二次函数的有关知识

合集下载

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是高中数学中的一个重要概念,它在数学和实际问题中都有广泛的应用。

本文将对二次函数的定义、性质、图像及其相关内容进行总结。

一、二次函数的定义二次函数是指形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c为常数且a ≠ 0。

其中,a 表示二次项的系数,b 表示一次项的系数,c 表示常数项。

二次函数的定义域为全体实数集。

二、二次函数的性质1. 凹凸性:二次函数的凹凸性取决于a 的正负性。

当a > 0 时,函数图像开口向上,为凹函数;当 a < 0 时,函数图像开口向下,为凸函数。

2. 对称轴:二次函数的对称轴是 x = -b / (2a)。

对称轴是图像的中心线,函数图像关于对称轴对称。

3. 零点:二次函数的零点是指函数值等于零的 x 值。

二次函数的零点可以有 0、1 或 2 个。

当判别式 D = b^2 - 4ac > 0 时,有 2个不同的实零点;当 D = 0 时,有一个实零点;当 D < 0 时,没有实零点。

4. 最值:当二次函数的开口向上时,函数的最小值为 f(-b / (2a)) = c - (b^2 - 4ac) / (4a);当二次函数的开口向下时,函数的最大值为 f(-b / (2a)) = c + (b^2 - 4ac) / (4a)。

三、二次函数的图像二次函数的图像为抛物线,其开口方向、顶点、对称轴和零点等特征在前面已经介绍过。

关于图像的绘制,可以根据以下步骤进行:1. 确定顶点:顶点的横坐标为 -b / (2a),纵坐标为 f(-b / (2a))。

2. 确定对称轴:对称轴的方程为 x = -b / (2a)。

3. 确定开口方向:根据 a 的正负性可以确定开口方向。

4. 确定零点:根据判别式 D 的值可以确定零点的情况。

除了以上内容,二次函数还与一些相关概念有密切联系:1. 判别式:二次函数的判别式 D = b^2 - 4ac 可以用来判断二次函数的零点情况。

二次函数的相关知识点总结

二次函数的相关知识点总结

二次函数的相关知识点总结一、二次函数的概念。

1. 定义。

- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。

其中x是自变量,a、b、c分别是二次项系数、一次项系数、常数项。

- 例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。

二、二次函数的图象。

1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。

2. 抛物线的顶点坐标。

- 对于二次函数y = ax^2+bx + c(a≠0),其顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。

- 例如,对于二次函数y=x^2-2x - 3,其中a = 1,b=-2,c=-3。

根据顶点坐标公式,-(b)/(2a)=-(-2)/(2×1)=1,frac{4ac - b^2}{4a}=frac{4×1×(-3)-(-2)^2}{4×1}=(-12 - 4)/(4)=-4,所以顶点坐标为(1,-4)。

3. 抛物线的对称轴。

- 对称轴方程为x =-(b)/(2a)。

4. 抛物线的开口方向。

- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。

- 例如,y = 3x^2+2x - 1中a = 3>0,开口向上;y=-2x^2+5x+3中a=-2 < 0,开口向下。

三、二次函数的性质。

1. 增减性。

- 当a>0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而减小;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大。

- 当a < 0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而增大;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小。

