燃气轮机及其热力循环
2-燃气轮机-第二讲(热力循环)
比功与压比、温比的关系: 比功与压比、温比的关系:
结论2——效率与压比、温比的关系: 结论2——效率与压比、温比的关系: 效率与压比 仅取决于压比π,而与温比τ (1)燃气轮机的循环效率 仅取决于压比 ,而与温比 )燃气轮机的循环效率η仅取决于压比 无关; 无关; 随压比增大而增大。 (2)效率 随压比增大而增大。 )效率η随压比增大而增大
其他多种热力循环组合的联合循环
–必要性:单独的一种热力循环各有优缺点,而几种 必要性:单独的一种热力循环各有优缺点, 必要性 热力循环结合使用则可扬长避短,达到理想效果。 热力循环结合使用则可扬长避短,达到理想效果。 –多种热力循环组合的联合循环方式: 多种热力循环组合的联合循环方式: 多种热力循环组合的联合循环方式 间冷再热循环 间冷回热循环 再热回热循环 间冷再热回热循环 燃气-蒸汽联合循环
第二讲
燃气轮机热力循环
一、燃气轮机的理想简单循环 二、理想简单循环效率的影响因素 三、燃气轮机的实际简单循环 四、燃气轮机常见其他热力循环
第一节 燃气轮机的简单循环
思考题一:何为理想循环? 思考题一:何为理想循环? 1、理想气体 、 2、稳定流动 、 3、可逆过程 、
二、理想简单循环
思考题二:简单循环的组成? 思考题二:简单循环的组成?
q3-4= 0
工质在涡轮中膨胀做功,称为膨胀功wT
= c p (T3* − T4* )
= c pT3* (1 − π* -m )
* * p − v图上,wT = 面积3-4-p1 -p2 -3
④4s-1 大气中的等压放热过程
q2 = q4−1 = h − h
* 4
* 1
kJ/kg
q1
= c p (T4* − T1* )
燃气轮机的实际热力循环
作者:水之北
1. 燃气轮机的实际循环 1.1. 燃气轮机的实际循环如图 1 的实线所示,包括四个热力过程:
n n n
熵增的多变压缩过程:空气从 p1 压缩至 p2; 略有压降的的加热过程:燃烧后的烟气温度从 T2 升至 T3,压力从 p2 略降至 p3; 熵增的多变膨胀过程,热烟气从 p3 膨胀至 p4=p1,烟温从 T3 降至 T4; 等压放热过程,膨胀后的烟气从 T4 冷却至 T1。
h 02 h 01 1 h 02s h 01 c
(1)
其中ηc 是压气机的效率。那么:
h 02 h 02s 1 c h01 c
~1~
(Байду номын сангаас)
过程 1—2 的空气压缩功为:
L c 1 h 02 h 01
(3)
2.2. 略有压降的加热过程 2—3 已知参数:p2,T2,T3; 求解参数:p3,q2-3。 设燃烧室总压恢复系数为 σb,则:
(8)
将(8)带入(5) ,得到:
mf h 03 h 02 b H f K 03h 03 h f 2
(9)
2.3. 熵增膨胀过程 3—4 已知参数:p3,T3,p4; 求解参数:T4。
~2~
与式(1)类似,3—4 的等熵和熵增过程之间的关系为:
h g3 h g4 T h g3 h g4s h g4 1 T h g3 h g4s
p3 b p2
(4)
设喷油量为 mf,燃油的低发热值为 Hf,燃烧室燃烧效率为ηb,则:
q 23 b m f H f m f h f 2 1 m f h g3 h 02
(5)
燃气—蒸汽联合循环简介
燃气—蒸汽联合循环在世界范围内,使用化学燃料通过热力动力机械发电的火力发电量仍然占据最高的比例。
从节约资源和保护环境等各方面来说,作为一种重要的发电装置,火力发电机组首先要求有高的热效率。
在大型热力发电设备中,目前技术水平比较成熟的,能够经济地大规模应用的只有燃气轮机和蒸汽轮机。
但是它们的热效率都不高,一般都在38—42%左右,即使最先进的燃气轮机热效率也只能达到42—44%,最先进的超临界参数蒸汽轮机热效率也只能达到43—45%。
对这两种热力机械所使用的热力循环进行分析。
燃气轮机燃气初温很高,目前的技术水平一般能达到1350—1430℃,因此燃气轮机中的热力循环平均吸热温度高,但是它的排气温度也就是循环低温也高,一般要达到450—630℃,所以燃气轮机热力循环的卡诺效率不高。
蒸汽轮机虽然循环低温较低,也就是蒸汽的冷凝温度可以降低到30—33℃,但是由于受到材料上的限制,它的蒸汽初温不高,在目前的技术水平下一般难以达到600℃,即使采用再热之后,平均吸热温度也不会太高,所以蒸汽轮机热力循环的卡诺效率也不高。
进一步分析可以发现,蒸汽轮机蒸汽初温一般在535—565℃以下,所以实际上只要有570—610℃的热源就可以让蒸汽轮机工作,而燃气轮机的排气温度就很高,在排气中蕴含着大量的热能,能够给蒸汽轮机提供所需要的热能。
因此如果使用燃气轮机排气作为蒸汽轮机的热源,蒸汽轮机就可以不额外消耗燃料了。
也就是说,蒸汽轮机可以回收燃气轮机的排气热量,额外发出一些有用功,这样就相当于增加了燃气轮机的热效率。
