清华曾攀ansys二次开发资料

合集下载

基于ANSYS的二次开发技术的实现方法

基于ANSYS的二次开发技术的实现方法

第24卷第5期辽宁工学院学报V o l.24 N o.5 2004年10月JOU RNAL O F L I AON I N G I N ST ITU T E O F T ECHNOLO GY O ct.2004①基于AN SYS的二次开发技术的实现方法吴 鹏1,曾 红1,韩 迈2(1.辽宁工学院,辽宁锦州 121001;2.鞍山广播电视大学,辽宁鞍山 114000)摘 要:基于大型通用有限元分析软件AN SYS8.0环境,对AN SYS二次开发技术进行了探讨,并对AN SYS 三种开发工具进行了详细的介绍。

论述了采用二次开发方法设计产品的必要性和重要性,证实了以AN SYS为平台开发专业模块的可行性,提高了工作效率,缩短了产品的开发研制周期。

关键词:AN SYS;二次开发;A PDL;U I DL;U PF s中图分类号:T P391.72 文献标识码:B 文章编号:100521090(2004)0520025205Realization of Secondary D evelop m en t of TechnologyBased on ANS Y SW U Peng1,ZEN G Hong1,HAN M ai2(1.L iaoning Institute of T echno logy,J inzhou121001,Ch ina;2.A nshan R adi o&TV U niversity,A nshan114000,Ch ina)Key words:AN SYS;Secondary developm en t;A PDL;U I DL;U PF sAbstract:T he m ethod of secondary developm en t of techno logy on the basis of large-scale fin ite elem en t analysis softw are—AN SYS is described and app roached,w h ich details th ree k inds of de2 velop ing too ls of AN SYS.It dem on strates the necessity and i m po rtance of the m ethod of sec2 ondary developm en t of techno logy.T he feasib ility of develop ing p rofessi onal m odu le on the AN2 SYS p latfo r m is verified,w o rk ing efficiency i m p roved,and the developm en t cycle of the p roducts sho rtened. 从20世纪70年代以来,随着计算技术的飞速发展,结构分析有了很大的突破,国外相继出现了许多大型通用有限元分析程序,如AN SYS, ABAQU S,M A RC和M SC NA STRAN等,这些程序具有良好的界面、方便的前后处理和强大的计算分析功能以及开放的二次开发系统。

[2]ansys的upfs二次开发概述与算例

[2]ansys的upfs二次开发概述与算例

*** 用户可编程特性 (UPFs) ***ANSYS程序的开放结构允许用户连接自己的FORTRAN程序和子过程。

实际上,现在用户看到的许多ANSYS“标准”用法都是由以前用户过程引进的。

1.1 什么是UPFs?用户可编程特性是ANSYS的功能允许用户使用自己的FORTRAN程序。

UPFs适用于ANSYS/Multiphysics, ANSYS/Mechanical, ANSYS/Structural, ANSYS/PrepPost和ANSYS/University(研究版和大学版)产品系列。

UPFs允许用户根据需要定制ANSYS程序,如用户定义的材料性质,用户单元类型,用户定义的失效准则等。

用户还可以编写自己的优化设计算法将整个ANSYS程序作为子过程来调用。

注意:用户使用UPFs必须十分小心仔细。

通过连接自己的FORTRAN程序,用户生成了一个针对用户特定计算机的ANSYS程序版本。

在并行系统中使用ANSYS时不允许使用用户可编程特性。

另外,UPFs是一种非标准的使用方法,ANSYS公司质量保证的测试程序没有包括这部分内容。

用户必须负责保证用户子程序结果正确并不影响别的标准功能的运行。

1.2 如何使用UPFs?UPFs可以从简单的单元输出功能到很复杂的用户单元或用户优化算法。

因此,不进行特定的程序细节描述是很难完成这些子程序功能的。

在Programmer's Manual for ANSYS中有详细的解释。

一个典型的UPF包括下列步骤:1). 在FORTRAN77中编制用户程序。

在ANSYS中所有的用户程序源代码都是公开的。

大部分完成至少一个简单的功能,因此在编制程序前应列出一份完整的可用程序表。

2). 编译并将用户程序连接到ANSYS程序中,生成新版本的ANSYS。

3). 用户可能要验证自己做的改动是否影响其他ANSYS标准功能的使用。

可以通过做几个ANSYS Verification Manual中的例题来验证。

ANSYSLS-DYNA二次开发及其在侵彻模拟中的应用

ANSYSLS-DYNA二次开发及其在侵彻模拟中的应用

ANSYS/LS-DYNA二次开发及其在侵彻模拟中的应用[范斌1,2马壮1,2范群波1,2,*金福生1祝威1][1.北京理工大学,100081 2.冲击环境材料技术国家级重点实验室,100081]*通讯作者Email:fanqunbo@[ 摘要] 针对利用商用软件ANSYS/LS-DYNA建立弹靶有限元模型及K文件修改的复杂性,运用编程语言C#进行了ANSYS/LS-DYNA的二次开发,建立了装甲防护领域的专业软件——装甲防护效能仿真评估平台。

该软件通过定制专用前后处理界面,实现了参数化的前处理过程,K文件自动提交计算过程,以及高效的后处理过程。

该软件针对无较多有限元分析经验的普通研究人员使用,可高效完成弹靶侵彻过程的模拟及装甲的抗弹性能的定量评估,避免了大量的重复性工作,提高了分析效率。

[ 关键词]二次开发;数值模拟;抗弹性能;侵彻Secondary Development of ANSYS/LS-DYNAand Application in Numerical Simulation of Penetration [FAN Bin1,2, MA Zhuang1,2, FAN Qun-bo1,2,*, JIN Fu-sheng1, ZHU Wei1 ][1.Beijing Institute of Technology, 100081 2.National Key Laboratory of Science andTechnology on Materials under Shock and Impact,100081][ Abstract ] Armor ballistic performance simulation evaluating platform, a professional software in armor ballistic performancing area, has been developed to deal with the complexity in building the finite element model and modifying the keyword file when using the commercial software ANSYS/LS-DYNA. Parametric pre-processing, keyword file automatically submitting, as well as efficient post-processing are achieved by designing special pre-processing and post-processing user interface. To those ordinary researchers lacking FE analysis experience, this software can efficiently simulate the penetrating process and quantificationally evaluate the ballistic performance,thus avoiding the vast repeatability and improving the analyzing efficiency.[ Keyword ] secondary development; numerical simulation; ballistic performance; penetration1 前言侵彻是指高速运动的弹体侵入甚至穿透目标靶板的过程,它是一种普遍存在的物理力学现象,研究弹体与靶板的相互作用过程,具有重要的民用价值和军事应用背景。