2. 最值。

- 当a>0时,抛物线开口向上,函数有最小值,y_min=frac{4ac - b^2}{4a},此时x =-(b)/(2a)。

二次函数必背知识点

二次函数必背知识点

二次函数必背知识点二次函数是数学中一种非常重要的函数形式,它的图像是一个抛物线,经常出现在各种数学问题中。

因此,对二次函数的理解对于学好数学非常重要。

下面是二次函数的一些必背知识点:1. 二次函数的标准形式是:y = ax^2 + bx + c,其中a、b、c是常数,而且a ≠ 0。

其中a决定了抛物线的开口方向和大小,b决定了抛物线的位置,c决定了抛物线与y轴的截距。

2.二次函数的图像是一个抛物线,其形状与a的正负有关。

当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

抛物线的顶点坐标为(-b/2a,f(-b/2a)),其中f(x)为二次函数。

3.二次函数的对称轴是一个垂直于x轴的直线,经过抛物线的顶点。

对称轴的方程为x=-b/2a。

4. 二次函数的零点是函数与x轴相交的点。

可以通过求解二次方程ax^2 + bx + c = 0来求得。

如果方程有两个不同的实数解,那么抛物线与x轴有两个交点;如果方程有一个实数解,那么抛物线与x轴相切;如果方程没有实数解,那么抛物线与x轴没有交点。

5.二次函数的最值可以通过判断a的正负来确定。

当a>0时,抛物线的最小值为f(-b/2a);当a<0时,抛物线的最大值为f(-b/2a)。

对于无最值的情况,可以根据抛物线的开口方向来判断。

6. 二次函数的导数是一个一次函数,表示了抛物线的切线斜率。

导数公式为f'(x) = 2ax + b。

如果a > 0,那么导数恒大于0,表示抛物线是递增的;如果a < 0,那么导数恒小于0,表示抛物线是递减的。

7.二次函数的平移可以通过调整a、b、c的值来实现。

平移操作可以改变抛物线的位置和形状。

8.二次函数的解析式可以通过给定的条件来确定,例如已知抛物线上两个点的坐标。

通过代入坐标得到方程组,可以解得二次函数的解析式。

9.二次函数与因式分解有密切关系。

已知二次函数的解析式,可以通过因式分解的方法写成y=a(x-x1)(x-x2)的形式,其中x1和x2为二次函数的零点。

二次函数的知识点总结

二次函数的知识点总结

二次函数的知识点总结一、基本概念1. 二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是实数且a≠0。

其中,a 控制抛物线的开口方向和大小,b控制抛物线在x轴方向的平移,c控制抛物线在y轴方向的平移。

2. 二次函数的图像二次函数的图像是一个称为抛物线的曲线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

3. 二次函数的顶点和对称轴二次函数的图像在抛物线上的最高(或最低)点称为顶点,顶点的横坐标x=-b/2a,即抛物线的对称轴,纵坐标等于f(-b/2a),即y的最小值或最大值。

4. 二次函数的零点二次函数在x轴上的交点称为零点,满足f(x)=0时的x值。

零点的判别式为Δ=b²-4ac,当Δ>0时,有两个不相等的实根;当Δ=0时,有两个相等的实根;当Δ<0时,无实根。

5. 二次函数的最值当a>0时,二次函数的最小值是顶点的纵坐标;当a<0时,二次函数的最大值是顶点的纵坐标。

二、解析式求解1. 一般形式二次函数的一般形式是f(x) = ax² + bx + c。

通过配方法、完全平方式或因式分解,可以将二次函数转化为标准形式或顶点形式来方便求解相关参数。

2. 标准形式将一般形式的二次函数转化为标准形式f(x) = a(x-h)²+k,其中(h,k)为顶点坐标,a为抛物线的开口方向和大小。

3. 顶点形式将一般形式的二次函数转化为顶点形式f(x) = a(x-p)(x-q),其中(p,q)为零点的坐标。

4. 判别式通过二次函数的判别式Δ=b²-4ac,可以方便地判断二次函数的零点类型和数量。

三、图像解析1. 抛物线的开口方向二次函数的参数a的正负决定了抛物线的开口方向,a>0时,开口向上;a<0时,开口向下。

2. 抛物线的顶点、对称轴和最值通过二次函数的顶点坐标和对称轴方程,可以方便地求得抛物线的顶点和对称轴,并进而求得最小值或最大值。

高中数学二次函数知识点

高中数学二次函数知识点

高中数学二次函数知识点一、基本概念二次函数是指关于自变量的二次多项式函数,通常表达为y=ax²+bx+c,其中a、b、c是定值且a≠0。

二、图像及特征二次函数的图像为一个开口朝上或朝下的平滑曲线,对称轴为x=-b/2a。

当a>0时,开口朝上;当a<0时,开口朝下。

当a>0时,曲线在对称轴上方存在最小值;当a<0时,曲线在对称轴下方存在最大值。

三、函数变形及性质1. 平移:将二次函数y=ax²+bx+c沿x 轴平移h个单位,得到y=a(x-h)²+b(x-h)+c2. 垂直伸缩:将二次函数y=ax²+bx+c的图像沿y轴纵向伸缩k倍,得到y=kax²+kbx+c3. 水平伸缩:将二次函数y=ax²+bx+c的图像沿x轴横向伸缩k倍,得到y=a(x/k)²+b(x/k)+c4. 对称轴:二次函数的对称轴为x=-b/2a5. 零点:二次函数的零点为y=0的解,即ax²+bx+c=0的解,其判别式为△=b²-4ac。