如前所述,目前先进的燃气轮机和蒸汽轮机的热效率基本相当,都在38—42%左右,那么,此时这个相当于增加了燃气轮机热效率的系统,热效率必然比单纯的燃气轮机和蒸汽轮机都高。
实际上,如果把上述由燃气轮机和蒸汽轮机组成的系统看成一个整体,那么在它的热力循环中,循环高温就是燃气轮机的循环高温,而循环低温则是蒸汽轮机的冷凝温度。
内燃机热力循环-打印版
内燃机热力循环一、燃气轮机循环燃气轮机理想循环为布雷顿循环(Brayton Cycle) ,它是工质连续流动做功的一种轮机循环,如图1所示 。
它既可作内燃布雷顿循环,又可作外燃布雷顿循环。
内燃的布雷顿循环为开式循环,常用工质为空气或燃气。
外燃的布雷顿循环是闭式循环,通过热交换器对工质加热,在另一热交换器排出工质余热。
循环过程为:工质在压气机中等熵压缩1-2,在燃烧室(或热交换器中)等压加热2-3 ,在燃气轮机中等熵膨胀3-4和等压排气4-1 。
图1 燃气轮机循环燃气轮机循环的指示热效率为11k k i c ηπ-=-式中,c π为压气机中气体的压比,k 为比热比。
燃气轮机开式循环常与内燃机基本循环配合使用。
二、涡轮增压内燃机热力循环将涡轮增压技术(或燃气轮机技术)应用到内燃机上是内燃机循环的一项重大技术发展。
一方面内燃机希望获得更多的进气(或可燃混合气)充量,以提高内燃机的功率和热效率;另一方面从内燃机排出的高温、高压废气能导入燃气涡轮中再作功,推动与燃气涡轮相连(同轴)的压气机来提高进气(或可燃混合气)的压力供给内燃机,这样就成为涡轮增压内燃机。
涡轮增压内燃机有等压涡轮和变压涡轮两种系统,它们的热力循环也有所不同。
1.恒压涡轮增压内燃机热力循环图2是等压涡轮增压内燃机热力循环。
它由内燃机基本循环1→2→3’→3→4→1和燃气轮机循环7→1→5→6→7组成。
图2 等压涡轮增压内燃机热力循环压气机将气体从状态7(大气压力p0)等熵压缩到状态1(压力为p s)之后进入内燃机。
按内燃机热力循环到达状态4。
气体在排气过程进入等压涡轮时由于排气门的节流损失和排气动能在排气总管内的膨胀、摩擦、涡流等损失而变成热能,气体温度升高,体积膨胀而到达状态5。
气体从4→5 这部分能量没有利用,对内燃机来说相当于从状态4直接回到状态1。
气体在等压涡轮中从状态5等熵膨胀到状态6,然后排入大气。
2 .变压涡轮增压内燃机热力循环变压涡轮增压内燃机热力循环如图3 。
燃气轮机热力循环原理
• 热耗率 机组每输出产生l kW·h的功需要多
少焦耳的热量。
• 油耗 每产生lkW·h的功所消耗的标准燃
油(是指发热量为43124kJ/kg的燃油) 的克数。
燃气轮机理想简单循环性能分析
理想简单循环比功
w G Tcp T 1 * [(1 m ) (m 1 )]
推导上式
压气机耗功的计算:
3 T
w ch 2h 1cp(T 2T 1)
单机功率
• 合同额定功率 指在事先确定的运行工况下连续运行,
发电机能够保证的出力。
单机功率
• 现场额定功率 指在燃气轮机发电厂所处的当前环境
的条件下,诸如大气压、大气温度、压力 损失等条件下的最大持续功率。
单机功率
• 尖峰功率 在规定的运行条件下,保持一个约定
的短时间内,燃气轮机以高于连续额定功 率安全运行的最大功率。
k1
cpT1TT12
1cpT1
p2 p1
k
1
p 4
2 p
1
k1
cpT1( k 1)
s
燃气轮机作功量的计算:
w Th 3h 4cp(T 3T 4)
k1
k1
cpT 4 T T 4 31 cpT 4 p p4 3 k
1 cpT 4 p p1 2 k
1
一般来说,T3*每提高 100℃,机组比功大约增加 20%~40%,热效率增加 2%~5%
燃气轮机燃烧系统的热力学性能分析与优化设计
燃气轮机燃烧系统的热力学性能分析与优化设计近年来,燃气轮机技术得到了快速发展,在能源领域发挥着重要的作用。
燃气轮机的核心是燃烧系统,而燃烧系统的热力学性能分析与优化设计对燃气轮机的效率和环境友好性具有重要意义。
本文将对燃气轮机燃烧系统的热力学性能进行深入分析,并探讨优化设计的方法。
1. 燃气轮机燃烧系统的热力学基础燃气轮机燃烧系统是将燃料和氧化剂进行反应,产生高温高压燃气流,从而驱动涡轮机旋转,产生功。
燃气轮机的热力学性能主要包括热效率、功率密度和排放特性。
热效率指的是燃料的化学能转化为机械能的比例,是燃气轮机的重要性能指标。
功率密度是指单位体积或单位质量的燃气轮机所能输出的功率,高功率密度意味着更高的性能和更小的体积。
排放特性是指燃气轮机在燃烧过程中产生的污染物和温室气体的排放情况,对环境保护和可持续发展至关重要。
2. 燃烧系统的热力学分析燃烧系统的热力学分析是对燃气轮机燃烧过程中的能量转化和损失进行综合评估。
燃烧系统主要包括氧化剂供应、燃料供应、混合和点火四个阶段。
在氧化剂供应阶段,燃气轮机通过压氧机将大气中的氧气挤入燃烧室,形成所需的氧化剂。