ANSYS参数化编程语言的二次开发及应用

ANSYS参数化编程语言的二次开发及应用
维普资讯
A S S参数化编程语言的二次开发及应用 ★ NY
口 何芝仙 口 曹 菁。
芜湖 2 10 4 00
上海 203 000
1安徽工程科技学院机械系 .
2上海交通大学动力与机械学院 . 摘
要 : 用 A S S中 的 A D 利 NY P L语 言 进 行 二 次 开 发 , 写 专 门程 序 , 编 实现 了 自动 多次 改 变 边界 条件 , 解 并记 录指 定 求
o h e i n td n d s Asa r s l,t o t p c r be r ov d ie e t g u f e f xb e ma r n a c lt n o e n te d sg ae o e . e u t w y ia p lms ae s l e , 、 、s t n p o e i l l o i h t l ti a d c l ua i ft x o h
i ovde . Thsp o r m sa e t h n e te b un a y c nd t nsa tma ial n e m p t n r c d te sr s rd fr ain spr i d i r g a i bl o e a g h o d r o ii uo tc lya d o u ea d e or h te so e om to o
g a e) 于 二 次 开 发 , 以 自动 完 成 某 些 功 能 或 建 模 , ug 用 可
大 大 扩 展 了 软 件 的 功 能 【1本 文 针 对 结 构 分 析 的 某 些 J。
的径 向变形 量 ( r=1 2, , ; , … m s=1 2, , ) c , … n ; 为 作
如下 :
法 一 。 采 用 常 规 的 人 工 方 法 建 立 柔 度 矩 阵 需 反 复 多 1但

ansys二次开发的一些知识介绍

ansys二次开发的一些知识介绍

ansys二次开发的一些知识介绍ANSYS程序的二次开发标准ANSYS程序是一个功能强大、通用性好的有限元分析程序,同时它还具有良好的开放性,用户可以根据自身的需要在标准ANSYS 版本上进行功能扩充和系统集成,生成具有行业分析特点和符合用户需要的用户版本的ANSYS程序。

开发功能包括四个组成部分:参数化程序设计语言(APDL)用户界面设计语言(UIDL)用户程序特性(UPFs)ANSYS数据接口参数化程序设计语言(APDL)参数化程序设计语言实质上由类似于FORTRAN77的程序设计语言部分和1000多条ANSYS命令组成。

其中,程序设计语言部分与其它编程语言一样,具有参数、数组表达式、函数、流程控制(循环与分支)、重复执行命令、缩写、宏以及用户程序等。

标准的ANSYS程序运行是由1000多条命令驱动的,这些命令可以写进程序设计语言编写的程序,命令的参数可以赋确定值,也可以通过表达式的结果或参数的方式进行赋值。

从ANSYS命令的功能上讲,它们分别对应ANSYS 分析过程中的定义几何模型、划分单元网格、材料定义、添加载荷和边界条件、控制和执行求解和后处理计算结果等指令。

用户可以利用程序设计语言将ANSYS命令组织起来,编写出参数化的用户程序,从而实现有限元分析的全过程,即建立参数化的CAD 模型、参数化的网格划分与控制、参数化的材料定义、参数化的载荷和边界条件定义、参数化的分析控制和求解以及参数化的后处理。

宏是具有某种特殊功能的命令组合,实质上是参数化的用户小程序,可以当作ANSYS的命令处理,可以有输入参数或没有输入参数。

缩写是某条命令或宏的替代名称,它与被替代命令或宏存在一一对应的关系,在ANSYS中二者是完全等同的,但缩写更符合用户习惯,更易于记忆,减少敲击键盘的次数。

ANSYS工具条就是一个很好的缩写例子。

用户界面设计语言(UIDL)标准ANSYS交互图形界面可以驱动ANSYS命令,提供命令的各类输入参数接口和控制开关,用户在图形驱动的级别上进行有限元分析,整个过程变得直观轻松。

ANSYS二次开发概述

ANSYS二次开发概述

ANSYS二次开发概述标准ANSYS程序是一个功能强大、通用性好的有限元分析程序,同时它还具有良好的开放性,用户可以根据自身的需要在标准ANSYS版本上进行功能扩充和系统集成,生成具有行业分析特点和符合用户需要的用户版本的ANSYS程序。

开发功能包括四个组成部分:⑴.参数化程序设计语言(APDL)⑵.用户界面设计语言(UIDL)⑶.用户程序特性(UPFs)⑷.ANSYS数据接口APDL所能实现的功能通俗的说来应该是次于UPF而强与UIDL,但实际上是由于三者具体侧重点不同造成的:UIDL主要控制GUI界面的各类二次开发方法,涉及的分析部分就要少一些,APDL可以称其为和分析部分频繁打交道的一组小型工具,功能强大,但不和UIDL一样能够非常具体的针对某一两方面的二次开发处理,通常情况下融合在分析的角角落落中。

UPF是三者之间的最强者,能完成最复杂的二次开发工作,比如说构建新单元,复杂数据库交互,外围命令定制等,但UPF在很多情况下也借助了APDL命令来完全实现其功能。

同样也能在UIDL中嵌入APDL命令,来构建比较复杂的GUI二次开发工作。

UIDL、APDL和UPF三者各有所长,密不可分。

结合使用三者,就能够实现任何强大的分析功能。

5.2 Ansys的开发功能组成部分Ansys的开发功能由三个部分组成:参数化程序设计语言(APDL)、用户界面设计语言(UIDL)、用户程序特性(UPFs)5.2.1 参数化程序设计语言(APDL)参数化程序设计语言(APDL-ANSYS Parametric Design Language)实质上由类似于FORTRAN77的程序设计语言部分和1000多条ANSYS命令组成。

其中,程序设计语言部分与其它编程语言一样,具有参数、数组表达式、函数、流程控制(循环与分支)、重复执行命令、缩写、宏以及用户程序等。

标准的ANSYS程序运行是由1000多条命令驱动的,这些命令可以写进程序设计语言编写的程序,命令的参数可以赋确定值,也可以通过表达式的结果或参数的方式进行赋值。

ANSYS命令流、二次开发与HELP文档

ANSYS命令流、二次开发与HELP文档

ANSYS命令流、二次开发与HELP文档(一)简介ANSYS在操作时有两种途径,一种是GUI途径,即通过ANSYS可视化的操作菜单来实现对分析过程的操作,而另外一种就是所谓的命令流,这更像是一种后台操作,操作者分析的过程即是将一条条ANSYS命令按照自己的分析思路组织起来,而ANSYS通过调用这些命令完成分析。

初学ANSYS的人,对命令流充满了迷惑,因为当拿出一个分析过程自动形成的.log文件之后发现一行一行犹如天书,但这些正是ANSYS命令的真实面目,而我们常使用的菜单操作只不过是把这些命令的本来面目给遮盖起来了,在学习ANSYS的过程中,随着学习过程的深入,加之以对命令流本身有个追本溯源的原动力驱使,命令流本身也不是很难。