当△>0时,有两个不同的实数零点;当△=0时,有一个实数零点;当△<0时,无实数零点。

6. 解析式:y=ax²+bx+c的解析式为y=a(x+h)²+k四、常见类型1. 线性函数:当a=0、b≠0时,二次函数化为y=bx+c,其图像为一直线。

2. 完全平方型:当△=0时,二次函数化为y=a(x+h)²+k,其图像为一个顶点在对称轴处的抛物线。

3. 拉伸型:当a>0、|a|<1时,二次函数的图像沿y轴纵向收缩;当a>1时,二次函数的图像沿y轴纵向伸展。

4. 正比例型:当a>0、b=0时,二次函数化为y=ax²,其图像为对称于原点的抛物线。

5. 负比例型:当a<0、b=0时,二次函数化为y=ax²,其图像为对称于y轴的抛物线。

二次函数知识点归纳

二次函数知识点归纳

二次函数知识点归纳二次函数是高中数学中的重要章节,它在数学和实际生活中有着广泛的应用。

所以,对于二次函数的知识点的掌握对于学习数学和解决实际问题都是非常重要的。

下面将从定义、图像、性质、解析式和实际应用等方面详细归纳二次函数的知识点。

一、定义和基本形态二次函数是指一个一元二次方程确定的函数,它的一般形式可以表示为:f(x) = ax² + bx + c,其中a、b、c为实数且a ≠ 0。

它的定义域是全体实数集R。

二次函数的图像是一个抛物线,其开口方向和抛物线的开口相同。

当a > 0时,抛物线向上开口;当a < 0时,抛物线向下开口。

这个基本形态是理解二次函数的关键。

二、图像的性质1. 零点:二次函数的零点是使得f(x) = 0的x值。

二次函数的零点可以通过解一元二次方程来求得,也就是求解 ax² + bx + c = 0 的解。

当零点存在时,它的个数最多为2个。

2. 对称轴:二次函数的图像总是关于一个直线对称的。

这条直线称为二次函数的对称轴。

对称轴方程的求法是x = -b / 2a。

3. 顶点和最值:二次函数总是有一个最值点,也就是函数的最大值或最小值。

当a > 0时,函数的最小值出现在顶点上;当a < 0时,函数的最大值出现在顶点上。

顶点的坐标可以通过对称轴的x坐标带入函数中求得。

4. 开口:二次函数的开口决定了其函数值的增减。

当 a > 0时,函数是向上开口的,函数值随着x的增大而增大;当a < 0时,函数是向下开口的,函数值随着x的增大而减小。

三、解析式及其对称性根据二次函数的定义,我们可以得到它的一般解析式 f(x) = ax² + bx + c。

在解析式中,a是二次项的系数,b是一次项的系数,c是常数项。

二次函数的解析式可以通过给定的系数a、b、c进一步确定函数的性质。

1. 对称性:二次函数具有对称性,也就是函数图像在对称轴两侧关于对称轴对称。

二次函数知识点 二次函数知识点总结

二次函数知识点 二次函数知识点总结

二次函数知识点二次函数知识点总结
二次函数是形如y=ax^2+bx+c的函数,其中a≠0。

二次函数的图像呈现出抛物线的形状,开口的方向取决于a的正负。

1. 零点:二次函数的零点就是方程ax^2+bx+c=0的解,可以通过因式分解、配方法、根公式等求得。

2. 平移:二次函数可以通过平移抛物线来改变其图像的位置。

平移的方法包括横向平
移和纵向平移,分别通过将x和y值加上或减去常数来实现。

3. 对称轴:二次函数的对称轴是抛物线的镜像轴,可以通过x= -b/2a求得。

4. 最值:对于开口向上的抛物线,最小值为对称轴上的y值;对于开口向下的抛物线,最大值为对称轴上的y值。

5. 函数值的范围:对于开口向上的抛物线,函数值的范围为对称轴上的y值到正无穷;对于开口向下的抛物线,函数值的范围为负无穷到对称轴上的y值。

6. 判别式:判别式是方程ax^2+bx+c=0的判别式b^2-4ac,通过判别式可以判断方
程有几个解,并且可以判断解的性质。

7. 与x轴交点:与x轴交点是方程ax^2+bx+c=0的解,可以通过零点或者因式分解
求得。

8. 与y轴交点:与y轴交点是当x等于0时的函数值,即c。

9. 开口方向:二次函数的开口方向由系数a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

10. 求解顶点:顶点是抛物线的最高或最低点,可以通过对称轴和函数的最值求得。

二次函数的所有知识点

二次函数的所有知识点

二次函数的所有知识点二次函数是高中数学中重要的内容之一,它涉及到许多重要的知识点。

下面我将分享一些关于二次函数的重要知识点。

1. 二次函数的定义:二次函数是具有形式f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。

其中,a决定了二次函数的开口方向,正值会使函数开口向上,负值会使函数开口向下;b决定了二次函数的位置,正值会使函数向左移动,负值会使函数向右移动;c是二次函数的常数项,它决定了二次函数与y轴的交点。

2. 顶点和对称轴:二次函数的顶点是函数图像的最高点(如果开口向上)或最低点(如果开口向下),顶点的坐标可以通过公式x = -b/(2a)和y = f(-b/(2a))计算得到。

对称轴是过顶点且垂直于x轴的直线,它可以通过公式x = -b/(2a)获得。

3. 零点和因式分解:二次函数的零点是函数图像与x轴的交点,也就是方程f(x) = 0的解。

我们可以使用求根公式x = (-b ± √(b^2-4ac))/(2a)来求解二次函数的零点。

另外,二次函数也可以通过因式分解的方式求解零点,即将二次函数表示为两个一次函数的乘积形式。

4. 判别式与函数图像的性质:在求解二次函数的零点时,判别式D = b^2 - 4ac起到了重要的作用。

当判别式为正时,二次函数有两个不同的实根,图像与x轴有两个交点;当判别式为零时,二次函数有一个实根,图像与x轴有一个交点;当判别式为负时,二次函数没有实根,图像与x轴没有交点。