在燃料供应阶段,燃气轮机通过燃料喷嘴向燃烧室中喷入燃料。
在混合阶段,氧化剂和燃料进行充分的混合,以保证燃料能够完全燃烧。
在点火阶段,通过火花塞或者火花放电来点燃混合气体。
在燃烧过程中,热效率的提高是燃气轮机热力学性能分析的重点之一。
燃烧反应的热效率主要取决于燃料的分解和氧化过程中的能量转化效率。
高效的燃烧系统应该能够实现燃料的完全燃烧,减少可燃物的残留,提高热效率。
同时,燃气轮机的排放特性也是需要考虑的因素。
燃烧过程中产生的氮氧化物和颗粒物等有害物质对环境和健康造成一定的影响,因此需要探索降低排放的方法。
3. 热力学性能分析的方法燃气轮机燃烧系统的热力学性能分析和优化设计需要借助计算模拟和实验测试。
计算模拟可以利用数值计算方法对燃烧过程进行模拟和分析。
燃气轮机基础知识
第一章 绪论
一、燃气轮机发电装置的组成 燃气轮机是近几十年迅速发展起来的热能动力机械。现广泛应用的是按 开式循环工作的燃气轮机。它不断地由外界吸入空气,经过压气机压缩,在 燃烧室中通过与燃料混合燃烧加热,产生具有较高压力的高温燃气,再进入 透平膨胀作功,并把废气排入大气。输出的机械功可作为驱动动力之用。因 此,由压气机、燃烧室、透平再加上控制系统及基本的辅助设备,就组成了 燃气轮机装置。如果用以驱动发电机供应电力,就成了燃气轮机发电装置。
燃气轮机基础知识
第一章 绪论
先进的燃气轮机已普遍应用模块化结构。运输、安装、维修和更换都比 较方便,而且广泛地应用了孔探仪、振动、温度监控、焰火保护等措施,其 可靠性和可用率大为提高,指标已超过了蒸汽轮机电站的相应指标。此外, 在环保方面,出于燃气轮机的燃烧效率很高,排气干净,未燃烧的碳氢化合 物,CO、S0X,等排放物一般的都能够达到严格的环保标准,再结合应用 干式低NOX燃烧室、排气烟道中安装选择性催化还原装置(SCR)等技术措施, 可施使NOX的排放低至9ppm,满足最严格的环保要求。因此,燃气轮机发 电机组,特别是燃气-蒸汽联合循环机组已作基本负荷机组或备用机组得到 了迅速的应用。 燃气轮机的发展主要还是圈绕着增加单机功率,提高效率和经济性,燃 用多种燃料和廉价燃料,减少对环境的有害影响来进行的。诸如加强高温材 料的开发,提高冷却技术,发展闭回路蒸汽冷却燃气轮机,发展新型航空改 型燃气轮机,开发先进的燃气轮机循环,进一步发展清洁煤技术等等。燃煤 的燃气-蒸汽联合循环是“煤的清洁燃绕”技术中最为令人瞩目的项目,是九十 年代到下世纪之初最有发展前途的方式。到目前为止最具竞争力的方案有三 个,即(1)增压流化床方案(PFBC);(2)增压流化床加炭化炉加顶置燃烧室方 案(简称CPFBC燃气· 蒸汽联合循环);(3)整体煤气化联合循环(IGCC)。
燃气轮机叶片冷却技术
例:M701F叶片冷却技静叶冷却结构图
图12 M701F第一级叶片冷却结构图
(4)层板冷却
(a) 层板结构示意图
(b) 多孔层板全气膜传热
图13 层板冷却结构及传热图
在高温部件冷却中,为了有效利用空气,在形成气膜之前,一定要增强内部 对流换热,可以通过内部对流冷却、冲击冷却、扰流柱、肋壁等强化换热方 式对叶片进行冷却。基于这种理论及全气膜冷却形成了多层壁气膜冷却结构。
(5)壁面通道冷却
图14 壁面通道冷却结构
壁面通道冷却是在气膜冷却 和通道内强化换热的基础上 增加了冲击冷却,也可以说 是在层板冷却的基础上去掉 了扰流柱 强化换热,在工艺
上比层板冷却简单,比较容 易实现。冲击孔和气膜孔的 位置对壁面通道内流动结构 影响显著,当有内部横流存 在时,壁面通道过长,会导 致通道内部压力分布的不均 匀从而使不同气膜孔的出流 量差别较大。甚至会发生燃 气倒灌入通道内部。
(6)热管冷却
热管冷却属于新型冷却技术。由于热管具有极高的热效 率,可以有效的减少冷气的用量,同时热管靠液体气化来 吸收热量,当热端部件的传热量增加,热管的冷却能力也 随之增强。但是目前叶片的热管冷却应用是全新的概念, 用什么冷却工质,如何带走传递的热量以及如何保证动叶 片高转速工况下热管的正常工作都需要进行理论和实验确 证。
(3)气膜冷却
图10 典型的气膜冷却叶片
图11 气膜冷却简图
气膜冷却是一种广泛采用的有效冷却技术,它通过在高温部件表面开设槽缝 或者小孔,将冷却介质以横向射流的形式注入到主流中。在主流的压力和摩 擦作用下,射流弯曲并覆盖于高温部件表面,形成温度较低的冷气膜,从而 对高温部件起到隔热和冷却作用。透平叶片采用气膜冷却后,可以提高透平 进口温度,增加热效率,提高推重比及降低油耗。
燃气轮机基础知识普及
严格把控质量关,让生产更加有保障 。2020年10月 下午5时 0分20.10.2217:00Oct ober 22, 2020
作业标准记得牢,驾轻就熟除烦恼。2020年10月22日星期 四5时0分1秒17:00:0122 October 2020
好的事情马上就会到来,一切都是最 好的安 排。下 午5时0分1秒下 午5时0分17:00:0120.10.22