命令流与菜单操作相比各有其优缺点,学习ANSYS一般从菜单操作开始,因为菜单操作能够做到于使用者直接对话,简洁和可视化,但其缺点是如果一直按照菜单操作的方式进行便不能窥视到ANSYS的工作过程,尤其是在进行同个问题变换其中一个或几个参数进行分析时,其重复操作的工作太多,大大减小了分析的趣味性,把精力放在了没有技术含量的操作上。

ANSYS命令流则弥补了这一缺陷,虽然难以理解,但当使用命令流进行分析时,能够大大的缩短分析的手工工作量,尤其是配合一定APDL语句,能够使分析过程自动进行,而操作者要做的仅仅是调用已经编制好的命令流文件而已,这时操作者的精力将会是放在对整个分析过程的分析和研究上,因为一旦分析过程研究及其实现机理研究透彻,那随之而来的所谓分析只是计算机自己的问题,操作者可以调用完命令之后随心所欲的做其他事情,而且学习命令流可以更好的理解ANSYS的工作过程和分析机理,这是菜单操作方式所没有的,我们在学习ANSYS过程中,菜单操作仅仅是对ANSYS使用环境熟悉的一个过程。

谈到命令流的种种优点,便引起这样一个问题,如何学习ANSYS命令流?更确切的说如何入门命令流?学习ANSYS的人会发现,初学ANSYS命令流会感到无从下手,不知道该如何去进入这个世界,好像是ANSYS命令流的世界只有一个很小的门,大多数人都钻不过去,只有少数人钻了过去看到了里面的美妙景象,其实来说命令流的世界没有想象的这么难以进入。

ANSYS软件中修正剑桥模型的二次开发

ANSYS软件中修正剑桥模型的二次开发

万方数据 万方数据 万方数据第3期关云飞等:ANSYS软件中修正剑桥模型的二次开发(12)更新塑性应变增量{d£),判别本增量步是否收敛,若不收敛,将时间二分,重新在该高斯点求解。

(13)程序结束。

3.3利用UPFs对修正剑桥模型进行二次开发本文利用二次开发工具UPFs将修正剑桥模型添加到标准ANSYS程序中,具体做法如下:(1)安装ANSYS—UPFs二次开发工具以及Fortran编译器,不同ANSYS版本对于编译器的版本有相应的要求。

本文基于ANsYS7.0,在WindowXP下,使用CompaqVisualFortran6.6B编译器。

(2)根据前述的方法编写修正剑桥模型弹塑性本构关系的用户子程序USERMAT.F。

(3)将本构模型用户子程序USERMAT.F连接到ANSYS中。

利用UPFs和数据接口生成含修正剑桥模型的ANSYS程序。

(4)运行自定义版本的ANSYS程序。

有两种方式运行二次开发后的ANSYS程序。

一是用第(3)步生成的可执行文件覆盖安装目录下的ANSYS.exe,然后按正常方式启动;二是利用ansys70cust命令调用,运行”ansys70cust.custom/pathname/ansys.exe”,进入ANSYS界面。

在激活UPFs运行自定义版本的ANSYS程序后,使用TB,USER命令通知程序将使用自定义本构关系,并通过命令TBDATA将本构模型的相应参数输入。

由于本文在修正剑桥模型的子程序中使用了状态变量,包括各方向的塑性应变,总的等效塑性应变及等效应力,因此,在定义材料属性时必须使用TB,STATE命令定义状态变量的个数和大小,这里设置状态变量个数为6,状态变量的初始值为0。

进行有限元计算时,在每次Newton.Paphson迭代过程中,修正剑桥模型的子程序在每个单元积分点被调用。

子程序通过在每次时间增量开始时该积分点的应力、应变、状态变量及当前的应变增量进行计算,得出本次时间增量结束时的应力、应变和各状态变量的值,并输出相应的弹塑性刚度矩阵。