通过判别式可以判断二次函数的零点个数和函数图像的性质。

5. 最值与增减性:二次函数的最值可以通过顶点坐标得到,如果二次函数开口向上,则最小值为顶点的纵坐标;如果开口向下,则最大值为顶点的纵坐标。

关于函数的增减性,二次函数的增减性取决于a的正负性,当a > 0时,二次函数是上升的,当a < 0时,二次函数是下降的。

6. 对称性与轴对称图形:二次函数具有轴对称性,即关于对称轴对称。

二次函数知识点归纳

二次函数知识点归纳

二次函数知识点归纳二次函数是高中数学中重要的内容之一,它在数学以及其他科学领域中有着广泛的应用。

下面是针对二次函数的相关知识点的归纳,希望能够对您理解和掌握二次函数有所帮助。

一、基本概念1. 二次函数的定义: 二次函数是形如f(x) = ax^2+bx+c的函数,其中a、b、c为常数且a不等于零。

2. 二次函数的图像: 二次函数的图像是一个抛物线,其开口方向由二次项系数a的符号确定。

- 若a>0,则抛物线开口向上;- 若a<0,则抛物线开口向下。

二、图像的性质1. 对称轴:二次函数的图像关于直线x=-b/2a对称。

2. 最值点:二次函数的最值点即为图像的顶点,其横坐标为-x/2a,纵坐标为f(-x/2a)。

- 当a>0时,函数的最小值为f(-x/2a);- 当a<0时,函数的最大值为f(-x/2a)。

3. 零点:二次函数的零点即为使函数取值为零的x值,可通过解二次方程ax^2+bx+c=0来求得。

三、函数的变换1. 平移:二次函数可以通过改变h和k的值来进行平移操作。

- f(x)的图像向左平移|k|个单位,新函数为f(x+h);- f(x)的图像向右平移|k|个单位,新函数为f(x-h);- f(x)的图像向上平移|k|个单位,新函数为f(x)+k;- f(x)的图像向下平移|k|个单位,新函数为f(x)-k。

2. 压缩和拉伸:二次函数可通过改变a的值来改变图像的形状。

- 若|a|>1,则函数图像纵向压缩;- 若0<|a|<1,则函数图像纵向拉伸。

四、函数的性质1. 定义域:对于二次函数,其定义域为实数集R,即所有实数x都在定义域内。

2. 奇偶性:二次函数一般是偶函数,除非存在线性项b,则二次函数为奇函数。

3. 单调性:当a>0时,二次函数在抛物线的开口范围内是单调递增的;当a<0时,二次函数在抛物线的开口范围内是单调递减的。

4. 零点和交点: 二次函数与x轴的交点即为零点,与y轴的交点为常数项c,与抛物线的交点为实数解。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结一、基本概念二次函数,是指一种关系式y=ax²+bx+c,其中a为非零常数,而b和c为常数,x和y分别为自变量和因变量。

二次函数的解析式为y=ax²+bx+c,其中x为自变量,y 为因变量,a、b、c分别为常数,a不等于0.二、图像特征1. 开口方向当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

2. 对称轴二次函数y=ax²+bx+c的对称轴为x=-b/2a.3. 单调性当a>0时,函数在对称轴左侧单减,右侧单增;当a<0时,函数在对称轴左侧单增,右侧单减。

4. 零点当y=0时,二次函数的解析式可变为ax²+bx+c=0,由求根公式可知,它有两个实数根x1、x2,为二次函数的零点。

5. 最值当a>0时,二次函数在对称轴上有一个最小值;当a<0时,二次函数在对称轴上有一个最大值。

三、性质和运用1. 判别式对于二次函数y=ax²+bx+c,判别式D=b²-4ac可以用来判断它的零点个数和类型:当D>0时,函数有两个不同实根,图像与x轴有两个交点;当D=0时,函数有一个重根,图像与x轴只有一个交点;当D<0时,函数没有实根,图像与x轴没有交点。

2. 求导对于二次函数y=ax²+bx+c,可以对其求导,得到y'=2ax+b,这个导数表示了函数在各个点的斜率,因此可以用来求函数的切线和极值。

3. 模型应用由于具有一定的可控性和可预测性,二次函数可以用来建立各种实际应用中的数学模型,例如:抛物线、自由落体、平衡价格等等。

4. 与图像的关系可以通过调整a、b、c的值,来控制函数图像的形态和特征,例如调整a的值可以改变函数的开口方向和形状,调整b的值可以改变对称轴的位置,调整c的值可以改变函数图像与y轴的截距。

四、常见问题1. 二次函数如何确定开口方向?二次函数的开口方向由二次项系数a的符号决定,当a>0时,函数开口向上;当a<0时,函数开口向下。

二次函数相关知识点(全)

二次函数相关知识点(全)