流阻增加,涡轮膨胀功减小(5%~10%)
③ 极限回热 T2’*=T4*, T4’*=T2* 实际回热T2’*<T4*, T4’*>T2*
面积不可能无限大,存在传热温差
回热不完善 ④温比一定时,提高压比,回热 效果变差。
当压比达到回热极限压比时,T4*=T2* 回热效果变为乌有。
压比应小于回热极限压比。
提高温比* = T3*/T1*
——从循环特性参数方面来讲,这是提高循环 热效率的主要方向。
——表现在两方面: 一方面提高燃气初温,即透平前温T3*; 一方面降低T1*,即降低环境温度T0。
对于提高燃气初温
依赖两种技术的发展。
第一种技术:加强冶金工业耐高温合金技术的发展、加强热处理 工艺技术的研究,以提高涡轮透平材料的耐高温特性。
回热循环的特点
①具有较高的热效率
吸热温度增加、放热温度降低
q 2-2’
q 4-4’
未考虑压力损失
由六个热力过程组成 : 1-2 压缩过程; 2-2’ 在回热器中的预热过程; 2’-3 燃烧加热过程; 3-4 膨胀做功过程; 4-4’ 在回热器中的冷却过程; 4’-1 大气中的放热过程。
②循环比功不变,实际略有减小
燃气轮机会在1650~1700 ℃而终止燃气初温的增长。
《燃气轮机与联合循环》第二章 燃气轮机的热力循环解析
第二章 燃气轮机的热力循环
2-3 实际简单循环的特性
特点: 热力过程中有各种能量损耗,是不可逆的;
工质的热力性质和数量因燃烧而变。
假定条件(为便于与理想循环比较): ①具有相同的压比C*和初始温度T1* ; ②涡轮前燃气初温相同, T3* = T3s* ; ③环境参数均为p0、T0, 即p1* = p0 、T1* = T0 。
一、热力参数
1、压比
—说明工质在压气机内受压缩的程度。
—压气机出口的气流压力与其进口的气流压力的比值。
用滞止压力(总压)表示:
p p
燃气轮机与联合循环
* 2 * 1
决定循环性能的重要参数
能源与动力学院
第二章 燃气轮机的热力循环
2、温比
—说明工质被加热的程度。
—透平前进口燃气温度与压气机进 口气流温度的比值
燃气轮机与联合循环
能源与动力学院
第二章 燃气轮机的热力循环
二、性能参数与压比和温比的关系
1、比功与温比压比的关系
wc cp (T2* T1* ) wt cp (T3* T4* )
wn c p (T3* T4* ) c p (T2* T1* ) * T 1 * * 2 c pT3 1 * c pT1 * 1 T3 T1 * T 4
燃气轮机与联合循环
能源与动力学院
第二章 燃气轮机的热力循环
k 1 1 wn c pT1* (1 k 1 ) ( k 1) k
( 1)压比
一定时,温比 增大,循环比功w 增大(公式上看)。
n
4*
一定时,有一最佳压比 (3) 时, 。
燃气轮机及其联合循环发电技术介绍
燃机命名规则
• 西门子燃气轮机主要有3种系列:V64 、V84 、V94。 • 1) V 表示燃气轮机; • 2) V 后的第一个数字表示转速,其中:6 表示后带齿轮箱,可 以拖动3 000 r/ min 或3 600 r/ min 的发电机;8 表示直接拖 动3 600 r/ min 的发电机;9 表示直接拖动3 000 r/ min 的发 电机。 • 3) V 后的第二个数字代表压气机型号; • 4) 小数点之后数为产品改进的代数,其中:1 表示 • 第一代改进产品;2 表示第二代改进产品;3 表示第三代改进 产品。 • 5) A 表示环形燃烧室。
温度、压力对燃机出力及效率的影响 • 温比:涡轮前进口燃气温度与压气机进口 气流温度的比值。 • 压比:压气机出口的气流压力与其进口的 气流压力的比值。
温度、压力对燃机出力及效率的影响
温度、压力对燃机出力及效率的影响
• 效率随温比升高而升高;对应温比有一个最佳压 比;在提高燃气温度的同时,必须提高压比; • 燃气轮机会在1650~1700 ℃而终止燃气初温的增 长。 • 在转速、压比、燃气初温等条件均保持不变的情 况下,大气压力对燃气轮机效率没有影响,但是 影响到燃气轮机的功率。因为燃气轮机的功率与 空气流量成正比,在温度不变的条件下,空气密 度与大气压力成正比,因此燃气轮机功率与大气 压力成正比。
• • • •
燃机订货四工况 1.ISO工况:标况 2.性能考核工况(年均工况) 3.夏季工况:考核最小出力 4.冬季工况:选电机。
名词定义
• 简单循环:依次由压缩、燃烧、膨胀过程组成的热力 循环; • 联合循环:燃气轮机循环与蒸汽或其他流体的朗肯循 环相联合的热力循环; • 燃料比能(热值) :总比能是单位质量的燃料燃烧时所 释放的总热量,用kJ/kg表示,净比能是总比能减去燃 烧过程中水分蒸发所吸收的热量,也用kJ/kg表示; • 热耗率:每单位时间消耗的净燃料能量与输出的净功 率的比值,单位是kJ/kWh;
第一讲:燃气轮机基本原理及9E燃机性能型号参数