基于ansys平台的影响线计算功能的二次开发

基于ansys平台的影响线计算功能的二次开发

收稿日期:2004211209.作者简介:吴 灏(19792),男,硕士研究生;武汉,华中科技大学土木工程与力学学院(430074).基于AN SYS 平台的影响线计算功能的二次开发吴 灏1 陈传尧1 杨文兵1 杨新华1(1.华中科技大学 土木工程与力学学院,湖北 武汉 430074)摘 要:桥梁电算当中,桥梁结构内力分析涉及空间梁格的影响线计算问题,当前采用的一些算法在工程应用中有一定的不足.依据内力影响线定理,采取AN SYS 提供的单元生死功能顺利实现在关心节点处的相对单位位移,使该定理直接能够用于实际计算,并在AN SYS 平台进行了二次开发,编制了相应的宏,能够高效地解决梁格类复杂的空间结构影响线计算问题.关键词:内力影响线; 单元生死; AN SYS中图分类号:TU 311.4:U 448.27 文献标识码:A 文章编号:167227037(2005)增20001204 随着大量斜、弯梁桥的出现,在桥梁平面结构内力分析中广泛采用了梁格法,平面计算问题变成了空间问题.在活载作用下结构最不利内力计算采用了影响线的概念,原来的单梁影响线的计算变成了空间梁格的影响线的计算问题[1].许多学者在这方面做了不少努力,沈为平基于内力影响线定理,将节点间相对单位位移转化为加在单元上的力[2],但该方法对约束模式有一定的要求,在程序的算法上也比较复杂.王文斌基于AN SYS 平台按照影响线的定义对结构所有节点上分别加载,循环求解然后提取影响值,实现了影响线的计算[3],该方法求解数据多,当结构单元划分比较多的时候,效率不够高.本文基于AN SYS 平台,根据内力影响线定理[2]对影响线功能二次开发,旨在高效、方便地求得梁格、斜拉桥等复杂空间结构的影响线,为梁格、斜拉桥及悬索桥的影响线求解提供软件平台.1 计算方法及其在AN SYS 中的实现目前影响线计算方法很多,主要有静力法、位移法、弹性荷载法及混合法作影响线等[4],这些方法对简单结构是方便有效的,如简支梁.但空间桥梁的电算中,桥梁结构趋于复杂,如梁格、悬索桥及斜拉桥等,以往的方法在应用方面遇到一定的困难.为了解决这些问题,采用基于虚功原理的梁内力影响线定理[2]的影响线算法:欲求杆系结构中某截面的关心内力分量,可以首先解除与该关心内力分量相对应的约束,并给予相对应的单位相对位移,由此产生的杆系结构变形在该单位外力方向的投影,在数值上等于该关心内力的影响线.1.1 关心节点处相对位移的实现内力方向的定义如图1,图中阴影部分为AN SYS 中beam 188梁单元截面,I ,J 为单元的两个节点,两个节点的连线与截面垂直,为局部坐标系的x 轴,K 为梁单元的方向点,位于z 轴,由z 轴和x 轴根据右手法则得到局部坐标系的y 轴.不管梁单元在空间何处,它的内力方向始终按照该局部坐标系进行定义,从而可以将梁单元的内力方向统一起来.图1 AN SYS 中beam 188单元截面局部坐标为了在AN SYS 中实现内力影响线的计算,首先要在截面处顺利产生相对位移.当采用beam 188和189等梁单元时,一个截面表现为一个节点,某方向只有一个固定位移,而定理中要求在关心截面处产生相对位移,采取的方法是在关心节点处生成一个新节点,该新节点与关心节点具有相同的坐标位置.在AN SYS 中给出这两个节点的约束方程,使它们在关心内力分量方向的第22卷增刊2005年5月华 中 科 技 大 学 学 报(城市科学版)J.of HU ST.(U rban Science Editi on )V o l .22Sup.M ay .2005图2 简支梁内力Q 的影响线计算新老单元示意位移相差单位位移,其它位移保持一致.要保证新生成的节点能够加入原结构体系计算,需要生成新的单元代替原体系中某个相应旧单元;计算时运用AN SYS 提供的单元生死法,杀死旧单元,然后求解.图2是一个简支梁按照上述方法在AN SYS 中求解10号节点内力Q 的影响线后新老单元位置示意图,图中编号为节点号,10号节点是关心截面所在位置.在与10号节点相同的位置生成新节点42号节点,由42号节点和11号节点成新的单元,代替原来10号节点和11号节点所在的单元(旧单元).在计算中,杀死旧单元,使之不参与计算.1.2 指定定位节点及定义局部坐标在空间梁格中,常常遇到多个梁单元共用同一个节点,如果要求的是该节点的影响线,面临着杀死旧单元,生成新单元来代替它的问题.事实上,从图2可以看出,在杀死旧单元的时候,可以选择包含9和10号节点为旧单元,也可以选择包含10和11号节点的单元为旧单元,到底如何选择,显然需要指定另外一个节点来给要杀死的旧单元予以定位,这个节点称为定位节点.指定了定位节点,但是还不能直接进行计算.因为内力的方向是按照图1的局部坐标定义的,所以要求耦合新旧节点位移和给出它们的约束方程之前,要把坐标系从总体坐标系转到局部坐标系.AN SYS 中没有直接提供类似图1所示的局部坐标系,需要生成.可以采取AN SYS 中三节点生成局部坐标的方法,选取关心节点、定位节点这两个节点所在单元的方向点来生成局部坐标,如果定位节点和关心节点分别为它们所在单元的I 和J 节点,从定位节点到关心节点确定的方向仍然为x 轴,而方向点首先确定的是y 轴,然后右手法则确定z 轴.这样确定的一个局部坐标系相当于图1所示的局部坐标系沿x 轴正向旋转了90°(图3),方向点K 在轴上;如果定位节点和关心节点是J ,I 节点,那么还必须在图3坐标系基础上沿y 正向旋转180°.这样一个局部坐标系给后面的约束方程和耦合位移带来新的问题,需要进一步处理.图3 自定义局部坐标1.3 单位位移符号的计算因为上述自定义的局部坐标和截面的局部坐标的y 轴和z 轴位置互换,这样求和y 或z 有关的内力分量的影响线的时候,需要进行调整.如要求M y 影响线,按照内力影响线定理是解除y 方向的转角约束,给予相对位移,但是由于截面局部坐标和自定义局部坐标不同,实际上是解除z 方向的转角约束,给予相对单位位移.在约束方程中给予新节点和关心节点相对单位位移的时候,需要综合考虑自定义局部坐标,内力正负号习惯地定义这两个因素的影响;要保证在如图2所示的在同一根梁上选择不同的定位点(9或11)的时候,最后算出来的影响线符号保持一致,这三个因素决定了单位位移的符号.因为这三个因素的综合影响没有明显的规律,所以要分析各种情况加以调整和整理,使计算所得结果符合内力符号的定义习惯.首先要算出自建局部坐标系三个方向在总体坐标中的单位矢量,即x τy τz ο=l 1m 1n 1l 2m 2n 2l 3m 3n 3i ϕj οkο.(1)设单位位移为f use ,初值为1.0,x τ,y τ对符号的影响的开关变量为f x ,z ο对符号的影响的开关变量为f y z ,这两个开关变量初始值都是1.0,遇到要改变的情况则置为-1.0,则最后的单位位移fuse=fuse・f x ・f y z .(2)将内力分量分类,N x 和T x 为第一类,M y 和Q z 为第二类,M z 和Q y 为第三类.实际验算表明第一类符号没有影响,只需讨论第二类和第三类的符号变化.公式(3)是讨论f x 的取值・2・ 华 中 科 技 大 学 学 报(城市科学版) 2005年f x =-0.1 (l 1<0或l 1=0,l 2>0或 l 1=0,l 2=0,l 3<0)1.0 其它.(3)f y z 的取值,要分y 向加载和z 向加载两大方面,每方面还要分第二类和第三类内力予以讨论.讨论的方法如同公式(3),不过这时候根据的是z ο各分量的符号.讨论情况比较多,这里就不一一详细列出.1.4 求解计算和宏做好上面的准备工作之后,将关心节点和新节点所求内力分量约束方向指定单位位移,其它方向位移保持一致,然后求解计算.根据内力影响线定理,杆系结构变形在加载方向的投影数值上就是影响值.一般情况下,在非外力加载方向的位移变形较小,观察AN SYS 中位移变形图在外力加载方向的变形,可以得到影响线大致状况,因此直接用位移变形图作为影响线.AN SYS 提供了一种参数化设计语言(AN SYS Param eter D esign L anguage ,A PDL ),可用来自动完成常规操作或者通过参数化(变量)方式来建立分析模型的脚本语言,用A PDL 作为命令式语言创建宏可以给用户带来极大方便.据此,编制了实现影响线计算功能的宏模块.下面附上一些关键程序段,即!生成新节点,激活局部坐标3Get ,u 1,node ,spk ,loc ,x3Get ,…!找到关心节点信息N ,(m axnode +1),u 1,u 2,u 3,ro t 1,ro t 2,ro t 3,!生成新节点3Get ,no rien t ,elem ,okel m ,node ,3!找到单元的方向点C s ,11,0,spk 2,spk ,no rien t ,1,1!建立自定义坐标系,编号11C sys ,11,!将激活坐标系转换坐标系11N ro tat ,spk ,(m axnode +1),,!将要耦合的两点的坐标转到激活坐标系11!在这基础上进行相应的位移耦合3if ,innerfo rce ,eq ,1,then!当内力为弯矩M z Cp ,(m axcpnum +1),ro tz ,spk ,(m axnode +1)!将新节点与指定节点耦合Cp lgen ,(m axcpnum +1),ux ,uy ,uz ,ro tx ,!将新节点与指定节点进一步耦合Ce ,(m axcenum +1),fu se ,spk ,ro ty ,1,(m axnode +1),ro ty ,-1,,,,!定义约束方程!杀死老单元,激活新单元Ek ill ,okel m!杀死找到的单元E ,spk 2,(m axnode +1),no rien t!生成新单元,代替死去的单元2 应用实例考虑图4所示梁格模型,梁格平面在xy 平面内,z 向为加载方向;该梁格模型采取的是beam 188单元,梁格长为30m ,宽为15m ,截面为(0.2×0.3)m 2;泊松比v =0.3,弹性模量E =2×105M Pa ,左右两端固支.在划分单元的时候,每根梁的方向点在梁的正上方沿z 轴建立,每根梁划分单元的时候为5份,单元长度为1m .图4 两端固支的梁格模型不失一般性,取梁格模型A 区域梁上的某个节点的作为关心节点予以计算.分别计算该节点的轴力,剪力,弯矩和扭矩的影响线.在AN SYS当中直接取这个四个内力的位移变形图,作为影响线(图5).图5(a )梁格上所有影响值处于同一位置,这个值实际上是零,因为在梁格上沿z 轴加载,不会产生轴力.图5(b )和(c )分别为弯矩和剪力的影响线,从图中可看出在远离关心节点的地方加载,对关心节点影响较小,这也符合圣维南原理.图5(d )为该节点扭矩的影响线,在全梁格上(a ) Nx的全梁格影响线(b ) My的全梁格影响线(c ) Q z 的全梁格影响线(d ) T x 的全梁格影响线图5 四种内力的全梁格影响线・3・增刊吴 灏等:基于AN SYS 平台的影响线计算功能的二次开发 较远的地方对它有影响,此时力臂较长,产生的矩也较大,对该号节点所在梁的扭矩影响就较大.3 结 论理论上,本文采用的方法和按定义算出的结果应该是一致的,因为内力影响线定理本质上和影响线定义是等价的,在文献[2]中给出了详细的证明.通过取一些验算点,分别按自编的宏和定义分别得到它们的影响值比较也证实了这一点.目前,桥梁电算发展到空间,对影响线的计算提出了新的要求.直接采用梁的内力影响线定理,基于AN SYS 平台进行二次开发求解影响线.通过解决一系列在梁格求解计算中遇到的问题,使得整个求解可以扩展到空间梁格的任意截面.本文只是进行了一次静力计算,所以计算规模小,和文献[3]多次循环计算求得影响线相比,单截面(节点)求解效率更高,可以有效方便地求解像梁格、悬索桥及斜拉桥等空间桥梁结构的影响线.参考文献[1] 戴公连,李德建.桥梁结构空间分析设计方法与应用[M ].北京:人民交通出版社,2001.[2] 沈为平,刘 钢.内力影响面分析的机动法——理论,算法和程序[M ].北京:人民交通出版社,1994.[3] 王文斌.在AN SYS 中实现影响线的计算[EB OL ].h ttp :∥www .an sys .com .cn conference con 2004,2004211209.[4] 龙驭球,包世华.结构力学[M ].北京:高等教育出版社,2000.Execution of the I nf luence L i ne Ca lcula tion i n ANS Y SW U H ao 1 CH EN Chuan 2y ao 1 YA N G W en 2bing 1 YA N G X in 2hua1(1.Schoo l of C ivil Eng .&M echan ics ,HU ST ,W uhan 430074,Ch ina )Abstract :O n the com p u ter calcu lati on of b ridges ,the in ternal fo rce analysis of sp ace structu res often invo lves the calcu lati on of influence line .B u t the general m ethods p resen tly u sed can no t m eet the needs of p ractical engineering .A cco rding to the influence line p rinci p le ,a new and m o re effective m ethod is given .B y creating the relative un it disp lacem en t on the concerned node ,the influence line p rinci p le is em p loyed directly in to the p ractical engineering calcu lati on .T he code of ou r m ethod is w ritten by som e AN SYS m acro s .T he resu lts p roved that th is m ethod can calcu late the influence line of the com p lex structu res such as sp ace gridiron successfu lly and efficien tly .Key words :in ternal fo rce influence line ;elem en t b irth and death ;AN SYS・4・ 华 中 科 技 大 学 学 报(城市科学版) 2005年。