二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:(上加下减)3. ()2y a x h =-的性质:(左加右减)4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k=-+与2y axbx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况: 1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:。

二次函数知识点归纳总结

二次函数知识点归纳总结

二次函数知识点归纳总结二次函数是高中数学中的一个重要内容,也是数学建模和解几何问题的重要工具。

下面是关于二次函数的知识点的归纳总结。

一、基本概念1. 二次函数的定义:二次函数是形如f(x) = ax^2 + bx + c (a ≠ 0) 的函数,其中 a、b、c 是常数。

2.二次函数的图象:二次函数的图象是一个抛物线,开口方向取决于a的正负性,顶点坐标为(-b/2a,f(-b/2a))。

3.对称轴:二次函数的对称轴是与图象关于x轴对称的直线,其方程为x=-b/2a。

4. 零点:二次函数的零点是函数图象与 x 轴的交点,可以通过求解二次方程 ax^2 + bx + c =0 来得到。

5.最值:二次函数的最值取决于a的正负性,当a>0时,函数取最小值;当a<0时,函数取最大值。

二、二次函数的变形与性质1.平移变换:二次函数可以通过平移变换来改变其图象的位置。

平移变换的一般形式是f(x)→f(x-h)+k,其中h和k是任意实数。

2.缩放变换:二次函数可以通过缩放变换来改变其图象的形状。

缩放变换的一般形式是f(x)→af(x),其中a是非零实数。

3.纵坐标平移:二次函数可以通过纵坐标平移来改变其图象的位置。

纵坐标平移的一般形式是f(x)→f(x)+k,其中k是任意实数。

4.二次函数的奇偶性:如果a是偶数,则二次函数是偶函数;如果a是奇数,则二次函数是奇函数。

5.顶点坐标的性质:顶点坐标(-b/2a,f(-b/2a))是二次函数的最值点,当a>0时是最小值,当a<0时是最大值。

三、二次函数的方程与不等式1. 二次方程的解:二次方程 ax^2 + bx + c =0 的解可以通过求根公式 x = (-b ± √(b^2 - 4ac))/(2a) 来得到。

2. 解的判别式:二次方程 ax^2 + bx + c =0 的解的判别式是 D =b^2 - 4ac,根据判别式的值可以判断方程有几个实数解。

二次函数知识点总结大全

二次函数知识点总结大全

二次函数知识点总结大全二次函数是高中数学中的重要内容之一,掌握了二次函数的相关知识,能够解决很多与实际问题相关的数学计算。

下面是二次函数的知识点总结。

一、基本概念1. 二次函数的定义:一个二次函数是指形如y=ax²+bx+c(a≠0)的函数,其中a、b、c为常数,且a表示二次项的系数。

2.二次函数的图像:二次函数的图像是一个开口朝上或朝下的抛物线。

3.二次函数的顶点:二次函数的图像的最高点或最低点称为顶点,记为(Vx,Vy)。

4.二次函数的轴对称性:二次函数的图像关于顶点所在的直线对称。

5.二次函数的零点:二次函数的图像与x轴交点的横坐标称为零点。

6.二次函数的平移:二次函数的图像在平面上的平移。

二、二次函数的图像1.抛物线开口的方向:当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

2. 求顶点:对于形如y=ax²+bx+c的二次函数,顶点坐标为(Vx, Vy),其中Vx=-b/2a,Vy=f(Vx)。

3.确定抛物线的图像:已知顶点和另一点,可以确定一个抛物线的图像。

4.求零点:二次函数的零点可以通过解一元二次方程求得。

三、二次函数的性质1. 平移性质:对于二次函数y=ax²+bx+c,平移后的函数是y=a(x-h)²+k,其中(h,k)为平移后的抛物线的顶点。

2.对称性质:二次函数的图像关于顶点对称。

3.零点性质:一个二次函数最多有两个零点,可以通过求解一元二次方程求得。

4.范围性质:对于抛物线开口朝上的二次函数,其值域为[y,+∞);对于抛物线开口朝下的二次函数,其值域为(-∞,y]。

四、二次函数的解析式1. 标准型:形如y=ax²+bx+c的二次函数。

2.顶点式:形如y=a(x-h)²+k的二次函数。

3.概率型:形如y=a(x-p)(x-q)的二次函数。

五、二次函数的应用1.最值问题:二次函数的最值可以通过求顶点得到。

二次函数所有知识点

二次函数所有知识点

二次函数所有知识点二次函数是数学中非常重要的一个概念,在数学学习和实际应用中都有着广泛的用途。

接下来,咱们就一起详细地了解一下二次函数的各种知识点。

一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。

其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。

需要特别注意的是,二次项系数 a 不能为 0,如果 a = 0,那么函数就变成了一次函数。

二、二次函数的图像二次函数的图像是一条抛物线。

当 a > 0 时,抛物线开口向上;当a < 0 时,抛物线开口向下。

抛物线的对称轴是直线 x = b /(2a)。

顶点坐标为(b /(2a),(4ac b²)/(4a))。

通过观察抛物线的对称轴和顶点坐标,可以了解抛物线的基本特征和变化趋势。

三、二次函数的性质1、单调性当 a > 0 时,在对称轴左侧(即 x < b /(2a)),函数单调递减;在对称轴右侧(即 x > b /(2a)),函数单调递增。