第一讲:燃气轮机基本原理及9E燃机性能型号参数授课内容:第一章:绪论1):燃气轮机发电装置的组成2):燃气轮机发展史3):我国燃气轮机工业慨况4):GE公司燃气轮机产品系列及其编号第二章:燃气轮机热力学基础知识1):工质的状态参数2):理想气体状态方程3):功和热量第三章:燃气轮机热力循环1):燃气轮机热力循环的主要技术指标2):燃气轮机理想简单循环3):燃气—蒸汽联合循环第四章:9E燃机性能型号参数1):PG9171E型燃机型号简介2):PG9171E型燃机性能参数简介第一章绪论第一节燃气轮机发电装置的组成燃气轮机是近几十年迅速发展起来的热能动力机械。
现广泛应用的是按开式循环工作的燃气轮机。
它不断地由外界吸入空气,经过压气机压缩,在燃烧室中通过与燃料混合燃烧加热,产生具有较高压力的高温燃气,再进入透平膨胀作功,并把废气排入大气。
输出的机械功可作为驱动动力之用。
因此,由压气机、燃烧室、透平再加上控制系统及基本的辅助设备,就组成了燃气轮机装置。
如果用以驱动发电机供应电力,就成了燃气轮机发电装置。
(幻灯)第二节 燃气轮机发展史燃气轮机是继汽轮机和内燃机问世以后,吸取了二者之长而设计出来的,它是内燃的,避免了汽轮机需要庞大锅炉的缺点;又是回转式的,免去了内燃机中将往复式运动转换成旋转运动而带来的结构复杂,磨损件多,运转不平稳等缺点。
但由于燃气轮机对空气动力学和高温材料的要求超过其他动力机械,因此,发展燃气轮机并使之实用化,人们为之奋斗了很长时间。
如果从1791年英国人约翰·巴贝尔(John Baber)申请登记第一个燃气轮机设计专利算起,经过了半个世纪的奋斗,到1939年,一台用于电站发电的燃气轮机(400OkW)才由瑞士BBC公司制成,正式投运。
同时Heinkel工厂的第一台涡轮喷气式发动机试飞成功,这标志着燃气轮机发展成熟而进入了实用阶段·在此以后,燃气轮机的发展是很迅速的。
由于燃气轮机本身固有的优点和其技术经济性能的不断提高,它的应用很快地扩展到了国民经济的很多部门·首先在石油工业中,由于油田的开发和建设,用电量急剧增加·建造大功率烧煤电站不具备条件(没有煤炭,交通不便,水源紧张,施工困难等),周期也不能满足要求·而燃气轮机电厂功率不受限制,建造速度抉,对现场条件要求不高,油田有充足的可供燃用的气体和液体燃料·不少油田还利用开发过程中一时难以利用的伴生气作燃气轮机燃料,价格便宜,发电成本低,增加了燃气轮机的竞争力,所以在油田地区,燃气轮机装置被广泛应用,除用于发电外,还在多种生产作业申用燃气轮机带动压缩机(例如天然气管道输送,天然气回注,气田采油等)和泵(例如原油管道输送和注水等)。
燃气轮机-热力循环
影响理想简单循环 循环比功Ls的重要因素:压比*和温比* 影响
(1)压比
*
*
一定时,温比
*
增大,循环比功 Ls增大。
L
规律:( 2 ) 温比 * 一定时,有一最佳压比 * 使比功最大,
* L
1 * 2m
且
时,
* L
。
[
* L
1 * 2m
]
4* 3* 2* 1*
* * p p 存在摩擦和热阻力,总压有所降低 3 2
压降
* * * p B p3 p2 (0.02 ~ 0.08) p2
* p3 压力保持系数 B * 0.92 ~ 0.98 p2
燃烧不完全,燃烧效率B<1.0 (0.90~1.0)
实际吸热量降低 q1=q1sB
* T c pBT1* * (1 *2 * ) T1
组成:2个可逆绝热过程 2个可逆定压过程
1-2s 等熵压缩 3s-4s 等熵膨胀 2s-3s 等压加热 4s- 1 等压放热
q (i i ) Ls
* 2 * 1
1、分析热力过程
q1-2s= 0 压气机消耗的功用来压缩气体,称为压缩功Lcs
①1-2s 压气机中的可逆绝热压缩过程
*k 1 k
)
* * p v图上,LTs 面积3s - 4s - p1 - p2 - 3s
T3*s * T1*
k-1 k
p* T4*s 4s * * T3s p 3s
p1* * p 2
k-1 k
01燃气轮机热力循环原理
01燃气轮机热力循环原理燃气轮机是一种常用的热机,利用燃气燃烧产生高温高压气体,然后将这种高温高压气体通过涡轮叶片的作用转化为机械能,最后将机械能转换为电能或机械功。
燃气轮机的热力循环原理可以分为以下几个步骤:1.空气进气:燃气轮机的工作气体是空气,空气通过进气道进入燃烧室。
为了提高空气的进气能力,通常会采用压气机将空气压缩,然后再送入燃烧室。
2.燃烧:在燃烧室中,燃料和空气混合燃烧,产生高温高压气体。
这个过程可以通过喷嘴将燃料和空气喷射到燃烧室中,然后点燃燃料。
燃料可以是天然气、柴油、煤气等。
3.膨胀过程:高温高压气体通过涡轮叶片的作用产生转动力,驱动涡轮转动。
同时,气体在涡轮上进行膨胀,降低温度和压力。
涡轮的转动将机械能传给轴承,进而传给发电机或其他负载。