ANSYS二次开发概述

ANSYS二次开发概述

ANSYS二次开发概述标准ANSYS程序就是一个功能强大、通用性好的有限元分析程序,同时它还具有良好的开放性,用户可以根据自身的需要在标准ANSYS版本上进行功能扩充与系统集成,生成具有行业分析特点与符合用户需要的用户版本的ANSYS程序。

开发功能包括四个组成部分:⑴.参数化程序设计语言(APDL)⑵.用户界面设计语言(UIDL)⑶.用户程序特性(UPFs)⑷.ANSYS数据接口APDL所能实现的功能通俗的说来应该就是次于UPF而强与UIDL,但实际上就是由于三者具体侧重点不同造成的:UIDL主要控制GUI界面的各类二次开发方法,涉及的分析部分就要少一些,APDL可以称其为与分析部分频繁打交道的一组小型工具,功能强大,但不与UIDL一样能够非常具体的针对某一两方面的二次开发处理,通常情况下融合在分析的角角落落中。

UPF就是三者之间的最强者,能完成最复杂的二次开发工作,比如说构建新单元,复杂数据库交互,外围命令定制等,但UPF在很多情况下也借助了APDL命令来完全实现其功能。

同样也能在UIDL中嵌入APDL命令,来构建比较复杂的GUI二次开发工作。

UIDL、APDL与UPF三者各有所长,密不可分。

结合使用三者,就能够实现任何强大的分析功能。

5、2 Ansys的开发功能组成部分Ansys的开发功能由三个部分组成:参数化程序设计语言(APDL)、用户界面设计语言(UIDL)、用户程序特性(UPFs)5、2、1 参数化程序设计语言(APDL)参数化程序设计语言(APDL-ANSYS Parametric Design Language)实质上由类似于FORTRAN77的程序设计语言部分与1000多条ANSYS命令组成。

其中,程序设计语言部分与其它编程语言一样,具有参数、数组表达式、函数、流程控制(循环与分支)、重复执行命令、缩写、宏以及用户程序等。

标准的ANSYS程序运行就是由1000多条命令驱动的,这些命令可以写进程序设计语言编写的程序,命令的参数可以赋确定值,也可以通过表达式的结果或参数的方式进行赋值。

ANSYS二次开发概述

ANSYS二次开发概述

ANSYS二次开发概述标准ANSYS程序就是一个功能强大、通用性好得有限元分析程序,同时它还具有良好得开放性,用户可以根据自身得需要在标准ANSYS版本上进行功能扩充与系统集成,生成具有行业分析特点与符合用户需要得用户版本得ANSYS 程序.开发功能包括四个组成部分:⑴。

参数化程序设计语言(APDL)⑵.用户界面设计语言(UIDL)⑶.用户程序特性(UPFs)⑷。

ANSYS数据接口APDL所能实现得功能通俗得说来应该就是次于UPF而强与UIDL,但实际上就是由于三者具体侧重点不同造成得:UIDL主要控制GUI界面得各类二次开发方法,涉及得分析部分就要少一些,APDL可以称其为与分析部分频繁打交道得一组小型工具,功能强大,但不与UIDL一样能够非常具体得针对某一两方面得二次开发处理,通常情况下融合在分析得角角落落中。