当 a < 0 时,情况则相反,在对称轴左侧,函数单调递增;在对称轴右侧,函数单调递减。

2、最值当 a > 0 时,函数有最小值,且在顶点处取得,最小值为(4ac b²)/(4a)。

当 a < 0 时,函数有最大值,同样在顶点处取得,最大值为(4acb²)/(4a)。

四、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)这是最常见的形式,通过给定 a、b、c 的值,可以确定函数的图像和性质。

2、顶点式:y = a(x h)²+ k(a ≠ 0)其中(h,k)是抛物线的顶点坐标。

这种形式可以直接看出顶点的位置。

3、交点式(两根式):y = a(x x₁)(x x₂)(a ≠ 0)其中 x₁和 x₂是抛物线与 x 轴交点的横坐标。

五、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0)的图像与 x 轴的交点的横坐标,就是一元二次方程 ax²+ bx + c = 0(a ≠ 0)的根。

二次函数的知识点

二次函数的知识点

二次函数的复习资料知识点1.二次函数的定义1、一般地,如果y=ax 2+bx+c (a ,b ,c 是常数且a ≠0),那么y 叫做x 的二次函数,它是关于自变量的 次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据.2、当b=c=0时,二次函数y=ax 2是最简单的二次函数.知识点2.二次函数的图像及性质1、已知一个二次函数,确定它的图象名称、开口方向、对称轴、顶点坐标、增减范围、极值。

已知条件中含二次函数开口方向或对称轴、顶点坐标、增减范围、极值,求解析中待定系数的取值。

(1)、二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.(2)、二次函数 c bx ax y ++=2,当0>a 时⇔抛物线开口向上⇔顶点为其最低点;当0<a 时⇔抛物线开口向下⇔顶点为其最高点(3)、对于y=ax 2+bx+c 而言,其顶点坐标为( , ).对于y=a (x -h )2+k 而言其顶点坐标为( , )。

二次函数c bx ax y ++=2用配方法或公式法(求h 时可用代入法)可化成:k h x a y +-=2)(的形式,其中h= ,k=(4)、二次函数 c bx ax y ++=2的对称轴为直线x=-2b a运用抛物线的对称性求对称轴,由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线段的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.若抛物线上有两点A (m,n )、B(p,n)的纵坐标相等,则它的对称轴为直线x=-2p m + (5)增减性:二次函数 c bx ax y ++=2的增减性分对称轴左右两侧描述(数形结合理解它的增减性)若0>a ,当x 时(在对称轴 侧),y 随x 的增大而增大,当x 时(在对称轴 侧),y 随x 的增大而减小,若0<a ,当x 时(在对称轴 侧),y 随x 的增大而增大,当x 时(在对称轴 侧),y 随x(6)最大(小)值:当a>0时,函数有最 值,并且当x= 时,y 最 值= ;当a<0时,函数有最 值,并且当x= 时,y 最 值= ;②若顶点横坐标不在自变量的取值范围内,只考虑在端点处是否取得最值。

二次函数所有知识点

二次函数所有知识点

二次函数所有知识点二次函数是一种二次方程的形式,可以表示为y = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。

它是初中数学的一个重要内容,也是高中数学的一个基础概念。

下面将介绍二次函数的所有知识点,包括定义、图像、性质、解析式、求解、应用等方面。

一、定义和图像:1. 二次函数的定义:二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c是常数,且a不等于0。

2.二次函数的图像:二次函数的图像是一条抛物线,开口的方向由a 的正负决定,开口向上对应a大于0,开口向下对应a小于0。

抛物线的顶点坐标为(-b/2a,f(-b/2a)),其中f(x)为二次函数的解析式。

二、性质和变换:1. 零点和根:对于二次函数y = ax^2 + bx + c,其零点即为使得函数值等于0的x值,可以用求根公式x = (-b ± √(b^2 - 4ac)) / (2a)来求出。

2.对称轴:二次函数的对称轴为过顶点的直线,其方程为x=-b/2a。

3.对称性:二次函数关于对称轴有轴对称性,即函数值的符号关系和x关于对称轴的关系相同。

4.极值和最值:对于开口向上的二次函数,其顶点是最小值点,对于开口向下的二次函数,其顶点是最大值点。

5.平移和伸缩:二次函数可以通过平移和伸缩变换得到,平移可以改变顶点的位置,伸缩可以改变开口的大小。

6.切线和法线:二次函数的切线是与抛物线仅有一个交点的直线,法线是与切线垂直的直线,通过切点可求出切线和法线的斜率。

三、解析式和方程:1. 一般式和顶点式:二次函数的解析式可以有多种表示方法,常见的有一般式和顶点式。

一般式为y = ax^2 + bx + c,顶点式为y = a(x - h)^2 + k,其中(h, k)为顶点的坐标。

2.平方完成和配方法:求解二次方程可以使用平方完成、配方法和求根公式等方法。

平方完成是将一般式转化成顶点式的过程,配方法是将一般式变形成可用求根公式求解的形式。

二次函数知识点归纳总结

二次函数知识点归纳总结

二次函数知识点归纳总结一、基本概念:1. 二次函数的定义:二次函数是指具有形式f(x) = ax^2 + bx + c 的函数,其中a、b、c为常数,且a不等于零。

