分母(两边每一项同乘分母的最小公倍数)
(2)去括号(括号里每一项都要乘括号前面的系数)(3)移项(变号后移项)
(4)合并同类项(5)将x 项系数化为1(系数为负数要变号)。

一元一次不等式与实际问题(审设列解验答)
常见表示不等关系的关键词:①不超过,不多于,至多,最多(≤);②不少于,不少于,至少,最少(≥)③之前,少于,低于(<);④超过,多于,大于(>)。

(1)审(找表示不等关系的关键词); (2)设(把问题中的“至多、至少” 去掉)(3)列;(4)解;(5)验(实际问题是否需要求整数解);(6)答(加上“至多、至少”作答)。

三、不等式组及其解集,与实际问题
几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

不等式组中,几个一元一次不等式解集的公共部分,叫做由它们组成的不等式组的解集。

一元一次不等式组与实际问题(审设列解验答)
(1)审(找表示不等关系的关键词和题中涉及的两个未知量); (2)设(设其中一个
未知量,另一个用设的未知数表示)(3)列;(4)解;(5)验(实际问题是否需要求整数解);(6)答(方案问题要描述清楚)。

一元一次不等式组的基本类型(以两个不等式组成的不等式组为例)
类型(设 a>b )
不等式组的解集 数轴表示
1. (同大型,同大取大) x>a
2. (同小型,同小取小) x<b
3. (一大一小型,小大之间) b<x<a
4. (比大的大,比小的小空集)
无解
特殊:
⎧x >3> ⎧x ≥ 3 ⎧x 3
⎧x ≥ 3
⎨x <3无解,⎨无解无解有⎨解 3 ⎨x ≤ 3 ⎩ <;;⎩;x 3 ⎩x ≤

专题 解决含参数的一元一次不等式(组)
类型一、根据已知不等式(组)的解集,求参数的值(解集是突破口)
方法归纳:①表示解集;②根据已知解集的情况列出方程(组);③解方程(组)
例 1、若不等式
的解集为 ,求 k 值。

解:化简不等式,得 x≤5k ①,比较已知解集
,得
②,∴ ③。

例 2、若不等式组 的解集是-1<x<1,求(a+1)(b-1)的值?
解:化简不等式组,得 ① ∵ 它的解集是-1<x<1, ∴
也为其解集,比较得
② ∴(a+1)(b -
1)=-6. ③
⎩ ⎩
⎧ 2x + b > 0
练习、不等式组⎨- 3x + 5 ≥ a 的解集为: - 1 < x ≤ 3 ,则 a =
, b =。

类型二、根据已知不等式(组)的特殊解集,求参数的取值范围(解集是突破口) 方法归纳:①表示解集;②根据已知解集的情况列出不等式;③解不等式 例 1、 若关于 x 的不等式 3x-a >4(x-1)的解集是负数,求 a 的取值范围?
解:化简不等式得:x <4-a ①,∵ 它的解集是负数,∴只要 4-a ≤0 均可满足②∴a≥4③ 练习、若关于 x 的不等式-3(x+2)>m+2 的解集是正数,求 m 的取值范围?
方法归纳:①表示解集;②将解集表示在数轴上,平移分析;③得参数的取值范围。

例 1、已知关于 x 的不等式 x-a >0,的整数解共 5 个,则 a 的取值范围是。

例 2、已知关于 x 的不等式组 的整数解共 5 个,则 a 的取值范围是。

解:化简不等式组,得
有解①,将其表在数轴上,②
如图 1,其整数解 5 个必为 x=1,0,-1,-2,-3。

由图 1 得:-4<a≤-3。


⎧- x + m > 0 练习、不等式组⎨ 2x + 5 > 1

的整数解只有-2 和-1,则 a ,b 的取值范围

⎨x > -2
⎩ ⎩
类型三、根据不等式组是否有解,及解的特殊情况;求参数取值范围。

方法归纳:1、表示解集;2、将解集表示在数轴上,平移分析;3、得参数的取值范
围。

⎧- x + m > 0
例 1、 不等式组⎨ 2x + 5 > 1 有解,则 m 的取值范围

解:化简不等式组,得⎧ x <m
有解①,将其表示在数轴上②,观察可知:m≤-2③

⎧x <m
练习 1、若不等式组⎨ x <5 的解集是 x <5,则 m 的取值范围


⎪ - x + m > 0
2、若不等式组⎨ 3 的解集是 x < -3 ,则 m 的取值范围是。

⎪⎩ 3x + 8 < -1 ⎧- x + 3 > 0
3、不等式组⎨ 2x + k ≥ 1 无解,则 k 的范围。

类型四、根据已知方程(组)的解的情况,求参数的取值范围(解的情况是突破口)
方法归纳:①表示方程(组)的解;②根据已知解的情况列出不等式;③解不等式;
例 1、已知关于 x 的方程 5x-2m=3x-6m+2 的解大于-5,求符合条件 m 的非负整数值?
解:解方程的 x=1-2m ,① ∵解大于-5,∴1-2m >-5,② 解得:m <3,(3)
∴符合条件 m 的非负整数值为:0,1,2。


例 2.已知方程组⎨ x + y=m 的解是非负数,求 m 取值范围的?
⎩5x + 3y=13
解:解方程组 得 ①
∵方程组 的解是非负数,∴ 即 ②
解不等式组 (3) ∴m 的取值范围为 ≤m≤ ,
⎩ ⎧2x + y=1+m
练习 1、已知方程组⎨ x + 2y=1-m 的解满足 x >y ,求 m 取值范围的?
⎧2x -3y=1+a
练习 2、已知方程组⎨ ⎩ x + 2y=a
的解满足 x+y >0,求 m 取值范围的?。

相关文档
最新文档