4.排出废气:流过涡轮后的低温废气,被排出燃气轮机系统,可以用于加热水或其他用途,以提高能量利用效率。
废气中仍然有一定能量可以利用。
5.返压涡轮:在一些使用燃气轮机供热和供电的应用中,还可以增加返压涡轮,将排出废气进一步膨胀,降低废气的温度和压力。
这样可以进一步提高系统的热利用效率。
燃气轮机的热力循环原理基于热力学第一定律,即能量守恒定律。
通过燃烧产生的高温高压气体,通过涡轮叶片的作用将热能转化为机械能,然后再将机械能转化为电能或机械功。
这个循环过程中,废气排放出去的同时,仍然有一定的剩余热能可以利用,提高热机的能量利用效率。
燃气轮机的热力循环原理具有以下几个特点:1.高效率:由于燃气轮机能够将热能高效地转化为机械能,再转化为电能或机械功,因此其能量利用效率非常高,一般可达40%~50%以上。
2.快速启动:相比于蒸汽动力系统,燃气轮机的启动时间较短,一般只需几分钟,从而方便应对突发情况和高峰用电需求。
3.环保性好:燃气轮机燃烧的是燃气,相比于传统的煤炭燃烧,废气中的污染物排放较少,对环境污染较小。
总之,燃气轮机的热力循环原理基于燃气的燃烧产生高温高压气体,通过涡轮叶片的作用将热能转化为机械能,最终将机械能转化为电能或机械功。
燃气轮机热力循环性能的分析计算
燃气轮机热力循环性能的分析计算【摘要】本文基于热力学第二定律,从能量利用的角度出发,引入无量纲熵参数,对燃气轮机装置热力性能参数进行热力性能完善程度评价与分析,为燃气轮机装置的热力性能优化设计提供技术途径。
【关键词】燃气轮机;热力循环;性能;分析;计算【abstract 】this paper based on the second law of thermodynamics, from the Angle of energy use, introducing the dimensionless parameter entropy, the gas turbine thermal performance parameters device thermal performance perfect degree evaluation and analysis, the device for gas turbine thermal performance optimization design provides technical way.【key words 】gas turbine; Heat engine cycle; Performance; Analysis; calculation1 引言二十世纪80年代以来,燃气轮机热力循环方面的研究取得了长足的进步,其中热点之一是注蒸汽燃气轮机循环的研究。
它不仅具有高效率、高比功的特点,而且它在变工况性能、污染控制等方面的优越性也倍受国内外研究者的青睐。
目前世界上正研制和开发的、比较先进的燃煤发电技术是整体煤气化联合循环和增压流化联合循环。
本文将整体煤气化联合循环中的先进燃煤技术与注蒸汽循环结合起来,对循环进行了热力学分析计算,就各参数对循环性能的影响进行了探讨。
2循环过程简介煤在气化炉中形成粗煤气,经过热交换器,降温放热以加热给水产生回注用蒸汽,再经过脱硫、除尘变为洁净煤气,作为循环所用的燃料进入燃烧室。
燃气轮机原理概述及热力循环
燃气轮机原理概述及热力循环燃气轮机(Gas Turbine)是一种将燃烧燃料产生的高温气体转化为机械能的设备。
它利用高速旋转的轴承和叶片来驱动压缩机和发电机。
燃气轮机的原理可以分为三个主要的过程:压缩过程、燃烧过程和膨胀过程。
首先,压缩过程是燃气轮机的第一部分。
在压缩过程中,进气口吸入大量空气,并通过旋转的轴承和叶片将气体压缩。
压缩后的空气接着被送入燃烧室。
其次,燃烧过程是燃气轮机的第二部分。
在燃烧过程中,高压的空气与燃料混合并点燃。
燃烧燃料产生的高温气体使燃气轮机的工作物质增加能量,并且使气体在高温高压条件下进行高速流动。
最后,膨胀过程是燃气轮机的第三部分。
在膨胀过程中,高温高压的气体通过轴承和叶片扩张,使轴承和叶片高速旋转。
这些旋转的轴承和叶片驱动发电机,将动能转变为电能。
在燃气轮机的热力循环中,一般采用布雷顿循环(Brayton Cycle)。
布雷顿循环包含四个主要步骤:压缩、加热、膨胀和冷却。
首先是压缩过程。
进气口的空气通过压缩机被压缩,使压缩后的空气温度和压力增加。
然后是加热过程。
压缩后的空气经过燃烧室,与燃料燃烧产生高温气体。
接下来是膨胀过程。
高温高压气体通过轴承和叶片膨胀,使轴承和叶片旋转。
旋转的轴承和叶片通过机械耦合驱动发电机。
最后是冷却过程。
高温气体通过冷却器冷却后再次进入压缩机,循环往复。
与其他发电设备相比,燃气轮机具有一些显著的优点。
首先,燃气轮机可以非常高效地转换能量,能够达到约35%至45%的高效率。
其次,燃气轮机的启动时间相对较短,通常只需要几分钟即可启动并达到额定功率。
此外,燃气轮机还具有较小的体积和重量,占用空间相对较小。