2.二次函数图像的一般特征:二次函数的图像为抛物线,开口方向由a的正负确定。

3.二次函数的平面坐标系:二次函数的图像在平面直角坐标系中的形状、位置以及与坐标轴的焦点有关。

二、顶点坐标与开口方向:1.顶点坐标:二次函数的顶点坐标可通过化简函数式得到,即x=-b/(2a)得到x坐标,再代入函数式计算得到y坐标。

2.开口方向:二次函数开口向上当且仅当a大于零,开口向下当且仅当a小于零。

三、对称轴与焦点:1.对称轴:二次函数的对称轴是垂直于x轴的直线,其方程为x=-b/(2a)。

2.焦点:二次函数的焦点与平面坐标系画图时的焦点位置有关。

四、性质与变化规律:1.奇偶性:二次函数的奇偶性由二次项的系数a的奇偶性决定,即,若a为奇数,则函数为奇函数;若a为偶数,则函数为偶函数。

2.正负性:二次函数的正负性由函数值的正负决定,其函数值与x的值、a的符号以及顶点坐标的y值正负有关。

3.单调性与极值:二次函数的单调性与开口方向有关,开口向上的二次函数在对称轴两侧单调递增,开口向下的二次函数在对称轴两侧单调递减。

二次函数的极值即为顶点值。

4.过点性质:给定两点,可以通过这两点在函数上的坐标计算出唯一确定的二次函数的函数式。

5.零点求解:二次函数的零点即为函数与x轴的交点,可以使用因式分解、配方法、求根公式等方法求解。

五、两点式与标准式:1.两点式:已知二次函数经过两点,可以利用两点式直接写出函数的函数式。

2.标准式:将二次函数的一般式化简成标准式,即f(x)=a(x-h)^2+k 的形式,能够直接得到函数的顶点坐标。

六、函数图像:1.函数图像绘制:根据顶点坐标、对称轴方程、开口方向以及函数值的正负性,可以绘制出二次函数的图像。

2.辅助判断:利用辅助判断函数的图像与坐标轴的交点,确定函数的变化规律。

二次函数必备知识点

二次函数必备知识点

二次函数必备知识点
二次函数是一个非常重要的数学概念,其定义是形如y=ax²+bx+c(其中a, b, c为常数,且a≠0)的函数。

以下是二次函数的一些必备知识点:
1. 顶点和对称轴:二次函数的顶点可以通过公式法或配方法找到。

公式法是将二次函数的一般式化为顶点式,从而得到顶点的坐标和对称轴的方程。

配方法是先将二次函数的一般式化为完全平方的形式,从而得到顶点的坐标和对称轴的方程。

2. 开口方向和开口大小:二次函数的开口方向由系数a决定,a>0时,开口方向向上;a<0时,开口方向向下。

而a的绝对值决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。

3. 最值:对于开口向上的二次函数,其最小值出现在顶点处;对于开口向下的二次函数,其最大值出现在顶点处。

4. 二次函数与一元二次方程的关系:一元二次方程的根是使二次函数值为0的x的值。

因此,一元二次方程的解与二次函数的零点有关。

5. 应用题:在实际问题中,经常会涉及到求最值、判断规则、建立模型等问题,这些问题都可以通过二次函数来解决。

例如,在物理中,加速度、速度和位移之间的关系可以用二次函数表示;在经济中,成本、收入和利润之间的关系也可以用二次函数表示。

以上是二次函数的一些必备知识点,掌握这些知识点可以帮助我们更好地理解和应用二次函数。

二次函数的知识点总结

二次函数的知识点总结

二次函数的知识点总结二次函数是高中数学中重要的一部分,它在数学和实际问题中都起到了重要作用。

本文将对二次函数的基本定义、性质、图像、应用等方面进行总结和探讨。

一、基本定义和性质二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a不等于0。

二次函数的定义域为全体实数集R。

1. 零点和根:二次函数f(x)的零点为方程f(x) = 0的解,也称为根。

根的个数与二次函数与x轴的交点数有关,最多有两个根。

2. 对称轴和顶点:二次函数的对称轴是x = -b/2a,对称轴上的点称为顶点,坐标为(-b/2a, f(-b/2a))。

3. 函数增减性:当a>0时,二次函数开口向上,函数值随x增大而增大;当a<0时,二次函数开口向下,函数值随x增大而减小。

二、图像与性质二次函数的图像是一条平滑的曲线,其形状和位置与a、b和c的值有关。

1. 开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

2. 平移与伸缩:对于一般形式的二次函数y = a(x-h)^2 + k,其中(h, k)为顶点的坐标。

当h>0时,图像向左平移;当h<0时,图像向右平移。

当a>1时,图像纵向收缩;当0<a<1时,图像纵向拉伸。

3. 最值:当a>0时,函数的最小值为k;当a<0时,函数的最大值为k。

三、应用二次函数在实际问题中有广泛的应用,下面举几个例子说明:1. 自由落体运动:假设一个物体自由下落,不考虑空气阻力的影响。

物体从起始位置开始下落,其高度随时间变化可以用二次函数进行建模。

通过分析二次函数的图像,可以求得物体的最大高度、落地时间等信息。

2. 抛物线的跳远问题:假设一个运动员以一定的速度和角度抛出物体,求物体的飞行轨迹和落地点。

通过建立二次函数模型,可以分析出物体的最远距离和落地点的位置。

3. 生活中的经济问题:二次函数也可以用来分析一些与经济有关的问题,例如成本与产量之间的关系、利润最大化问题等。

所有关于二次函数的知识

所有关于二次函数的知识

所有关于二次函数的知识
二次函数是一种常见的数学函数类型,它的表达式为y=ax+bx+c。