UPF就是三者之间得最强者,能完成最复杂得二次开发工作,比如说构建新单元,复杂数据库交互,外围命令定制等,但UPF在很多情况下也借助了APDL命令来完全实现其功能.同样也能在UIDL中嵌入APDL命令,来构建比较复杂得GUI二次开发工作。

UIDL、APDL与UPF三者各有所长,密不可分。

结合使用三者,就能够实现任何强大得分析功能.5、2 Ansys得开发功能组成部分Ansys得开发功能由三个部分组成:参数化程序设计语言(APDL)、用户界面设计语言(UIDL)、用户程序特性(UPFs)5、2、1 参数化程序设计语言(APDL)参数化程序设计语言(APDL-ANSYS Parametric Design Language)实质上由类似于FORTRAN77得程序设计语言部分与1000多条ANSYS命令组成。

其中,程序设计语言部分与其它编程语言一样,具有参数、数组表达式、函数、流程控制(循环与分支)、重复执行命令、缩写、宏以及用户程序等。

标准得ANSYS程序运行就是由1000多条命令驱动得,这些命令可以写进程序设计语言编写得程序,命令得参数可以赋确定值,也可以通过表达式得结果或参数得方式进行赋值。

ANSYS 软件中修正剑桥模型的二次开发

ANSYS 软件中修正剑桥模型的二次开发

第3期
关云飞等:ANSYS 软件中修正剑桥模型的二次开发
977
ANSYS 的二次开发工具 UPFs 和数据接口将修正剑 桥模型引入 ANSYS 程序,并进行了典型算例的验 证,扩展了 ANSYS 在岩土工程领域的计算功能。
T
F T F A p V
收稿日期:2008-09-22 基金项目: “973”国家重点研究发展计划项目( No. 2002CB412707) ;南京水利科学研究院博士研究基金( No. YY30702) 。 第一作者简介:关云飞,男,1978 年生,博士,主要从事岩土工程的理论研究与数值计算。E-mail: gyfnhri@
,模型采用等向强化和相关联的流动法则。硬化 模量 A 的矩阵形式为
p v
978




2010 年
应力增量可表示为
b B ( ij ), F1 0
0
0

[ D ] [ D ]d
(1. 南京水利科学研究院 岩土工程研究所,南京 210024;2. 中国矿业大学 理学院,徐州,221008;3. 华侨大学 土木工程学院,厦门 361021)
摘 要: ANSYS 软件具有很强的非线性计算功能和前、 后处理能力, 是目前世界上最强大的通用分析程序之一。 标准 ANSYS 程序中包含众多的材料本构模型,但尚缺少岩土工程数值计算中常用的修正剑桥模型。为扩展 ANSYS 在岩土工程领域的计 算能力,利用二次开发工具 UPFs 和数据接口将修正剑桥模型连接到标准 ANSYS 程序中。二次开发的核心是本构模型子程 序 UMAT.F 的编制。 子程序的编写一方面要符合修正剑桥模型的本构关系式和弹塑性有限元计算的特点;另一方面变量名和 输入输出格式必须和标准 ANSYS 程序一致。对二次开发后的 ANSYS 程序进行了典型算例的验证。结果表明,在 ANSYS 中加入修正剑桥模型的方法是可行的,可推广到 ANSYS 对于其他材料本构模型的二次开发中。 关 键 词:有限元;修正剑桥模型;ANSYS;二次开发 中图分类号:O 245 文献标识码:A

对ANSYS程序进行二次开发

对ANSYS程序进行二次开发

分类号:单位代码:10019 密级:学号:s02660学位论文ANSYS二次开发及其大变形性能研究 The Study on Secondary Development &Large Deformation of ANSYS研究生:徐巍指导教师:周喆合作指导教师:申请学位类别:工学硕士专业领域名称:固体力学研究方向:有限元计算所在学院:理学院2005年5月独 创 性 声 明本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。

尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得中国农业大学或其它教育机构的学位或证书而使用过的材料。

与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

研究生签名:时间:年月日关于论文使用授权的说明本人完全了解中国农业大学有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件和磁盘,允许论文被查阅和借阅,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。

同意中国农业大学可以用不同方式在不同媒体上发表、传播学位论文的全部或部分内容。

(保密的学位论文在解密后应遵守此协议)研究生签名:时间:年月日导师签名:时间:年月日中国农业大学硕士论文摘要摘要POWER-FEM是中国农业大学自行开发的软件可用于求解静力、动力、线性、非线性等各类问题的通用有限元分析软件,尤其在几何非线性方面,POWER-FEM的单元采用有限变形理论进行设计,在实现过程中,全部采用精确计算。

ANSYS软件是有着广泛用户基础的通用有限元分析软件,在前后处理、与其他软件的数据共享上功能较强,在用户的二次开发方面,ANSYS提供了三种开发工具满足用户的不同开发需求。

为了POWER-FEM软件能够利用ANSYS在前后处理、数据共享方面的优势,本文利用ANSYS提供的二次开发工具对ANSYS进行二次开发,利用动态连接库的方法扩展了ANSYS在用户单元接入方面的功能,增强了ANSYS用户单元在ANSYS软件中的独立性,并将POWER-FEM的子程序库作为ANSYS的用户单元添加到ANSYS中。

有限元分析基础教程(ANSYS算例)(曾攀)

有限元分析基础教程(ANSYS算例)(曾攀)

有限元分析基础教程Fundamentals of Finite Element Analysis(ANSYS算例)曾攀清华大学2008-12有限元分析基础教程曾攀有限元分析基础教程Fundamentals of Finite Element Analysis曾攀(清华大学)内容简介全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。

本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。

本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。

本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。

目录[[[[[[\\\\\\【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57【ANSYS 算例】3.3.7(3) 三梁平面框架结构的有限元分析如图3-19所示的框架结构,其顶端受均布力作用,用有限元方法分析该结构的位移。

对ansys 进行二次开发 [精华]

对ansys 进行二次开发 [精华]

标准ANSYS程序是一个功能强大、通用性好的有限元分析程序,同时它还具有良好的开放性,用户可以根据自身的需要在标准ANSYS版本上进行功能扩充和系统集成,生成具有行业分析特点和符合用户需要的用户版本的ANSYS程序。

开发功能包括四个组成部分:参数化程序设计语言(APDL)用户界面设计语言(UIDL)用户程序特性(UPFs)ANSYS数据接口参数化程序设计语言(APDL)参数化程序设计语言实质上由类似于FORTRAN77的程序设计语言部分和1000多条ANSYS 命令组成。