总之,燃气轮机是一种重要的能源转换设备,其工作原理基于压缩、燃烧和膨胀三个主要过程。
同时,布雷顿循环是燃气轮机的热力循环,包括压缩、加热、膨胀和冷却四个步骤。
燃气轮机通过高效转换能量,具有快速启动、小体积和重量等优点,在能源领域发挥着重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q3s-4s= 0
工质在涡轮中膨胀做功,称为膨胀功wTs
c p (T3*s T4*s )
c pT1* * (1 π
*k 1 k
)
* * p v图上,wTs 面积3s-4s-p1 -p2 -3s
* T4*s p 4 s * * T3s p 3 s
c p (T2*s T1* )
c pT1* (π
k 1 * k
1)
* 2 * 1
p v图上,wcs 面积1-2s-p -p -1
* T2*s p 2 * * T1 p1
k-1 k
k 1 * k
q (h h ) ws
* 2 * 1
2013-8-10 4
2-2
性能指标
燃气轮机热力性能指标
——衡量一台动力装置好坏的标准。
——有很多,例如经济性、动力性、可靠性、变工况特 性以及排放性能等,需用不同的方法来分析。
主要用热力学方法分析:
反映动力性能好坏的指标,常用比功和功率; 反映经济性好坏的指标,常用热效率、耗油率和热耗率等。
一、热力参数
T3*s * T1*
k-1 k
p1* * p 2
k-1 k
k 1 * k
q (h h ) ws
* 2 * 1
④4s-1 大气中的等压放热过程
与外界没有功的交换 w4s-1= 0 ;向外界放出的热量为q2
* q2 q4s1 h4s h1* kJ/kg
q1
c p (T T )
* 4s * 1
c pT1* ( π
k 1 * * k
q2
-1)
k 1 T4*s * k * T3s
T s图上,q2 q4s1 面积4s - s3s - s1 -1- 4s
T3*s * T1*
讨论循环的比功和热效率。
2、理想简单循环的比功ws
T s图上,q1 q2s3s 面积s1 - 2s - 3s - s3s - s1
q (h h ) ws
* 2 * 1
③3s-4s 涡轮中进行可逆绝热膨胀过程
* q3s4s (h4s h3*s ) wTs 0
* * wTs h3s h4s kJ/kg
s 随压比π 增加而提高,即 π 时, s 。
4、理想简单循环的有用功系数 ,
wCs 1 wTs
1 c p (T2*s T1* ) c p (T T )
* 3 * 4s
1
T1* ( π* - 1) T (1 -- *m/*
二者关系为:
Ne = Ni m
比功可表征机组的重量和大小。
2、热效率
燃料的低位发 热值,kJ/kg
—燃气轮机输出的有用功与其所耗燃料的热量的比值。 (1)内效率i ——内比功与热量的比值(装置热效率)
燃料空气比 Gf f kg燃料/kg空气 GC
wi wi wi 3600N i i q f Hu G f BHu Hu 燃料流量,kg/s GC
1、压比 *
—说明工质在压气机内受压缩的程度。
—压气机出口的气流压力与其进口的气流压力的比值。 用滞止压力(总压)表示:
p p
*
* 2 * 1
决定循环性能的重要参数
2、温比 *
—说明工质被加热的程度。
—涡轮前进口燃气温度与压气机进口气流温度的比值 用滞止温度(总温)表示:
T T
q (h h ) ws
* 2 * 1
1、分析热力过程
q1-2s= 0 压气机消耗的功用来压缩气体,称为压缩功wcs
①1-2s 压气机中的可逆绝热压缩过程
* q12s (h2s h1* ) (wcs ) 0
* wcs h2s h1* kJ/kg
理想气体 定比热
利用热力学中的p-v图 和T-s图研究循环
讨论影响循环动力性和经济性的因素
二、理想简单循环
假设条件:
工质为理想气体; 热力过程均是可逆的,无能量损耗; 工质的比热容和流量不变。
组成:2个可逆绝热过程 2个可逆定压过程
1-2s 等熵压缩 3s-4s 等熵膨胀 2s-3s 等压加热 4s- 1 等压放热
2-3 燃气轮机的简单循环
在工质流动的主要流程中,只有压气机、 燃烧室和涡轮三大件组成——简单循环 一、稳定流动能量方程式在燃气轮机中的应用
任何热机必须依靠工质经过一系列热力过程完成 一个循环,才能连续不断地对外做功。 在燃气轮机中,工质要完成压缩、加热、膨胀以 及放热等热力过程,必需连续不断地流进和流出设备。 进行热力学分析时,视稳定工作时工质的流动为 稳定流动,各能量间相互转化关系服从稳定流动能量方 程式。
所谓稳定流动,就是热力系统在任何截面上,工 质的一切参数都不随时间而变。
稳定流动的条件: (1)进出口工质的热力状态不随时间而变; (2)进出口工质的流量相等且不随时间而变; (3)系统与外界交换的一切能量不随时间而变。
2、什么是滞止现象?滞止参数?