以下是所有关于二次函数的知识:
1. 二次函数的图像是一个开口朝上或朝下的抛物线。

2. a代表二次函数的开口方向,正数表示开口朝上,负数表示
开口朝下。

3. a的绝对值越大,抛物线越扁平。

4. 抛物线的顶点为(-b/2a, c-b/4a),是二次函数的最值点。

5. 当a>0时,抛物线的最小值为c-b/4a;当a<0时,抛物线的最大值为c-b/4a。

6. 二次函数的零点为其图像与x轴的交点,可通过求解
ax+bx+c=0的根来求得。

7. 二次函数的对称轴为x=-b/2a,是抛物线的镜像轴。

8. 当a>0时,二次函数在对称轴左侧单调递减,在右侧单调递增;当a<0时,二次函数在对称轴左侧单调递增,在右侧单调递减。

9. 二次函数的导数为2ax+b,表示其斜率的变化率。

10. 二次函数可以通过平移、伸缩、翻转等方式进行变换,这些变换可以通过修改其表达式中的参数来实现。

以上就是二次函数的所有基础知识,它们是学习和掌握高等数学、物理、工程等学科的重要基础。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的有关知识:
1.定义:一般地,如果c b a c bx ax y ,,(2
++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.抛物线的三要素:开口方向、对称轴、顶点.
①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;
a 相等,抛物线的开口大小、形状相同.
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .
4.求抛物线的顶点、对称轴的方法
(1)公式法:a b ac a b x a c bx ax y 44222
2
-+
⎪⎭
⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a
b
x 2-
=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2
的形式,得到顶
点为(h ,k ),对称轴是直线h x =.
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的
交点是顶点。

若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称轴方程可以表示为:
12
2x x x +=
9.抛物线c bx ax y ++=2
中,c b a ,,的作用
(1)a 决定开口方向及开口大小,这与2
ax y =中的a 完全一样.
(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2
的对称轴是直线
a b x 2-
=,故:①0=b 时,对称轴为y 轴;②0>a
b
(即a 、b 同号)时,对称轴
在y 轴左侧;③
0<a
b
(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2
与y 轴交点的位置.
当0=x 时,c y =,∴抛物线c bx ax y ++=2
与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半
轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<a
b
. 11.用待定系数法求二次函数的解析式
(1)一般式:c bx ax y ++=2
.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2
.已知图像的顶点或对称轴,通常选择顶点式.
(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点
(1)y 轴与抛物线c bx ax y ++=2
得交点为(0, c ).
(2)抛物线与x 轴的交点
二次函数c bx ax y ++=2
的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次
方程
02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根
的判别式判定:
①有两个交点⇔(0>∆)⇔抛物线与x 轴相交;
②有一个交点(顶点在x 轴上)⇔(0=∆)⇔抛物线与x 轴相切; ③没有交点⇔(0<∆)⇔抛物线与x 轴相离. (3)平行于x 轴的直线与抛物线的交点
同(2)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标
相等,设纵坐
标为k ,则横坐标是k c bx ax =++2
的两个实数根.
(4)一次函数()0≠+=k n kx y 的图像l 与二次函数()02
≠++=a c bx ax y 的图像G 的
交点,由方程组
c
bx ax y n kx y ++=+=2
的解的数目来确定:①方程组有两组不同的解时
⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无
解时⇔l 与G 没有交点.
(5)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2
与x 轴两交点为
()()0021,,,x B x A ,则12AB x x =-。

相关文档
最新文档