其中,程序设计语言部分与其它编程语言一样,具有参数、数组表达式、函数、流程控制(循环与分支)、重复执行命令、缩写、宏以及用户程序等。

标准的ANSYS程序运行是由1000多条命令驱动的,这些命令可以写进程序设计语言编写的程序,命令的参数可以赋确定值,也可以通过表达式的结果或参数的方式进行赋值。

从ANSYS命令的功能上讲,它们分别对应ANSYS分析过程中的定义几何模型、划分单元网格、材料定义、添加载荷和边界条件、控制和执行求解和后处理计算结果等指令。

用户可以利用程序设计语言将ANSYS命令组织起来,编写出参数化的用户程序,从而实现有限元分析的全过程,即建立参数化的CAD模型、参数化的网格划分与控制、参数化的材料定义、参数化的载荷和边界条件定义、参数化的分析控制和求解以及参数化的后处理。

宏是具有某种特殊功能的命令组合,实质上是参数化的用户小程序,可以当作ANSYS的命令处理,可以有输入参数或没有输入参数。

缩写是某条命令或宏的替代名称,它与被替代命令或宏存在一一对应的关系,在ANSYS 中二者是完全等同的,但缩写更符合用户习惯,更易于记忆,减少敲击键盘的次数。

ANSYS工具条就是一个很好的缩写例子。

用户界面设计语言(UIDL)标准ANSYS交互图形界面可以驱动ANSYS命令,提供命令的各类输入参数接口和控制开关,用户在图形驱动的级别上进行有限元分析,整个过程变得直观轻松。

有限元分析基础教程(ANSYS算例)

有限元分析基础教程(ANSYS算例)

有限元分析基础教程Fundamentals of Finite Element Analysis(ANSYS算例)曾攀清华大学2008-12有限元分析基础教程曾攀有限元分析基础教程Fundamentals of Finite Element Analysis曾攀(清华大学)内容简介全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。

本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。

本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。

本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。

- 1 -标准分享网 免费下载目录[[[[[[\\\\\\【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57i【ANSYS 算例】3.3.7(3) 三梁平面框架结构的有限元分析如图3-19所示的框架结构,其顶端受均布力作用,用有限元方法分析该结构的位移。

ANSYS二次开发 [精华]

ANSYS二次开发 [精华]

ansys具有多种实用的二次开发工具:ANSYS除了具有较为完善的分析功能外,同时还为用户进行二次开发提供了多种实用工具。

如宏(Marco)、参数设计语言(APDL)、用户界面设计语言(UIDL)及用户编程特性(UPFs),其中APDL(ANSYS Parametric Design Language)是一种非常类似于Fortran77的参数化设计解释性语言,其核心内容为宏、参数、循环命令和条件语句,可以通过建立参数化模型来自动完成一些通用性强的任务;UIDL(User Interface Design Language)是ANSYS为用户提供专门进行程序界面设计的语言,允许用户改变ANSYS的图形用户界面(GUI)中的一些组项,提供了一种允许用户灵活使用、按个人喜好来组织设计ANSYS图形用户界面的强有力工具;UPFs(User Programmable Features)提供了一套Fortran77函数和例程以扩展或修改程序的功能,该项技术充分显示了ANSYS的开放体系,用户不仅可以采用它将ANSYS程序剪裁成符合自己所需的任何组织形式(如可以定义一种新的材料,一个新的单元或者给出一种新的屈服准则),而且还可以编写自己的优化算法,通过将整个ANSYS作为一个子程序调用的方式实现。

程序设计的主要原则和功能如下:(1)方便原则,即程序模块应具有良好的用户界面和易用性。

程序前台设计采用Windows提供的标准图形用户界面(GUI),用户无须接受专门训练即可使用。

同时,程序应具有良好的容错和纠错能力,避免用户操作不当造成损失。

(2)程序系统能够提供用户以下功能:①允许用户可以根据实际计算工况,输入特定的计算参数,包括地震波选择、计算时间步长、地震波调幅与否等。

②用户在输入各种参数以后、进行计算之前可以对输入的数据进行修改、添加和删除操作,以保证输入正确的参数。

③用户通过界面调用后台的ANSYS 命令流进行计算,能够得到最后的计算结果文件,供用户进行后处理和结果分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IJK_U(N_BC,3):节点约束数组,IJK_U(I,1)表示第 I 个约束的节点编号,IJK_U(I,2)、IJK_U(I,3)分别
y 方向的支承情况,为 1 时表示有约束,为零时无约束 y 方向的节点载荷数值
P_IJK(N_LOAD,3):节点载荷数组,P_IJK (I,1)表示第 I 个作用有节点载荷的节点的编号,P_IJK (I,2)、 P_IJK (I,3)分别为该节点沿 x 、 AK(N_DOF,N_BAND):整体刚度矩阵 AKE(6,6): BB(3,6): DD(3,3): SS(3,6): DISP_E(6): STS_ELE(N_ELE,3): STS_ND(N_NODE,3): 单元刚度矩阵 位移-应变转换矩阵(三节点单元的几何矩阵) 弹性矩阵 应力矩阵 单元的节点位移向量 单元的应力分量 节点的应力分量
弹性模量(PE),泊松比(PR),单元厚度(PT) (例如:1.,0.,1.)
节点约束信息
IJK_U(N_BC,3) 位移约束的节点编号, 该节点 x 方向约束代码, 该节点 y 方向约束代码, ….. (例如:1,1,0,2,1,0,4,1,1,5,0,1,6,0,1)
个数之间用“, ”号 隔开。 (约束代码:1 表示 有约束,0 无约束) 在节点约束信息输
清华大学机械工程系 曾攀
IJK_ELE(I,3):单元节点编号数组,IJK_ELE(I,1)、IJK_ELE(I,2)、IJK_ELE(I,3)分别存放单元 I 的三个 X(N_NODE)、Y(N_NODE):节点坐标数组,X(I)、Y(I)分别存放节点 I 的 x 、 表示该节点沿 x 、
y 坐标值
1.1 程序原理及实现
该程序的特点如下: 问题类型:可用于计算弹性力学平面应力问题和平面应变问题 单元类型:采用常应变(CST)三角形单元 位移模式:采用线性位移模式 载荷类型:节点载荷,非节点载荷应先换算为等效节点载荷 材料性质:弹性体由单一的均匀材料组成 约束方式:为“0”位移固定约束,为保证无刚体位移,弹性体至少应有对三个自由度的独 立约束 方程求解:针对半带宽刚度方程的 Gauss 消元法 节点信息:可以读入由 ANSYS 前处理导出的节点信息文件 NODE_ANSYS.IN,或手工生 成 单元信息:可以读入由 ANSYS 前处理导出的单元信息文件 ELEMENT_ANSYS.IN,或手 工生成 结果文件:输出一般的结果文件 DATA.OUT ,还输出供 ANSYS 进行后处理的文件 FOR_POST.DAT 该程序的原理如框图 1 所示。
表 2 节点信息文件 NODE_ANSYS.IN 的格式 栏目 格式说明
每行为一个节点的信息
实际需输入的数据
ND_ANSYS(N_NODE,3)
节点信息
节点号,该节点的 x 坐标,该节点 y 方向坐标 ( 每行三个数,每两个数之 (例如:3 0.5 1.2) 间用空格或“, ”分开) ………
需读入的单元信息文件 ELEMENT_ANSYS.IN 的格式如表 3 所示。该格式按 4 节点单
IJK_ELE(I,1) STS_ELE(I,1) 单元的节点号 1 IJK_ELE(I,2) STS_ELE(I,2)
清华大学机械工程系 曾攀
IJK_ELE(I,3)
IJK_ELE(I,3) STS_ELE(I,3)
若需从 ANSYS 前处理中导出 NODE_ANSYS.IN 和 ELEMENT_ANSYS.IN 这两个文件,其方 法见后面的第 3 节。 程序输出的数据文件:
DATA.OUT (一般的结果文件) FOR_POST.DAT(专供 ANSYS 进行后处理的结果数据文件)
与 ANSYS 后处理衔接的接口程序:
自主程序开发使用说明(fortran,C,ANSYS 平台衔接)
清华大学机械工程系 曾攀
《有限元分析及应用》
自主程序开发使用说明
(fortran, C, 与 ANSYS 平台衔接)