滞止现象:当流动工质受到阻碍而使工质流速降 为零时所发生的现象。 滞止参数: 通过可逆绝热压缩过程使工质流速降为零时所得 到的参数。
本课程主要讨论相关热力装置的理论循环,重点在于 分析热力循环的能量转换效应,必要时也会涉及一些实 际循环的问题。 ⑵ 对实际气体动力循环所作的理想化处理 ① 实际的气体动力循环中,在循环的不同阶段工质成 份不同,有时是空气,有时是燃气。 燃气的热物性与空气相近 理论分析中视工质为类同空气的某种定比热容理想气体。 ② 实际装置的工作循环是开式的,每个工作循环后均 将废气排弃,更换新的工质。 理论分析时抽象成闭式循环 燃烧过程视为对工质的加热过程 排气过程视为工质的放热过程
燃料消耗量,kg/h
(2)有效效率e——有效比功与热量的比值
we we we 3600N e e q f Hu G f BHu Hu GC
e = i m
3、耗油率和热耗率
(1)耗油率 ge
——产生单位有效功率时的燃料消耗量,kg/(kWh)
G B 3600 f 3600 ge kg/(kW h) Ne Ne e H u
(1)循环比功wi
忽略机械损失
(又称指示比功、内比功、装置比功)
wi = wT - wC kJ/kg
相应的,指示功率、内比功率 :
Ni = Gc wi
kW
进入压气机的空气流量,kg/s。
wi和Ni:反映机组循环本身动力性能的好坏。
(2)有效比功we
考虑机械损失,
设机械效率为m,则
we = wi m= (wT – wC)m 相应的,有效功率: Ne = Gc we kW we和Ne:反映整个机组动力性能的好坏。 kJ/kg
q2
排气
4 3
q1
2
燃烧室
燃 气 轮 机 循 环
泵
压气机
涡轮
燃料
1
进气
▲定压加热理想循环
1-2 等熵压缩(压气机内)
T3 T2 p2 p1
循环增压比
2-3 定压吸热(燃烧室内) 循环增温比
3-4 等熵膨胀(燃气透平内) 4-1 定压放热(排气,假想换热器)
理想简单循环 简单循环
实际简单循环
循环比功 ws = wTs-wCs= q1- q2 = qs
p-v图和T-s图上, ws 面积1-2s-3s-4s-1
讨论影响循环比功的因素
ws cp (T3*s T4*s ) cp (T2*s T1* )
c pT1* * (1 π
*k 1 k
) c pT1* (π
h h c
* 1 2
滞止参数
滞止焓或总焓 i*
2
滞止压力或总压 p*
p* p 1 c 2 2
滞止温度或 总温 T*
c2 T* T 2c p
静参数
T * p p T
*
k k 1
q h2 h1 c c
1 2 2 2
工质吸收 的热量
②2s-3s 燃烧室中的等压加热过程 从外界吸收的热量为q1 与外界没有功的交换 w2s-3s= 0 ;
q1 q2s3s h h
* 3s
* 2s
kJ/kg
* 2s
q1
c p (T T )
* 3s
c pT1* ( * - π
k 1 * k
)
T3*s * T1*
k 1 T2*s * k * T1
*
* 3 * 1
决定循环性质的最重要参数
*愈高,性能愈好,但对耐高温材料或冷却技术的要求越高。
二、性能参数
1、比功和功率
比功w—单位质量工质所做的功,kJ/kg;
wC —压气机的比功, kJ/kg; wT —涡轮比功, kJ/kg。 功率N—单位时间内工质所做的功,kW。 燃气轮机的比功—进入压气机内1kg空气完成 一 个循环后,对外界输出的有效轴功。
k 1 * k
1)
k 1 m k
=
cpT1*[*(1-
*-m)-(
*m-1)]
= f( * , *)
影响理想简单循环 循环比功ws的重要因素:压比*和温比* 影响
(1)压比
*
一定时,温比
*
增大,循环比功ws增大(公式上看)。
规律: 温比 *一定时,有一最佳压比 * 使比功最大 (2)
= f(*,*)
规律: (1) 压比 *一定时, 随温比 *增加而增加 ; (2) 温比 *一定时, 随压比 *增加而减少。