(清华大学机械工程系)
1 连续体平面问题的有限元分析程序(Fortran)
源程序名称:FEM2D.FOR Fortran 源程序、相关接口程序和数据文件见本配书盘中目录 /有限元分析源程序(f,c,ANSYS 衔接)/fortran 源程序及与 ANSYS 衔接(FEM2D)/ 下面将介绍 FEM2D.FOR 程序的实现原理。该程序可以接受由 ANSYS 前处理所输出 的节点信息文件 NODE_ANSYS.IN 和单元信息文件 ELEMENT_ANSYS.IN,经过计算分析 后,输出一个一般性的结果文件 DATA.OUT 和一个专供 ANSYS 进行后处理的结果数据文 件 FOR_POST.DAT 。该程序所使用的需手工生成的模型基本信息文件为 BASIC.IN ,与 ANSYS 后处理衔接的接口程序程序为 USER_POST.LOG。
USER_POST.LOG(接口文件,供 ANSYS 调用实现结果的可视化)
3
自主程序开发使用说明(fortran,C,ANSYS 平台衔接)
清华大学机械工程系 曾攀
FEM2D.FOR 程序中的文件管理如图 2 所示。
基本信息数据文件 BASIC.IN 一般结果输出文件 DATA.OUT
节点信息数据文件 NODE_ANSYS.IN ANSYS平台前处理 NWRITE命令 EWRITE命令 单元信息数据文件 ELEMENT_ANSYS.IN
节点数(N_NODE) 单元数(N_ELE) (例如:6 4)
实 际 输 出 的 数 据
X(I)
Y(I)
RESULT_N(2*I-1)
RESULT_N(2*I)
STS_ND(I,1) STS_ND(I,2) STS_ND(I,3) 节点的 x 坐标 节点的 y 坐标 节点 x 方向位移 节点 y 方向位移
形成单元刚度矩阵(子程序FORM_KE)
以半带存储方式形成整体刚度矩阵(BAND_K)
形成节点载荷向量(子程序FORM_P)
处理边界条件(子程序DO_BC)
求解方程获得节点位移(子程序SOLVE)
计算单元及节点应力(子程序CAL_STS)
输出文件
(FOR_POST.DAT,供ANSYS后处理用) (DATA.OUT,一般的结果文件)
节点 x 方向应力 节点 y 方向应力 节点剪切应力 ( 例 如 : 0.0000 0.4396) 2.0000 0.0000 -5.2527 -1.0879 -3.0000
5
自主程序开发使用说明(fortran,C,ANSYS 平台衔接) PARTIII : 单 元 节 点 编 号、单元应力的三个分 量,在节点输出结果后 的第 1 行代表第 1 号单 元的结果,往后依此类 推。 (共有总单 元 数 的 行 数,每行 7 个数,格式 7f9.4)
(3) 文件管理 源程序文件:
FEM2D.FOR
程序需读入的数据文件:
BASIC.IN(模型的基本信息文件,需手工生成) NODE_ANSYS.IN (节点信息文件,可由 ANSYS 前处理导出,或手工生成) ELEMENT_ANSYS.IN(单元信息文件,可由 ANSYS 前处理导出,或手工生成)
I
实 际 输 出 的 数 据
RESULT_N(2*I-1) RESULT_N(2*I) x 方向位移 y 方向位移
节点位移
节点号
IE
STS_ELE(IE,1) STS_ELE(IE,2) STS_ELE(IE,3) y 方向应力 剪切应力
单元应力的三个分量
单元号 x 方向应力
节点应力的三个分量 (经平均处理后)
I
STS_ND(I,1)
STS_ND(I,2) STS_ND(I,3) y 方向应力 剪切应力
节点号 x 方向应力
专供 ANSYS 进行后处理的结果数据文件 FOR_POST.DAT 的格式如表 5 所示。
表 5 输出结果文件 FOR_POST.DAT 的格式 栏 目 格式说明 (共 1 行,两 PARTI:模型信息 个数,格式 2f9.4) PARTII :节点坐标、节 点位移、节点应力的三 个分量(经平均处理后), 在模型信息输出行后的 第 1 行代表第 1 号节点 的结果,往后依此类推。 (共有总节点 数的行数, 每行 7 个数, 格式 7f9.4)
第 1 行,每两个数 (N_BC),有载荷的节点数(N_LOAD) 之间用“, ”号隔开 (例如:1,4,6,5,3)
实际需输入的数据
问题类型(ID),单元个数(N_ELE),节点个数(N_NODE),有约束的节点数
基本模型数据
材料性质
第 2 行,每两个数 之间用“, ”号隔开 在材料性质输入行 之后另起行,每两
结 束
图 1 FEM2D.FOR 程序的原理框图
程序中主要变量、子程序、求解的说明如下。 (1) 主要变量
ID: N_NODE: N_LOAD: 问题类型码,ID=1 时为平面应力问题,ID=2 时为平面应变问题 节点个数 节点载荷个数 2
自主程序开发使用说明(fortran,C,ANSYS 平台衔接) N_DOF: N_ELE: N_BAND: N_BC: PE: PR: PT: 自由度,N_DOF=N_NODE*2(平面问题) 单元个数 矩阵半带宽 有约束的节点个数 弹性模量 泊松比 厚度 节点的整体编号
实 际 需 输 入 的 数 据
单元信息
节点单元,第 4 个节点编号 与第 3 个节点编号相同,后 10 个数暂时无用,可输入 “0 ” ,每两个整型数之间用 至少一个空格分开。)
输出结果文件 DATA.OUT (一般的结果文件) 格式如表 4 所示。
表 4 输出结果文件 DATA.OUT 的格式 栏 目
P_IJK(N_LOAD,3) 入行之后另起行,
节点荷载信息
每两个数之间用 “, ”号隔开。
相关文档
最新文档